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PREFACE

This report is one of a series documenting the results of the
Swedish-American cooperative research program in which the cooperating
scientists explore the geological, geophysical, hydrological, geochemical,
and structural effects anticipated from the use of a large crystalline
rock mass as a geologic repository for nuclear waste. This program
has been sponsored by the Swedish Nuclear Power Utilities through
the Swedish Nuclear Fuel Supply Company (SKBF), and the U.S. Department
of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL).

The principal investigators are L. B. Nilsson and O. Degerman
for SKBF, and N. G. W. Cook, P. A. Witherspoon, and J. E. Gale for
LBL. Other participants will appear as authors of the individual
reports.
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ABSTRACT

The in-situ thermal conductivity and thermal diffusivity of a granite

rock mass at the Stripa mine, Sweden, have been extracted from the first 70

days of temperature data for the 5 kW full-scale heater experiment by means

of least-squares fit to a finite-line source solution. Thermal conductivity

and thermal diffusivity have been determined to be 3.69 W/(m-OC) and 1.84 x

10-6 m2/s, respectively, at an average rock temperature of 23°C (the·

average value of the actual temperature data used). These values are only

slightly higher than the corresponding laboratory values, i.e., there is no

significant "size effect" in the thermal properties of this rock mass. Since

the size and shape of the heater canister used are similar to those consi

dered for nuclear waste canisters and a substantial volume of rock is heated,

the thermal properties obtained in this study are representative of in-situ

rock mass properties under actual nuclear repository operating conditions~
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1. INTRODUCTION

A possible solution to the problem of radioactive waste isolation is

to bury the wastes deep underground in a stable rock formation. In-situ

electrical heater experiments are being conducted at the Stripa mine in

Sweden to study the possible thermal and thermomechanical effects of the

heat energy released by radioactive decay of the wastes after the waste

canisters have been emplaced in granite. These experiments are part of

the Swedish-American Cooperative Program on Radioactive Waste Storage in

l~ined Caverns in Crystalline Rock (Witherspoon and Degerman 1978). The

temperature data from these experiments can also be used to determine the

in-situ thermal properties of the rock mass: its thermal conductivity and

thermal diffusivity. Due to the configuration of the experiments, the

classical "probe" method for determining the properties, which requires a

length-to-diameter ratio over 25:1 (Blackwell 1956), is not possible. In

stead, a least-squares computer program has been written to determine the

thermal properties. The least-squares method is in common use for statis

tical inversion of experimental data in the physical sciences (Hamilton

1964). Here we mention only two previous studies relevant to the present

work. McEdwards and Tsang (1977) have developed a least-squares technique to

study well test data. An infinite line source was used to model the well in

their analysis. Toews, Larocque, and Wong (1977) have, as we have, studied

both the estimation of in-situ thermal properties using a least-squares

scheme and the stablity of the estimation process. In their closed form

solution, they used as their model an infinite-line heat source, which is

only adequate for short times and for points very near the heater. In order

to model the finite length heater, they used a finite element solution and
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tabulated the results, to be looked up during the least-squares iteration

which utilizes dimensional analysis. They analyzed only hypothetical data

because they had no field data at the time their report was written.

Initially we have attempted to use an infi~ite line source model in our

analysis, but the least-squares procedure did not converge. Instead, we have

used the closed-form, finite-line source solution developed by Chan, Cook,

and Tsang (1978) in our least-squares scheme, which analyzes the temperature

data from the in-situ heater experiment and extracts the thermal conductivity

and thermal diffusivity of the granitic rock mass.
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2. DESCRIPTION OF THE EXPERIMENT

The Stripa project consists of three experiments, two full-scale experi-

ments and one time-scaled experiment, which are underway at the Stripa mine
'\

in Sweden. The experiments are located in separate drifts branching off from

a main tunnel, at depths ranging from 338 m to 360 m below the surface (see

Fig. 1). The waste canisters are simulated by cylindrical electric heaters

of variable power output; thermocouples, extensometers, and stress-measuring

gauges have been placed in the surrounding rock.

10°
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Fig. 1. General plan of test site of Stripa project
(after Kurfurst et al. 1978).



-5-

The experiment we are analyzing is full-scale experiment 2 of the

Stripa project (see Fig. 2). It consists of a central heater canister with

radius 0.16 m, length 2.59 m, and constant power output of 5 kW. The hot

section of the heater element is encased in a stainless canister, and is 15

cm shorter than the canister itself. The heater midplane is 4.25 m below the

drift floor. A ring of peripheral heaters surrounds the central heater, but

these heaters had not yet been activated at the time of our analysis.

Thermocouples and other gauges are located at various positions about the

heaters. On July 3, 1978, the central heater was turned on and data began to

be recorded from the gauges.

® 5kW Heater (HIO)

X Thermocouple

/~---5m ----+-1/

'l'A-........---5m-----.....%% X

X X

4.25m

Hea'er ...........-~

X

X X
X X X

@
X X

X

(a) Heater drift - elevation view (b) Drift floor - plan view

FULL SCALE EXPERIMENT 2
XBL 796-7544

Fig. 2. Full-scale experiment 2: location of (a) central heater, side
view, and (b) thermocouples used in least-squares analysis, top view.
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3. DESCRIPTION OF THE MODEL

For our model of the experiment, we assume that the rock is homogeneous,

isotropic, and linear; i.e., that the thermal conductivity and diffusivity of

the rock are independent of position, orientation, and temperature. We have

no evidence to indicate that the rock is homogeneous and isotropic, but lack

of detailed information on in-situ conditions dictates that we make such

simplifying assumptions as a first approximation. However, the laboratory

work done by Terra Tek of Salt Lake City, Utah indicates that heat conduction

in Stripa granite is not truly linear. Pratt et al. (1977) reported that the

Stripa granite thermal conductivity, k, depends on the temperature of the

rock as given by the following equation:*

k = 3.60 - .3745 X 10-2 T (in W/m-OC)

Thus, our results will yield a value of k which is an average over the

temperatures obtained from our experiment.

(1)

We have also assumed that the heater is in perfect thermal contact with

the rock, and that heat transfer occurs by conduction only.

To calculate the temperature rise resulting from the heat source, we

must choose between three models: a finite cylinder source (the actual

geometry of the heater, but quite difficult to compute); a finite line

source; and an infinite line source (the simplest to compute). The equations

*According to solid state theory, in the temperature range under considera
tion (Debye 1914), the thermal conductivity of (electrical) insulatofs, such
as the minerals forming granite, will be directly proportional to the phonon
mean free path, which varies inversely with the absolute temperature.
However, for weak temperature dependence a linear approximation, e.g.,
Eq. (1), may be sufficiently accurate.
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for constant power sources of the three mentioned geometries are given

below in cylindrical coordinates; however, because the experiment is radially

symmetric, there is no angular dependence. As the temperatures will later

~ be considered as functions of the thermal properties also, k and Kwill

be included in the functional notation as T (r, z, t, k, K ).

Finite cylinder source (Mufti 1971):

T (r,:,t) = 8~k i ~ trf 1~(:"~112 ~ -erf 1~(:"~1121 ]
f exp 1- (r

2
~K:12)! 10 (2:~) r'drld~ (2)

o
Finite line source (Chan, Cook, and Tsang 1978):

T(r,z,t)

b

= Q (
8rrbk J

-b

erf\;f2 + (z-z I) 2
4Kt

Yr2 + (z-ZI)2
dz '

(3)

Infinite line source (Carslaw and Jaeger, 1959):

T(r,t) = 8~bk 100

. e:
U

du
r 2 /4Kt

where Q =heater power level per unit length (in W/m),

b = half-length of heater (in m),

a = radius of heater (in m)

k = thermal conductivity (in W/m-OC)

(4)
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K = thermal diffusivity in (m2js)

10 = modified Bessel function of the first kind, zeroth order

erf = error function

erfc = complimentary error function.

The finite line source approximates the finite cylinder source quite

well. [Refer to Chan, Cook, and Tsang (1978) for table showing excellent

agreement between the two models near the rock edge at the heater midplane,

the location where the largest discrepancy is expected.J Hence we can quite

satisfactorily use the finite line source [Eq. (3)J, which requires only one

spatial integral, to model the finite cylinder source [Eq. (2)J, which

requires one spatial and one temporal integral, Can we instead use the

infinite line source model [Eq. (4)J, which is even easier to compute.

As mentioned in Section 1 above, the problem of extracting the rock1s

thermal properties from temperature data has already been solved for an

infinite line source. However, when the actual heater geometry is a finite

cylinder, the results obtained using this simple model are unsatisfactory.

The reason for this is made clear in Fig. 3. Except at very short times and

very short distances from the heat source, the difference between the two

models is substantial. Thus the infinite line model, though it is easy to

compute, is not a satisfactory model for our experiment, and we must use the

finite line source model.
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A Finite line source r = 0.7 m
B Infinite line source r = 0.7 m
C Finite line source r = 3.0 m

U 150 0 Infinite line source r = 3.0 m

O'l
Q)

"'0

Q)
CJ).- 100~

Q)
~

::l.....
0
~

Q)
Q.

E 50
Q)

I-

0
1

Time (days)'
XBL 796 -I0220A

Fig. 3. Comparison of finite- and infinite-line source solutions for
r = .7m and r = 3.0 m.

4. BOUNDARY CONDITIONS FOR THE MODEL

Our model uses one of three boundary conditions: an infinite medium, a

semi-infinite medium with an isothermal boundary, or a semi-infinite medium

with an adiabatic boundary. The experiment takes place beneath a drift, and

the temperatures in the rock are affected by the drift floor boundary. If we

assume the ventilation in the drift to be very efficient,then the drift floor

would remain at a constant temperature. This yields a semi-infinite medium

with an isothermal boundary as an approximating model.

If instead we assume that the air neither circulates nor conducts the

heat, then we would require the drift floor to be an insulated boundary.
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This yields a semi-infinite medium with adiabatic boundary as the model.

The above two boundary conditions can be modeled quite easily using the

method of images (Chan, Cook, and Tsang 1978). Consider the presence of an

identical additional "image" heater at the same distance from the (adiabatic

or isothermal) boundary as the original heater, but above the drift boundary

instead of below it. If this "image" heater absorbs energy (releases nega

tive power) at the same rate that the original heater releases (positive)

energy, then the rock at the boundary will have no net energy increase. Thus

it is an isothermal boundary.

If instead the "image" heater releases positive energy, then at the

boundary the amount of energy received from the two sources are equal, and

there is no net flux of energy across the boundary surface .. Thus it is an

adiabatic boundary. From these solutions and the symmetry of the experiment,

we obtain the following equations for Tb, the temperature resulting from a

finite line source in a semi-infinite medium with an isothermal or adiabatic

boundary:

Tb (r, z, t) = T(r, z, t) + Tim (r, z, t)

= T(r, z, t) + T(r, 2d z, t) (5)

where T is the temperature due to one source at the location of the actual

heater [Eq. (3)], Tim is the temperature due to the image heater, and d is

the depth of the heater midplane in meters. The minus sign corresponds

to an isothermal boundary, and the plus sign corresponds to an adiabatic

boundary. In the absence of any knowledge of the effect of the drift,

the best model to use is the infinite medium. It is the simplest and is

accurate for relatively short times, regardless of the actual boundary
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conditions. This is because the boundary effects take time to be felt at

locations away from the boundary. Our calculations indicate that for this

experiment, the boundary conditions will not influence the temperature by a

detectable amount in the region of the thermocouple gauges for at least 70

days. After we have obtained data for a longer period of time, we will in

fact be able to gain information about the effect of the drift by determining

which boundary conditions best fit the data.

5. DETERMINATION OF THE THERMAL PROPERTIES

The classical "probe" method of determining the in-situ thermal pro

perties (Blackwell 1956) involves the immersion of a long cylindrical heat

source (the probe) of known dimensions and thermal properties into a rock

formation of unknown thermal properties. From a record of the probe tem

perature as a function of time, the in-situ thermal properties of the rock

can be deduced. However, for the approximating equations to be valid, the

ratio of length to diameter of the probe must be at least 25:1.

Because the the thermal effects of radioactive waste burial are depen

dent on the thermal loading (power output of the canisters per square meter)

and the geometry of the waste canisters, the design of the experimental

heaters must be dictated by the geometries being considered for actual waste

disposal. The length-to-diameter ratio of the canisters being studied is
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2.59 m/.406 m* = 6.38, which is much less than 25. Thus we cannot treat the

heater as the probe in the probe method for determining the in-situ thermal

properties of the granite formation.

We have instead used the least squares method. Our program determines

the values of the thermal conductivity and diffusivity which give the best

fit between the temperature measurements and our calculations at the corre-

sponding positions and times.

I~ore precisely, using our finite-line source model, we have obtained an

equation for the temperature in the rock as a function of position, time, and

the thermal properties [Eq. (3) ] . We seek those values of k and Kwhich

minimize the following sum of squares of residuals:

N N

L Res 2 = 2: (T~h (k, K) - T~)2 (6)
i =1 i=1

where Tth (k, K ) is the theoretical value T(ri' zi' k, K ) as given in

Eq. (3) above, Tm is the temperature measurement at the position (ri'

zi) at the time ti' and N is the number of data points.

Thus k and K are chosen to minimize the difference between the measured

and the calculated values of temperature at the positions and times of the N

data points.

* The actual diameter of the heater canister is 0.32 m while the diameter of
the drillhole into which the canister is emplaced is 0.406 m. In an analy
tic conduction model, the existence of the air gap between the canister and
the rock is ignored.
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6. THE LEAST SQUARES ALGORITHM

The least squares problem is to minimize the following function with

respect to k and K:

N

</>(k, K) = 2:
i=l

(7)

This is equivalent to solving the equation v~ = 0, where v~ designates the

gradient in k-K space. Unfortunately, ~ is not a linear function of k and K,

and the equation cannot be solved directly. Two approaches can be used to

find a minimum of~: the method of steepest descent, and the Gauss-Newton

algorithm.

,
Given the derivatives of T with respect to k and K , we can calculate

the gradient of $ using estimates of the rock parameters. We know that

taking a sufficiently small step in the direction of the gradient of ~ will

decrease the value of~. Thus by repeatedly adjusting our estimates of k

and K by these steps in the direction of steepest descent, we can minimize

the value of $. However, it is difficult to choose the best step size, and

the method often converges rather slowly.

An alternative approach to the least-squares problem is to treat the

temperature as a linear function of k and K, yielding the Newton-Gauss

algorithm. This approximation is always valid in a small region. In

this case, the minimizing values of k and K can be determined exactly

from the normal equations. These equations follow from setting the gradient

of ~ equal to 0, and assuming the derivatives of T independent of k and K.
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The algorithm that we have used is Marquardt's algorithm (Jefferson

1974; Marquardt 1963), which incorporates the above two approaches into a

single algorithm. It has been implemented in the FORTRAN subroutine TJMAR1

by T. H. Jefferson, and is available through the Sandia Library. We have

included this subroutine in our least-squares program.

7. FURTHER EQUATIONS

As shown above, the partial derivatives of the temperature function with

respect to k and K are needed to determine the thermal properties. These

derivatives can be written readily, as in the following equations, where

T is as given in Eq. (3) and Tb is as given in Eq. (5):

Infinite medium:

aT -T
ar="l(

-r 2

aT _ Qe 4Kf
aK - 161TbkK [

erf ( b of: z) + erf
y4 Kt

(8)

(9)

Semi .. infinite medium with isothermal/adiabatic boundary:

( 10)

aT

[T(r, z, t) + Tim (r, z, t)]

(r, z, t) + ~ (r, 2d - z, t)
aK (11 )

where the negative sign corresponds to an isothermal boundary, while the

positive sign corresponds to an adiabatic boundary.
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8. OUR PROGRAM

We have written the FORTRAN program LEAST to extract the in-situ thermal

properties from our temperature data. The inputs to LEAST are the N data

points (ri, zi, ti, Tmi), the original estimates of k and K, and

the desired boundary conditions. The user can choose between the finite line

source [Eq. (3)J and the infinite line source [Eq. (4)J for his model.

In addition, if the values of p (the rock density) and c (the specific heat)

are assumed to be known, the thermal diffusivity is completely determined in

terms of the thermal conductivity by the equation K = k/pc. In this case,

the problem reduces to the determination of the one parameter k. The user

can specify this option.

A Romberg integration scheme is used to evaluate the temperature as a

function of r, z, and time.

The output of the program is the minimizing values of k and K, and

the minimized value of ~, the sum of squares of residuals. The quantity

S = {f7N is the average difference between the actual temperature values and

the calculated values. Thus this minimum value of ~ indicates the goodness

of-fit of the data to our model with the obtained values of k and K.
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9. RESULTS

The results of our analysis are given in Table 1. In these calcu-

lations, the infinite medium model was used since our preliminary calcu-

lations, referred to in Section 4 above has demonstrated that the boundary

effects are unimportant for the first 70 days of the experiment which is the

period covered by the analysis reported here. We used a total of 756 tempera-

ture measurements recorded during the first 70 days of the experiment from 28

different thermocouples (see Appendix). The temperatures range from 11°C to

70°C, and the average temperature is 23°C. Much of the data used is at low

temperature because the thermocouples often became corroded at higher tem-

peratures.

Table 1. In-situ thermal conductivity and thermal diffusivity of Stripa
granite from least-squares fitting.

S = YPN
rms difference

Lab values 3.51
(Pratt et al 1977)

In-situ values

% difference

3.69

5%

1.84 x 10-6

1.61 x 10-6

13%

1681

1864

10% 5%

The parameters <p and Sind icate II goodness-of -fit. II



-17-

We obtained the values 3.69 W/{m-OC) (or 8.82 x 10-3 cal/{cm-s-OC)

for the thermal conductivity and 1.84 x 10-6 m2/s (or 0.159 m2/day) for

the thermal diffusivity. These values do not differ radically from the

laboratory results [Eq. {l)J which indicated that k decreases linearly

with temperature, having the value 3.6 (W/m-OC) at 0 °C and the value 3.2W/m-oC

at 100°C. However, we can also see from the reduced values of ~ and S that

the extracted values of k and ~ fit the data more closely than the laboratory

values do. The excellent agreement between the observed data and the cal

culated temperatures, using the extracted values of k and K is displayed

graphically in Figs. 4 and 5, which represent the best and worst cases,

respectively. It was also found that using the external height of the

heater canister (2.59 m) as the length of the line source yields a better

fit than using the actual length of the hot section of the heater elements

(2.44 m).

In Table 1, the quoted laboratory values estimates (Pratt et al. 1977)

are for 23°C. The "laboratory value" for thermal diffusivity K was deduced

from the measured values of thermal conductivity (k = 3.51 W/m-OC), density

(p = 2,600 kg/m3 ), and specific heat (c = 0.200 cal/g-oC= 837 J/kg-OC) using

the relationship K = k/pc. Actually, thermal conductivity was determined for

two samples as a function of temperature in the range 46° to 243°C. A

straight line was then fitted through the data to obtain the temperature

dependence quoted in Eq. (1). No information on the goodness of fit was

given by Pratt et al. However, from their plot of thermal conductivity

versus temperature it is clear that an error of at least a few percent may be

introduced by linear extrapolation of the fitted line to obtain the thermal

conductivity at 230 C.
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Fig. 4. Comparison of predicted and observed temperatures for thermocouples
in hole E13, best case.
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The specific heat was determined by calorimetry on one sample over three

temperature ranges, 113° to 31°C, 157° to 35°C, 230° to 43°C to be, respec

tively, 0.197, 1.197, and 0.200 cal/gOC. The authors concluded that there

was no temperature dependence and recommended a value of 0.2 cal/g-oC.

We have accepted that recommendation in quoting this laboratory value for

comparison. The reader should recognize that this value may be a few percent

off from the mean specific heat of Stripa granite at 230 C, if a large

number of specimens were tested at the specifi~d temperature.

As an internal consistency check, a separate least-squares fit was

performed assuming the in-situ density and specific heat to be the same

as the laboratory values, i.e., P = 2600 kg/m3, c = 0.200 cal/g-OC = 837

J/kg_oC. As explained in Section 8, the problem reduces to a one-parameter

fit. In this case the best-fit value for the thermal conductivity is 3.55

W/m-oC which falls in between the laboratory value of 3.51 W/m-oC and the

in situ value of 3.69 W/m-oC obtained by means of a two-parameter fit. The

root-mean-square deviation S, as defined in Table 1, for the one-parameter

fit has a value of 1.58°C, slightly higher than that for the two-parameter

fit.
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10. CONFIRMATION OF RESULTS

We have seen that the obtained values for the rock parameters can

predict temperatures quite accurately for the 5-kW experiment from ~hich they

were extracted, but we wish to test whether our results are actually repre-

sentative of the surrounding rock mass.

We have substantiated the results of our experiment, located in the full

scale drift shown in Fig. 1, with the data from a pilot heater test carried

out at the start of the Stripa project by Carlsson (1978) in the Lule~

drift. Because this experiment (originally intended to monitor the rock

during two months of heating by a cylindrical electric heater, and during the

following three months of cooling) had severe problems due to a fluctuating

power source, we have concentrated on modeling the cool-down period.*

The graph in Fig. 6 displays the agreement between the pilot heater test

data and temperatures predicted using our extracted thermal rock parameters.

* Details of the cool-down modeling will be published in a separate LBL
report (Chan, Carlsson, and Jeffry 1979).
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Fi g. 6. Comparison of predicted and observed temperatures for the Lule~
University pilot heater experiment (Carlsson, 1978) for
r = .85 m and r = 2.95 m.

11. DISCUSSION

In conclusion, we have developed a least squares scheme using a finite

line source model for determining the in-situ thermal properties of a rock

mass, and the resulting values successfully predict independent temperature

measurements. The in-situ thermal conductivity and thermal diffusivity of

Stripa granite have been found to be 3.69 W/(m-OC) and 1.84 x 10-6 m2/s,

respectively. These values are only slightly higher than the corresponding

laboratory values (Pratt et al. 1977) of 3.51 W/(m-OC) determined using two

51 x 12 mm core samples, and 1.61 x 10-6 m2/s based on the thermal conduc

tivity value from two samples and specific heat measurement on one 51 x

51 mm core sample at the same average temperature (23°C) as the actual field

data used for the least-squares fit. In fact, the extracted in-situ values
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probably fall within the scatter of the laboratory results if the thermal

properties were measured on a large number of rock samples in the laboratory.

Another possible reason that the thermal conductivity measured by Pratt

et al. in dry Stripa granite samples is slightly lower than in-situ values is

that the rock mass is saturated with groundwater. It is common knowledge

that the thermal conductivity of saturated rock can be as much as 10% higher

than that of the dry sample, even for low-porosity rocks.

Note that the in-situ thermal conductivity deduced by Murphy and Lawton

(1977) by means of type curve fitting for a Precambrian granitic rock in the

hot dry rock geothermal project in the Jemez Mountains of northern New Mexico

is also in close agreement with laboratory measurements on core samples

(Sibbitt, Dodson, and Tester 1979).

Thus, the present results, taken together with those obtained in the hot

dry rock geothermal project, appear to indicate that discontinuities in the

rock mass do not significantly alter the bulk thermal conductivity, although

they may lead to local heterogeneities.

Many authors have reported dramatic size effects on the mechanical (see

Cook 1978, and Jaeger and Cook 1976 for reviews) as well as hydrological

properties of rocks (Witherspoon'et al. 1979). In contrast, the present

work indicates that there is hardly any size effect at all on the thermal

properties of granitic rocks. The thermocouples, which recorded the field

data used in the least-squares analysis, span a volume of rock several meters

in each linear dimension. Furthermore, the duration of the experiment is

long enough so that a large volume of rock is heated. Consequently, any

r

II



-23-

significant size effect would have resulted in large discrepancies between

in-situ and laboratory values for the thermal properties.
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14. APPENDIX - Data Used in Least-Squares Analysis

In this appendix, we describe the actual data we have used in our

analysis. Table Al contains the coordinates of the thermocouples whose

measurements we used.

Because of the noise in the data, we first smoothed the raw data for

each thermocouple using the cubic spline smoothing routine ICSMOU, from the

Internat iona 1 Mathematical and Stat i st ical Library (IMSL) avail ab le at the

L~L Computer Center. We then subtracted the initial ambient temperature of

the rock at the corresponding location. There were 280 data points for each

thermocouple. Because the temperature data were recorded at short intervals,

in the least-squares analysis we have used only every tenth data point; i.e.,

28 data points for each thermocouple.
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Tab le AI. Locations of thermocouples used in least-squares analysis

Label Sensor number* r** e z

E12A 442 1.98 0 2.36
!~

El2B 443 1.98 0 0.11
El2C 444 1.98 0 -0.89
E12D 445 1.98 0 -2.14 .,".
El3A 446 3.0 0 -1.02
El3B 447 3.0 0 -2.27
El4A 450 2.49 180 2.28
El4B 451 2.49 180 0.03
E14C 452 2.49 180 -2.22
El5A 454 2.0 90 2.25
El5B 455 2.0 90 0.0
El5C 456 2.0 90 -2.25
El6A 458 1.51 45 2.29
El6B 459 1.51 45 0.04
El6C 460 1.51 45 -0.96
El6D 461 1.51 45 -2.21
El7A 462 2.51 45 2.25
El7B 463 2.51 45 0.0
E17C 464 2.51 45 -1.0
El7D 465 2.51 45 -2.25
Tl9A 510 0.4 0 3.0
T20 515 0.9 0 3.0
T21 520 0.7 315 3.0
T21 521 0.7 315 1.5
T22 525 0.5 180 3.0
T23 530 0.8 135 3.0
T24 535 0.6 45 3.0

* Sensor numbers are used in the computer analysis of the data.

** The coordinates are given )n a cylindrical system: the origin is at
the heater's center; positive z is directed upwards. rand z are mea
sured in meters, G in degrees, measured counter-clockwise from the
major axis of the heater drift. The angle G does not enter into the
calculation here.








