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Abstract

This dissertation examines the a priori prediction and correlation
of mass-transfer rates in transport limited, packed-bed reactors at
low Reynolds numbers,

The solutions to the governing equations for a flow~through porous
electrode reactor indicate that these devices must operate at a low
space velocity to suppress a large ohmic potential drop. Packed-bed
data for the mass-transfer rate at such low Reynblds numbers have been
examined and found to be sparse, especially in liquid systems.

Models which have appeared in the literature to simulate the solid-
void structure in a bed are reviewed. Only within thé framewofk of
these geometric models can the fundamental transpoft equations be
solved. In this work the bed was envisioned as an array of sinuéoidal
periodically constricted tubes (PCT). WNo other work exploiting this
model for mass-transfer calculations has appeared in the literature.
The velocity field in such a tube should be a good approximation to
the converging-diverging character of the velocity field in an
actual bed. The creeping flow velocity profiles were found by a

numerical solution for this geometry. These results were used in the



convective~diffusion equation to find mass transfer rates at high
Péclet number for both deep (Graetz-like) and shallow (Lévéque-like)
beds. The convective-diffusion equation was also solved for low
Péclet numbers in a deep bed. All calculations assumed a transport
limited condition, wherein the reactant concentration at the tube
surface is zero. These calculations were expressed in terms of a
mass—~transfer coefficient.

Mass~transfer data were experimentally taken in a transport
controlled, flow-through porous electrode to test the theoretical
calculations and to provide data presently unavailable for deeper beds.

It was found that the éinusoidal PCT model could not fit the data
of this work or that available in the literature. However, all data
could be adequately described by a model which incorporates a channeling
effect. The bed was successfully modeled as an array of dual sized

straight tubes.
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Chapter 1

Introductory Remarks

This thesis is concerned with the low Reynolds number (< 1)
behavior of the mass~transfer rate in fixed, packed-bed reactors.
Attention is focused on reactions which are controlled by the rate
6f mass transfer of a reactant from the fluld phase to the packing
‘material, Figure 1.1 is a schematic illustration of the physics
in question. One single packing particle is shown in an isolated
view from all of its surréunding neighbors. A reaction takes place
at the particle surface, or if this is a porous catalyst, within the
particle. The transfer of the reactant from the fluid to the particle
is the controlling factor in the rate of reaction. It would be
advantageous to predict Q.Rri;ri the rate of reaction at the particle.
This would involve solving the governing differential equations for
fluid flow and mass transfer subject to appropriate boundary conditions.
However, this fundamental approach cannot be applied due to the random
nature of the particle arrangement. One must resort to models of the
geometry of the packing structure in order to solve the governing
equations. A major portion of this thesis is concerned with solving
the transport equations within the framework of the periodically
constricted tube model. This model has recently been proposed in the
literature, and no work prior to this effort has exploited this model
for packed bed mass-transfer calculations. Of course, no model can

be proved successful unless it is compared with experimenfal data.
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Figure 1.1 Isolated packing particle from a two-phase, packed-
bed reactor.



As a part of this research effort, an experimental program to measure
mass-transfer rates in a transport-controlled porous electrode reactor
was carried out. The comparison between data and theory allows one

to refine the model when tﬁe agreement between the two is not acceptable.
This was the situation with the periodically comnstricted tube model.

The data are better fit by a straight tube model which incorporates

a channeling effect.

The remainder of this chapter is divided into ftwo sections. The
first section introduces and outlines the remaining chaﬁters. The
second presents a literature survey of the geometrical models for  the
void-solid arrangements in aApacked bed and discusses the periodically

constricted tube model which is used in this work.

Chapter Outlines

The chemical engineering literature can be gleaned to find
reams of work on mass-transfer rates in two-phase packed bed reactors.
The results are correlated by a mass-transfer coefficient. The
majority of this work, however, is for large Reynolds numbers. There
is very little work done at low Reynolds numbers because most unit
operations involving packed beds proceed at a high space velocity.
Chapter 2 introduces the design equations for a mass-—-transfer controlled
porous electrode in which it is sometimes necessary to operate at a
low space velocity. The equations which describe a porous electrode
operating at a limiting current (mass-transfer controlled rate of
reaction) are solved. These solutions point out the need for more

reliable mass-transfer coefficient data in the low Péclet number region



(i.e., low Reynolds number, high Schmidt number). The need for data
taken in deeper beds than are currently available in the literature
also becomes apparent;

"Chapter 2 is of an introductory néture, but the next four chapters
are of a theoretical nature. At the time this thesis was written,
all four of these chapters have either appeared in published form
(Chapters 3 and 4), or are at the printer's (Chapter 5), or are currently
béing reviewed for publication (Chapter 6). The titles of the chapters
are the same as the published form; These chapters are written in
essentially the same format as when they were submitted to the journal
for publication. Only minor-indexing type changes were made to conform
to this thesis. Consequently, there is some unavoidable overlap and
duplication.

Chapter 3 (AIChE J., 23, 255, 1977) continues the discussion of
- the periodically constricted tube (PCT) model. The calculations for
the velocity profiles in sinusoidal PCT are presented. With these
velocity profiles available, the mass—-transfer equations can be solved.
The Graetz-like eigenvalue problem for the developed mass-—transfer
rate in a sinusoidal PCT is developed and solved in this chapter and
the results applied to the packed bed mass—transfer coefficient.

In the course of examining the literature for mass-transfer
coefficient daté at low Péclet numbers, it soon became apparent that
there was confusion as to the behavior of the coefficient in this
limit. Some workers reported that the coefficient approached a
constant nonzero value, whiie others reported it to decrease continually

with the Péclet number.



Chapter 4 (Chem. Eng. Sci., 33, 1043, 1978) explains this discre-
pancy. The behavior of the mass—tranéfer coefficient in this limit
depends upon its definition. A singular perturbation approach is used
to demonstrate this conclusively., The results are generally valid
in that no model of the geometry is necessary to draw the conclusions.

Chapter 5 (to appear in Chem. Eng. Sci., 1979) uses the sinusoidal

PCT model to add a predictive capability to the analysis of Chapter 4.
This chapter presents calculated values for the low Péclet number
mass—-transfer coefficient for deep beds.

Chapter 6 (submitted to AIChE J., October, 1978) completes the
calculations of asymptotic mass-transfer coefficients in sinusoidal
PCT by presenfing the Léveéque-like values. These mass-transfer coefficients
are valid in the entrance region to the mass transfer section at high
Péclet numbers. These results are applied to the packed bed.

Chapter 7 discusses the experimental program of this thesis.
Transport limited mass—-transfer coefficients were measured in a porous
flow through electrode constructed of 3.18 mm spheres.

Chapter 8 suggests empirical formulae to merge the asymptotic
mass~transfer coefficients of Chapters 3, 5, and 6 to cover the non-
asymptotic regions, and attempt to parameter fit the data of Chapter 7
to the PCT model. Careful examination of the data reveals that the
PCT model cannot fit these data nor the available literature data
satisfactorily. The data suggest that a nonuniform flow distribution
is present in the bed and needs to be taken into account. A channeling
model consisting of an array of dual sized straight tubes is found to

fit the data of this work and literature values.



Models of the Packing-Void Geometry in a Packed Bed

It would be useful to predict the reaction rate in a packed bed
by solving the fundamenﬁal three dimensional transport equations
subject to appropriate bouﬁdary conditibns. The effect of flowrate,
particle size and shape, and depth of packing on the overall reaction
rate in the bed could then be predicted. But even in the simplest
case of no kinetic limitations with constant concentration
along the particle surface, this fundamental appfoach cannot be used
due to the randomness of the particle packing. Alternative routes
have been used to approach an understanding of the mass—fransfer rates
in packed beds. Some of theée alternative approaches will now beé
discussed.

Much experimental work has been done in this field. Most
workers have used test systems in which the concentration of the

- transferring species is constant at the particle surface. This is a
well characterized system.- The resulté are correlated by a mass-
transfer coefficient. Some of this work will be discussed in Chapters
2, 4, and 8., This empirical approach is quite useful in correlatihg
the results of this complex physical situation. However, it does have
its limitations. Each set of experiments is confined within a certain
flowrate and packing depth. The effort of many workers is required to
establish a parameter space large enough to formulate a wide ranging

correlation. The effect of experimental uncertainty must be considered

when examining such data.



The random nature of the particle pack is the roadblock in
applying the fundamental approach. The application of a statistical
theory for fluid—particle systems could be used to overcome this
difficulty. Howéver, as fointed out by Bremner ( 1 ), "The present
status of the subject may be likened to that of nonequilibrium molecular
statistical mechanics prior to the advent of the work of Kirkwood."

To utilize such an approach for a packiﬁg of uniformly sized spheres,
the angular distribution of contact points on a central reference
sphere is required. With this information, a cell representative of
the statistical features of the entire bed can be constructed, and

the transport equations sol%ed within this framework. A theory to
generate such information does not exist yet. Nayak and Tien ( 2 )
have made a contribution to this effort by developing a statistical
theory to predict the local coordination number (total number of contact
points, irregardless of orientation) on a particle in a randomly

packed bed by maximizing the "entropy" of the configuration. Haughey
and Beveridge ( 3 ) have reviewed the statistical structural properties
of a packed bed and in another work ( 4 ) have critically examined the
statistical models used to account for the porosity variation about

a reference sphere. Many references which pertain to the structural
aspect of particle arrangements may be found in these works.

The averaging of the transport equations over a suitable reference
volume is another approach used to solve the gbverning equations.

This is the most profitable route to follow in a utilitarian sense.

The differential equations thus generated can be solved and the solutions



are used routinely in design, scaleup, and control. The averaged
equations involve phenomenological coefficients such as the dispersion
coefficient énd the film mass~transfer coefficient. Newman in an appendix
of Dunning's thesis ( 5 ) ﬁas presented an averaging of the mass-
transfer equations. These will be discussed in more detail in the

next chapter. Slattery ( 6 , 7 ) has discussed the averaging of the
fluid motion equations, while Whitaker ( 8 ) and Gray ( 9 ) have
discussed the averaging of the convective-diffusion equation. Brenner

( 1 ) has developed a methodology for averaging of the momentum equation
taking into account the forces and couples acting on the packing
particles. |

The final approach examined here is the use of geometrical models
for the solid-void arrangement. A major portion of this thesis is
devoted to exploiting one of these models, consequently, the following v
discussion will be in some detail,

Figure 1.2 lists models which are found in the literature. For
each of these (except the last) both the fluid motion and mass-transfer
equations have been solved. |

The bed is envisioned as a spatially periodic replication of the
structures shown on this figure. The geometrical parameters of the
model geometry are chosen such that the macroscopic parameters of the
bed are reproduced (e.g., porosity, average particle size, specific
interfacial area, ...)

With these models .available, the solutions to the fiuid motion

and convective diffusion equation become tractable. These solutions



Figure 1.2 GEOMETRIC MODELS FOR THE SOLID-VOID STRUCTURE IN
: A PACKED BED

FREE SURFACE-CELL MODEL CELL EMBEDDED IN A CONTINUUM
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HAPPEL (1958) BRINKMAN (i947)
' NEALE AND NADER (1974)

CAPIL_LARY SEGMENT SIMPLE CUBIC PACKED SPHERES

SORENSEN AND STEWART (1974)
&

PERIODICALLY CONSTRUCTED TUBE

- o

PETERSEN (1958)
PAYATAKES, TIEN, TURIAN (1973)
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can then be used to predict the phenomenological coefficients of the
averaged detailed equations. 1In this thesis we will be interested
in the predictions for the mass-transfer coefficients.

- These models may be divided into three classes: those which
envision the fluid flow in the bed as equivalent to that past a
particle; those which envision the bed flow as equivalent to flow
through a conduit (or a network thereof); and, in a class by itself,
fhe simple cubic packed bed of uniform sized spheres considered by
S¢rensen and Stewart (11,12).

The calculations of Sgdrensen and Stewart are a significant piece
of work. These authors did ﬁot specifically intend their calculations
to be a model for a randomly packed bed of spheres, but they do guide
one's thinking in approaching this problem. They have‘numerically
solved the convective diffusion equation and fluid motion equations
for this geometry and presented results for the mass-transfer coefficient
over a large variation of Péclet number and packing depth. Their
results will be cited many times in the remainder of this thesis.

It has been pointed out (13,14) that the conduit models become
a better approximation to the flow paths as the porosify approaches
one, whereas the flow past a particle is a better approximation as the
porosity approaches zero. In the intermediate range of porosities
found in most beds (0.3 < £ < 0.7) , both models can be applied.

The free surface-cell ﬁodel was developed by Hapfel (32).

A packing particle is imagined to be isolated from all of its neighbors

by a surrounding sphere of fluid. The fluid streams past the outer
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shell with the superficial bed velocity. The shear at the outer
surface is set equal to zero, thus the disturbance caused by the
particle isbconfined to this shell of fluid. Pfeffer and Happel (15)
have solved the éonvective—diffusion equation at low Péclet numbers
using the creeping flow velocity profile given by Happel (32). However,
they used a constant concentration boundary condition at both the
particle surface and the outer free surface, which corresponds to a
fictitious source of material. This criticism has been raised by Appel
(16), Nelson and Galloway (17), and Sdrensen and Stewart (10). Nelson
and Galloway (17) attempted to overcome this problem by postulating
a surface renewal type boundary condition for the free surface
concentration. Criticism of this approach will be postponed until
Chapter 5. Pfeffer (18) has solved the high Péclet number convective-
diffusion equation for this model with the constant-surface-concentration
boundary condition. His results indicate that the mass-transfer
coefficient is proportional to the cube root of the Péclet number.
El-Kaissy and Homsy (19) have used a regular perturbation solution to
consider inertial effects in this model.

The cell embedded in a continuum model is geometrically similar
to Happel's free surface cell. This model was first proposed by
Brinkman (20) to predict the permeability of a bed and again by
Neal and Nader (13) to predict the effective diffusivity in a packed
bed. This model in a sense recognizes that two length scales characterize
a packed bed. One is a macroscopic length scale over which significant

changes take place in measurable quantities, and the other is a smaller
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length scale of the order of the packing diameter. Two general
solutions governing the physical process under consideration are
generated, one for the continuum and the other for the cell. These
two solutions are then matched at the shell boundary. Tardos et al.
(21) have used the creeping flow velocity profile given by Neal and
Nader (22) to solve the high Péclet number mass-transfer problem for
a constant-surface-concentration boundary condition. Their results
indicate a cube-root dependence of the mass-transfer rate on the Péclet
number. No one has attempted to solve the low Péclet number mass-
transfer problem with this model. The same criticism which applies
to Happel's model also applies here.

The capillary models have been routinely applied in the calculation
of permeabilities. Extensive reviews of this subject have been
given by Scheidigger (23), Bear (24), and Dullien (14). Surprisingly,
there has not been much published work which uses this model for mass-
transfer rate calculations in a packed bed. The calculations of
Sgrensen and Stewart (10) are applicable here. Kataoka et al. (25) have
used this conduit model to correlate their mass~transfer data.

In the simplest application, the bed is envisioned as an array
of these tubes parallel to the main flow direction and completely
passing from one face of the bed to the other. Various amplifications
on this theme are possible; e.g., the conduits may be arranged skew to
the main flow direction. Consideration of this effebt gives rise to
the tortuosity coefficient. The bed has also been modeled as a network

of channels in which tubes meet at an intersection and branch out in
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a new direction (26,27). These models have not yet been exploited
for mass—-transfer calculations.

A new cbnduit model has recently been proposed in the literature.
The periodically constricted tube model was suggested by Petersen (28)
to explain abnormaliy high effective diffusivities in catalyst particles.
This model was further expanded on by Payatakes et al. (29,30) as a
means to predict the permeability of a nonconsolidated bed. These
authors have outlined a procedure to determine the model parameters
from the macroscopically measured variables of the bed. As originally
envisioned by Payatakes et al., the pore space in the bed is generated
by the intersection of two parabolic wall channels, thus forming a
converging conduit and a diverging conduit each one half period length
long and which meet at a cusp. The orientation of this flow channel
was parallel to the main flow direction. In a later publication (31),
this model was refined to include an angular distribution of these
segments about-the main flow direction. In this same publication's
discussion section 1t was postulated that some finite number of these
segments feed into a central mixing point where the fluid is totally
mixed and redistributed to the same number of segments downstream.
This is a further refinement of the model leading to lateral mixing via
a network.

The converging-diverging character of the flow through these
periodically constricted tubes is thought to give a good approiimation

to the actual velocity profile in the intersticies of the bed. With .

this approximation to the velocity profile, a more refined
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solution to the convective diffusion equation should be possible.
A major portion of this thesis is concerned with solving the
transport equations in a sinusoidal periodically constricted tube
and applying these results as a model for a packed bed. No other work
has been published exploiting this model for mass-transfer calculations.
The bed is envisioned as an array of sinusoidal periodically
constricted tubes aligned with the main flow direction. The creeping-
flow motion equation is solved within this geometry, and the solution
to the convective—diffusion equation with a constant wall concentration
under various limiting conditions of the dimensionless parameters is

presented.
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Chapter 2

Limiting Current Porous Electrodes and Mass-Transfer Coefficients

Summary

This chapter presents design equations for a porous electrode
operating at the limiting current. The equations involve a dispersion
coefficient and a film mass-transfer coefficient, both of which are
discussed in some detail. Some available data for effective mass-~
transfer coefficients are presented. The distinction between these
two coefficients is pointed out. The solution to the porous electrode
equations indicate that additional mass-transfer data are needed for
low Péclet numbers and deeper beds than are currently available in the

literature.

Porous Electrodes

The utility of porous electrodes as a unit operations-electrochemical
reactor has been discussed by Newman and Tiedemann (33,34). We shall
not delve into this area but rather present the differential equations
which describe a porous electrode.

The fundamental three dimensional transport equations cannot be
solved directly, and hence an alternative approach is used. The
equations are averaged to make them more tractable. In the appendix
of Dunning's dissertation (5), a discussion of average quantities and
a derivation of certain transport equations is discussed. The governing
equations for a porous electrode have been given by Newman and Tiedemann

(33) in a detailed form in their review article. These equations
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can be reduced to the following form for a steady-state porous electrode

with multiple electrode reactions.

Electrode reaction

'z s. ML e (1)
A 3
i
Mass balance
dzc. dc,
E I v—2= ak (c, - c. ) (2)
e TV Ez £1°%1 T Ciw
dz
Ohm's Law
12 = —KV®2 (3)
Faraday's Law
Sii
kfi(ci - Ciw) = % Eg%-fj (4)

Kinetic rate expression

V°12 = g Z fj(n,ciw) . (5)
J
Equation (1) is an abstract representation for the electrode reaction;
. ++ - ++ - . .
e.g., in Cu deposition, Cu + 2e = Cu . Equation (2) is a mass
balance on component i and  includes a dispersive flux where E
is the dispersion coefficient. The concentrations are an average over
the volume of the solution in the pores, and z is the streamwise
coordinate in the bed. The term akfi(ci - ciw) represents the rate
of consumption of reactant i per unit volume of the bed, where k

fi

is the film mass-transfer coefficient for reactant i , and Ciw is



17

thé concentration at the packing surface. Ohm's Law follows from the
assumption of a well-supported electrolyte. The effective conductivity
Kk 1is taken as 81’5 Ko (33) where Ko is the free stream value.

The current density i2 in the solution is referred to the entire

cross section of the electrode, and @2 vis the volume-averaged potential
of the solution phase. Faraday's Law relates the wall flux of reactant
i to the appropriately summed rates of its consumption in electro-
chemical reaction j . The kinetic expression fj relates the

h

divergence of i to the appropriate driving forces for the jt

2
reaction which are the local overpotential and the local wall concen-
trations. A Butler-Volmer fype of kinetic equation is an appropriate
form for this function.

This set of équations has been numerically solved subject to
boundary conditions by Trainham and Newman (35) for the special case
of dilute metal ion recovery. The evolution of H2 was incorporated
as a secondary reaction only in the kinetic expression. Alkire and
Gould (36) have also solved these equations for multiple metal ion
recovery. Alkire and Gracon (37) simulated a single electrode reaction
by solving these equations. Furthér reviews may be found in Newman and
‘Tiedemann (34).

It is useful to examine the solution to these equations when the
mass transfer of the reactant from the solution to the packing
controls the rate of reaction. Such a situation becomes physically

realizable if the exchange current density for the reaction is very

high. In the recovery of electropositive heavy metal ions this is
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usually a good approximation. " In this case, the kinetic expréssion is
no longer necessary, and the system of equations one needs to examine
is given by 2, 3, and 4 with Ciw << ey -

Newman and Tiedemann (34) have solved these equations for a single
electrode reaction. The solution depends upon the boundary conditions
imposed. The following solution satisfies the Wehner-Wilhelm (38)
boundary conditions for the concentration and assumes that the packing
matrix is at a uniform potential. The counterelectrode is placed
upstream of the bed. This is the configuration shown at the top of

Figure 2.1. (A discussion of the various configurations and the effect

on electrode performance has been given by Trainham and Newman, 39.)

1 h
e_y/B + EE-eBy/D exp [—UL(-l + J%)}
B B

c
—=0 = ; E (6)
¢g L D 1. B
B + —E-(l - B) exp [;uL 3t T
B D
nFvc !
_ F v [.2, OL/B D '
A@z == akf [B eLe 3 (L. +1+D )OL] 7)
where
ak, , gake 1+ /1% 4D
y = _V_ z , D = ) E, B= 2 (8)

Equation 6 gives the concentration of the reactant leaving the bed,
and equation 7 expresses the solution chmic potential drop across
the electrode. When the axial dispersive flux is unimportant, D'
becomes small, and equations 6 and 7 reduce to the expressions first

given by Bennion and Newman (40).
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Figure 2.1 Various configurations of counterelectrode placement
and current collector placement relative to the direction
of the fluid flow. (Taken from reference 39.)
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The behavior of these solutions is dependent upon the phenomenological
coefficients kf and E . Before we discuss these solutions, a

discussion on these two coefficients is in order.

Dispersion Coefficient

The necessity of a dispersion coefficient is a direct consequence
of our ignorance of the detailed velocity and concentration fields
in the intersticies of the packing. It is not a fundamental quantity
but rather a derived quantity which is generated by averaging the detailed
three dimensional transport equations. It consequently also depends
upon the boundary conditions at the particle surfaces for the fields
in question. This fact has not always been recognized in the literature.

Sankarasubramanian and Gill (41) have solved the convective-
diffusion equation in a pipe with first-order kinetics at the reactive
wall., They have demonstrated that the dispersion coefficient generated
by this solution when the kinetic rate constant is large is an order
of magnitude smaller than the dispersion coefficient calculated by
Taylor (42) in the absence of a reactive wall.

All of the dispersion coefficient data and correlations known
to this author are taken from beds with nonreactive particles. This
should be kept in mind, because one is forced to utilize these results
for want of something more appropriate.

Sherwood et al. (43) have reviewed dispersion coefficient data
in their text. They present in graphical form a compilation of a large
number of workers' results for the dispersion coefficient as a function

of Reynolds and Schmidt number.
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Some authors have assumed that the dispersion coefficient is
simply the sum of a molecular diffusion term and a turbulent eddy

term. One may then write

+§'E. 9

Other, more sophisticated models for the dispersion coefficient
have been presented in the literature. The model developed by Gunn
(44) and by Miyauchi and Kirkuchi (45) is of most interest here. These
workers have realized that the dispersion coefficient in creeping
flow cannot reach the turbuient eddy value given by the second term
of equation 9. The details of their theory are unimportant. It is
impressive that Miyauchi and Kirkuchi were able to fit dispersion
coefficients in creeping flow over 10 orders of magnitude of the Péclet
number with their calculations. The correlation is in a convenient

equation form given below.

E _1, v 4 1 -2x
R, 0.17x["2x(1‘e )] (10)
(o] [o]
where
6/7
10-666/(v/aDo) (V/apo) < 15
X =
2/3

8-731/(v/a00) (v/aDO) > 15

Figure 2.2 is a plot of the dispersive Péclet number (v/aE)

as a function of the molecular Péclet number according to equation 9
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Dispersion coefficient as a function of the Péclet number: Curve 1) Taylor dispersion
in a tube; 2) Gunn (1969) and Miyauchi and Kirckuchi (1975) correlation for creeping
flow in a packed bed; 3) combination of molecular diffusion and turbulent eddies in

a packed bed with € = 0.4 .
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and equation 10. The Taylor dispersion coefficient through a tube is
included for comparison's sake. Equation 10 will be used in the

course of this work for the dispersion coefficient.

Mass-Transfer Coefficients

The film mass—transfer coefficient is a measure of the local
reaction rate in the bed. It is a derived quantity which is not
very convenient to measure. The concentration of a reactant far
upstream and far’downstream of a reactor is more readily accessible
to experimental détermination. These measurements are correlated by
the effective mass~transfer coefficient km . In the mass-transfer
controlled reactor under discussion, the definition of km is

k = -l (cp/ep) . (11)

These two mass—transfer coefficients are related as has been
pointed out by Newman and Tiedemann (34). This relationship can be
derived by equating cL/cF from equation 11 to cL/cF given in

equation 6. This manipulation results in

]
B + 2—-(1—3) exp |-oL l-+ l%
k 2 A\B D
m B aL

5 (12)
1+D'/B
The experimental km measurements can then be corrected by equation 12
to give kf . A value for the dispersion coefficient is also needed.

Chapter 4 will examine equation 12 in the limit of zero Péclet number.
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Figure 2.3 presents km data available in the literature. Each
of these data points was collected in a mass~transfer controlled
bed with the Reynolds number (v/av) less than one. Both gas and
liquid phase data are included. There are two important points to
note about this data collection.

The lines sketched on this figure are drawn to indicate the
asymptotic trends of km with the Péclet number (v/aDo) . Clearly,
there are different trends. In‘the lower Péclet number range, km
becomes linearly proportional to v , whereas in the higher Péclet
number range km becomes prpportional to the cube root of v . This
second line is a plot of Wilson and Geankopolis' (52) correlation

of their data:

1/3
k d vd
mp _ 1.09 P
) = (D ) . (13)

(o] o}

The tabular listing on this figure shows the al product of
the bed from which the data were taken. It is seen that most data
were taken in relatively shallow beds (recall that alL is
6(1 - e)L/dp) . The aL values range from 3 (one particle layer)
to 29,

These data points can be corrected individually with equation 12
to give the kf values required in the porous electrode equations.
This is awkward. It would be more convenient if these results were

expressed in an equation form. The Wilson-Geankopolis correlation is



Figure 2.3 Low Reynolds number mass-transfer coefficients in packed beds. The original
publications for the above tabular listing may be found in references (46, 47,
48, 49, 50, 51, 52, 53) respectively.
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valid in the higher Péclet number region, but it overestimates km
as the Péclet number decreases. Furthermore, it shows the wroﬁg
functional dependence. One goal of this thesis is to provide a
correlation for the low Reynolds number mass-transfer coefficient.

For illustrative purposes at this point, let the effective

Sherwood number (the dimensionless km) be given by

1 1 L
] + . (14)
Shy ~ 1.20 Pep 0 414 4 1.017 (= pe )1/3

aL B

The arguments and reasoning which substantiate this expression will
be developed in the remaining chapters.

Figure 2.4 illustrates a plot of this equation. The high Péclet
number data are satisfactorily fit, but the low Péclet number data
are overestimated. The correct asymptotic trend is recovered, however.
Chapter 8 discusses why this correlation as written overestimates km
in this region, and a better fitting equation is suggested there
after the data of this work have been introduced. It should be
reemphasized that equation 14 is only offered pedagogically at this
point so that the behavior of the porous electrode equations can be

discussed.

Ohmic Considerations as a Design Constraint

The porous electrdde equations 6 and 7 can be studied as a
function of flowrate and packing depth with the aid of equation 10
for the dispersion coefficient and equations 12 and 14 for the Sherwood

number.
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2.4 Comparison of experimental effective Sherwood numbers with those predicted
using a combination of the straight tube asymptotes with € = 0.4 and al = 15.
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Newman and Tiedemann (34) have discussed the design constraints
that might be imposed on an electrode. (This reference should be
consulted for a more detailed presentation.) The conversion of the
reactant is a constraint which sets the cL/cF value that must be
achieved. The ohmic potential drop across the solution is a second
design constraint.

The potential variation in the solution across the electrode is
sketched schematically in figure 2.5 for a cathodic bed. There is a
larger electrical driving force at the inlet to the reactor (x = 0 ,
nearest to the counterelectrode) than at the outlet. Consider the
reactor which is to be desigﬁed to carry out a specific electrochemical
reaction. If the potential variation in the solution becomes large
enough, undesired secondary reactions may become significant.

As an example, consider a waste stream containing 660 mg Cu/%
with a pH of two. Suppose this Cu is to be removed in a porous
electrode. Hydrogen evolution is the undesired secondary reaction.
Figure 2.6 is a Pourbaix diagram for this reaction. From it one‘can
see there is approximately 0.33 V available to drive this reaction
until the evolution of H2 is thermodynamically possible. One can
choose the operating conditions of the reactor such that the electrical
driving force at the inlet of the reactor does not exceed this value.
In the absence of specific kinetic information, this front-face
potential is arbitrarily halved, and the resulting 0.16 V is set
equal to the electrical driving force at the exit of the electrode.
This establishes a value for the maximum allowable solution ohmic

potential drop.
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Figure 2.5 Solution-phase and solid-matrix-phase potentials, as
functions of cathode position.
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Figure 2.6 Pourbaix diagram to illustrate ohmic considerations in

a porous electrode.
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Care must be taken in establishing the electrical driving force
at the rear of the reactor. If it is set too low, a limiting-current
condition may not be sustained by the available driving force. A
kinetic expression for thé reaction would be helpful in establishing
the minimum allowable driving force at the reactor exit. The Trainham
and Newman (35 ) analysis incorporates the kinetics.

Newman and Tiedemann (34) have presented an ingenious graphical
technique to calculate the packing depth and flowrate required to
satisfy the conversion and ohmic drop criteria. They assumed that
dispersion was unimportant (D' = 0) and utilized the km data in
a graphical form. Their results will not be duplicated here, but
rather an alternative approach is presented which includes the dispersive
flux and assumes a km correlation equation is available.

Figure 2.7 is a plot of the dimensionless solution potential drop
- as a function of the Péclet number. The curves are parameterized in
GL corresponding to the design conversion for the reactor. The flowrate
required to meet the design specifications can be found from the
abscissa since the ordinate and OL are set. Equatibns 11 and lh.are
then used to calculate the bed depth.

The computer program wriiten to generate figure 2.7 is presented
in Appendix B.

For typical values of n, €, Do’ Kys Cpo and A@z , the ordinate
may vary from 10 to 106. Figure 2.7 indicates that the corresponding

Péclet numbers will roughly vary from 1 to 103. The bed depth will



Figure 2.7 Design plot for a limiting-current porous electrode given the maximum allowable
solution potential drop and the required conversion.
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depend upon the value set for the conversion. It 1s clear that the
packing depth required to achieve a certain conversion increases
with the Péclet number. These two observations show that more experi-
mental km data in the loﬁer Péclet number range are required. It
is precisely in this region of Péclet numbers that km is changing
from a cube root dependence to a linear dependence on v . It is
also clear that data areneeded for deeper beds than those currently
reported in the literature.

The purpose of this thesis 1s to understand better the km

behavior in this low Reynolds number region.
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Chapter 3

Mass Transfer at High Péclet Numbers
for Creeping Flow in a Packed-Bed Reactor

Abstract

An isotropic homogeneous packed bed reactor is modeled as an
array of sinusoidal periodically constricted tubes (PCT). The
effective asymptotic-bed Sherwood number has been calculated for
mass transfer at large Péclet number with a constant wall concentration
and creeping-flow hydrodynamics. The bed friction factor has also
been calculated. The results for these macroscopic bed quantities
‘depend upon two ratios of the microscopic PCT period length, average

radius, and sinusoidal amplitude.
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Scoge

The mass~transfer rate occurring across a packed bed reactor can
be predicted a priori if the exact geometry of the flow channels is
known. This is usually impossible except for a uniformly structured
bed. It then becomes necessary to introduce micrbscopic channel models
for the bed. The simplest model considers the bed to be an array
of straight cylinders. A higher order approximation accounts for the
fact that the straight conduit model cannot reproduce the contortions
the fluid must pass through in the bed. A periodically constricted
tube (PCT) model of a bed, however, is a step in this realization.

The converging, diverging character of the flow in these tubes is a
better approximation to the true nature of the flow in the actual bed.

Using the PCT ﬁodel for the flow channels in a bed, the appropriate
governing equations can then be solved for the Sherwood number of
the bed. Specifically, the Navier—Stqkes equations must first be
solved for the velocity field which is then used in the convective
diffusion equation to solve for the reactant concentration profile.
This paper presents results for the friction factor and the Sherwood
number of a deep bed modeled as an array of sinusoidal PCT. Creeping
flow has been assumed, and the wall concentration of the reactant is
constant through the depth of the bed. Since the Schmidt number for
liquid reactants is high, a large reactant Péclet number is assumed

in the analysis.
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Conclusions and Significance

A homogeneous, isotropic packed bed reactor can be modeled
as an array of periodically constricted tubes. By neglect of
entrance region effects, the governing equations for fluid flow and
mass transport need only be solved in a single period due to the
assumed homogeneity of the bed.

| Interior collocation on a finite~difference grid was used to
reduce the creeping-flow Stokes stream function equation in a
sinusoidal PCT to a set of coupled, fourth order, ordinary differential
equations. This approach is much more economical than solving the
fullelliptic partial differeﬁtial equation by overrelaxation.

At a high reactant Péclet number in the fully developed mass~-
transfer region, the convective diffusion equation for the reactant
in a PCT can be reduced to a Graetz-like eigenvalue problem. This
technique is valid for laminar flow in any PCT.

Figure 3.9 shows the friction factor, Reynolds number product in
creeping flow for a packed bed modeled as an array of sinusoidal PCT.
The results depend upon the two dimensionless geometric variables
T, and A/rA (figure 3.2). As the average wall radius decreases or
as the amptitude inc¢reases, the product increases.

Results are presented in figure 3.11 for the asymptotic Sherwood
number of a deep bed reactor with a large reactant Péclet number in
creeping flow. Again‘the results depend upon the two dimensionless
geometric variables. The bed Sherwood number exhibits different

behavior in the amplitude-radius ratio (A/rA) for small and large
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values of «r In beds of long skinny tubes (small rA), the Sherwood

A °

number increases with A/rA s Whereas for larger r, this trend

reverses itself.

Introduction

The flow channels in a randomly packed bed defy an analytic
expression. To predict a priori the transfer rates in a bed, it
then becomes necessary to resort to empirical correlations or,
alternatively, to a microscopic model for the flow channels. The
appropriate rate equations can be solved within the framework of the
model to predict the performance of a bed. Of course, the structured
formulation of a microscopic channel model is a framework to understand
better the empirical correlations.

The simplest model of a bed considers the flow channels to be
an array of_straight tube capillaries embedded in an impermeable
matrix. Sheidegger ( 23 ) and more recently Dullien ( 14 ) have
provided a review of this approach. Such a first order approach
cannot, however, without introduciﬁg another parameter, satisfactorily
correlate experimental data. The straight streamlines which result
from applying the capillary model seem to be an inappropriate
approximation to the twisting, converging, diverging character of
the flow in an actual bed. . This undulating character of the flow
can have tremendous consequences on the bed pressure drop and the
fluid-to-particle (or vice~versa) mass transfer rates.

Petersen's ( 28 ) work suggested that the flow channels in a bed

can be modeled as an array of periodically constricted tubes (PCT).
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Michaels ( 54 ), Houpeurt ( 55 ), Batra et al. (56 ), Dullien and
Azzam ( 57 ), Payatakes et al. (29,30) and Sheffield and Metzner ( 58 )
have contributed to this line of thought. The convergling, diverging
nature of the flow in these model tubes is a better approximation

to the true character of the flow in the bed. Payatakes et al.

have argued by statistical and heuristic means that the problem of
modeling the flow behavior in an array of randomly sized PCT reduces

to considering a single dimensionless PCT. They've presented a
technique to calculate fhe PCT model parameters,

Having a f£low channel model in hand, one can then proceed to
calculate the pressure drop'and the reactént concentration profile
across a packed bed reactor. Specifically, the Navier-Stokes equation
must be solved first for the velocity field (neglecting free convection);
and then the convective-diffusion equation must be solved for the
concentration profile of each reactant. Payatakes et al. have outlined
a technique for solving the full Navier-Stokes equations in a PCT.

' knowledge has been done on the mass transfer

No work to the authors
problem in a packed bed reactor modeled as an array of these PCT. 1In
this work we have calculated the asymptotic, creeping-flow Sherwood
number (based on a logrithmic mean concentration driving force)

for a single limiting reactant with a high Péclet number. Physically,
these restrictions correspond to a liquid reactant flowing through a
deep bed at a low Reynolds number. The reactant wall concentration

is assumed constant throughout the length of the reactor, corresponding

to a limiting current condition.
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The behavior of the effective mass-transfer coefficient through
a packed bed depends upon the flow regiﬁe. For a deep bed, the
effective maés—transfer coefficient in creeping flow will become
independent of the velocity. This is in contrast to the entry region
where the transfer rate is proportional to the veiocity to the 1/3
power. The entry region has an effective transfer coefficient larger
than that for deeper beds. Calculating the deep-bed asymptotic
Sherwood number thus gives a lower limit to the expected behavior.
The horizontal line of figure 3.1 shows the nature of this Sherwood number.
The dashed lines indicate entry-region coefficients for two different
sized beds. The line marked aL = 10 is the Wilson-Geankopolis ( 52 )
correlation. The left and right hand sides of this figure indicate
schematically regions where axial diffusion and turbulent convection,
respectively, become important. The turbulent region line is a
plot of the Bird et al. ( 59 ) correlation while the low Péclet number
region is a plot of S¢grensen and Stewart's ( 12 ) calculations for

a simple cubic packed bed of spheres.

Mathematical Modeling

Creeping Flow in a PCT

The PCT considered is generated by the surface of revolution of
a cosine function about the axis of symmetry as shown in figure 3.2,
All lengths are made dimensionless with the period of oscillation £ .

The creeping-flow equations are to be solved in this geometry. Because

no inertial effects are present and the tube wall is axially symmetric
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Figure 3.1 Expecled behavior of bed Sherwood numbers.
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Figure 3.2 The wall of a PCT generated by r,(z) = rp, - A cos (27z).
All lengths are made dimensionless with respect to the
period length %.
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at z = 0 ,0.5,and 1 , the vadisl velocity v will be zero at
these same positions. It then follows the streamwise velocity vg
will be an even periodic funciion of =z with the same frequency as
the wall oscillation. These considerations make it clear that the
governing equations need be only solved in 0 < z < 0.5 for this
particular geomeiry.

A packed bed is modeled as an array of thesePCT. The fluid
approaches the bed at a superficial approach velocity v . The
average dimensional velocity Vpg” through each tube is defined such

where r

- 2
that the flow rate in each tube is equal to <v, >Tr Ad

Ad TTAd
is the length averaged dimensional vadius. Geometrical considerations
show that <vAd> can be written in terms of the approach velocity as

W4 14 5 (A/rA):]

where A is the dimensionless wall oscillation amplitude. The
governing equations need be solved in a single PCT. These results
can then be applied to the entire bed due to the assumed homogeneity
and periodicity of the structure.

The dimensionless, incompressible Navier-Stokes equations for
creepingéflow with axial symmetry can Be reduced to a single, linear,
fourth order partial differential equation by introducing the

normalized stream function Y as

EY =0 @)



where

The stream function equation is to

conditions
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— (2)

(3)

be solved subject to the boundary

Y =20 4(1)
r=0
33;(—]{- %%)= 0 4(id)
%% =0 ) 4(iii)
r = rw(z)
Y =1 4(iv)
and a periodicity condition
2™ e = 220 ¢ ) 0,1,2 (5)
— Y(t,2z) = —— Y(r,z + m) n,m = 0,1,2, ...
Bz(n) Bz(n)

The boundary conditions of equation 4 state that at the centerline

i) the radial velocity is zero, ii) the axial velocity is symmetric,

and at the wall iii) there is no slip on the axial velocity, and

iv) the flow rate at each cross section is a constant, here referred

to a straight cylinder of radius

rA.
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N P

No amalytic solution fovr equations 1, 4, and 5 could be found.
Interior collocaiion on a finite-difference grid was used to generate
an approximate solution. The collocation approximation technique is
examined by Finlayson ( 60 ), Villadsen ( 61 ), and Villadsen and
Stewart ( 62 ).

A transformed radial coordinate 1 is introduced by
. 4
= v/v {(z) . 6
n /. (2) (6)

The boundary conditions of equation 4 along the wall are then transferred
to the coorvdinate curve 1n = 1 . 1In this new coordinate, the interior
collocation technique on a finite-difference grid can be used to
approximate the hydrodynamics. Assuwe - a solution for the normalized
stream function of the form
NCP
2 4 2 2.2 2
Y(n,z) = 2n° 4+ ) 7@ - nD%, (2, . (M) . (7)
. k k1
k=1,
The first two terms on the right side vepresent the Hagen-Poiseuille
solution. The summation of terms can then be considered as a correction
. : ; ; . 2 .
function to the basic parabolic flow. The functions ¢k_l(n ) in the
summation term can be any cowmpleie set of functions, The weighting
2 2,2 . . .
factor N (1 - n7) assures the correct behavior of the solution at
the boundary points n =0 and n = 1 . The coefficients Ak(z) are
unknown functions of =z o be determined subject to the boundary

conditions
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A(0) = A" (0) = 0
AL(O.S) = AL"(O.S) =0 .

(8)

These conditions result from the periodic, symmetric tube wall. In
non-creeping flow, these coefficients would not identically equal zero
but some constant which must be determined as part of the solution.

A friction factor for a packed bed may be defined as

3 /-AP
_ 36¢ Bl 1
fp =2 ( L ) 2" (9

ov

A porosity dependence has been explicitly incorporated into this
definition. For creeping flow, the product of the Reynolds number and

the bed friction factor is a constant given by

arpd W

14
2 v NCP
fyRe, = 72( 2 ) [1 ik (A/rA)z] f(-r—A-) {1 + kzl A (2)
0

(10)

[2,_(0) - ¢§-1<°)/2]} dz .

This equation was derived by integrating the pressure gradient in the
Navier-Stokes equations over a period at the centerline. The left side
of equation 10 depends upon the macroscopic bed quantities while

the right side depends upon the microscopic model parameters

A
and A/rA only.
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Convective Diffusion Equation at High Péclet Numbers

The dimensionless, steady-state, convective-diffusion equation
for a single limiting reactant can be written in generalized vector

notation as

vec . =~ (11)

This equation with a creeping flow velocity profile is to be solved

in the far downstream region of a PCT for the asymptotic solution as
Pe > o , Solving this equation in a straight tube after neglecting
diffusion in the axial direction results in the well-known Graetz

. solution. At high Pe it is also valid to neglect diffusion parallel
to the streamwise velocity in a PCI.

It is convenient to solve equation 11 in a transformed coordinate
system (Y,£,0) (figure 3.3). The Y coordinate is constant along
streamlines and is found directly from the stream function. The §
direction is parallel to the streamwise velocity at all positions and
is scaled such that & = 0 at the beginning of a period and § =1
at the end. It is defined implicitly by (W)+(VE) = 0 . The angular
coordinate 6 has its usual meaning. In this coordinate system,
diffusion will be important in the P direction and negligible in
the & direction, at high Péclet numbers.

With neglect of diffusion in the & direction, equation 11 can

be written as
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Figure 3.3 The (¥,£,8) coordinate system.

=&

- XBL 7811-12885

Ly



48

Ve osc A 1 ( 't ac) (12)
Pe h,h,h, 9 9 '
By O Pe by 3\ By 3

Explicit forms for two of the metric factors can be determined. By

inspection he =t , Since the stream function represents the amount

of fluid flowing in a stream tube between a point and the axis,

2

Y = vgrhwdw (13)

O’\'G-

r2
A

after appropriate normalization. It follows that the metric factor

hW is related to the streamwise velocity vg :

2
T
a1
hw TR (14)
g
Equation 12 now becomes
oCc 8 3
3 " T, W (cere o ) (1)

which applies to any PCT.

Unfortunately, equation 15.cannot be solved by a separation of
variables technique. One can, however, formulate a perturbation
solution to equatioﬁ 15 in the deep region of the bed where the entrance
effects have been damped. Equation 15 suggests as a first approximation

that

TF =0 . (16)
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at large Pe . This would imply that the concentration 1s a function
of ¢ onlyrand is constant along a streamline. Any function of
will suffice. The first order term in the perturbation solution
shoﬁld then be a function only of { . The second order term will
then be a diffusive correction function to take into account that

the concentration must also be changing in the & coordinate.

Assume a solution of the form

Substitution of equation 17 into equation 15 yields

aC aC
2 8 0 2 1
% LW (“/50 "aha"a'u7> (18)

after neglect of the diffusive term in C2 .
In the far downstream region of a PCT, the fractional decrease

of concentration through each period must be the same, that is

CW,E + 1) = cw,Be a9

where B 1is independent of position. If we set Cz(w,O) = 0 , this

means that C2 and Cl are related:
N o -8B

Equation 18 can now be integrated from £ =0 to & =1 , to obtain

a Sturm-Liouville eigenvalue problem for the function Cl(w) .
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d dcl)
1
o) = [ e v (22)
' 0
r,Pe r, Pe -
a=a-e®hH S-Zp -2 (23)

The integral in equation 22 is carried out over the arc length for
a constant value of Y in the integrand. The second identification
of A to B 1in equation 23 is possible since Pe » » ,

Equation 21 is to be solved subject to the conditions

c,(0) = 1 24(1)
c (1) =0 24(i1)
c1(0) = -A/G'(0) . 24(111)

Condition (i) is a normalization for the first order solution.
Condition (ii) satisfies the limiting reactant constraint of a zero
wall concentration. Condition (iii) results from the fact that the
concentration must be finite on the centerline, a singular point of
equation 21.

The first eigenvalue of equation 21 can be related to the
effective Sherwood number for a deep porous bed which is modeled as
an array of PCT. A macroscopic mass balance on the reactant over
the length of the period can be written in terms of an effective
mass-transfer coefficient -km (Newman and Tiedemann, 34 Bennion
and Newman, 40 ). The £ in equation 20 can then be related to this

coefficient as
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B=k_ alv . | (25)

With equation 25 and 23, the Sherwood number for a limiting reactant

in a deep bed with creeping flow and high Péclet number can be written

as

£ km 2€ 2
Sh =ET=->\ (26)

ar Ad\/l +Q/NA/x,)”

Equations 26 and 21 are the main results of this analysis. By
means of the perturbatiqn approach, we have demonstrated how the two-
dimensional convective-diffusion equation in a PCT can be reduced to
a Graetz-like eigenvalue problem at high Péclet numbers. The first
eigenvalue of this problem is simply related to the bed Sherwood
number as givgn in equation 26,

The eigenfunction Cl(w) generated by the perturbation analysis
is a first order approximation to the concentration distribution. It
identically satisfies equation 16 and gives the correct integral
properties to the correction function Cz(w,i) . The local transfer
rate to the wall can be found by differentiation of this profile with
respect to the normal distance from the wall. After a change in

coordinate system (see next section), the analysis yields

| VB(z)rw(z) dCl

9n w 2rA dp

(27)
p=1

where
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ov
B = 5

The local wall flux is thus proportional to the square root of the
local shear rate. The integral of equation 27 over the surface area
of a period is related to the eigenvalue.

The left side of equation 26 depends upon the macroscopic bed
quantities a and € . The right side is a function of PCT geometry
and flow regime through the dependence on A . The eigenvalues of
equation 21 are independent of the Péclet number in.creeping flow.
Thus, irrespective of curvature effects, the asymptotic Sherwood

number is a constant independent of the Péclet number for a deep bed.

Method of Solution

The unknown coefficients Ak(z) in the interior-collocation
approximation for the stream function can be determined as follows.
Equation 1 in the (n,z) coordinate system is applied to equation 7.
(The E4 operator in the (n,z) coordinate system is given in
Appendix A). Interior collocation is then used at NCP points in the
n coordinate. Since the n function dependence is a priori postulated
through the ¢k_l(n2) , this step reduces the partial differential
equation to a set of coupled, fourth order, ordinary differential
equations for the unknown Ak . This set of equations is solved on
a finite-difference grid in the =z coérdinate by the method of
Newman ( 63 ). Legendre polynomials were used for the ¢k_l(n2) .
The n collocation points were chosen to be the zeros of the shifted

Legendre polynomials of order NCP-1
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ny = /=5

where x; is the zero of the ordinary Legendre polynomial. The
wall, n =1, was also used as a collocation point.

The eigenvalue problem as posed in equations 21 thru 24 is ill
suited numerically to the Y coordinate. Equation 21 has two singular
points, one at ¢ = 0 , the other at Y = 1 . The singularity at
Y = 0 presents no problems; however that at Y = 1 does. An
analysis of equation 21 near the point ¢ =1 indicates that the
first derivative of -Cl- approaches infinity. A change in coordinate

will eliminate this singularity. Define a length-like transformation

variable p as

b= 20" - ot (28)

. Equation 21 and its boundary conditions then transform as

e oma i w
¢ (p=0) =1 | 30(4)

;=1 =0 30 (i)

é% C;p=0)=0. | 30(iii)

Equations 29 and 30 were solved by the method suggested by Newman
(64) . for eigenvalue problems.,

The computer programs are given in Appendix B.
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Results and Discussion

The hydrodynamic results will be discussed first, followed by the
mass transfer problem.

"The interioxr collocation solution technique for stream function
required a maximum of nine (NCP = 9) n collocation points to insure
sufficient accuracy of the solution. It was found that more collocation
points were required as the dimeﬂsionless wall radius was increased,
nine being the maximum for the most extreme case considered (rA = 0.5,
A/rA = 0.5)., Since this approximation solution is solved in a generalized
(n,z) coordinate system, it facilitates a straightforward calculation
for the velocity field in an& tube in the shape of a periodic body of

-revolution. The reduction of the eliptic partial differential equation
to a set of coupled orxrdinary equations is more economical to solve in
terms of computer time usage.

A boundary collocation solution technique was also attempted but
was discarded. The general solutions‘(by separation of variables)
to equation 1 involve modified Bessel functions of the first kind.
Unfortunately these functions do not form a complete set, and the
correction function expansion technique similar to equation 7 did not
converge.

Figure 3.4 shows a comparison between the creeping flow axial
velocity profile calculated here and that reported by Payatakes et al.
for a tube Reynolds number equal to one. The profiles are compared
at the minimum and maximum (z = 0.5) constriction diamefers. The
tube wall for these profilesvis generated by two parabolas intersecting

at z = 0.5 with their respective minima at z =0 and z =1 .
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Figure 3.4 Comparison of calculated axial velocity profiles with

those of Payatakes et al. for a parabolic PCT.
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(See figure 1 of Payatakes et al.). The boundary conditions for the
Ak's in equation 8 were at z = 0 and 1.0 for this situation. The
velocity heré is scaled with respect to the average velocity in a tube
of constant radius equal t§ the constriction radius. At the centerline,
the viscoﬁs flow profile is slightly larger than that of Payatakes

et al. calculations. However, near thé wall this trend is reversed.

The integral of all the profiles is equal to a constant defined by the
flowrate.

Figures 3.5 thru 3.8 show some typical creeping flow profiles in a
sinusoidal PCT. The two dimensionless geometry groups ) and A/rA
completely determine the solﬁtion behavior, These four figures
- 1llustrate the effect on the velocity profiles of manipulating one
of these variables with the other held constant. The velocity profiles
have been normalized with the average velocity at the average radius.

The effect on the axial and radial velocity profiles of varying
the wall amplitude at a constant average radius is shown in figures 3.5
and 3.6. The radial velocity profile is plotted at =z = 0.25 . At this
position v, attains its maximum value, These figures indicate that
at a constant radius the variation in the velocity profiles across a
half period becomes more dramatic as the oscillation amplitude increases.

Figure 3.7 and 3.8 illustrate the velocity profiles for a varying
wall radius at a constant A/rA . The effect of the tube geometry is
again seen. The radial velocity increases with r, since the velocity
of the fluid in the radial direction is proportional to the slope of

the wall. However, the varilations in the axial velocity profiles across
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Figure 3.5 Effect of amplitude/radius ratio on axial velocity
profiles for a sinusoidal PCT with r, = 0.1.
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Figure 3.6 Effect of amplitude/radius ratio on radial velocity

profiles in a sinusoidal PCT for r, = 0.1 at z = 0,25.
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Figure 3.7 Effect of average tube radius on axial velocity profiles

in a sinusoidal PCT for A/rA = 0.1.
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Figure 3.8 Effect of average tube radius on radial velocity profiles
in a sinusoidal PCT for A/rA = 0.1 at z = 0.25,
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the half period become less pronounced with increasing Ty - This
effect is due to the drag'induced by the wall. As T, increases
the effect of the wall fluctuations become less important to the
fluid in the cenfral core of the tube.

The frofiles of figures 3.5 thru 3.8 have been nondimensionalized
with respect to the average axlal velocity at the average tube radius.

This normalization procedure illustrates the variation

of the profiles from that at the average tube radius. If these profiles
’ r (z)
W

2
are multiplied by ) » the resulting profiles are then normalized

r
A
by the average axial velocity at position 2z . Such a calculation

shows that the parabolic axial velocity profile is approached as r,

becomes smaller. The radial velocity profile is then given by

continuity. In the limit of r, -~ 0 , the Hagen-Poiseuille case is

A

recovered.
Figure 3.9 iilustrates the bed friction factor, Reynolds number

product of equation 10 as a function of r, and A/rA . The product

A
fBReB involves the macroscopic bed pafameters L ,€,and a.

The microscopic PCT parameters T, and A/rA can be varied while
holding these bed parameters constant. As A/rA increases, the tubes
become more narrow at their constrictions. Because of the increased
resistance this reduced flow area offers, the bed pressure drop increases
with A/rA . This effect decreases with larger T, since the
constriction size at any A/rA increases with Ty o
The relative insensitivity of fBReB with r, seen in figure 3.9

supports the approximation of assuming the Hagen-Poiseuille pressure

gradient, flowrate relationship holds locally for sinusoidal PCT. This
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Figure 3.9 Friction factor, Reynolds number product for a packed bed

modeled as an array of sinusoidal PCT.
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approximation was used by Sheffield and Metzner ( 58 ).

Tﬁe Blake-Kozeny eqﬁation as given in Bird et al. ( 59 )
empirically recommends=a’7alue'bf 150 for the product' fBReB .
Sdrénsen and Stewart ( il ) have -calculated the velocity profiles
across a simple cubic packing of uniformly sized spheres. Their
pressure-drop results yield a theoretical value of 158. Figure 3.9
shows that a range of parameters (r,, A/rA) will give a fBReB
near these two values. The A/rA ratio which give fBReB a value
near 150 seem to be concentrated near 0.33.

The straight tube capillary model gives the intercept value of
72 on figure 3.9 The usual argument given in explaining the discrepancy
between this value and the empirically best fit value of 150 is a
tortuosity and shape factor. The PCT model of a packed bed does not
resort to these factors. However, anqther geqmetrical parameter
(A/rA) has Been added.

The mass-transfer analysis presented in this work can be used
to calculate the high Péclet number asymptotic Sherwood number for any
periodic tube. Only the stream function need be known. Calculated
results are presented for the sinusoidal PCT of figure 3.2viﬁ creeping
flow. The results are a function of the two dimensionless geometric

parameters r, and A/rA .

A
Figure 3.10 presents the first eigenvalue of equation 21 normalized
with respect to the first eigenvalue of the straight-tube Graetz

problem _(AG = 0.91419). This plot can also be interpreted as the

)

ratio of the asymptotic Sherwood number (based on the average radius Trd
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Figure 3.10 Eigenvalues for the mass transfer problem in a sinusoidal
PCT normalized with respect to the Graetz problem.
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of a sinusoidal PCT to that in a straight tube of radius LIV IR

Figure 3.11 presents the Sherwood number for a packed bed modeled
as an array of sinusoidal PCT. The concentratidﬁ drop across the

bed can be written as

aL
1n cF/cL = ShB —E—/%eB . : (31)

Figure 3.10 shows a monotonic behavior of the eigenvalues with r,

and A/rA . However, the bed Sherwood number shows different trends

Sh. increases with A/r

for small and large ~r For small Ty s B

A A

whereas for larger r, this trend reverses itself. This effect is
caused by the geometrical term in equation 26.
The quantity 2e/a in equation 26 is the standard definition for

the equivalent radius of the bed. This defines the bed in terms of

a straight cylinder network of radius req d having the same surface

b

area to empty volume ratio. The quantity rid[l + (1/2)(A/rA)2]

in the denominator of equation 26 defines another equivalent radius
rz‘
vd * _
For long skinny PCT (small rA), the ratio (req/rv)2 is greater than

This is the volumetric average radius for a sinusoidal PCT.

one and increases with A/r Thus for a bed composed of these tubes,

A"
the Sherwood number increases as A/rA is increased. However, as LN

becomes larger, the ratio _(req/rv)2 becomes less than one and ShB

decreases with A/rA .
For most beds, r, will be bounded approximately by 0.3 < r, < 0.5

while the A/rA ratio will be in the range 0.2 < A/rA < 0.5 , perhaps
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Figure 3.11 Asymptotic Sherwood number for a packed bed modeled as
.an array of sinusoidal PCT.
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close to 0.33. Payatakes et al. report these parameters for a
randomly packed bed of glass spheres as r, = 0.3, A/rA = 0.36 , and

for a bed of sand as = 0.31, A/rA = 0.41.

A

" Sprensen and Stewartv( 12 ) have calculated the asymptotic
value of the Sherwood number in a simple cubic packed bed of uniformly
sized spheres. Their results yield ShB = 0.619 . This information
“can be used in conjunction with the friction factor, Reynolds number
ﬁroduct calculated by these same authors. This suggests that the
PCT parameters for a simple cubic packing of spheres are T, ® 0.5
and A/rA ~ 0.33 . We expect this ) value to be an upper limit for
" uniform spheres since the siﬁple'cubic packing has the highest porosity
of all sphere packing configurations.

No experimental packed bed heat or mass—transfer correlations
are known to the authors which demonstrate a "~ transfer rate
- independent of velocity. Three factors can mask this asymptote.
1) At veryblﬂw velocities axial dispérsion may become important.
2)' At high flowrates turbulence becomes important. 3) At thé
intermediate flowrates the entire bed may be in the entry'region
(small al). However, the asymptotic Sherwood number gives a conservative
estimate useful for design purposes.

The solution to the creeping flow equations exhibited separation
flow for some values of the geometry parameters. (See chapter 6
for the range of these parameters.) These separation zones were

neglected in this analysis for simplicity sake. Consequently, the Sherwood

number is underestimated in this parameter range.
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Chapter 4

Low Péclet Number Behavior of the Transfer Rate
: in Packed Beds

Abstract

The asymptotic behavior of the mass-transfer coefficient in a
packed bed reactor at low Péclet numbers is dependent upon how the
coefficient is defined. A singular perturbation approach coupled
with heuristic arguments is used to demonstrate fhat the film mass—~
transfer coefficient.in deep beds épproaches a constant value as the
Péclet number decreases. The film coefficient is utilized in the
one-dimensional model of a bed as a sink term in the governing equation.
The volumetric, or effective, mass-transfer coefficient,which
relates the overall reactant conversion to a logarithmic mean con-
centration driving force, decreases linearly with the Péclet number
as the Péclet number approaches zero. The distinction between the
two coefficients is important in the low Péclet nﬁmber region.
Analogous results apply to heat tfansfer. Reported experimental

data support these predicted trends.
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Introduction

The behavior of the particle-to~fluid (or vice-versa) heat or
mass transfer rate in packed beds at low Péclet numbers has been a
source of confusion in the chemical engineering literature. The
question is, '"Does the transfer rate approach a steady value as
the Péclet number decreases,or does it continually decrease with
the Péclet number?" This can be rephrased by asking whether the
Sherwood number reaches a constant value or decreases as the Péclet
number is lowered. We shall demonstrate in this paper that both
trends are possible depending.upon how the Sherwood number is defined.

The experimental determination of transfer coefficients at low
Péclet numbers is vexing. The fluid leaving the bed is very near
its saturation value in the transferred quantity. This creates a
large uncertainty in the driving force at the exit of the bed which
'is used in defining the effective transfer coefficient. Free |
convection may also become an important effect. To overcome these
difficulties, various workers have used diluted beds, transient, and
frequency response methods to determine more accurately the low-
Péclet-number beﬁavior.

Since the Schmidt and Prandtl numbers for liquids are quite
large [0(103)], most low Péclet number data are found in gaseous
systems. Furthermore, most workers have varied the Reynolds number
only. The free conVection effects should be minimized in the gaseous
systems.

The quantity of data for low Péciét numbers is understandably

small. Table‘4.l is a compilation (with no claim to completeness) of
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Table 4.1 Compilation of works which have reported heat or mass
transfer data in packed beds for a particle Péclet
number less than 30.' -
Investigators Lowest Reynolds Lowest Schmidt or | Lowest Péclet Heat (H)
number reported | Prandtl number number or '
reported Mass (M)
Resnick and White 0.62 4.0 2.5 Mo
(1949)
Eichorn and White 1 0.7% 0.7 M
(1952) 4
Dryden et al. 0.0125 814 10.2 M
(1953)
Bar-Ilan and Resnick 0.2 2.6 0.5 M
(1957)
Littman et al. 1.9 0.7% 1.3 H
(1968)
Petrovic and Thodos 3 0.6 1.8 M
(1968)
Kato, et al. 0.1 2.6 0.3 M
(1970)
Gliddbn and Cranefield 23.8 0,7 16.4 H
(1970)
Karabelas et al. 0.01 1490 15 M
(1971)
Gunn and De Souza 1.5 0.7*% 1.1 H .
(1974)
Miyauchi et al, 0.02 510 10 M -
(1975)
Nelson and Galloway 1 0.7%: 0.7 H
(1975)
Miyauchi et al. ? ? 2 M
(1976a)
Appel and Newman 0.00806 1440 11.6 M
(1976)
*estimated value; +Theée works may be found in references (65,66,67,47,68,69,49,70,

- 71,72,73,17,74,46) respectively.
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those publications which list packed-bed transfer data for Péclet
numbers less‘than 30. Both heat and mass transfer results are included.
The data scatter as the Péplet number decreases, and there is no
absolute agreement between different authors. (This is true, to an
extent, no matter what the Péclet number range.) vThere is, however,
a definite trend in the Sherwood number (or equivalently, the Colburn
j factor) with the Péclet number reported by the authors of Table 4.1.
The Sherwood number based on an averaged inlet and outlet concentration
(or temperature) driving force across the bed (47,67,66,70,49,17,
69,65 ) seems to decrease with the Péclet number. However, the film
Sherwood number (72,68,73,74,75 ) seems to reach a constant as the
Péclet number decreases. The film Sherwood number is calculated by
parameter fitting the experimental data to the solution of the governing
oné—dimensional convective diffusion equation.

A concise definition of these two different Sherwood numbers follows.
We shall demonstrate that the distinction between these two numbers
is small for large Péclet numbers but becomes important as the Péclet

number approaches ‘zero.

Definitions of the Mass-Transfer Coefficient

To be specific in our discussion, we shall speak in terms of the
mass—transfer problem in a nonconsolidated packed.bed. The results
are applicable to the heat—fransfer problem by thé usual analogies.

We shall also limit our discussion to a single reaction at the
particle surfaces. The rate of reaction is controlled by the reactant

mass transfer from the fluid to the particle surface.
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A design engineer is interested in the performance capabilities
of a packed bed reactor.: Given a certain feed concentration of
reactant, he is interested in the overall reactant conversion. This
‘can be correlatedvin terms of the bed's effective mass-transfer

coefficient km.
v[cF - cL] = akmLAcln @)

The concentrationscF and ¢ are the far upstream and downstream
reactant concentrations. Equation 1 relates the conversion to a
logarithmic mean driving force. (Séme workers have chosen different
driving forces. Bird et al. (59 ) give a lucid discussion of the

possibilities.) For the limiting reactant condition considered

here, equation 1 reduces to

L _ ShB alL
P (‘1‘»‘:? (2)

F B

where the bed Sherwood and Péclet numbers have been introduced.

It is also possible to define a film coefficient kf. This
coefficient relates the local concentration driving force in the
bed to the local reaction rate. It is assumed for a given flowrate
that kf does not vary -throughout thé bed. The term (kfc) appears
as a sink term in the one-dimensional equation governing the con-

centration profile in the bed:
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2 -
Q;%__ v %% = akfc. (3)
dz

E

The dispersion coefficient . E is a function of the flow regime.
In the limit of low Péclet numbers, E is dominated by molecular

diffusion and reduces to

D
E = ¢ 2
T

where T 1is a tortuosity factor (43 ).

It might seem that kf is a more fundamental quaqtity than km
(or vice-versa, depending upon one's point of view). This is not
so, however, since both km. and kf are essentially defined
quantities. These two coefficients are related.b This can be seen
by solving equation 3 with appropriate boundary conditions to find
the concentration field across the bed. After solving this expres-
sion for cL/cF and setting this result equal to equation 2, one

obtains (34 )

B+ 9% (1 - B) exp [—aL(%— + D—If-)]
B
- “)

1+D'/B

where

Q
]

akf/v

D' = aka/v2

3 1+ Vi + 4p
)
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The boundary conditions used to solve equation 3 were those

given by Wehner and Wilhelm's analysis (38 ).

- B QE-+ ve at z

Ve, = iz =0 (Si)
de _ _ -
Frelia 0 at z =1L (54i)

Equation 4 shows how the experimentally accessible, and design

- useful, km can be corrected to give the film coefficient kf. For

purely pedagogical purposes, assume kf is given by the Wilson~
Geankopolis correlation (32 ). Figure 4.1 (34 ) illustrates how k
would then vary with the Péblét number. At large Péclet numbers,
the distinction between the two coefficients vanishes. However, as
PeB + 0, the difference between the two becomes important. It

should perhaps be emphasized that the calculation of k. from km

f

requires a value of E, with which there must be associated some un-

certainty.

Calculation of gm

It would not be necessary to use the one-dimensional model for
a bed and its associated film coefficient if we could describe the
void volume in the bed analytically. For it would then be possible
(in principle) to solve the hydrodynamics and the convective-
diffusion within the voids to calculate directly the overall

conversion. This is an overwhelming task. The voids in a bed defy
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Figure 4.1 Influence of axial dispersion on the effective mass-

transfer coefficient k;. The film mass-transfer
coefficient k¢ is assumed to be given by the Wilson-
Geankopolis correlation as shown in the upper curve.
Because of axial dispersion, k; lies below k¢, and the
effect becomes large at low Péclet numbers. In preparing
the graph, the porosity was taken to be € = 0.3 and the
tortuosity factor T was assumed to be 1. The convective
contribution to the dispersion coefficient was given by
equation 3.9. '
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an analytic expression except in a simple instance (11 ,12 ). This
approach, however, can be used to indicate the asymptoticﬁehavior
of the fluid;to-particle transfer rate at low Péclet numbers. We
shall see that a detailed knowledge of the void volume function

- is not necessary to establish the behavior in this limit.

Assuming a known bed geometry, we shall demonstrate how km
(pot kf) behaves asymptotically as PeB + 0. Equation 4 with
the proper form of the dispersion coefficient can then be used to
indicate the behavior of kf.

Wehner and Wilhelm (38) showed how to analyze correctly the
behayior of a one—dimensionai model for a packed bed reactor. Their
analysis can be extended to the actual three-dimensional structure
of the bed. As shown in figure 4.2,the bed consists of three regions.
Region II of length L is the reactive section of the bed. Regions
I and III extend in the dimensionless streamwise coordinate X to ~ and
+ o, respectively. They are filled with an inert packing. These
aré the "calming sections' used in experimental apparatus. A cross
section normal to the sfreamwise direction is finite in extent.

" The position of the particles' surface is assumed to be known
as a function of the streamwise coordinate. Designate this function
as Wa(xl) for the reactive particles and Wi(xl) for all other
inactive surfaces.

ﬁeglecting free convection effects, the concentration field in

the voids will satisfy the dimensionless convective-diffusion equation.
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z'Vc/c =L Vzc/c (6)
: F PeB R

~Equation 6 is subject to the following boundary conditionms.

<

i) X; > - < =1
B(C/CF)
ii) -= < Xl < ® T = 0 on Wi(xl)
(7
c —
iii) 0 f_xl < aL E;-— 0 on Wa(xl)
iv) X, -+ £ remains finite.
°r

These boundary conditions yield a well-posed problem when applied to

equation 6 in the void volume.

The detailed solution to the convective diffusion equation
directly yiélds the concentration exiting the reactor and thus,
through equation 2, the bed Sherwood number. Dimensional analysis
indicates that the Sherwood number will be, in general, a function
of the velocity field, the parameters PeB , aL. , and the geometric
functions Wi(xl) and Wa(xl) . In the following, we shall develop

the explicit functional dependence on Pe_, and alL at low Péclet

B

numbers and for deep beds.
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We want to consider the solution to equations 6 and 7 in the
limit of zero Péciet number. This limiting process is singular in
nature. There are regions in the bed where diffusion does not
dominate the reactant transport and convection becomes important.
These regions will be located in the upstream and downstream "calming"
sections. There are precedents for this expected behavior in the
literature. Acrivos and Taylor (76 ) analyzed a single reactive sphere
in Stokes flow as the particle Péclet number approaches zero. AThey
have shown that, near the sphere, diffusion controls the mass-transfer
rate to the surface, but convection also becomes important far from
the surface, Leal (77) has extended this analysis to a sphere in a
simple -shear field. Such work suggests that applying the asymptotic
"limit of PeB -+ 0 will require a singular perturbation approach.

To formulate properly a singular perturbation problem for the
concentration field within the voids of the bed, it is necessary to
delineate the regions where diffusivg and/or convective transport

are controlling. Appropriate transformation variables must also be

defined for each region. The equations governing the concentration
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and their boundary conditions should then be independent of the
Péclet number in the regions.

In the réactor section (II) and a region on the "calming" side
‘of the boundaries I—II‘and II-IIT, the inner solution applies. 1In
the inner expansion, diffusion dominates the reactant transport.
Far away from the reactor section, in the upstream (I) and down-
stream (III) regions, the diffusive and convective flux of reactant
become equally important. Thus, there is an upstream and downstream
outer region to the expansion.

Consideration of the Wehner-Wilhelm solution for a one-dimensional
bed leads to the appropriate fransformed concentration and coordinates

in each region.

61 = c/e
F
upstream
outer
T Pe variables
xj = xj — (j = 1,2,3)
- cE
)
cFPeB
_ inner
variables
§J = xj, (j = 1,2,3)
~ITI ce
= downst
Cp ep ownstream
outer
Pe varilables
T (x, - aLs,.) —2 (4 = 1,2,3)
i 37 %0y TE '



81

The coordinates (xl,xz,x3) form an orthogonal system with its
origiﬁ at the geometric center of the entrance to section II.
Coordinate Xy is in the streamwise direction. The tilde (.)
refers to the outer region variables,and the bar (-) refers to
inner‘region variables. The transformed concentrations have been
scaled to be of 0(1) in each region.

In the upstream and downstream oﬁter region gxpansion, further
simplifications are possible. vFar from the perturbing effect of
the reactor section, the éoncentration field will be approaching
a constant value ét each cross section of the bed, that is, the
variation in the axial direction is small over a distance comparable
to the size of a particle. Thus the one-dimensional (streamwise)
description will suffice as a first-order approximation. The geo-
metry is a second-order effect there. It is accounted for by the
tortuosity factor in the effective diffusion coefficient. 1In the
inner region of the expansion, however, the exact placement of the
particles is important, and no geometrical simplifications can be
made here.

By the above reasoning, the first-order solution in each region
is governed by the following equations.

a2 53 d§$

—5% - =0 ®
~I,2 ~1
dGDT aGD

2 =0 (9)
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d2 6§II déill'
- = 0 (10)
a®m™?  aG™

Equation 8 1is subject to tﬁe boundary condition 7(i) and equation
10 to 7(iv). Equation 9 is subject to equations 7(ii), 7(iii),
and the matching condition imposed by merging the outer limit of

the inner solution to the inner limit of the outer solution. This
isvcarried out in the upstream and downstream regions. This matching

results in the following additional boundary conditions for equation

9 .

36
—2 =1 as %, > -
5% o

1

(11

28 )
a—_—= 0 as Xl > ©
X1

The first order governing equations and their necessary
boundary and matching conditions have been outlined above. The
solution to thissystem of equations then generates the first-order
approximation to the concentration of the feactant leaving the bed.

This result can be utilized in equation 2 to write,

ekm € v v
I - aL R In 1/6L - 1n caD (12)
o o o
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where SL is 1im 6 . Equation 12 has been rigorously derived
1

through a singular perturbation approach. The bed Sherwood number
for low Péclet numbers can be calculated once GL is known. This
quantity will depend upon the detailed geometry functions Wi and
W_, and the parameter alL, as can be seen by examihing equations

a
8 through 10 and their associated boundary conditions.

Equation 12 may appear to be a rearrangement of equationl, and
indeed it can be generated from equation 1 through algebraic mani-
pulations. However, equation 12 yieldé a priori predictions of the
Sherwood number after OL is determined from the perturbation
problem as outlined. In particular, GL is shown to be independent

of the Péclet number at low Péclet numbers, and the dependence on

alL can be elucidated to some extent as discussed below.

Deep bed behavior of km
For straight tubes with an insuléted upstream wall (z<0)

and an active downstream wall (z 20) » the local mass-transfer rate
depends upon the axial position, but the local mass-transfer coeffi-
cient approaches an asymptotic value in the downstream region. The
length scale in which this asymptotic value is approached depends
upon the Péclet number. This region is usually designated the mass-
transfer entry region. Levich (78) has shown for high Péclet numbers
that the entry region is O(PéR), where R is the tube radius. In the
low Péclet‘number regime, Michelsen and Villadsen (79) have shown

that the entry region is O(R), a result which is substantiated by
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the calculations of Sérensen and Stewart (10) and Michelsen and
Villadsen (79).

From these results one concludes that the entry region for a
‘packed bed should be in the order of a particle diameter for low
Péclet numbers, and a deep bed thus will be one for which I.>>dp.
In this limit, most of the bed will be in the well-developed mass-
transfer region, where the fractional decrease of reactant for any
incremental streamwise length should be independent of the position
of the incremental length. Thus, for deep beds, the dependence of

GL on alL can be expressed as

where oq and a, are independent of alL (as well as Pe) and are

‘dependent upon the detailed geometric functions W, and wa. The

i
deep bed, low PeBSherwood number from equation 12 can then be

written as

€km v € 0t2 v
aD aDo % Zf'ln EaDo * (14)

Since the entry region is small at low Péclet numbers, this result
should be applicable to many beds of practical importance. Equation
14 was first stated by Séremnsen and Stewart (10), but they did not

demonstrate how they derived this result.
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Equation 14 shows that for large values of alL, where_the second
term in the brackets isvnegligible compared to the first, km becémes
linearly propbrtional to the velocity. (Note that in figure 4.1 the
curve for aL =‘5 is fairlyvélose to that for aL = «,) After applying
the large al limit and.the low Péclet number limit, one can conclude
from' equation 4 that the film‘coefficient of the one-dimensional

model for the same bed must approach a constant as

E= dn | (15)

Equations 14 and 15 are the main result of this chapter. It is
worth noting that equation 14 could be derived from equation 4 in a

simpler manner by a priori postulating that k. becomes independent

f
of v for low Peclet numbers. However, this of course would not
shed any conclusive light on the real behavior of kf;

The void volume approach outlined above cannot be carried
further for the general case without specifying the geometry. A
packed bed can be considered on the microscopic scale as a statis-
tically periodic structure (29). In order to introduce a predictive
capability into the present method, one can solve equation 9 in
the well-developed mass-transfer region as an eigenvalue problem.
This yields the fractional decrease of reactant for each period and
hence the value of 0y in equation 13; For significant values of

al,, this also yields the dominant part of km according to equation

14 and kf according to equation 15.
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Discussion

The two types of mass-—transfer coefficients described in this
work have beén reported in the literature. Miyauchi and his coauthors
(80,'7_3,74,75,83) .conclude from the analysis of their data that the
film coefficient reaches a constant as the Péclet number decreases.
Gunn and Souza (72 ) and Littman et al. (68 ) also reach the same
conclusion about their data. However, their results exhibit more
scatter than those of Miyauchi. On the other hand, from considering
those workers' results (47,67,66,70,49,17,69,65 ) who calculated
an effective transfer coefficient as in equation 1 (or its possible
equivalent forms), one could conclude that the effective transfer
coefficient decreases with decreasing Péclet number.

Thgre are clearly different experimental trends in these two
coefficients. Our analysis suggest that the effective Sherwood number
becomes linearly proportional to the ?é?let number as Pe - 0 . This
is true for any geometric arrangement of the voids in the bed. This
implies through equation 4 that the film coefficient approaches a constant
in the same limit. These prediced trends agree with the available
experimental data.

We have not been concerned in this paper with presenting
numerical predictions for the film or effective mass—-transfer
coefficients at low Péclet numbers. Howevér, several comments on
some previous theoretical work along this line are in order.

To predict the transfer coefficients in a bed, it is necessary

to introduce a microscopic model for the structure of the bed. The
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free-surface cell model developed by Happel (32 ) or an analog of

this as introduced by Neal and Nader (13 ) has been used by various
authors. One can calculate a film mass-transfer coefficient by

solviﬁg the hydrodynamics and the convective-diffusion equation

within the cell, both subject to appropriate boundéry conditions. This
film coefficient will depend upon the flow conditions in the cell and
the Schmidt number. As our analysis suggests, only in the high Péclet
number region is this film coefficient equal to the effective coefficient
km . Pfefferv( 18), Pfeffer and Happel (15 ), El-Kaissy and Homsy (19 )
and Tardos et al. (21 ) have performed such calculations for high
Péclet numbers within the free-surface cell model framework.

At low Péclet numbers, the uniform concentration boundary
condition imposed on the outer free surface of the cell has been
criticized (81,17,10 ). Nelson and Galloway (17 ) attempted to remedy .
this ficticious sink boundary conditiqn. They imposed a zero-radial
gradient conditién on the concentration at the outer free surface,.

They combined surface-renewal and boundary-layer arguments to arrive
at a film coefficient linearly proportional to the Reynolds number
and to the Schmidt number raised to the two-thirds power. At low
Reynolds numbers the applicability of surface-renewal theory and
boundary-layer theory is questionable. Also, the distinction between
the film and effective mass-transfer coefficients was not recognized.

Kunii and Suzuki (82 ) have realized the difference between

the two coefficients at low Péclet numbers. They have presented
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a channeling model to calculate km. They predict a linear
dependence on the Péclet number. Their model involves an empirical
factor which varies over two orders of magnitude to fit their data
‘analysis.

S¢rensen and Stewart (11,12) have numerically calculated the
creeping flow velocity profiles and solved the convective~diffusion
equation for a limiting reactant in a simple cubic packed bed of
uniform sized spheres. These calculations are a great aid in the
understanding of processes in an actual bed. Theif results indicate
that the effective coefficient km varies linearly with the Péclet
number as PeB -+ 0 1in accord Qith equation 14, Their results can
be used to calculated oq in equation 14, and hence, through equation
15, kf. The dimensionless film coefficient for a deep bed of simple-

cubic packed spheres (e~ 0.48) is found to be

where a tortuosity factor of T='VE_has been assumed. This should be
compared to the experimental values of 12.5 determined by Miyauchi
et al. (83) for a gas-film coefficient (¢ ~ 0.5), of 16.7 determined
by Miyauchi et al. (80) for a liquid-film coefficient (¢ ~ 0.4), and
of 10.0 determined by Gunn and Souza (72 ) for a gas film coefficient
(e ~ 0.4).

It should be noted that Sdrensen and Stewart's results have been
previously misunderstood. Their calculations do not imply a dimen-—

sionless film coefficient of 3.9 as has been claimed. Their Nusselt
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number Nu is based on the log mean average of the convective
energy flux entering and leaving the bed. This number is not the

low Péclet number, one-dimensional film coefficient.

Summarz

It has been demonstrated that the low Péclet number behavior
of the Sherwood number in a packed bed reactor is dependent upon
its defining equation. A rigorous singular perturbation approach
coupled with heuristic arguments indicates that for a deep bed the
effective mass~transfer coefficient (defined by equation 1) is
directly proportional to the Péclet number. The film coefficient
(defined by equation 3) approaches a constant in the same limit.
These conclusions are independent of the detailed geometric void

structure in the bed.
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Chapter 5

Numerical Calculations for the Asymptotic, Diffusion Dominated
Mass~Transfer Coefficient in Packed Bed Reactors

Abstract

For deep beds, the effective Sherwood number becomes
linearily proportional to the Péclet number as the Péclet number
ténds to zero. A sinusoidal periodically constricted tube model for
the voids in the bed has been used to predict the constant of propor-
tionality. This constant depends upon the dimensionless ratios of
three iengths:' the average tube radius, the oscillation amplitude,

and wavelength.

Introduction

In Chapter 4 a formal method for calculating the Sherwood number
in the low Péclet number regime for a mass-transfer limited, packed
bed reactor was presented. Emphasis was placed on the important
distinction at low Péclet numbers between the effective Sherwood
number, which relates the inlet and outlet concentrations, and the
film Sherwood number, which is a sink term in the one dimensional
model of the bed. A singular perturbation solution for the concentration -
field was used to demonstrate that to first order in deep beds, the

effective Sherwood number can be written

€k
m_ v [, _& . .V
al  ~ aD (al aL In a2a90> 1
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where ul and az are constants which depend only upon the bed
structure and are independent of the Péclet number. Equation 1 applies
for any detailed void volume arrangement of the bed.

" In order to introduce a predictive capability to the formalism
presented in that chapter, a microscopic model for the solid-void
structure of the bed must be introduced. In this chapter, values of
%
of the bed.

are calculated using the periodically constricted tube (PCT) model

Periodically Constricted Tube Model

The voilds in a bed of nonconsolidated. porous media.can be
modeled aé an array of periodically constricted tubes. This concept
has been developed by Payatakes et al. (29 ) and the references therein.
In this work, the bed is modeled as an array of sinusoidal PCT
(figure 3.2),

The first order solution for the concentration variable in the
reactive section of the bed has been shown to be governed by Laplace's
equation. The concentration variable within the model microscopic

void volume will thus satisfy Laplace's equation.
136 _ :
+ +-'r"é?—0. (2)

The limiting reactant condition on the surface of the solid particles

immediately specifies one boundary condition

8(r = ) -0 . (3)
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In the well-developed mass-transfer regions of the bed the fractional
decrease of the reactant concentration and flux per period will be

independent of position. This supplies the following boundary conditions

6(r,1) = é(r,O)e—A : (4)

38 (r,1) _ 96(r,0) -\
5z - 9z © (5

where A 1is the smallest eigenvalue of the solution to equations 2,3,4
and 5. The solution to this problem depends on the geometric parameters
of the microscopic model r, and A/rA .

For a deep bed, the eigénvalue A can be related to the leading

term of equation 1. The concentration variable at the exit of the

reactor can be written as

5 . (6)

T2 ¢ ar, X

Equations 6 and 7 can be substituted into the defining equation
of the effective mass~transfer coefficient (eq. 4.1) to yield the

analog of equation 1.

ekm v [ArA 2¢ £

= — - = 1n —2—1| . (8)
aDo aDo 2 ar, 4 al eavoaz]
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Thus the leading term Oy of equation 1 can be calculated by finding

the eigenvalue A .

Method of Solution

An analytic solution for the eigenvalue problem determined by
equations 2, 3, 4, and 5 could not be found. An approximate numerical
scheme was used. The technique is similar to that utilized in chapter 3.
Laplace's equation and the boundary conditions are transformed into a
new coordinate system (n,z) where n = r/rw(z) . The wall boundary
condition is then shifted to the coordinate curve n =1 . A transformed

concentration variable C was defined as

C=28"". (9

This transformation was introduced in order to remove the eigenvalue
from the boundary conditions and transfer it to the differential
equation. Laplace's equation and its boundary conditions are then

written as

C(n,0) = C(n,1) (10)
aC(M,0) _ 3C(n,1)
B; a oz (11)
C(,2z) =0 (12)
2 2
2 r! 2 r! "
-a——g—+ —l2—+n2(——“1) 3C | v nfof2) - s
T 2 2 T T
oz rW w an nrw w w

re \| ac e | a2c | 3¢ .2
2 ;— A) 5*'— 2N —lmem—=— =22 —+A°C=0. (13)
w n T z
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Two independent collocation procedures were used to solve equations
10 thru 13. These two techniques permitted a cross verification of
the calculated results,

‘In the first method, anrexpansion for C was assumed in the form

NCP
Cn,z) = ] A (2T (0 . (14)
k=1

Since the Y, are the roots of the Bessel function Jo , this expansion
identically satisfies the wall boundafy condifion. Equation 14 is
substituted into equation 13, and the residual is made equal to zero

at NCP n collocation points. This generates a system of ordinary

differential equations with the following boundary conditions

£,(0) = A (D) | (15)

AL(O) = A (D) . (16)

Along with the normalization

Al(O) =1 an

this specifies enough information to calculate the unknowns. Equation 13
was linearized and then solved by iteration on a 2z finite~difference
grid using the method of Newman (63) slightly modified to exploit the
storage space savings made possible by the periodic boundary conditions
(Appendix C),

The second method uses a double series expansion to transform
‘the original partial differential equation into a system of algebraic

equations.
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Since the Ak functions are periodic, they can be expanded in a

Fourier series

NEC

A(z) = | (a, cos 2m(m - 1)z + b, sin 2mmz) . (18)

m=1
The periodicity conditions are then identically satisfied. The
unknown Fourier coefficients are determined by collocating the residual
of a linearized equation 13 on a grid of NCP n points and 2NFC =z
points. These collocation equations and the normalization conditdion
specify a determinate system.

In both techniques the 1 collocation points were chosen to be
evenly spaced in n2 in the open interval (0,1) . The =z points
used in the double collocation method were chosen to be evenly spaced
in the semi-open interval [0,1) . The collocation/finife difference
method waé computationally advantageous for the larger values of the

parameters reported here.

The computer programs are given in Appendix B.

Results and Discussion

As seen from equation 8, the important quantity for calculating
the Sherwood number is ArA . Figure 5.1 presents the calculated values
of ArA in a sinusoidal PCT normalized by the value of ArA (= 2.40482)
for a straight wall cylinder.

Figure 5.2 presents reéults for the leading term of the Stanton
number (ShB/PeB) in a mass-transfer controlled, deep-bed packed

reactor modeled as an array of sinusoidal PCT. As the sinusoidal tube
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Figure 5.1 The first eigenvalue of Laplace's equation in a sinusoidal
PCT. :
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Figure 5.2 Calculated values of the Stanton number for a mass-transfer
controlled packed bed reactor in the low Péclet number region.
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amplitude approaches zero, for all values of r the Stanton number

A
approaches 1.202, the value for a straight wall tube.

Sdrensen and Stewart (12 ) have calculated the asymptotic Stanton
" number for a bed of uniform sized spheres in simple cubic packing.

In the terminology of this work, that number is found to be 1.233.

As was found in the high Péclet number, asymptotic Sherwood number
calculations and the friction factor calculations, a value of L 0.5
aﬁd A/rA ~ 0.3 to 0.4 for a sinusoidal PCT reproduce satisfactorily
S¢rensen and Stewart's results.

As has been emphasized, the above solution only generates the
leading term of the deep-bedlstanton number. It is necessary to ask
under what conditions can the second term of equation 1 be neglected,

In order to calculate %y 5 the concentration variable in the entrance
region of the bed must be calculated. This is an order of magnitude
more difficult problem and is not attempted here. Sdrensen and Stewart,
however, have solved this problem for simple cubilc packing of uniform
spheres. We can use their results to estimate the effect of neglecting
the second term in the eipanéion. Table 5.1 shows that for most bed
depths with a Péclet number greater than 0,001, the error is acceptable.
The error is seemingly further diminished in scale when a log-log plot

of ShB vs Pe, 1is examined.

B
The Stanton numbers presented above are for a non-diluted reactive
bed. The reactive section of the bed must not contain an excess

of inert particles. It should be emphasized that only under these

conditions does Laplace's equation describe the concentration variable
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Table 5.1

Sérensen and Stewart's results for the deep-bed, low Péclet
number Stanton number of a simple cubic packed lattice
o of uniform size spheres

ek
__m
‘V »
v ' . :
— alL— 10 50 100 0o
aDo

1| 1.165 | 1.219 | 1.226 | 1.233*
0.1 1.275 | 1.241 | 1,237 | 1.233%
0.0L | 1.384 | 1.263 | 1.248 | 1.233%

0.001L | 1.490 | 1.284 | 1.259 | 1.233%

*The low Péclet number, deep bed asymptote

—m =
v V] fmco

<€k ) x 100
) m
v al,=c
v
—— aL-— 10 50 100
al
o]
!
1 ~5.5 | -1.1 | -0.6
0.1 3.4 0.6 0.3

0.0 | 12.2 | 2.4 | 1.2

0.001 | 20.8 4.1 2.1
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in the reactive section of the bed. For two beds with identical ¢

and al. values and with the same feed flowrate and concentration,

one may argue, qualitatively, that the‘effective mass—-transfer

coefficient in the non-diluted bed must be greater or less than that in the
diluted bed. Care must be taken in extrapolating low Péclet number
mass-transfer coefficient experiments in diluted beds to non-diluted

beds.
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Chapter 6

Entrance Region (Léveéque-like) Mass Transfer
Coefficients in Packed Bed Reactors

Abstract

Calculations for the high Péclet ﬁuﬁber, entrance region
(Lévéque~-like) packed bed, mass-transfer coefficient using a
sinusoidal periodically constricted tﬁbe model for the void structure
of the bed are presented. An inverse cube root dependenée of the
mass—transfer coefficient on the bed depth is predicted. This length
dependence is anticipated only at very low Reynolds numbers. Calculations
which assume a mixing region between successive periods are also

presented. No bed length dependence is anticipated in these coefficients.

Introduction

The periodically constricted tube is a useful model of void
structure, in calculation of mass transfer in packed bed reactors.
This model was developed bvaayatakes énd co-workers (Payatakes et al., 29,
30,31 ) to predict the permeability of a nonconsolidated packed bed.
They envisioned the bed as cell structures made of segments of parabolic
periodically constricted tubes. A sinusoidal periodically constricted
tube (PCT) is used in this work to model the void structure in. a bed
in order to predict the mass-transfer coefficient. The fluid is assumed
to be in the viscous flow regime, and the reactant conversion is assumed

to be controlled by mass transfer from the fluid to the particle surface.
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In earlier chapters calculations were presented using this model for
the mass-transfer coefficient in the high and low Péclet number,
deep-bed asyﬁptotic limit. These limiting values can be used in their
~ appropriately defined ranges (as suggested by Karabelas et al., 71 ),
or they can be empirically combined to cover the intermediate Péclet
number range. This appféach is similar to that taken by Sorensen

and Stewart'ﬂlaz who in their pioneering work solved the convective-
diffusion equation in a simple cubic packed bed of uniform sized
spheres.. In this chapter, the high Péclet number, enffance region
(Lévéque—like) mass-transfer coefficient calculations are presented.
The term "entrance reglon" is used here to designate that region where
a concentration boundary layer has started to grow along the wall

of the packingvor particles but has not yet completely filled the

flow passage.

A note similar to this was presented by Tardos et al. (21 ). They
presented calculations for the mass-transfer coefficient under the
stated restrictions using various sphere-in-a-cell models for the
void structure in the bed. As will be seen, in the creeping flow
regime these models are inherently different from the conduit model,

which predicts a length dependent coefficient.

Mathematical Formulation

Figure 3.2 represents a segment of a sinusoidal PCT. The bed is

imagined to be a matrix of these tubes. The well-known straight

conduit model results when the amplitude of the tube wall oscillation
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equals zero. The tube parameters may be determined by the procedure
suggested by Payatakes et al. (29 ).

The effective mass—-transfer coefficient km is defined as follows

= exp (-ak L/v) | (1

o [P

Where Cp and ¢, are the reactant concentration far upstream and
downstream of the reactor, respectively. Since the axial dispersive
flux becomes negligible compared to the convective flux at high Péclet
numbers, equation.l can be generated by integrating the one-dimensional
model for the bed wherein k& is analogous to a first-order rate
constant. The distinction between this coefficient and the film

coefficient kf which appears as the first-order rate constant in

the one-dimensional model of the bed which includes a dispersive flux

- should be pointed out. Only in the high Péclet number limit do these

two coefficients become indistinguishable.

Consider a single PCT of length L . A mass balance for the
reactant across the tube (inlet-to-~outlet) can be written as

qT[cF - cL] = rate of moles reacted (2)
at tube wall

where dp is the flowrate per tube. The bed is assumed to be homogeneous,
thus the reactant concentratjons of equation 2 are equal to those
of equation 1. The right side of equation 2 can be calculated by

solving the appropriate form of the convective-diffusion equation.

We shall demonstrate shortly how this calculation is carried out, but
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let us express the result of this step in terms of an average Sherwood

number for the tube,

2y

<Sh> = <N > Ad
w Dec

oF

(3)

where <NW> is the average flux over the surface area contained in
length L . In the high Péclet number limit, combining equations 1,

2, and 3 yields

kmaL L <Sh> SAL

= . )
v 2rp gD, Trrzd

where SAL. is the surface area contained in length L . The bed
Sherwood number (a dimensionless mass—transfer coefficient) can be
written by relating the superficial velocity v to the average

velocity in the tube <v, .>

Ad
R P 2]
/il [1 + 3 (A/rA) . (5)
We then find
Ry <she [ 2¢ \P SAL
Mm@, "0 (arg) Vo gl1e 2 wren?l (- ©
° Tad 2 BTy

In order to calculate the mass~transfer coefficient from
equation 6, a value for the average Sherwood number (<Sh>) in a
tube must be determined. This may be found by applying a Lighthill

transformation (84 ) to the convective-diffusion equation. The
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axlal diffusive flux is assumed to be negligible, and the velocity
profile is taken to be linear near the wall. The governing equation

may be found in Newman's text (85 ) and is reproduced below.

X 2/3
2 d
_ m rA.d ) d
<Sh> = 3I'(4/3) SA.LDo 9 o f Tud rded %4 * 7
0

The subscript d indicates a dimensional quantity. The integral is
cérried out along the boundary-layer coordinate x , measured along
the surface of the tube. The radius of the tube is Tod o and Bd

is the normal derivative of the velocity at the wall. This may be
found by appropriate differentiation of the stream function solutions
‘found in Chapter 3. In a dimensionless form this derivative is

expressed as

avt rA v NCP
.y 4(-;) (1+22) [1 - 1 Ak(Z)¢k(1):| L®

Equation 7 may be inserted into equation 6 and, after some
rearranging, this results in an expression for the macroscopic

quantity km in terms of the measurable parameters al, €, PeB , and

the microscopic model parameters L and A/rA
ek - 92/3 I2/3 2¢ 4/3 gV 1/3 9)
aDO 3F(4/3)41/3 3 aLaDo

where



106

P
s | g

1
2 r 9 T th
— ] —
I—f 1+rW L dz . (10)
0

It has been assumed in deriving equation 9 that L/{ 1is an integer.

Results and Discussion

The bed Sherwood number may be calculated by evaluating the
integral I of equation 10 by the use of equation 8. 1In the course
of the calculations, it was found that th/Bn became less than zero
for certain ranges of the tube parameters. This implies separation
flow. Separation in viscous flow has been reported in the
literature by Davis and O'Neil (86 ),‘Moffat (87 ), and Ganatos et al.
(88 ), among others. The Lighthill transformation is not valid when
the shear rate becomes negative.

In the worse case for which calculations are presented
(rA = 1/2, A/rA = 1/2) , the surface area of the tube occluded by the
separation zone is 44 percent of the total surface area. Figure 6.1
presents the streamlines for this case. In the spirit of numerical
simplicity, the shear rate was set identically equal to zero from
the separation point to z = 1/2 in evaluating the integral I , thus

neglecting the complications caused by the flow pattern., This will

result in an underestimate in km . Those values of the tube parameters

for which separation was found are indicated by the dashed line of
figure 6.2 and 6. 3.

Figure 6.2 is a plot of the integral I . Figure 6.3 is a plot of
the high-Péclet-number, entrance-region Sherwood number. Both figures

use 1, and A/rA as parameters.
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Figure 6.1 Streamlines in a sinusoidal PCT with r
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= 0.5, A/rA = 0.5.
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Figure 6.2 The integral I plotted as a function of the sinusoidal
PCT parameters.,
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Figure 6.3 Packed bed, entrance region mass transfer coefficient
' as a function of the sinusoidal PCT parameters.
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As was found by Chow and Soda (89 ), who solved a regular
perturbation problem for small values of Ty o thé Sherwood number
increases with amplitude. However, for larger values of T, this
“trend reverses itself. This identical trend was found for the high
Péclet number, deep-bed asymptote.

Equation 8 predicts that the bed Sherwood number decreases

L_ll3 for a mass-transfer controlled reaction. Sdrensen and

as

Stewart (12 ) have also reached the same conclusion. One cannot

find conclusive evidence in the literature to substantiate this prediction.

Kato et al. (49 ) have éorrelated their data with a packing depth

factor. There are also indiéations of a length dependent km in

the data of Wilson and Geankopolis (52 ) and of Alkire and Gracon

(37 ). For a given flowrate, increasing the packing depth by a factor

of 10 will reéult in a decrease of km by 54 percent. Considering

the nature of experimental measurements of km , this diffference can

easily be.obscured by experimental error. Thus an experiment to

ascertain if there is a packing depth effect must be carefully designed.
Tardos et al. (21) compared their calculations for km with the

experimental correlation of Wilson and Geankopolis, This latter

correlation was developed from data taken from beds with al. values

ranging from 3.4 to 27 with € approximately 0.4. If an average alL

1/3
B

in the raﬁge 0.214 to 0.304 while Tardos et al. report a range of this

of 15 is assumed, the PCT model predicts the ratio ShB/Pe to be

ratio from 0.536 to 0.584 depending upon the cell model used. The

Wilson and Geankopolis correlation results in a value of 0.464,
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It should be emphasized that the packing-depth effect is
anticipated only at low Reynolds numbers. In creeping flow, the Péclet
number is the only physico-chemical parameter controlling the mass-
transfer rate. As the flowrate increases, the Reynolds number also
becomes a factor to consider. In the non-viscous flow region, mixing
eddies will become a dominant flow structure in the intersticies of
the packing. Thus any boundary layer that might form on the surface
of the particles is destroyed by the eddies. In this case, the models
of a sphere in a cell become physically more appropriate. The conduit
model may also be applied here by redefining the length scale over
which the average tube Sherwood number is calculated. Kataoka et al.
(25 ) have carried out such‘an analysis using the straight tube model.
With the aid of figure 6.2, it is possible to carry out such an
analysis for the sinusoidal PCT.

The fluid is now imagined to be well mixed before it enters a
period and remixed after it leaves a period. The Lévéque solution
can be applied in each period to calculate the mass-transfer coefficient.
The length scaleover which the Lighthill transformation is applied is
2 in this case rather than L . Equation 9 still applies after the
appropriate substitution. The period length £ may be related to

the particle diameter by

g = [’6(‘1‘111"5)']1/3 a (11)

as suggested by Payatakes et al. Substituting into equation 10 and

introducing the specific interfacial area for dp , one obtains
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Chapter 7

The Measurement of Mass-Transfer Controlled Reaction Rates
in an Electrochemical Packed Bed Reactor

Purpose

" In this chapter an experimental program to measure transport

controlled mass-transfer coefficients is discussed.

Summary of Procedure

A randomly packed bed of uniform size, copper plated, stainless
steel bearings was used as the cathode in an electrochemical, flow-
through reactor. Copper was plated on the surface of these particles
from an acidified (1 M.H2304)>copper sulfate solution. Copper deposition
was chosen as the test reaction because atomic adsorption can be used
to measure acCufately the ion concentration at 0.1 ppm with an uncertainty
of *1 percent. The evolution of '02 in a separate compartment was
the anode reaction. A sufficient cathodic polarization was applied
to the bed to ensure that the deposition reaction was controlled by
the transport of the Cu++ ions to the particle surface. This
transport controlled reaction manifests itself as a limiting current
plateau on a current versus applied potential plot. The overall
reaction rate for the copper deposition can be measured by two
independent techniques: i) the inlet and outlet Cu++ concentration
is determined and ii) the cell current is measured. The latter is,
according to Faraday's Law (assuming negligible side reactions), propor-
tional to the amount of copper consumed. These two independent measurements
permit a cross verification of the mass-transfer coefficients calculated from

the data. Only those data which give mass—transfer coefficients which deviate
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+5 percent from the average are accepted. All other data were rejected.
The experimental variables which were manipulated were the flowrate of
the feed, the Schmidt number of the feed (by addition of glycerol), and
the packing depth. The Reynolds (v/av) number range varied from 0.198 to
0.00271; two values of Schmidt number were studied, 2000 and 9000; and

two values of packing depth were studied, characterized by aL = 30

and aL = 100 .

Introduction

As was seen in Chapter 2, the limiting current analysis of
Bennion and Newman ( 40) indicates that the porous electrode design
constraints of a maximum allowable ohmic drop (A@Z) along with the
required conversion set an upper limit on the flowrate through the bed.
This flowrate for typical values of A@Z corresponds to Péclet
(v/aDO) numbers in the range 10 to 500. For typical values of the
Schmidt number (1000), this Péclet number range corresponds to Reynolds
numbers in the range 0.0l to 0.5,

The availability of mass—transfer data in this low flowrate
region is very sparse. A review of the low Péclet number data ﬁas
already been presented in Chapters 2 and 4. Most of these data were taken
for gaseous systems.

There exists a need for reliable mass-transfer data in the low
Péclet number (low Reynolds, high Schmidt number) region. The purpose

of this experimental program is to provide data in this range.
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There are a few publications which have studied this problem.
Williamson et al. (51 ) and Wilson and Geankopolis (52 ) have studied
the low Reynélds number mass-transfer behavior in a bed packed with
benzoic acid sphéres. Mosf of their data are above the 0.5 Reynolds
number, and those data below this show considerable scatter., Alkire
and co—wquers [Alkire and Gracon (37 ), Alkire and Ng (90 ), Alkire
and Gould (91 )] have studied porous flow-through electrodes at very
low Reynolds numbers. In the course of their work, they have generated
limiting current curves which can be used to calculate mass-transfer
coefficients. Unfortunately, they used screen material as the active
packing in their beds. The interfacial area available for mass-transfer
is not Well defined in this geometry. Alkire_gE‘gif have used an
area adjusting factor to bring their experimental results in line
with their calculations. However, even if the screen surface area
were known with confidence, their results should not be used to calculate
mass—-transfer coefficients., This is because they measured and reported
only limiting currents, and, as will be seen shortly, in the low
Reynolds number region where the reactant is ﬁonsumed with nearly 100%
efficiency, a small uncertainty in the limiting current will cause a
large error in the mass-transfer coefficient. Coeuret (92 ) has studied
the low Reynolds number behavior in a porous flow~through electrode.

He used the reduction of fe;ricyanide on a bed of spherical, gold
plated, graphite particles. He varied the Schmidt number and packing
depth. The majority of his data are above the Reynolds number region

of interest. He has reported the ferricyanide conversion as well as
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the limiting current. Appel's dissertation (16 ) was concerned with
the measurement of mass-transfer coefficients in low Reynolds number
flow. In a shallow (aL = 10) , hexagonally packed bed he studied

the reduction of ferricyanide on precision stainless steel bearings.
The mass—transfer coefficient was calculated by three independent
measurements. The combination of reproducible packing and the
ability to cross verify the three calculated mass—~transfer coefficients

make his results highly reliable.

The Limiting Current Technique

The electrochemical reaction of a test species from a fluid at
an electrode surface is an excellent probe for the mass transfer
behavior at an interface. If a sufficient polarization is applied to
the electrode, the rate of reaction is controlled by the transfer of
the reactant from the bulk to the interface. This mass-transfer
controlled reaction is immediately recognized by a limiting current
plateau on a current versus electrode polarization curve. An excellent
review of the limiting current technique is given by Selman (93 ).

The limiting current technique has been applied by many workers
to the study of mass—-transfer in packed beds. Besides the work of
Alkire and co-workers, Appel, and Coeuret mentioned above, others have
used this tool to study packed bed mass—~transfer behavior. Jolls and
Hanratty (94 ) placed a single active sphere in a bed of inert spheres
and measured the current to segmented electrodes flush on the surface.

This technique gives an indication of the spatial behavior of the
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reaction rate. Karabelas et al. (71 ) wused a single sphere whose
entire surface was active in a bed of inert particles. Mandelbaum

and Bohm (95.) placed six active Raching rings in a bed of inert rings
énd reported the éverage mass-transfer coefficient of all six particles.
Appel has pointed out that the .results of these three works should

not be applied to a bed filled with active particles.

The implementation of the limiting current technique to measure
mass—-transfer coefficients in packed beds is decidedly more complicated
than the dissolution of benzoic acid or napthalene spheres which has
been used by other workers in the field, However, the added complexity
of this technique does have advantages. Consider the reduction of
ferricyanide in a bed of spherical particles. One can measure the
inlet and outlet ferro and ferricyanide species concentrations and
hence calculate two values of the mass-transfer coefficient. One can
also measure the total current flowing to the cell and from this calculate
another value for km . These three values can be used to cross
verify one another, and theréfore any bad data can be rejected.

Most of the experimental work reported above has used the reduction
of ferricyanide as the test reaction. This reaction is popular because
it does not change the surface area of the particle in the course of
the reaction and it has a large exchange current density. The analytical
technique (titration) used to measure the ferro/ferricyanide species
is accurate to only approximately 1 part in 10 for a 10—4 molar solution.
Thus, if one wants to measure accurately the inlet and ouflet concen-

trations, the conversion in the .bed must remain within certain bounds.
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This problem has been discussed by Appel (16) and by Yip (96). This
bound limits the range of variables that can be varied in an experiment.
For a given packing depth it sets the lowest permissible flowrate,
~and for a given flowrate, it determines the deepest permissible packing
depth. One could forgo the concentration measurements and record only
the cell current and relate this to thé mass~transfer coefficient,
bgt this will result in a loss of accuracy. This is demonstrated
below.

The effective mass~-transfer coefficient in the transport controlled

reactor is defined as
k = -——1n— . (1)

This can also be written with the use of Faraday's law in terms of

the measured cell current Ic

I
- v _ c
km T 7 al In [ nFQc ] ' (2)

Any experimental measurement has uncertainty associated with it. Let

the error in the measured concentrations be designated by €1 » and

that in the current by 82 s, 1.e.
c = cAv(l t el)
(3)
1=1™ase,) .
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For illustrative purposes, we shall assume that the error in the
flowrate measurement is unimportant. It is straightforward to show
that, the unceftainty propogated to the mass—transfer coefficient from
these two measurements is given by

l+612
R [1-e ]
m m 1

A" = = - (4)
AV AV
km 1In (cL/cF)
i 1-c¢ T
AV 2
L- /My T3]
1n
1+ ¢
_ AV 2
ok R
I _m m _ 1]
i S i . (5)
KV AV
m 1n [1 - (IC/IM) ]

The numerator in 4 and 5 gives the difference between the highest
and lowest km value when the uncertainty €, of the measurement is
considered. The denominator normalizes the expression with respect

to the average km». Typical values for the errors are elsz 0.01

and 82% 0.005 .

AV
L

AI is infinite. This gréph succintly illustrates that at high conver-

Figure 7.1 is a plot of these two equations. At 6. = 0.0149 ,

sions (low SL) one should calculate km from the concentration measurement
whereas at low conversions (GL + 1) one should calculate km from

the current measureﬁent. Thére is a region between these two extremes

where both measurements can be used but one must first arbitrarily

set a value for the ordinate. This region will of course be a function

of the Ei in each measured wvariable,
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Figure 7.1 Propagation of error in packed-bed mass transfer
coefficient calculated from the current (Al) and the
exiting concentration (AC). The concentration is assumed
to be known within *17 and the current within *0.5%.
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The electrochemical technique has limitations associated with
it. Because of the highly nonuniform current distribution near the
limiting current, secondary (side) reactions may take pléce in one
section of the bed while nét in another. As the electrode is made
more cathddic, these undesired side reactions can become significant.
These reactions can eliminate the current plateau. The effect becomes
pronounced as the flowrate is increased or as the concentration of
the electroactive species is either made too high or too low. An
elegant quantitative treatment of this problem has been given by
Trainham and Newman (35 , 39 ). Alkire and Gould (36 ) have performed

similar calculations.

Experimental Procedures

In the following sections, the detailed description of the cell
-design and procedure followed is given. The reader not interested
in these details should reread the summary section in the beginning

of this chapter and skip to the Results section.

Choice of Test Reaction

Selman has listed many of the reactions used for measuring
limiting currents. The most popular seems to be the ferro-ferricyanide
redox couple. This couple could not be used in these experiments
because the low flowrates and the deep bed studied shift it extremely
to the reduced or oxidized speéies. (Reduction of 3 orders of magnitude

is possible.) The concentration measurement in this extreme has a
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large amount of uncertainty (81) associated with it. The calculated
mass-transfer coefficients would then be questionable.

The copper deposition reaction from an acidified copper sulfate
 solution was chosén for this study. Atomic absorption can measure the
Cu concentration at 0.1 ppm with an accuracy of *1 percent. Glycerol
was added in some of the runs to increase the Schmidt number.

Table 7.1 lists some advantages and disadvantages of this particular
reaction; The physical properties of the solutions without glycerol
were calculated from the equation of Hsueh (97 ). The data for

U, p, and Do for the acid;fied glycerol solutions were calculated

from the results of Arvia et al. (98 ).

Preparation of Packing Material for Copper Deposition

The bed was packed with precision 1/8 in. (3.18 mm) 316 stainless steel
"bearings (Hartford Ball Co., Conn.). By the use of precision bearings,
an accurate estimate for the area available for transport can be
made. This should be contrasted to the dissolution of spherical
benzoic acid particles where the diameter may decrease as much as
5% during the run. Also contrast this to a graphite or screen packed
bed where the area must be estimated.
Preliminary runs were required to find the correct surface
activation procedure so that a limiting current plateau was observed.

The procedures suggested by Appel, and by Alkire and Gracom, and that

found in Modern Electroplating (99) were tried. None of these was

successful. It was found by trial and error that if the bearings were



Table 7.1

Comments on the Deposition of Acidified CuSO

Solutions as a Test Reaction for.

4

Packed Bed Mass-Transfer Coefficients

Advantages

well tested system; there exists a large compilation
on the solution physical properties

high exchange current insures a limiting current

atomic absorption spectroscopy can measure Cu

concentration to 0.100 ppm with = = 0.01

Disadvantages

approximately only 0.3 volt available for

the_Cu++ deposition from a 0.01 M solution
before H2 evolution is thermodynamically

possible (pH ~ 0)
. + R .
for high Cu  concentrations, density

differences during deposition can induce
natural convection

prolonged deposition times can cause surface
area changes (function of current passed)

€T
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precoated with a Cu plate, kinetig limitations were minimized, and
the plateau could be observed. The coating procedure was as follows.
The balls were acid washed, rinsed, electrolytically cleansed by
~anodic polarization in an acid bath, rinsed, nickel striked, Cu
plated from a CuCN bath, rinsed, and air dried. The procedure used

is that given in Metal Finishing (100). 1In no case was the coating

greater than 1 mil thick. The bearings were in a barrel plater for
all of the above steps. The work was done by the plating shop of the
Lawrence Berkeley Laboratory.

After the plated bearings had been exposed to the atmosphere for
some time, the initial bright copper was discolored due to the oxide
formation. This oxide could be removed before the bearings were used

by soaking them in a 1 _M__HZSO4 solution.

Cell Design

The final cell design emerged as an evolutionary process. A
change in the cell design was accepted or rejected on the basis of
preliminary runs. The final design along with motivation for various
features is presented below.

Figure 7.2 is a diagram of the cell. The cell proper consists of
4 major pieces; the cathode, anode, and head compartment all made of
glass and a lucite feed ring. The anode section is attached by a
spring clamp to the head compartment which is in turn bolted to the
feed ring by 6 bolts attached to a collar. The cathode section is

bolted to the feed ring in the same manner.
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The reaction at the anode is 0, evolution. Because this 0,
could be reduéed at the cathode, it was necessary to isolate the anode
from the catﬁode by the NaifonR membrane (DuPont Co.), a perfluorosulfonic
~acid exchange membrane.

The anode consists of a Pt - Rh screen spot welded onto a
1/4 in.(6.35vmm) tatalum rod. The screen was hung vertically so that
the evolving 0, would not "stick" to the mesh and occlude the surface
area. At the higher currents, the blocking effect was a problem unless
this step was taken,

The head and cathode compartments were joined at the lucite feed
ring. This ring had 12 equally spaced holes drilled through it. A
collar with 6 bolt holes fit around each compartment. These collars
were fastened by bolts at the feed ring, A seal was achieved by using
"0" rings.

The bearings were supported by a 316 stainless steel current
collector shown in figure 7;2 and in an isolated view in figure 7.3.
The current collector was drilled with a #59 drill (dia = 0.0410 in. =
1.04 mm) to give a matfix of holes with a surface porosity of 0.29.

The drilling was done on a microprocessor controlled press; thus the
matrix was spatially homogeneous. The surface area of the current
collector was 27 of the particle surface area for the shallowest

pack (al = 30). The back of the current coilector was Kynar coated to
insulate it from the solution. The plate was welded to a 1/4 in.
diameter, 316-stainless steel rod. This rod was also Kynar coated

and wrapped in Teflon tape to insure electrical insulation. Filter

paper and a nylon back plate were also used as shown in Figure 7.3.
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Figure 7.3 Cathode current collector.
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Fluid Flow Systems

The fluid flow system. is shown in Figure 7.4. All connections
are made by leached 1/4 in. i.d. Tygon tubing.

The feed solution was pumped from its reservoir to the reactor.
Before entering the reactor through a port in the feed ring, the
solution passed through a glass heat exchange coil situated in the
cqoling water tank and then through a rotameter. The entire feed
passed through the cathode. Downstream of the reactor a glass thermometer
was inserted through a glass "T" joint so that the catholyte temperature
could be measured. The thermometer was approximately 10 cm from the
exit port. Downstream of the thermometer a saturated calomel reference
electrode was inserted in a PVC "T" joint. The electrode was approximately
41 cm from the bed exit port. This distance was required becéuse the
reference electrode must be placed above the fluid level in the top
"compartment in order that the KCl solution can flow out through the
fiber junctionm.

The anolyte (1 E.H2504) was continuously recirculated from a
4 liter flask.

Fluid Metering Inc. piston metering pumps were used in the feed
and anolyte lines. The piston was ceramic, and the cylinder lining was
made of carbon. All parts of the pump that were in contact with the
solution were electrically isolated from ground potential. This is
necessary to insure that current flows only between the anode and
cathode of the bed. For this same reason, no metal probes, e.g. a

thermistor, should be inserted anywhere in the reaction flow system.
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The temperature of the catholyte leaving the bed was controlled
by adjusting manually the set point of the Thermotrol controller.
In this manner temperature regulation of 25.0°C * 0.2°C (with some

excursions as high as * 0.5°C) could be maintained.

Electrical Circuit

Two methods were used to apply a potential difference across
the cell. One technique, the power supply mode, is shown in Figure 7.5.
This is the meﬁhod used by Bennion and Newman to power their cell.
In this circuit the overall cgll potential VA - VC is set. The cell
current and the polarization of each electrode relative to the calomel
reference electrode will adjust themselves accordingly. The other mode
used was potentiostatic control of the cathode with respect to the
saturated calomel reference electrode in the catholyte. The circuitry
for this method is diagrammed in Figure7.6. This was the control
mode used by Appel. The majority of the runs were carried out in the
potentiostatic COntrél mode. I

Preliminary runs were carried out with potentiostatic control
without the 2 UF capacitor inserted between the anode and reference
electrode. In the course of these runs it was discovered that the
cell current was rapidly, periodically fluctuating as much as 10%
about a mean. This was clearly seen when the potential drop across
the 1 0 resistor was examined on an oscilloscope. The reason

for this behavior is clear upon reflection, The potentiostat is a

high gain proportional controller. If there exists a large enough
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capacitance between the cathode and the anqde, the potentiostat_can
be forced into oscillations; The capacitor inserted between the anode
aﬁd reference electrode damps out these oscillations. With the capacitor
inserted, no trace of the oscillations could be seen on an oscilloscope.
For further discussion on electrochemical cell control the reader is
referred to Harrar and Pomernmacki (101) and Schroeder and Shain (102).

[The information contained in the oscillations could be constructively
used. If the frequency and amplitude of the current oscillations can
be measured, one may calculate the effective resistance and capacitance
for the porous electrode. The transfer function of the potentiostat and

reference electrode need only be known.]

Preparation of Electrolytic Solutions

All chemicals used were AR grade. The acidified copper sulfate
solutions were made in 48 % batches. The water used was first distilled
and then run through a Culligan SR cartridge water system. The specific
resistivity of this water was 10-15 meg ohm -cm., The acid was added
to the water, mixed, and then the CuSO4 was added in predissolved
form, After a mixing period, N2 gas was bubbled through the solution.
In all cases at least 10 hours of this de~oxygenation procedure were
allowed before the solution was used.

The anolyte was initially a 1 E.H2304 solution. This solution
becomes more acidic in the course of the cell lifetime because of the

02 -evolution reaction. It was changed every 10 runs.
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The solutions with glycerol were made up identically as thése
without. The glycerol was added after the CuSO4 . These solutions
were contained in a 26 & feed tank.

"A blanket of N, gasbwas kept over the feed solution in the
course of the runm.

The concentration of the species were CuSO4: 0.001 to 0.01 M ;
HZSOA: 1l and 1.5 M ; C,Hg04: 0and 3 M. The Cu concentration was
méasured by atomic absorption spectrophotometry. The acid was determined
by titration with standard NaOH with methyl red as the indicator.

The glycerol content was determined by ceric oxidation following the

procedure of Smith and Duke (103).

Procedure for a Run

The cathode compartment was placed in a specially designed holder
for mechanical support. The cell was cleansed with copious amounts
of distilled water. A 1/4 in. rod was placed through the Swagelock
fitting on the bottom of the cathode compartment. The catholyte exit
port was closed off by a hose clamp, and the cell was partly filled with
distilled water. Glass spheres 1/8 in, in diameter were then dropped
into the cathode compartment. These spheres serve to decrease the lag
time between the fluid exiting the back of the current collector and
passing the reference electrode. The current collector was
assembled and then inserted into the cathode compartment with simultan-
eous withdrawal of the 1/4 in. rod which was initially in.the port.

At the end of this procedure, the current collector rests submersed
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upon the top layer of the glass spheres in the position depicted in
Figure 7.2. The bed is now prepared to pack with the bearings.

The correct amount of Cu plated bearings to obtain a certain
packing depth was determinéd by weight. The average weight per bearing
was determined over a large sample size. The total number of bearings
required to pack the bed to a specified aL could then be calculated
by assuming a value for the porosity. In this manner, with an € of
0.38, approximately 4300 balls are needed for an aL = 30 , and 14,400
are needed for an alL = 100 .

The packing of the bed proceeds as follows. Enough distilled
water was added to the cell éo that the particles are always submerged.
In this manner air pockets could not be formed in the intersticies of
the packing. The bearings were poured from a small beaker into the
bed. When the incremental height of these bearings waé 1/2 cm, a tamper,
-3 in. in diameter, connected to a 1/4 in. rod was centered over the
bearings and was slowly vrotated, and the bed was simultaneously compressed.
In this manner the layer was fairly uniform and tightly packed. This
packing-tamping procedure was carried out until all of the preweighed
bearings were used. As a final step, a 3 in. diameter, 1/16 in. thick
piece of Kel-F , which was drilled with the same hole matrix as the
current colleétor, was tightly pressed on top of the spheres. A piece
of Whatman #42 filter paper was held on the top side of this plate by
four turns of Téflon tape. This filter paper/plate combination helped
minimize contact resistance between the bearings, and it élso acted

as a flow distributor. It also removed suspended matter from the
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electrolyte. Early runs showed that the same results were obtained
when glass spheres were added on top of the plate as when they were
not. For the majority of runs, no top layer of spheres was used.

“The height of the packing was measured with a cathetometer at
four equally spaced angular positions. If the standard deviation about
the average packing depth exceeded 3 percent of the average, the bed
was tamped down,and another set of measurements was taken.

After the height measurements were completed, the bed was drained
to 1 in. above the Kel-F plate. Feed solution was then added up to
the feed ring. The cell wasAthen assembled. Electrical and flow
connections were then made.

The following discussion is specifically directed to the potentio-
static control mode.

A low cathodic polarization was applied to the bed while the feed
solution flushed out the remaining distilled water. After 1 liter of
solution had passed through the cell, a low polarization (-50 mV)
was applied to the cathode, and the cell was allowed to operate overnight
at a very low flowrate (< 1 ml/min).

After this treatment data collection could proceed. A control
potential was selecfed on the potentiostat, a flowrate was set, and,
after 3 residence times had passed, effluent samples were collected.

At the same time the flowrate was determinéd by measuring the flow to
a calibrated cylinder. The potential was then made more cathodic by
slowly (~ 1 mV/s) increasing the potentiostat control setting. By

following this procedure an entire polarization curve could be mapped
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out. The first polarization applied was usually -90 to -100 mV .
The current at this potential was nearly the limiting value at the
lower flowrates studied. It was empirically determined in early runs
that H2 evolution would Begin in the range of -270 to ~320 mV. If
care was taken to avoid H2 evolution, the same pack could be used at
a different flowrate. When there was evidence of H2 evolution, the
run was terminated. The .H2 could be visually observed as void spaces
néar the top of the bed. A more sensitive.probe was the current.
At high cathodic potentials the current would start to fluctuate.
It is speculated that the H, gas formation causes this fluctuation.

The data measured were ‘the applied polarization (VC - ¢R) , the
overall cell voltage (VA - VC) , the cell current (IC) , the flowrate
(Q) , and the catholyte temperature (TE) .
Results

A total of 83 runs were made. A run is defined as the measurement
of a polarization curve at a specifiéd flowrate. Of these 83 runs,
59 mass transfer data points were retained. The remainder of the runs
were rejected because the two coefficients calculated from the current
and effluent concentrations deviated by more than 10 percent. Of
these 59 points, 33 were taken in a bed with aL =~ 30 , and 26 were
from a bed with aL = 100 ; furthermore, 9 of the alL = 30 points were
taken with glycerol added to.the feed.

The data and some preliminary calculations for the 59 runs are

listed in tabular form in appendix D .



138

Table 7.2 lists the calculated results. The average deviation .
for the Sherwood number is at the most * 5 percent. These results are

plotted as ShB vs PeB

in Figure 7.7. The results of Appel with

al = 10 are also included. -

Figure 7.8 illustrates where the data collected in this present

study are situated with respect to other published works.



Table 7.2

Calculated Results

139

vd vd ek
Run € aL ——\-)-P- —e-\-)P- -;—7\; -13)— a%_ ;@E
o] (o] [o)
10 - 0.366  30.1 0.213 0.582  0.0560 1900 107 1.69
11 0.391  29.0 0.409 1.05 0.112 1900 213 2.42
12 0.382  30.4 0.211 0.551  0.0568 1910 108 1.71
15 0.372 100 0.213 0.572  0.0565 1910 108 1.54
18 0.385  30.4 0.413 1.07 0.112 1887 211 2.50
19 0.374  30.3  0.413 1.10 0.110 1887 207 2.18
20 0.385 100  0.413 1.07 0.112 1887 211 2.11
21 0.406  30.3 0.0880 0.217  0.0247 1887  46.5 1.34
22 0.390 100 0.0878 0.225  0.0240 1903 45.9  1.04
24 0.390  29.1 0.125 0.320  0.0341 1903  65.0 1.48
25 0,393 29.7 0.0477 0.121  0.0131 1910  25.1 0.828
27 0.385 100 0.0450 0.117  0.0122 1894  23.2  0.477
28 0.385 100 0.0664 0.173  0.0180 1894  34.0 0.642
30 0,394 29,7 0.0436 0.111  0.0120 1894  22.8  0.787
31 0.392  30.4 0.165 0.422  0.0453 1921 87.1 1.80
32 0.396 30.5 0.0249 0.0628 6.83x1073 1906  13.1 0.615
33 0.396  30.5 9.82x1073 0.0248 2.71x1073 1906 5.20 0.330
34 0.396  30.5 0.137 0.345  0.0377 1906  71.8  2.07
35 0.392 101 0.0290 0.0741  7.96x1073 1906  15.2  0.450
36 0.392 101 0.0522 0.133  0.0143 1906  27.2 0.683
37 0.392 101 0.169 0.431  0.0463 1906  88.2  1.50
40  0.400  30.4 0.0695 0.174  0.0193 1910  36.8 1.08
41 0.393  99.9 0.124 0.315  0.0340 1910  64.9 1.41
42 0.393  99.9  0.0503 0.128  0.0138 1910  26.5 0.897
43 0.393  99.9 0.104 0.265  0.0286 1910  54.6 1.26
4 0.393  99.9 0.185 0.471  0.0508 1910  97.1 1.78
45 0.393  99.9  0.230 0.585  0.0631 1910 121 2.10
47 0.393 99,9 0.341 0.725  0.0937 1910 179 2.55
48 0.393  99.9 0.390 0.868  0.107 1910 204 2.75
51 0.373  30.3  0.489 1.31 0.130 1915 249 2.86
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vd vd ek
Run € aL —P =F = i¥— = =
(o) (o]
52 0.373  30.3 0.564 1.51 0.150 1915 288 3.07
53 0.373  30.3 0.673 1.81 0.179 1915 343 3.22
55 0.383 100 0.288 0.753  0.0779 1926 150 1.99
56 0.383 100 0.515 1.34  0.139 1926 267 2.57
57 0.383 100 0.418 1.09 0.113 1926 218 2.41
58 0.383 100 0.581 1.52 0.157 1926 302 2.87
59 0.383 100 0.773 1.91 0.198 1926 382 3.33
61  0.400  29.9  0.0580 . 0.145  0.0161 1919 30.9 1.14
62 0.400  29.9 0.0162 0.0405  4.50x1073 1919 8.63 0.523
63  0.400  29.9 0.0788 0.197  0.0219 1919 41.9 1.56
64  0.400  29.9  0.0343 0.0859  9.54x10~3 1919  18.3 0.935
65  0.400  29.9 0.141 0.354  0.0393 1919  75.3  2.10
66 0.400  29.9  0.209 0.523  0.0581 1919 111 2.53
67  0.387 100 0.0345 0.0891  9.37x1073 1919  18.0 0.484
68  0.387 100 0.0222 0.0573  6.03x10™3 1919  11.6 0.332
69  0.387 100 0.0684 0.177  0.0186 1919  35.8 0.770
70 0.387 100 0.0953 0.246  0.0259 1919  49.7 1.08
71 0.387 100 0.141 0.365  0.0384 1919 73.7 1.34
72 0.387 100 0.0817 0.211  0.0222 1919  42.5 0.983
74 0.388  30.0 0.0210 0.0542 5.73x1073 8880  50.9 1.55
75 0.388  30.0 8.92x10~3  0.0230 2.43x10-3 8880  21.5 0.949
76 0.388  30.0 0.0299 0.0769 8.13x10~-3 8800  72.1 1.85
77 0.388  30.0 0.0397 0.102  0.0108 8880  96.1 2.02
78 0.388  30.0 0.0485 0.125  0.0132 8880 117 2.25
79  0.388  30.0 0.0610 0.157  0.0166 8880 148 2.47
80  0.388  30.0 0.0782 0.202  0.0213 8880 189 2.88
81  0.388  30.0 0.102 0.264  0.0279 8880 248 3.21
82  0.388  30.0 0.133 0.344  0.0363 8880 322 3.57
83  0.38  30.0 0.174 0.449  0.0474 8880 421 4.08



ek, /0D

| 1 LI I O B B O 1 1 Illllll 1 i Illl_

O Appels Data, aL = 10 =
O This Work, aL =~ 30 7]

~ & This Work, aL =~ 100 o 0 ]
i 0 This Work, aL = 30 (with glycerine) 5 oAOA S
O 0 VAN A
B E? o % A D n
oAQ,
@ot' o .4
0 a b8
IOO;_ O o% &O © i
B 5% 2 a -
B o) -
A® & E
O o) A B
-1 ' L1 \ L1 raal ) '
IO | | | L1 1
10° 10' 102
v/a .‘bo

XBL 7811-12877

Figure 7.7 Mass-transfer limited Sherwood numbers for packed beds collected in this work.
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Chapter 8

Interpretation of Results

Summary
In this chapter the experimental data for mass-transport limited

Sherwood numbers presented in Chapter 7 will be compared with the PCT
model calculations. Different empirical combinations of the asymptotic
mass—-transfer coefficients are attempted in order to fit the data. The
best set of unknown empirical consténts are determined in a least
squares sense, FEach of these data fitting attempts is presented,
none of which was successful, The inability of the model to fit the
data enables one to learn about the deficiencies of the model. The
bed was envisioned as an array of sinusoidal PCT of a single size. If
the existence of multiple widfh channel paths is recognized, the data

can be adequately fit by modelling the bed as an array of dual sized
straight tubes. The complexities of the PCT model are not found

useful in interpreting the data.

Combination of Asymptotes

In the earlier chapters calculations were presehted for the
PCT modeled, packed bed mass—transfer coefficient under different
limiting conditions.

It would be highly convenient to combine these asymptotes smoothly
in some manner to cover the non-asymptotic regions. Churchill and
Usagi (104),expanding upon an idea suggested by Acrivos (lOS),have
pointed out a manner to comBine asymptotic formulae. Their results

will be utilized here.
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Define the following quantities.

Shél) = Low Péclet number, deep bed asymptotic Sherwood number

Shéz) = High Péclet number, deep bed asymptotic Sherwood number

Shé3) = High Péclet number, entrance region asymptotic Sherwood
number

Sh§4) = High Péclet number, mixing region Sherwood number .

Each asymptote has been calculated in chapters 5, 3, 6 and 6 respectively.

The manner: in which these asymptotes are combined is dependent
upon the physical picture one envisions for the processes taking
place within the interstices .of the packing.

As a first attempt, the model of an array of PCT logically leads

one to write

1 1 \® 1 n\l/n
= + . (1)
Sh (1) (2) (3)
B {(ShB ) (ShB + ShB ) }

This is not a unique representaﬁion, but it is the simplest. The
exponent n must be determined by a data fitting procedure.

The usefulness of combining the asymptotic formula as suggested
by equation 1 can be found by testing it with Sérensen and Stewaft's
(12) calculations. These authors have solved the creeping flow
hydrodynamics and convective diffusion equation in an array of
uniformly sized, simple cubic packed spheres. They presented in
tabular form numerical calculations for kﬁ as a function of bed
depth and Péclet number. They also presented formula for the Shéi>,

i=1,2,3 . Figure 8.1 is a plot of the numerically calculated km
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compared with that given by combination of the asymptotes according
to equation 1 with n = 1 . The numerical coefficients are for a
bed one particle layer deep. At low Péclet numbers, this will give a
comparison for the worse discrepancy between the actual value and the
deep bed asymptote which is used in equation 1. Even in this worse
case the deviation is acceptable. This is a restatement of the fact
;hat the leading term Oy » of equation 14, Chapter 4, need only be
known for most practical sized beds.

The value of n was determined by fitting the 68 data points
shown in figure 7.7 to equation 1 by using a nonlinear least squares
library routine (Univ. of Caiif., LSQMIN). The fitted value depended
upon the tube parameters used. Figures 8;2 and 8.3 are plots of
equation 1 with n = 0.42 and n = 0.50 ; Figure:8.2 is plotted for

a sinusoidal PCT with r L

A7 A

A" %-, whereas Figure 8.3 is
plotted for a straight tube. Preliminary conclusions can be drawn
from these results,

The data clearly indicéte that in the lower Péclet numbers (< 10)
the Sherwood number depends upon the packing depth. However, as |
the Péclet number increases this length dependence disappears. For
Péclet numbers greatér than 100, there is no distinction between the
Sherwood numbers in a bed of aL = 10 vs aL = 100 . At this Péclet
number, the Reynolds number was approximately %g%a = 0.05.

Equation 1 could never reproduce this trend. It shows the
strongest length dependence as the Péclet number increases due to the

ShéB) term. The combination of asymptotes must be reformulated.



Figure 8.2 Combination of sinusoidal PCT asymptotic Sherwood numbers according to
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Figure 8.3 Combination of straight tube asymptotlc Sherwood numbers according to equation 1
with €=O4andn=050.
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In the high Péclet number region, the model assumed that the
boundary layer formed along the particle surface retained its identity
tﬁroughout the depth of the bed. It was anticipated that this would
be true only in the creeping flow regime because any inertial caused
mixing effects at higher Reynolds numbers would destroy the boundary
layers. The data indicate, however, that the boundary layers do lose
their identity. One might speculate as to the cause of this phenomenon
at such low Reynolds numbers. Perhaps the lateral mixing of streams
due to the random placement of the particles (which is not taken into
account in the model) contributes to the destruction of the boundary
layers.

No matter what the mixing mechanism, an empirical Reynolds number
dependence may be incorporated into an analog of equation 1. In this

manner, the asymptotic Sherwood numbers are now combined as

1 1\ 1 n —nYReB ( 1 \® 1/n
—=— = —\ + - e + . (2)
Sh (1) (2) (3) (4)

B [(ShB ) (ShB + ShB ) ] ShB )

The exponential term involving the Reynolds number will cause the

contribution of the length dependent term to become negligible

compared to the non-length dependent term as the Reynolds number
increases. There are now two parameters to fit to the data, n and

Y . The value of these parameters is again dependent upon the geometric

parameters of the tube.
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Figure 8.4 and 8.5 are plots of equation 2 for a sinusoidal PCT
of r, = %3 A/rA = %— and the straight tube, respectively.v The
parameter values are listed in the figufe caption,

' The high Péclet number data are fitted excellently by the straight
tube model but less so by the sinusoidal PCT. HoWever, neither model
can satisfactorily fit the lower Péclet number data. Both models
overestimate the Sherwood number and, as with equation 1, a strong
énough length dependence is not predicted. These lower Péclet number
data point to a weakness in the model which will be discussed shortly.

The sinusoidal PCT cannot reproduce the higher Péclet number
data obtained in Chapter 7 as well as the straight tube model. For all
values of the PCT geometrical parameters reported in the earlier
chapters, the PCT calculations consistently underestimate the mass-—
transfer coefficient. The level of success obtained in fitting the
high Péclet number mass-transfer coefficients is further emphasized
when the data of other investigators are considered.

Figure 8.6 is a plot of mass-~transport limited Sherwood numbers
compiled from 9 publications along with the data collected in the
present study. All of the data are for Reynolds numbers. (v/av)
less than one. Drawn on this figure are the curves shown in Figures 8.4
and 8.5 for aL = 10 . It should be emphasized that these curves were
fit to the results obtained in this and Apﬁel's work. - The straight

tube calculations fit this collected data set at higher Péclet



Figure 8.4 Combination of sinusoidal PCT asymptotic Sherwood numbers according to equation 2

with T, = 1/2,‘A/rA =1/3, € = 0.4, Sc = 2000, v = 1380 and n = 0.615 .
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Figure 8.5 Combination of straight tube asymptotic Sherwood numbers according to equation 2
with € = 0.4, Sc = 2000, vy = 14.7, and n = 1.92 .
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numbers much more satisfactorily than the PCT calculations. On this
basis, one can conclude that the PCT model 1s not successful in
fitting packed bed mass transfer deta. The higher level of complexity
required in calculating the PCT velocity profiles and esymptotic
Sherwood nﬁmbers is not necessary. The PCT model was thought a priori
to have been a better model for the bed because it eould, in a sense,
reproduce the constrictions and expansions that the actual fluid path
ﬁust follow in a bed. This assumption has beep proved wrong by this
work.

In the remainder of this work, the straightvtube model calculations
are exploited, end fﬁe sinusoidal PCT results are abandoned as a model
for packed beds. |

The Effect of Flow Maldistribution in a Packed Bed on the Mass
Transfer Coefficient

The low Péclet number mass-transfer coefficients obtained in this
work show a stronger length dependence than is predicted by any model
calculations. The full solution to the convective diffusion equation
will give a length dependent coefficient for all values of the Péclet
number, but this dependence is weakest in the lower Péclet number regions.
Table 8.1 supports this statement. This table shows the numerically
calculated km coefficients of Sgrensen and Stewart for a simple
cubic packed bed of uniform size spheres, The fifth column gives the
ratio of the km for a bed with alL = 9.9 to that for a deep bed
(al. = ©) ., TFor a Péclet number of 9.6, this ratio is 1.29, whereas
the data collected in this work give a value for this ratio of 2.8

when the al. ratio is 10:100.
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Sdrensen and Stewart's calculated results for the mass-
transfer coefficient in a simple cubic packed bed of
uniform sized spheres. '

(1)

;%— al. > 4.9

9,55
31.8
95.5

318

0.916

1.37

2.11

3.18

ekm/aDo
(2)
9.9

0.769
1.09
1.59

2.55

(3)
15

0.714
0.954
1.38

2.18

(4)

0.595
0.598
0.603

0.614

(5)
(2) /(&)

1.29
1.82
2.64

4.15
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The larger than aﬁticipated length effect can be explained by
a nonuniform flow distribution in a.packed bed.‘ The effect of channeling
on processes taking place in a bed has long been recognized in the
literature. The fluid may find preferential paths of least resistance
through the bed. These lower resistance paths may be near the wall
where the local porosity is higher than the bulk average, but these
paths are not necessarily confined to the wall., Dullien (14) has
pointed out that in randomly packed beds there is a finite probability
for flow connections of a larger fhan average size to form a network
and transverse the entire length of the bed.

Schlunder (106) has discussed the effect of flow maldistribution
in an array of tubes. His array consisted of one large diameter tube
embedded in a matrix of smaller sized tubes. Martin (107) has expanded
upon this idea and applied it to a packed bed. In this work he
considered the bed to consist of two regions, an annular outer region
where the porosity is high and a central core region with the bulk
porosity. Both workers have demonstrated that the overall mass-transfer
coefficient one would calculate by appropriately summing the contributions
of each flow segment is lower than that of a composite system where
the nonuniformities are neglected by an averaging process. However,
both workers have used the incorrect limiting form of the mass—transfer
coefficient in their segmented flow channels. Schlunder recommended
for each tube size the empirical combination of the Graetz and Lévéque
solution, which is much like the combination suggested earlier in this

chapter. This combination cannot reproduce the correct linear dependence
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of km on the Péclet number in the low Péclet number limit. Martin
has made a similar conceptual error by applying the Ranz equation in
each segment, which predicts that the Sherwood number (defined on the
particle diameter basis) reduces to 2 as the Péclet number approaches
zero.

In the following analysis this idea of flow maldistribution
is expanded upon, and in the process the correct limiting form for
the Sherwood number is used.

The bed is now considered to be an array of two different
size radii straight tubes. In this manner, the channeling flow is not
conceptually limited to the confining wall region. Each of these
tubes has its associated radius ry and Ty s and its associated
pore space g, and €y such that the total bed porosity is the sum

of €5 and €y - Two dimensionless geometry parameters are generated

by this model, the ratio of tube radii r2/rl = § , and the porosity

ratio 62/8l .
Since the pressure gradient is assumed to be identical in all
tubes, the ratio of the flowrates can be calculated by using the

Hagen-Poiseuille solution

_ b
The lower case a4y is used to designate the flowrate in a single
tube of radius ry . " The upper case .Qi will be used to designate

the flowrate in the entire collection of tubes of radius ri .
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The flowrate through the bed and the concentration at the exit

of the bed may be written as

Q=09 *+Q, 4)

Q. = Que. + Q. . (5)
L 1 Ll 2 L2

Define <Yy as the ratio of Q2 to Q1 ; equation 5 is then written as

b AR B S, A )
- l+vyec 1+vc ‘

The overall Sherwood number for the bed is defined as usual

c Sh
L _ B aL
— = exp [ §E-—~] . (N

F B €

Equation 6 can now be rearranged to calculate the overall bed Sherwood

number in terms of the Sherwood number in each individual tube matrix.

- &£ 1 _B - £ 1 Y
aD ~ e al Pe, O "an T M\ TRy ty ¥
o 1 1

(8)

- [alL Shy i El a,L Pe, Sh,

€ Pel € alL Pe Shl

The Sherwood numbers Shi have been defined as

Eik‘mi

Shy = —5 » ¢))
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and the Péclet numbers Pei are defined as

Pe, = =7 | (10)

with v, being the superficial velocity in the bed of tube size r,
only. With v, 80 defined, the superficial velocity for the entire
bed follows as the sum of vy and v,

Equation 8 can be placed into a more useful form by eliminating
the tube variables on the right side in terms of the macroscopic
parameters for the entire bed. It is straightfofward to derive the
following relationships |

Pe, = E;j;legli~ PeB (11)
1+ 826 /el
Pe, = il.—-:-l-.—--E—:-:—F'E-{f—-g-z--PeB (12)
1+ 81/826

aL,
1 1+ 62/816

w
=
I

(13)

aL
a,L = —m————— ., (14)
2 1+ 816/82

These relationships can be used in equation 8 to wfite
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2
.87 /e
Sh. = hSh, - = Pe_ In 1 y—2 1

B 1 aL B 2 2
1+ 826 /el 1+ 526 /81

) Sh Sh
exp [h aL 7 1 - 2 (15)
€ Feg 8*sh /1)

where h 1is defined as

(1 + 82/61)(1 + 6252/€1)

h = h(6,€2/€1) = . (16)

a+ 82/616)2

By modeling the bed as an array of dual sized tubes, equation 15
can be used to calculate the overall conversion in the bed taking
into account the flow distribution and the availability of reactive
surface area in the network. The mass-transfer coefficients for each
size tube matrix must be known in order to make use of this result.

Our attention is now turned to this matter.

The data gathered in Chapter 7 indicate that there is no significant
length dependence for km in the higher Péclet number region. Earlier
in this chapter, it was found necessary to.include an exponential
damping term involving the Reynolds number to reproduce this behavior
when length dependent coefficients were empirically combined. These
facts suggest that the Sherwood numbers for each tube size matrix be

empirically combined as

1 1 1 ® 1/n
= + . 17
Shy [Sh(l)] [Shf‘)]
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These Sherwood numbers for the straight tube model are

Shil) = 1,20 Pei ‘ (18)
1/3
1+¢,/e.6 :
(4) _ £ 371 1/3
Sh = (0.896 Pe . (19)
i 6 (1 - e)]2/3 1+ ej/_si i

Thefe are now three parameters to fit to the data, 6, 82/81 ,and n .
Figure 8.7 is a plot of equation 15 compared to the data of
Chapter 7. The parameter values were determined as before in a least

squares sense and are listed in the figure caption, Figure 8.8
illustrates this equation with the fitted parameter set in comparison
to the mass-—transfer data of other workers.

This channeling model fits the data collected in this work for

all Péclet numbers. The root-mean-square deviation is 10.8 percent.

- It also gives an excellent fit to the higher Péclet number data of

the other workers. The_low Péclet number data fit is not as good but
is satisfactory.

The parameter set which fits the data collected in this work
should not be expected to be the best set for other wquers' beds.
It is representative of the range, however, in which the values are
expected to lie, and as seen in Figure 8.8 does give a satisfactory
correlation.

Great care was taken in packing the bed used in this study to
generate a reproducible packing and to minimize large void spaces.

This is reflected in the porosity value for the larger tube size.
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The larger void space occupies approximately 1.5% of the total void
volume of the pack of this study. A non-~tamped, randomly dumped‘bed
would be expected to give a larger porosity value for the bigger
tubes. This would also be true for beds of nonuniform size particles.
Both of the above-mentioned beds would exhibit larger channeling flows
and hence lower apparent mass-transfer coefficients. As a general
rule, for a given Péclet number, the larger the fraction of fluid
which channeisvthrough the bed, the smaller the apparent mass-transfer
coefficient.

In terms of the two tubg size model, the effect of channeling
becomes insignificant at large Péclet numbérs. Most of the reactant
passes through the bed unreacted in this situation, therefore the
width of the flow channel has very little effect. At low Péclet
nﬁmbers, however, the channeling effect will always be apparent since
the conversion at low Péclet numBers is controlled dominantly by the
larger channels.

Equations 15, 17, 18, and 19 are a significant result of this
thesis, The parameter values listed in figure 8.7 may be used in this
equation to correlate the transport controlled mass~transfer coefficient in
packed beds. This correlation can then be used in the design of

porous electrodes as outlined in Chapter 2.



Chapter 2

A9,

NOMENCLATURE

specific interfacial area of bed, cm"1
(1L + V1 + 4D")/2
concentration of reactant entering bed, mol/cm3

concentration of reactant exiting bed, mol/cm3

165

3
concentration of reactant 1 at packing surface, mol/cm

diameter of packing particle, cm

free stream reactant diffusivity, cm2/s
eaka/v2 |

dispersion coefficient, cmz/s

kinetic equation for reaction j , A/cm2
current density of solution phase, A/cmz-s

film coefficient for species i , cm/s

effective mass~transfer coefficient for bed, equation 11, cm/s

bed depth, cm

number of electrons transferred in reaction j

stoichemetric coefficient for reactant i in reaction j

superficial bed velocity, cm/s
dimensionless streamwise coordinate, akfz/v
dimensional streamwise coordinate, cm
akf/v,cmml
porosity of bed

solution potential drop across electrode, V



166

K effective conductivity in bed, (ohm'cm)-l
6., e /eq

T tortuosity factor

n local overpotential, V. ]

ELECTRODE 2

Chapter 3

a .specific interfacial area of bed, cm_l

A dimensionless wall oscillation amplitude, Adll

Ak(z) interior collocation coefficient functions

Cp concentration of limiting reactant entering bed, mol/cm2
L concentration of iimiting reactant leaving bed, mol/cm3
C dimensionless reactant concentration, (Cd - Cw)/(Cb - Cw)
D diffusion coefficient of reactant, cmz/s

fB bed friction facfor defined by equation 9

G function of Y defined by equation 22

hw’hg’he dimensionless metric factors

km effective mass transfer coefficient of a bed, cm/s
L length of bed, cm

A length of PCT perdiod, cm

PB pressure. in bed

Pe reactant Péclet number in a PCT, 2rAd<VAd>/D

Pey bed Péclet number, v/aD

T dimensionless radial coordinate, rd/R

T, dimensionless average PCT.radius, rAd/R

r dimensionless wall radius, rwd/2



req,d

167

equivalent radius, 2€/a

volumetric equivalent radius, r,, \/; + (1/2)(A/rA)2
béd Reynolds number, v/av

bed Sherwoodvnuﬁber, ekm/aD

superficial approach velocity, cm/s

average velocity in a tube of constant radius VL cm/s

dimensionless radial velocity, vrd/<vAd>
dimensionless axial velocity, vzd/<vAd>

dimensionless streamwise velocity, \/vi + vi

dimensionless axial coordinate, zd/2

constant defined by equation 10, cm—l

bed porosity

kinematic viscoéity, cm2/s

sﬁreamwise coordinate

transformation coordinate of equation 28

r/r _(z)

polar coordinate

eigenvalue of equation 21

dimensionless normalized stream function, —de/r2 <v, >

Ad "Ad

complete set of functions

Subscripts

b

d

bulk

dimensional quantity
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Chapter 4 .
a specific interfacial area, cm_l
cF far upstream reactant concentration, mol/cm3
L far downstream reactant concentration, mol/cm3
Do molecular diffusion coefficient, cmz/s
E . dispersion coefficient, cm2/s
kf film mass-transfer coefficient, equation 3, cm/s
km effective bed mass-transfer coefficient, equation 1, cm/s
L reaction section length, cm
n normal coordinate, cm
Pe bed Péclet number ——
B aDo
ekm
Sh bed Sherwood number ——
B aD
v superficial velocity, cm/s
xl,xz,x3 dimensionless bed coordinates, ax
z streamwise dimensional coordinate
Greek
6ij Kroenecker delta
£ porosity
T ~ tortuosity

Subscripts

d dimensional quantity

In logarithmic mean
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Greek

g 50

1

bed Stanton number ShB/PeB, —_—

169

specific interfacial area, em
Fourier expansion coefficients
unknown kEh-expansion function, equation 14
dimensionless wall oscillation amplitude, Ad/l
reactant concentration, mol/cm3
transformation variable, equation 9
free stream diffusion coeffiéiént, cm2/s
Bessel function of order zero
effective mass~transfer coéfficient, em/s
length of PCT period, cm
length of feacti§e bed, cm
bed Péclet number v/aDo
dimensionléss radial coordinate in a PCT, rd/l
dimensionless average PCT radius, rAd/Q
dimensionless wall radius, r ,/%

ek wd

bed Sherwood number, ;59

ek
m

superficial bed velocity, cm/s

dimensionless axial coordinate in a PCT,'zd/K

constants of equation 1
th '
k— root of Bessel function Jo

bed porosity
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cE
cFP

inner region expansion concentration variable s
' B
T

It (2)

the outer limit of 50

smallest eigenvalue of equatioms 10, 11, 12, 13

Subscripts

d

F

Chapter 6

A4

Ak(Z)

a

°rF

<Sh>

dimensional quantity

feed condition at inlet of reactor

amplitude éf PCT ﬁall oscillatibn, cm

axially dependent expansion function for stream function
specific interfaciai surface area, cm

reactant feed concentration, mol/cm3

reactant concentration at bed exit, mol/cm3

reactant diffusivity, cm2/s

effective mass—ﬁransfer coefficient, equation 1, cm/s
period iength of PCT

depth of bed, cm

normal to tube wall, dimensionless

average reactant flux on tube wall, mol/cmzs

flowrate per tube,-cm3/s

average radius of PCT, cm

surface area of PCT of length L

average Sherwood number in a PCT
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ShB packed bed Sherwood number, ekm/aDo
A tangential'wall velocity in a PCT
v superficial velocity in a packed bed, cm/s
Subscript
d indicates a dimensional quantity
Greek
£ porosity
¢k radially dependent expansion function for stream function
Chapter 7
a specific interfacial area of bed, cm-1
cp feed concentration of CuSO, , mol/cfn3
CL exiting concentration éf CuSO[+ s mol/cm3
F faraday's constant, 96487 C/equiv
Ic cell current, A
IM maximum cell.current nFQcF , A
km effective mass-transfer coefficient, defined by equation 1, cm/s
L depth of packing, cm |
n ‘ number of electrons transferred per Faraday
Q feed flowrate, cm3/s |
v . superficial bed velocity, cm/s
Vc—¢R cathode potential relative to calomelvreferencg electrode

in catholyte, mV
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relative error in measurement of property i , defined by
equation 3 - -

bed porosity

cL/cF

specific interfacial area of tube size 1 matrix, cm-l
. . -1
specific interfacial area of entire bed, ay + a,s cm
' ‘ 3
reactant feed concentration, mol/cm

reactant concentration exiting from tube size 1 matrix,
mol/cm

reactant concentration exiting from bed, mol/cm3
free stréam reactant diffusivity, cm2/s

defined by equation 16

bed length, cm

empirical constant

Péclet number for tube size 1 matrix, vi/aiDO
Péclet number for bed, v/aD0

flowrate in tube size 1 , cm3/s

collective flowrafe in tube size i matrix, cm3/s
radius of tube size i , cm

Sherwood number for tube size i matirx, eikmi/aiD
Sherwood number for bed, ekm/-aDo

superficial velocity in tube size i matrix, cm/s

superficial velocity in bed, v, + Vo em/s

1
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porosity of tube size 1 matrix
bed porosity, €1 + 82

ry/xy

173



174

Appendix A

E4 operator in (n,z) coordinate system

4 h o
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Appendix B
Listing of Computer Programs
This appendix contains the listing of the programs to perform
the calculations presentea in the maiﬁ body of the thesis.
Each program is preceeded by an introduction which states the
purpose of the routine and the necessary input parameters.
| Many of these routines call upon identical subroutines., 1In

order to save space, the subroutines are listed once where they

first appear.
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Program INTER

This prqgramVSolves for the unknown Ak(z) functions of the
stream function in a sinuséidal PCT as given in Chapter 3. The
calculated Ak(z) are printed as well as the velocity ﬁrofiles at
selected axial and radial positions. The program'also calculates
the Graetz-like eigenvalue in a Sinusoidal-PCT according to
equations 3.29 and 3.30.

The necessary input parameters are: NCS, the number of parameter
sets to be processed; NCP, the number of n coordinate collocation
points; NJ, the number of axial mesh points used in the BAND subroutine;
NSKIP, a parameter used to control the axial spacing of the printed
velocity profiles; ZMIN and ZMAX, the origin and endpoint of the axial
integration, either (0,1/2) or (0,1); RA and AMP, the average radius
and amplitude of the sinusoidal PCT; NZ, the number of axial points

used on the evaluation of G(y) given by equation 3.22.
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PROGRAM INTER(JUNK,INPUT,QUTPUT)

cXTERNAL DELT '

DIMENSION DELF(103),GG{201)4V(201),4VP(Z201)4VTEM(201) LFE(2)
DIMENSICN P(1D),

1PLI10YsP2010)oP3(10)yP4{10) 922 {1420)sA2(1,10),43(1,10),A4{1,1),
20020010314 G020)4A020920)9B(20,20) 9D{20441)4X(20920),Y(20420),
JAETA(19)

DoueLT PRECISION P'Pl'P21P3’P“!PT'PTI’FTzva3’PT4’ HoHlsH24H2, H4,
1 HTyHTYLyHT2 4 HT3,HT4, HOLDyAl9A2,A3,A4 '
DUUBLE PRECISICN FWoFWLoFW29FW24FHCyFWIC,FW2CFW3C,T1A2,T1A3,
1T2A3 9 T3A2,T1A4yT2A44T3A4,T4A4,T1LAS,T2A54T3AS5,T4AS,ABL,AA2,AA3,AAS,
2AAS

COMMUN AsByCyDeGy Xy YsNyNJ

"COMMON /MAIN/ PSISTARWNCPyJyPyPl4P2,P3,P4

SET UP ALL FUNCTICN STATEMENTS

CKW(Z) =RA ~ AMPRCOS(2e%PI%7)

RW1{Z)=2.#*PJ%AMPRSIN(2,3P 127}
Ra2(Z)= 4. %¥AMPXCCS(2.%PI#Z)*PT14P]
RW3LL)=~Bo ¥ AMPRSIN{ 2 %PI %2 ) %P I %%3.
RWG(Z)=~160 ¥AMPHCNS (24 %P I%#Z ) %P %% 4

FIETA)SETARETA*(140-2,0#FTA232 + ETA¥24)
FL{ETAY=2.%ETA%(1le ~ 4o*BTA¥%2: + 3,2TTA¥%4)
FZIETA)=200 = b6o*TTAXETAX (4o — 5, *ETA%X%X2)
F3LETA)==244%ETA% (2,0 = Se¥FTA%%2)
FalcTa)=24,%[15,%CTA%%2 ~ 2,)

FN(ETA)=ETA%(1a0 - 2,0%ETA%E2 + ETAS%4)
FNL(ETA)=240%(100 —(4o=30%ETA%2) ¥ETA42)

FA{Z)=PW1{Z)}/RW(Z}

FAL{Z)=RW2(Z}/RW{Z) = FWlZ)%*2

FH2UL)=RW3(Z)/RWIZ) = Bo*FN(Z)*RW2(Z)I/RWIZ) + 2.%FW(Z)
FASLZL)=(RWA(Z) =4 *FHIZ)*RW3(Z)-3 . #FWI1(Z)%RW2(Z)+3, *RWZ(l)*FW(Z)**Z
L + 60 *RWIZ)H*FWLIZI*FW(Z)222)/RN(Z)

HT{ETAYPT)=F(ETA)*PT

HTL(ETA,PT,PT1l )=FLI{ETA)*PT + F(ETA)*PT1

HT2{ETAyPT oy PT19yPT2)=F2LETAIXPT+2.%FL{FTA)*PT1+F(ETA)%PT2
HIB{ETAPTyPTLePT24PT3)=FI(ETAIXPT43*F2(ETAIAPTL+3,#FL(FTA)RPT2 +
1 FU ETAY#PT3

HTA(ETAPTsPTL1oPT24PT3,PT4)= F4(ETA)*PT + 4o *FI(RTA)#PTL + 6,3F2(FT
LAI%PT2 ¢ 4o%FLI{ETAI®PT3 + F(FTA)%PT4

PI=3,141592654

READ IN DATA

READ NUMBTR OF COLLC SFT PCINTS TO BF PROCESSED

READ 54 NCS
FURMAT(I5)
D0 999 11I=1,NCS
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RzAD IN COLLO SET DATA

READ 6, NCP,NJ,NSKIP,ZMIN,ZMAX'PA AMP
FURMAT(315,4F15,10)
READ 79 (AETA(I),I=1,NCP)
. FURMAT (5F15,10)
PRINT SO34NCPyNJsZMAX 4 RA,AMP
FORMAT{1H1+1Xy#NUMBER NF CCLLC PCINTS =#,15/1X4#NUMBFR OF 7 M%SH
LPUINT S= #vIS/lX'tZMAX #F15,10/1 Xy #WALL RADIUS =#,F15,10410X,2AMP=3#,
1F15.190/77) .
PRINT Ty (ASTAUI)+I=1,4NCP)

START BAND CALCULATIONS

DELZ=(ZIMAX=-IMINMN)/FLOAT(NY=3) ¢ N=2xNCP ¢ J=0
DO 9 I=1,N ‘
DO 9 K=14N
Y{IsK)}=0o
X{IpyK)=0
J=J+l
L=0ELZ*FLOAT(J=-2) + ZMIN _
FWC=FW(Z) $ FUIC=FWL(Z) & FH2C=FW2(Z) $ FW3C=FW3{2Z)
DU i1 I=1,4N s GlIN=n, $ - DN 11 K=1,N $ AlT,K) =0,
BlieK)=0o . ' '
D(I’K)=05

IF1J=1)12,12,14
D0 13 I=1,NCP $ BlI,I}=1,

BINCP+TI,NCP+I)=10: § X(1y41)==-1,
X(NCP+I 4NCP+I)==~1,

CALL EBAND(J) $ GO TN 10
IF{J-NJ) 16,18,18

DU 17 I=1,NCP

ETA=AETRA (]}

FLAG=1. $ CALL POLY('TA,NCPfFLAGy vPlyPZyPZvP4)

T1A2=-4o ¥*ETARF WC

TIA3= 6o *ETAXRETAXFWCXFWC -

T2A3= 6. %ETAX{ FWC*%? - FWIC)

T3A3=2./RW{Z)%x%2

TLA4=-4e *¥ETAXFWCH(FTAXETARFWC%%2 + 1o/RW{Z)%%2)

T2A4= 12 XFTAXETARFWCH (FW] C-FWC%%2)

T3A4= 44 *TTAR (3, AFWCHFWIC~FHC*22-FW2C )

T4A4=4 4 XFHC/RWIZ)*%2 ’

TLAS=(FTAIFUHC ) 224 + 2, %(ETA*FWC/RWI(Z))2%2 + lo/RW(Z) 224 .

T2A5=60% (FTARK3)R(FWC K2 )% (FUCHA2-FWIC)+( 2. *FTA/RH(Z)**Z)*(4.*FNC*
L¥2-FWICY =~ 2, /(ETA*RW(Z)%**4)

T3AS=FTARTTAR(ToFWC 34 + 4 3FWCHFW2C ¢ 3,2FWICH%2 - 18, % FWICXFWC*
1%2) €3 /(ETARRRN(ZI*X2)%%2 + 2, ¥ (FWC*¥2~FWLIC)/Rh(Z)%%2

TaAS=ETAX(FUC*¥4 + 4o *FWCHFW2C ¢ 3, 2FWICRE2 = 6o ¥FWICHFUC*%2 ~ FW3 :
10) = 3o/ (FTA*(ETARRWIZ)¥%2)%%2) =~ 24% (FWCH*2~FR1C)/{ETARRW(Z ) %%2)

Hiz=24o*(To ¥ (ETAXFNC ) %%4 = Lo ¥FNLICH{FWCHRETAXX2)%%2 + 1No*(FWC*STA/
LRW(Z) ) *%2 — 2, %FWICX{ETA/RW(Z))%%2 )

H2={ 28 % (FTARXFWCHX2)%%2 + 16 ¥FWCHFW2CHETAYR2 + 12, %(FTA*FWIC)%%2
L = T23FWICH{FTARFWC)3%2 + By *(FWC#%2~ ~FWIC)/RWIZ)#22) % 1o~3, *%ETA%%
22)

H3= (4o ¥ (ETARFWCH%2)%%2 + 16a ¥FRCHFW2CHETARRY + 12, %(ETARXFWIC) %2
1 = 24, %FULCX(ETA%FWC ) %%2 - 4o ¥FUICKXETAY%2 = B ¥ (FWC¥%2-FWI1C)/RW{Z)
3%%2) % (1o=FTAXKD)

G{I)=K1 + H2 & H3 $ G{I)=G(1)*DELZ»x%2
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GliIi==C(I)

V0 17 K=14NCP

H=HT(ETA,P(K))

HI=HTI(ETA,P{K),P1(K))
H2=HTZ(ETAsPIK) 4 PLIK )y P2(K))
H3=HT3(ETAJP(K)yPL(K)yP2{K},P3(K))
Ae=HT4(ETAYPIK) yPLIK) yP2UK)}yPI(K)yP4(K)}
AAl=H

AA2=T182%H]

AA3=T3A3%(H2-H1/ETA) + T2A3%H]1 + T1A3%H2
AA4=T 4A4*(H)Y/ETA-H2) + T3A42H1 + T2A4%FK2 + T1A4%*H3
AAS=T 4AS¥HL + T3AS*H2 + T2A5%H3 + T1A5%H4
AllyK)==DELZI*AA4L/ 2.
A(I+NCP+K)==DELZ%*AA2/2, + AAl

IF{IEQeK} A(NCP+I,K)=1,
BUIyK)=AAS*DEL Z2%2

BUIyNCP+K)=AABXDELZ%%2 - 2,%AAlL

IF(IaFQoK) BINCP+I4K)=~2o $ IF(I,RQoK) BINCP+I,NCP+K)==DELZ%%2

D{IyK)=DELZ*AAG/2,
DUIsNCP+K)=DELZ*AA2/2, + AAl
IF{IeEQeK) DINCP+IyK)=1,

CONT INUE

CALL EAND(J) $ GC TC 10

00 19 I=1,NCP ¢ B(I,I)==1e $ BINCP+I,NCP+I)==1, $ Y(I,1)=1,

YINCP+I,NCP+I)=1,
CALL EBAND(J)
NJ=NJ=-1

PRINT CUT A FUNCTIONS

DO 20 J=1,NJ ¢ Z=IMIN + DELI*FLDAT(J=2)
PRINT 219Z9(CU14yJ)yI=1,NCP)
FORMAT(1XsFB.595Xy S5{3X,F15.8))

CUNT INUE

CALCULATE VELNCITY AND qTREAM FUNCTICN
DO 70 J=2yNJyNSKIP

L=LMIN + DELZ%FLOAT(J-2) $ RwALL=RW(Z)
PRINT 99, Z,RWALL
FORMAT(// 41 Xs#2=#4F10e595X 1 #RWALL=%,F1048)
PRINT 100

FORMAT{L10X #R 29 15X e £VZ2#925Xs #VR#428X ) 2VXI£,30X2PSI+2,/) -

DU 65 I=1411 $ ETA=,1*%FLGAT(I-1)
STORE AtJ) IN DP IN P4 ARRAY

DO 50 K=1,NCP
P4{K)=C(Kyd)

SET UP ARRAYS

STORE A-PRIME ARRAY IN P2 AS O°P

DO 55 K=1,NCP

P3IK) ={CU{KyJ+1) ~ C(KyJ=1))/(24*DFLZ)

ScT UP H=-PRIME/ETA ARRAY AND H/ETA APRAY,STCRE IN A2,A1
CALC AND STORE H ARRAY
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FLAG=0,. $ CALL PCOLY(FTALNCP,FLAGyPyP1,P24P32,P4)

DO 59 K=14NCP & AlL{1,KI=FN(ETA)%P(K)

AZULp K)=FNU(ETAIRPIK) + FN(ZTAI2PI(K) § A3(1,K)=HT(ET2,P(K})
29 CONTINUF

C
C PERFORNM MATRIX MULT IN A3,A4,H1
C
C Ve
CALL NULT(A24P4y1yMCPy1414209A,20)
C
C VR
CALL MULT(A14P3414NCPyYy1420,B,20)
c .
C PSI+
CALL NMULTU(A3,P4,13NCPyY451,205A4,1)
C
C CALC VEL AND PSI
C

Vi=(2e3(1o=FTAZXE2) + o534 (1,1))2(RA/RWALL )X
VR=~o5%B {1y91)*RAXRA/RWALL + FTAXVZ%RWI(Z)
VAI=SQRT(VZ**2 & VRa%2) § PSIHAT=(2,-CTA#*2)35TA%32 + A4(1,1)
R=zTA*RWALL ‘
PRINT 102¢ RyVZyVRyVXI4PSIHAT
102 FORMAT(1XsF12,854(5X,52N,101))
65 CONT INUE
10 CuNT INUE

READ IN NO. OF RHO MESH PDINTS(NJ) ANC NO. OF AXIAL POINTS(NZ)

[aR ol o

READ 2CO4NJyNZ
200 FORMAT{(215)
PRINT 2 .
3 FORMAT(/ /777 930Xy #kxk%xk SYSTEM PARAMATERS kiokkdz)
PRINT ByNCP NJyNZyPAyAMP
8 FUKMAT (/91X ENUMBFR CF CCLLCCATION PCINTS =#,12//1X,2NUMBFER DOF PSI
1 MESH POINTS =#,13//1Xy#NUMBTR CF Z PCQINTS USFC IN INTEGRATIONS=#,
212771 Xy #AVERAGE DIMUNSICNLFSS WALL RADIUS =#4F15,10//1X,#AMPLITUDE
3 UF WALL VARIATION=#£,F15,10/7/7)

DelLi0LD=DELZ
C CALC GUPSIHAT) AT THE MSSH POINTS

DELRHO=14/FLOAT(NJ~1) $ DELZ=(ZMAX=-ZNIN)/FLOAT(NZ-1)

IPMAX=NJ-1

DU 210 1P=2,1PMAX

PSISTAR=24 % (FLOAT(IP=1)%DELRHD I%¥%2 ~ (FLOAT(IP-1)%DELRHO) %%4
DU 211 IZ=1,NZ :

L=DELZ*FLOAT(IZ-1)

J=2 + Z/DELZIOLD

RWALL=RW(Z)

FIND RCOT OF PSIHAY FQN

[aEaNe

IF(IPoFQa2 eANC,I1Z4EQel) %L=D0
IF(IPs%Qe2 oANDoI1ZoFQel) FU=1lo
IF(EUGTaAMP) GO TO 271
EL=0.
cUsEU+AMP
GO TO 272
271 el=gU - AMP
EU=EU+AMP
272 IF{l.F¥C.04) EL=0,
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IF{Zs%Qe0) EU=1,

iF{EU.GTele) EU=1,

IF{AMPa®Qe0e) FU=1,

IF{AMF,L,EQaDe) FL=04

(11 =1.0F-7 § FE(2)=1.5=T7 $§ CALL ZERN(ZZyFL,yTU,"2,DFLT)
IF(LloFQeNe) PRINY 2224Z,1P,PSISTAR :

222 FORMAT(1X,#%%k ERRCR IN DELT *%¥%z, 5X, #£Z=#,F104595Xs#RHO MESH PC1

INT NUs =#4913,5X2PSISTAR=2,F10.5)

sU=LZ

CALCULATE THE VSLOCITYS

ETA=EU
STORE A(K) IN DP IN P4 ARRAY
DO 221 K=1,NCP
220 P&a{KI=C(K,yJ)
C STORE A-PRIME ARRAY IN DP IN P3
DU 223 K=1,NCP
223 P3LK)=(C(KeJ+1) = C(KyJ=1})/(2:%DELZIOLD)
C SeT UP H-PRIME/ETA,AND H/ETA ARRAY IN A2,Al
FLAG=0s $  CALL POLY(FTANCPyFLAGyP,P14P2,P3,P4)
DO 259 K=1,4NCP :
AL{Lly KISFN(ETA) %P (K) '
259 A2(1 s K)=FNI(FTAIXP(K) + FN(ETA)%P1(K)

[N eN el e

C viZ
CALL MULTU(AZ2,P431sNCPy1y1y104A,20)
C VR

CALL MULT(A1,P3,1,NCPy1,41,10,B,20)
VI={2e%[1o=ETAX%2) + ,5%A(1y1))¥{RA/RWALL)#*%2
VR==-¢g 5%B{1,1)*RAXRA/RWALL + ETAXYZ%RW1(Z)
VXI=SQRT(VZI*%2 + VR%%2)})

R=RWALL*ETA

CALC RPRIME

RPRIME=VR/VZ

oo OO0

CALC STRFAMWISE INTEGRAND
DELFLIZ)=2.%VXTI*({R/RA) X2} %SQRT(1. +RPRIME**2)
S 211 CONT INUE

PeFORM Z INTEGRATICONS

[aX X o

SAVE=0,.
DO 88 I=14NZ $ IF(1e%Qel) SAVE=SAVF+.5%DELF(1)
IF{1eFQaNZ)SAVE=SAVF+,5*DELF(]) $ TF(1.EQel «NRe 1.%Q.NZ)GO TO 88
SAVE=SAVE+DFELF(I)

88 CONTINUE
TiH=SAVEXDELZ $ SAVF=Q,
D0 89 I=14NZy2 $ IF(IoEQol)SAVE=SAVE+,5%DELF(T)
IF{1aEQaNZ)SAVE=SAVE+45*DCLF(2) $ TF(JoFQeloNRalo®QNZIGD TO 89
SAVE=SAVE + DFLF(I}

89 CUNTINUF
T2H=SAVE*CELZ*2,0
GGL IPI=TIH + (T1H-T2H)/3.

210 CONTINUE
LGG{1)=Ce $ GG(NJ}=0.

CALCULATE  VI(RHO)

OO
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DO 300 1IP=2,IPMAX
RHU=DFLRHCXFLOAT(IP-1)
VEIP)I=GGUIP)/{ (4o *RHO**2 )2 {1 o~PHO %32} )
V{li=,5

CACLULATE (RHO*V) PRIME

DG 108 IP=1,NJ

RHO=DELRHC*FLOAT(IP-1)

IF{IP.®QoNJ) GC 7O 108

VIEMUIP)=V{IP)#RHC

CONT INUE

DO 105 1IP=14NJ

IF{IPoEQel) VPIL)=—(3o%VTEM(5)=16o%VTENM(4)+36,%VTFM(3) =48, %VTM(2)
Lo 250RYTEM{1) )/ {12, %DELRHC)

IF(IPFQa2) VPH{2)=(=23VTEM(1)=3,0VTIMI2)+46,3VTEM(3)= VTIEM{4))/
1 (6.%DTLRHO)

IF{IPoFQo (NJ=2) IVPLIP)=( 2% VTEM( TP+ )42, 2VTIM{IP) =6, *VTEM(IP~1) +
1L VTEMLUIP-2))/(6.%DFLRHO)

IFUIPTFQaINI=1)) VPUIP)I=(25%VTFMIP) =48 %VTFM(IP-1)436,%YTEM(ID=D
L) =lO0o3VTEM(IP=3)+ 3,%VTEM{IP~4))/(12,3DFLRHD)

IF(IP«FQsNJ) GC TC 109

IF{IPoGTe? oANDs IPolTol™ J=2)) VPUIPI=(-VTFENM(IF+2) +8,%VTEM(IP+11})-
1 8o#VTEMUIP=1) + VIEM{IP=2))/(12,*DFLRKC)

CONTINUF

DO 111 P=1,NJ

RHC= QTLRHOAFLOAT(IP~1)

PSI=2 s ¥RHC*%2 ~ RHOX*4

PRINT G284yRHCsPSIWGGUIP)VIIP),VP({IP)
FORMAT(3Xs2{3XyF15.12192(3Xy52C.10))

INITIALIZS TRIA FUNCTICNS

EIGEN=PI/2.%.,5

DO 485 J=14NJ ¢ FHO=DELRHC*FLOAT{J-1)
CllyJ)=CCS(EIGENXRHO)

CL2yJ)=EIGSN

CALCULATE BAND{(J) COEFFECIENTS

N=2
JCOUNT=0
JCOUNT = JCCUNT + 1 $ J
DO 500 I=Ll,N $ DC 500 KX=1,4N
Y{IyK)=0
J=d+1
RHO=DELRHC*FLOAT(J-1)
DO 511 I=1,M
G(iIi=0.
DO 511 K=1,N
A(l+K)=0) $ B(I,K)=0
DEIyK)I=0
IFIJ-11512,5124514
Blleld=1loa 6 G{li=1le $ B(2,2)=DELRHO*%2/4,
Di2y1)=lc & G(2)=1,
CaLlL BAND(D)
60 TO S51i¢
IF(J-NJ) 516,518,518

=G
$ X(I«K)=C
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Allel)=V(J)=VP(J)RDFLRHO/ (24 *%RFD)
Bllyl)=~2e%V{J) +4, % IGENX (1 ~RHC*%2 ) #DELRHO* %2
BUil92)=4e%C(1yJ)% (14=RHOS#2)*[ELRHO®#%2
DIlyl)=V(I)#VPIIIRDELRHC/ (2, %RHD)
G(1)=40¥ETGENRC(1yJ) ¥ (1o -RHOK* 2 ) %DEL RHC*%2
Be2y2)=~1 $ A(242)=1 $ CALL BAND(J) $ GC TC 511
B{lsld=1le $ A(2+2)=10 § R{2,2)==1, $ CALL BRAND(J)
TEST FCR COCNVERGENCF L
EU=EIGEN $ EIGEN = C(2,2)
IFIABS(EN-EIGEN) LT, 1oCE-10%ABS(EIGEN)) GO TC 522
IF(JCCUNT-10) 490,490,521 :
PRINT 608 _
FGRMAT(#THE RUN DID NNOT CCNVERGE#)
PRINT 609, JCOUNT,EIGEN
FORMAT(3X,#ITERATION COUNT = #,12,10Xs25IGENVALUT= #,520010)
CPR=(CULINJ=2)=4o2C(LyNI=1)4342C{1yNJ) )/ (2,3DSLRHO)
PRINT 611,CPW
FORMAT{//45Xy 2CPRIME AT THE WALL=%,51608)

CONT INUE

CALL £x17 $ =ND

SUBROUTINE BANC(J)

DIMZNSICN A(20+20)14B(20,203,C{2041031,C{20,411,6(20)4X(20,20),

1 E(20+21,103)yY(20,20)

COMMUN AyByCoeDoGoeXeYeNyNJ
FORMAT (15HODETERM=0 AT J=,14)
IF (J=2) 1,6,8 g
NPl= N + 1

DO 2 1I=1,N

DLiIy2%2NK+1)= G(I)

DO 2 L=1,N

LPN= L + N

DCIsLEN)= X(I,L) :
CALL MATINV (N,2%N+1,DETERM)
IF (DETFRM) 4,3,4

PRINT 101, J

DO 5 K=1,N

EIKINPLyl)= DIKy2%N+1)

DG 5 L=14N

E{KeLol)= = D(K,yL)

LPN= L ¢+ N

X{iKsbL)= - D{(KyLPN)

RETURN

DU 7 1I=1,N

DO 7 K=1,N

DO 7 L=14N

O(IvK)= D(I4K) #+ A{I,L)%X(LsK)

IF (d=NJ) 114949

DO 10 I=1,N

DO 10 L=1,N

6lI)= CG(I) —~ YUI,L)*E(L,NP1yJ=~2)
DO 10 M=1,N

AlToL)= A(I4L) + V(I MIRE(M,L,J~2)
DO 12 I=1,N

ODLIyNPL)= - G(I)

DO 12 L=1,4N

DEIsNPL)= DCIsNPYL) + AUL,L)*F(LyNPL,J=1)
DU 12 K=1,N :

BlIeK)= BUI4K) + A(IZLIRE(LyK,yd~1)
CALL MATINV (NyNP1 LDFTERM)

IF (DETFRM) . 14,13,14

PRINT 101, J .
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DO 15 K=1l4N,
DO 15 M=1,NP1
A Ky My I = - D{K,M)

IF (J-NJ) 25,16416
DO 17 K=1,N ’
C{Ked )= FIKyNP1 )
DO 18 JJI=2,NJ
M= NJ - JJ + 1
DO 18 K=1l,4N
CIKeMI= F{KyNP1,M)
DU 18 L=1,yN
C{KsM)= CLKyM) "+ S(KyLogMIXC(LoeM+])
DU 19 L=1,4N

U0 19 K=1,N
ClKell= ClKe1l) #+ X{K,L)*C(1,2)
RETURN
END y

SUBROUTINT MATINV (N,M,DFTTRM) $COMMCN A,B,C,C
DIMENSION'A(20920)vB(ZCvZO)qC(20y103'9C(20v41)9JCCL(20)1X(23v41)
NMi=N-1 $ DSTTRM=1,C ¢ DC 1 I=1,N & JCCL{I)=] ¢ DO 1 K=1,M
X{14K)=D(I,K) $ DD 6 II=1,NM1 & IP1=1I41 $ BMAX=ABS(B(II1,11))
JC=I1 $ 00 2 J=IPL1yN § IF(ABS(B{IIyJ))elEoBMAX) GO TC 2 $ JC=J
BMAX=ABS(R(11,J)) .

CONTINUE & DETERM=DETERM®B{T11+JC) $ IF(DETFRM.EQeNeD) RETURN
IF(JCoFQeTII} GO TO & $ JS=JCOL(JC) & JCOL(JICI=JCOL(ITY
JCOLCIT)=JS & DC 2 I=1,4N & SAVE=R(1,JC) §& B(I,JCI=E(I,11)
BlIyIT)I=SAVE § DETERM==DETERM

DO 6 I=IP1,N & F=B{I,11)/B(1I,11) & CO 5 J=IP1,N
B{IsJ)=B{I, )-F%B(I1,J) & D0 6 K=1,M
AUigKI=X{T,K)=FxX(I1,K) $ DSTERM=DETIRNMXBR(N,N)
IF(DETERM,ZQ,0.0) RETURN $ CO 7 II=2,N $ IR=N-1142 § IM1=1R-1
JC=JLCLUIP) 8 DO 7 K=1e4M & F=X{IRK}I/BIIR,IR) $ D(JCsK)=F
DO 7 I=l,s1IM]1

XK{IeRI=X{I9KI=B(I,IR)I*F $ JC=JCCL{L1) & DN 8 K=1,M
DEJCosKI=X{14K}/B(1y1l) & RETURN ¢ END

SUBROUTINE MULT({AsByLoMyNyTA,IByCyIC)

IMPLICTIT DOURBRLE PRECISICAN(A-H,C-1)

DIMENSICN A(IA,I8)+B{IR,11,C(ICy1),HCLND(5D)

DG 100 I=1,L $ DO 101 J=1,N

SAVE=0, . DD 102 K=1,M

HOLD(K)=A(T,KI%B(KyJ)
DO 99 K=1,M $ DN 99 KK=KsM ¢ T1=HOLD(KK)
IF{DABS{T1)~DABS(HOLD(K))) 96,59,99

T2=HOLD(K) $ HCLD{K}=T1 $ HOLD(KK)=T2

CONT INUE i :

SAVE=Qs ¢ DN 97 K=1,M

SAVE=SAVE + HOLD(K)
ClIyJ)=SAVE

CONT INUF

CONT INUE

RETURN $ ©ND

SUBROUTINE POLY(AsJMAX FLAGyPsPIsPIIZPIII,PIV)

THIS ROUTIN® CALCULATES THE LEGENDRE PCOLYS
AND THRIR DERIVATINES,UP T0 QRDFR JMAX-)
IF FLAG=0 CNLY P AND PI ART RETURNED

DOUBLE PRECISTON PoPI,PIT,PITII,PIV
UIMENSION P(15),PI{15),PII(15), PITI(15),PIVILS)

CALCULATE ALL P
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Plli=1ls $ P(2)=U

JM=JMAX=1

DG 10 J=2,JM
N={2+¥FLOAT(J=1)+1o )/ (FLOAT(J-1)+1,)
GN=FLOAT(J=1)/7(FLOAT{J=1) + 1.}
PLJ+1 )=FN2U*P(J) - GNxP{J~-1]}

CALCULATE ALL PI

Pi(1)=0,. $ PIC2) =1,

DO 15 J=2,JM

ON=FLOAT(J-1)7(FLOAT(J-1) + 1l,.)

FN={2*FLCAT(J=~1)+1. ) /{FLOAT(J=1)+1,)
PICJ+LI=FNX( P{J}¢UXPI(J)) —~ GN2PI{J=1)
IF (FLAG.REQ.0.) GC 70O 40

CALCULATE ALL P11

PII{1)=0, L PII(2)=0,

DO 20 J=2,JM

FN=(2%FLOAT(J-1)+1.)/{FLOAT (4~ 1l+1o)
OGN=FLOAT(J-1)/{FLOAT(J-1) + 1,)
PIIUJ+L)=FN¥(2,0%PI{J) + UXPII(J)) - GN%PII(J~1)

CALCULATE ALL PII!

PLII(1)=0." $  PITI(2)=0,

DO 25 J=2,4M

FN=(2 2 *FLOAT(J=1)414 )/ (FLCAT(J=1)410)

GN=FLOAT(J-1) /({FLOAT(J-1) + 1,)
PITI(J+11=FN*(3.2PIT(J)+ UAPIIT(J)) - GNX*PITI(J-1)

CALCULATE ALL PIV

PIV(1)=0o $ PIV(2)=0,
DO 30 J=2,JM
GN=F LOAT(J=1)/ (FLOAT(J=1) + 1.)

FN=(20 *FLOATUJ=1)+10 ) /(FLOAT(J=1)+10 )
PIVIJ+1)=FN*{4,0#PTTI(J) + UXPIV(J)) - GN*PIV(J-1)
DO 35 J=1, JMAX .
PIVIJI=12.%PII(J) + 48,3UsPTIT(J) + 16,3UsUSPIV(Y)
PITI(J)= 12,%A%PIT(J) + Be*U*A*PITI(J)
PII(J)=2.%PI(J) + &o*UXPIT(J)
PI(J)=2.3A%PI(J)
RETURN

DO 45 J=1,JMAX

PI(J)=2,%A%PT(J)

RETURN &  END _
SUBROUTINE ZERC(ZyAl4B1,ER,F)
DIMENSICN =R(2)

A=Al

B=81

Re=ABS(SRI1))

AE=ABS(FR(2))

FA=F(A)

FB=F(8)

185

IF ((FASFB oLTs Qo)) oANDs (AMAXL(RF,AE} oGTs 0.0)) GO TO 70

H=0e 0

G0 TO 110
C=A

FL=FA

S=C
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FS=FC

CONTIAUT

H=0e5%(R+C)

T=AB8S (H*RT ) +AE

IF{ABS(H-B) oLE. T) GO TO 11N

IF (ABS(FB) oLF. ABS(FC)) GP TC 15
¥=B

FY=FB

o=t

Fo=FB

60 TO 20

CUNTINUE ,

IF (FY NF, FS) GO 70 21

B=H .

60 T0 29

CUNTINUE

c=(S*FY=-Y2FS) /(FY-FS)

IF (ABS(E-S) oLEe T) E=S+SIGN(T,6~S)

IF ({E-H)%(S—E) oLT, 0,0) GC TC 28

8=t )

60 TO 29

B=H

FB=F(B)

COUNTINUE

IF (FG*FB L,LTe 0eN) GO TO 35

c=S

FC=FS

G0 TOo 10

CONTINUE

=06

FC=FG

G0 TU 10

Z=H

RETURN

END

FUNCTICN DFLTI{FTA)Y

CUMMON AsB,4C

COMMUN /MAIN/ PSISTARYNCPy JyPoPLlyP24P3,P4
DIMENSION A(20420)9B(20,201,C(20,103)
DOUBLT PRECISICN P{10)+PLULC)4P2(10),P3(10)4P4(20),A2(1,10)
FLAG=0, $ CALL POLY(ETAYNCPyFLAGP+P1,P2,P3,P4)
DO 50 K=1,NCP :

P4(K)=C(K,J)
AB{LsK)ISPIK)F{ETAXETAR (1,2, 2ETAR%2 + TTA%%4) )

CALL NMULT(A3,P4,1,NCPs141,10,8,20)
PSI=(2e = ZTAX2)%XETAX%2 + B(l,1)
DELT=PSISTAR -~ PSI

RETURN ¢ END :
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Program PDROP

This program evaluates the pressure drop in a sinusoidal PCT
by integrating the'z¥component of the Navier-Stokes equation along
the centerline. The results of this integration are used in equation
3.10 to evaluate the friction factor, Reynolds number produét. The
input parameters are identical to those of pfogram INTER except the
parameter NZ is not used. The_subroutines BAND, MATINV and POLY

are required. These are listed in INTER.
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PROGRAM POROP(JUNK, INPLT,CUTPUT)

DIMENSIGN DELF(103),GG(201),VI201)4VP(201) 4 VTEM(201) 1 E{2)
DIMENSION P(10),
IPLU10),P2010)4P3(1D),PA( 12 AL ,10),82(1,17)9A2(1410),841(1,1),
201209 103)2GL20)9A(204920)98B(20920)sD020441)4X(23920),Y{(20,20}),
3AETACLQ) .

OOUBLZ PRECISICN PyPLleP24P3yP4yPTyPTLyPT2yPT34PTAyHyHYyH29H3,H4,
1 HTyHT1yHT2 3y HT3yHT4 HNLD AL, A2,A3,A4

DOUBLE PRFCISICN FWyFWY1yFW23sFW3 yFWCyFWIC FW2C,FW3C,T1A2,T1A3,
L1T2A39T3A3 3 T1A4yT2A4,T3A4 s T4A4yTIAS T2AG5,T2AS,T4A5,4A1,AR2,AA2,AR4,
2AAS :

COMMON AgByeCoDoGaXeYosNyNJ

SET UP ALL FUNCTIDN STATEMENTS

RW(Z) =RA — AMPRCOS(2.*PI*Z)
RWL(Z)1=2 2P T#AMPRSIN(2,%P12Z)
RW2(Z)= 4. *AMPXCCS(2.%PI*Z)%PI*P]
RWI(L)=—Bo *AMPRSIN( 2o *PT*Z ) %P %%3
RWG(Z)==164*AMPACAS{ 2 %P T *7 ) XP I %% 4

FIETA)=ETARETAX{(1,0=2,0%FTAX%2 + ETAX%4)
FLIETAY=2o%ETAX{ 1o = 4o%*TTARR2 + 2, %FTpk%4)
F2(ETA)=200 = 6*ETAFIFTARX(4o — S*ETA%RNXZ)
FILETA)==24,%ETA%R(2,0 = S *¥TTA¥%2)
FeliTA)Y=240% (150 %ETAK%2 = 2,)

FNIETAI=ETAR{(1.0 = 2oN2FTA%32 + “TAR34)
FNLIETA)=2,0%( 160 =(4o=3e*ETARN2)XETAX%D)

FW(Z)=RW1LZ)/PWILL)

FRlll)=RW2(Z)/PHW(Z) = FW{Z)¥%2

FW2UZ1=RW3(Z)/RH(LZ) — BXFUIZ)ARW2UZ)/RW(Z) + 2o%*FW(Z)
FW3(Z)=(RWATZ)I=4 o ¥FW(ZI*RWI(Z) -3 ¥FWI (ZIXRW2(Z)#3o *RW2(Z)*FW (2 ) %%2
1 + 663RWI(Z)IFFWILZ)*FUW(Z)#22)/RW(Z)

HT{ETALPT)I=F(ETA)»PT

HTLIETA,PT,PT1 )=FI(ETA)XPT + F(ETA}*PT]
HT2{ETAPToPTL9PT2)=F2{ETAI*PT+2,*FLIETA)*PTL+F(ETA)2PT2
HTS(ETAYPTyPTL4PT2yPT3I=F3(ETAIRPT4+3%F2(ETA)RPTLI+3,*%F1(FTA)XPT2 +
1 FL ETAI%PT3

HT4LETAsPTyPTLsPT2,PT34PTA)=FA(ETA)#PT + 4,%F3(ETA}#PTY + 6,3F2(57
LANXPT 2 + 4e*FLISTAIEPT3 + F(TTA)*PT4

PI=3.141592654

READ IN CATA

READ NUMBFR OF CCLLO SET PCINTS TQ BE FRNC=SSED
READ 59 NCS
FURMATL{IS)

: Of 999 II11=1,4NCS

READ IN CCLLO S®T DATA
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READ 69 NCPoyNJyNSKIPyZMIAy ZMAX RALAMP
FORMAT(315,4F15,10)
KEAD 7y (AFTA(1),I=1,NCP)
FUGRMAT{5F15,10)
PRINT SO3,NCPyNJyZMAX,RA,ANP
FURMAT{//741Xy#NUMBTR CF COLLC PCINTS =2,15/1X,2NUMBER NF 72 MTSH
LPUINTS=2,75/1X#IMAX=#F15,10/1 X, #WALL RADIUS =#,F15,1n,1NX, £AMP=¢,
1Fi5el0///7)
PRINT 7, (AETA(I),1=1,NCP)

START RAND CALCULATICNS

DELL=(ZMAX=ZMIN)/FLCATINYG=-3) § N=2%NCP $ J=0
DU 9 I=1,yN
DO 9 K=1sN

YiIsK)=Na
X{I,K)=0

J=d+1

L=DELZ*FLNAT(J=-2) + ZMIN
Fral=FW{Z) % FWIC=FW1{Z) $ FW2C=FW2(Z) $ FW3C=FW3(Z}
DU 11 I=1,N $ G({I1)=0, $ DC 11 K=14N $ AlT K)=0so
Bl{lyK)=0o -

D(1yK)=0,

IFLJU~-1112,124,14 .

DO 12 I=1,NCP $ B{l,1)=1,

BINCP+INCP#+I)=1, $ X{Iyld==1,

X{NCP+INCP+])=~1,
CALL BANC(J) $ GO YC 10
IF(J~-NJ) 16418418

DU 17 I=1,NCP

ETA=AFTA(T)

FLAG=1, $ CALL POLY(ETAINCPFLAGyP4PL,P2,P2,P4)

T1A2==44, *F TARXFK(

T1IA3=Eo*ETAXETARF WCKXFWC

T2A3= 6o XS TAR(FWCH X2 ~ FW1C)

T3A3=2./RW(Z)**2 ] .

T1AG4=s—4 RFTAYFWCH(ETAXFTAXFRC®%2 + 1,/RW(Z)%%2)

T2A4= 126 *FTAXETAXFUCR (FW1C-FUC2x%2)

T3A4= 4% ETAX (3 o ¥ FUCHFWIC~FUCK%¥Z2=FW2C)

T4A4=4%FRC/RWI{ZL)*¥%2

T1AS=(FTA%FWC)*%4 + 2,2 (FTASFUC/RWIZ) )% + lo/RW(Z)%*%*4

T2AS=60% (ETAXXB )R (FWCH42 )X {FWCH¥2=FWIC )+ {2 #FTA/RWIZ )% %D ) X( 4o *FWC X
1%2=-FWlC) =~ 2. /7(ETAXRW(Z)**%4)

T3AS=ETARTAR{ TaIFHC*XE + 4, AFWCHFH2C 4 3 %FWICH%X2 - 18,%FWIC*FWC%
L¥2) #3J/(ETAXRW(Z)I%%2)%%2 + D % (FWC*¥2~FWIC)/RIW(Z)*%2

TGAS=STAR(FWCk*4 + 4o*FWCHFW2C + Bo%FW1C*#2 = L, 3FWICAFWC*%2 - FUW3
L0 = Bo/(FTAX(ETAYRN(Z ) ¥%2)%%2) — 2, % (FWCR42=FW1C)/(“TA*RW(Z)%%*2)

His=2 4. % (T ¥ (TTAXFWC ) %4 - E *FWICH{FWCHETARR2)%%2 + 10o*{ FWCXTTA/
LRWEZ) )12%2 = 2, *FWIC*{(STA/RW(Z) ) 222 ) .

H2=(28o% {FTASFWCA*2 ) %%2 + L8 *FWCHFW2CHTTARX2 ¢ 12 %{FTASFWIC)%%2
L = T2o*%FWICK(ETAXFWC ) X%2 + 8o % (FWCH¥2-FWIC)/RW(Z)H¥D )% {]a=2o ¥ T A%
22) ’

H35(4 ¥ FTAXFHCH%2)%%2 + )16 ¥FWCHFW2CHFTARY2 ¢ 12.%("TARFW]C) %%?2
L = 24*FWICH(ETARFWCI*X2 = 4o 3FW2CHFTARE2 = B2 (FWCH*2~FW1C)/RW(Z)
352 )% (1o ~FTA%%2)

G(I1)=H1 + H2 + H3 $ GIYI)=G{T)*DEL Z%%2

LII)=~G(I)

00 17 K=1,4NCP
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H=HT(ETA,P(K)})
Hi=HT1("TA,P(K),P1(K))
H2=HT2(ETASP{K)»P1LIK) s P2(K))
H3=HT3(ETAP(K)+PL{K)yP2(K)yP3(K))
H4=HT4(FTA’9(K)1PI(K)9P2(K)vP3(K)yP§(K))
AAl=H
AAZ=T 1A2%K] . o
AA3=T IABK(H2-HL/FTA) + T2A3%H]1 + T1A2%H2
AAG=T4A4*{H1/CTA-H2) + T3A4%H]1 + T2A42H2 + T1A4%H3
AAD=T4AS5%H] + T3AS5%H2 + T2AS%H3 + T1A5%H4
AlIsK)}==CFLI*AA4/2,
A(IsNCP+K)=-DELZ*AA2/2, + AA1l
IF({] e%CeK) AINCP+I,K)=1.
BlIsK)=AASADEL 74 %2
B{IyNCP+K)=AAB%DELZ%%2 ~ 24%AAL :
IFlleFQoK) BINCP+I4K)=~2, ¢ IF(1,FGoK) B{MCP+I,NCP+K)==DTLZ%%2
D{I,K)=DELZ*AAG/2,
DIL+NCP+K)=DFELZ%AA2/2. + £H}
IF{i1sFQoK) DINCP+T,K)=10
17 CONT INUT
CALL BAND(I) $ - GC 70 10
18 00 19 I=14NCP 8 B{(I,I)==1a $ BINCP+I,NCP+I)==1, & Y(I,I)=10
19 YI(NCP+I,NCP+1)=1,
CALL BAND(J)

NJ=NJ=-1
ETA=00 $ FLAG=1lo. $ CALL POLY(ETAGNCPFLAG,PyPl4P2,P2,04)
DO 801 J=2,NJ
{=DELZ*FLOAT(J-2)
SUM=0,
DO 8U2 K=1,4NCP

802 SUM=SUM ¢ ClK o J)2(2,%P(K)=P2(K)/2o)
SUM=SUM + 1,

801 DELF{J-1)=8o%SUMX(PA/RW(Z))*%4
SAVE=C. ’
NZ=NJ =1
DO 88 I=14N2
IF{I+%Cel) SAVE=SAVFE ¢+ S5%D5LF(I)
IF{IaTQaNZ) SAVE=SAVFE + o5%DTLF(1)
IF{IeFCel oCRa IeFQoNZ) GO TO 88
SAVE=SAVE + DFLF(])

88 CONTINUE
T1lH=SAVEXDELZ
SAVE=C. '
DG B9 I=14NZ,2
IF({1e%Cel) SAVF=SAVFE & 5#%DELF(1)
IF(1a%QoeNZ) SAVE=SAVE + oS*DELF(])
IF(I1+sFQal oNRo 1oFQaNZ) GO TC 89
SAVE=SAVF '+ DELFL(T)

89 CONT INUE
T2H=SAVOXDELZ%2,
GRAND=TIH + (T1H~-T2H) /2,
PKINT 810, GRAND

810 FORMAT(///7 95Xy #THF P=DRCP INTEGRAL =# ,%20,10)

499 CUNT INUE .

: CALL EBXIT $ FND
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Program LOWPE

This routine calculates the first eigenvalue of Laplace's
equation in a sinusoidal PCT as outlined in Chapter 5. Collocation
is used in the n coordinate and a finite-difference grid is
established in the axial coordinate. The modified BAND routine is
used. (See Appendix C.) The input parémeters are: NPM, the
number of parameter sets to be processed; NJ, the number of axial mesh
points; RA and ARA, the average radius, and amplitude to average

radius ratio; NCP, the number of n coordinate collocation points.
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PROGRAM LOWPE(INPUY,CUTPUT)

LEVEL 2+E

DIMZNSION A(31431)19B(31421)9D031963)45(104229103)4%X(31,21),
1 Y(31+421)9G{31)4BI0C(15)4yRJ0L1(15)yBIC2(15),C(31,103) ,"“TA(15)
CUMMUN / DUMMY / F
CUMMUN A9ByCyrDaGeXeYNyNJ

CSET UP STATTMENT FUNCTICAS

RW(L)=RAX( 1, ~ARAXCOS(2,%PT1%Z) )
KWLIZ)=RAX2, %P I*XARA¥SIN(2,%P1%7)
Ru2(L)=RA%4, %ARAXCOS (2, 3P 132 ) 4P %32

FUL)I= (2o *PI*ARAXSIN(2o%PI%2) }/ (1o ~ARARCNS(2,%PI%Z))
FLUL)==F(Z) %32 + {4o*ARAXCOS(2.#PI*Z)API#%2 )/ (1, -ARAXCNS(2,%P %27 ))
RATIO(Z)=14/(1.~ARAXCOS(2%PI%Z) )

P1=34141592654

READ IN CATA

RAD 54NPM

FORMAT{IS5)

00U 999 NP=1,NPM
KREAD 79 NJ

FOKMAT(IS)

READ 10,RAJARAYNCPNFT

FORMAT(2F15,10,215)

RcAD 11y (TTA(L),L=1,NCP)
FURMATI(5F15,10)
PRINT 204RA4ARA,NCP
FURMAT (1H145Xs 2AVERAGE WALL RACIUS =#,F15,10,//,5X,#RATID AMP
1 =#4yF15.1Cs//¢#NUMBER NF STA CCLLC PCINTS =2,15)
PRINT 24

PRINT 25,(CTA(L)4yL=1,NCF)
FORMAT(/////7+410Xs2THE ETA PLINTS ARE#4///45X4F15,10)
FURMATILIX,5XyF15,10)

IFINPoGTs1) GO TD 1n4

INITIAL GURSS

FACTCR=2,4048255577
DU 84 KK=14NCP $ DO 84 JJ=1,NJ $ C(KKyJJ)I=0
CONT INUE

DO 86 JJ=14NJ

Cllydd) =1,

ITERC=0
H=lo/ FLOATINJ-3)
CONTINUT
J=0
WN=3*NCP + 1
DU 1C9 KK=1,4N
VU L09 l1=1,N
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Y{II,KK)=C
109 X{IT4KK) =0
110 J=Jd+l
DO 111 II= 1 N
G(II)=0D
D0 111 KK=14N
ACII,KK)=0 $ B{IT,KK)=0
1il DLIT+KK)=D ’
I=H¥FLCAT(J=-1)

IF(J=1) 112,112,114
112 U0 113 II=14yNCP $ N1=NCP+II
N2=2%NCP+1T+1 -
DIII411)=1a § B(ITeN2)=-10 $ X(N2,11)=05 $ E(N2,11)=-
BIN2yN1)==H :
113°  CONTINUE
CALL BAND(J) § GO TN 110
114 IF(J-NJI115,125,125
115 IFLAGl=1 $ TIFLAG2=1 $ 1FLAG3=1
118  FJy=F(2) .
FIi=F1(2)
RWJ=RW(Z)
DO 121 IT=1,NCP
CALL BESSFL{ETA(II),NCP,EJC,8JC1,BJ02)
D0 119 KK=1,NCP
AIK=B JD{KK ) #RA%2
BIK=-2.%FJ*ETA(IT)#BUNY (KK)¥RA*%2 - 2,%RA*FACTORKBJN(KK)
DIK=(RATIO(Z)#22+(PAXETA(CIII®F))*22) 3BUO2(KK) + ((RATIO(Z)%%2)/ETA
LOII) + RAXETALII)®(RASFJ&&2=RA%FJ142 %FJSFACTOR) ) %BJOL (KK) +
2UFACT OR%%2 ) %BJO (KK)
A(ITsKK)=ATK - H¥BIK/2,
BUIT KK)==2,%ATK + DIKKH&2
DUIToKK)=ATK + BIK®H/2,
119 CGNTINUE
SAVE1=0 $ SAVE2=0,
DU 120 IR=1,NCP
T1=(2.%FACTOR*(FACTOR%BUO(IR) +FJHRARSTA(TT)#BJOL(IR)) )RC( IR, J)
T2==20 ¥RA*FACTOR*BIDUIRI*({CIIRy J+1)=C IRy J=11)7 (24 2H} )
T3=({RA  )¥2 *%FUI*ETA(TII*BIOL(IRI+2.%  FACTCREBJC(IR)IVXC(IR,J)
Te=  T2/FACTOR
SAVE1=SAVEL+T1+T2 § SAVE2= SAVE2 + T3 + T4
120 CONTINUE ,
BUILy2¥NCP+1)=SAVE2RHA A2 $ GUIT)=SAVEL*H¥%2
121 CONTINUE

CALL BRANC{J)
G0 TC 110

125 DO 126 IT=1,NCP
NL=NCP+IT $ N2=NCP*2+11+1]
BOIT9yI1)=05 8§ Y(I1y411)=~,5 ¢ B(II,N1}=-H
BINLWN2)=1s 6 A{(N1,I1I)==1,
126 CUNTINUE . '
WN=2%NCP+1 $ B(NNyNN+1)=1e & G(NN)=1,
CALL BANC(J)

FACTORC=FACTOR ¢ FACTCR= C(Z*ACP+102) $ ITERC=ITFRC+]
PRINT 628, ITERC,FACTOR
928 FORMATU(///410X915+20X9%20.10)
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IFLABSIFACTOR-FACTCRCIoLTo FACTCRR1,NE~R) GO "0 20(
ITERMAX=10

IF(ITFRCoCGTo ITERMAX) GO TC 225

GU TC 125

CUNT INUF
PRINT 25,1TCRC,FACTOR
FURMATL//7777 91Xy #2FTRR2 4139 2X e #ITERATIONS,FACTOR=2,%20,17)
wd TC 999
PRINT 4C,ITEPCHFACTOR,FACTORC ’
FURMATU/ /7779 1Xq #AFTTRE413,2X 2ITERATIONS,)NC CONVTERGENCE 2, /741X,
1#THE LAST TWQ FACTOF VALUTS ARF#£,2(5X,%22.,10))
CONTINUF
CALL EXIT $ NI
SUSBRUOUTINT BESSFL (FTAWNCP,B,81,B2)
DIMZNSION B(1)4BL(1)4B211)+GAMMALL)4BS(2)yRY(2)
DATA GAMMA /2,4048255577150,520C781103,846537275129,11.,7915344391,
1 14o9309177C8641860710629679,21652116366299424,3524715398,
2 2744G24751320,30.6346064684/

DU 10 I=1yNCP
X=ETAXCAMMA(T)
IF{TTASQ.1.C) B(I)=C,
IF(FTALCQelaN}) G2 TC S
N=i $ CALL BFSSJUY(XsBS4BY,yN)
B{I)=8%(1)
IFIETA.TQolo) CALL BESSJY(X,BS,BY,N)
Bl{I)==GAVMA(I}%BRS(?)
82010 ==BL(T)/5TA - BLIIXGAMMA(T) %42
IF(ETALFQal) B2(1)==P1( 1)
CONT INUE
RETURN $ =MD
SUBROUTINT BESSUY(X,BRESS4BFSYHNMAX)

¥ MUDIFIEDL BESSJY 3/28/72

42

@4

UIMENSICN TJ(575),8FSJ(1),R=SY(1)
DATA ZULER,PI /,577215664901533,,.,636619772267581/
DATA NU22 729/

IF(lue=X) 242,43
HATN=1,05%X+47.9596.

GO 10 & - 1

HATN=T7Ce /{3o5~ALCG{(X))
NU=IFIX{HATN)

N=1ABSIMMAX) $ IF(N,LELSGN) GO T 42
NU=572 ¢ GO TO 44

IF(NUoG=eN) GO TO 44

NU=N

N=RN+1

NU2=NU+2

DU 5 J=NU2,sN

TJlJ) =C.

CONT ENUF
TJINU+1I=0,3000CCC0C0000C0 Y

D0 6 J=1,NU _

KehU+l-J ¢ FK=K+K
TIKI=FKETI(K+1}/X=TI(K+2)

SUM=,0

DO 7 J=3,4NU+2

SUM=SUM+TU( )

SUM=SLM+SLM ¢ TK=1./7(TJ(1)+SUM)
DO B8 J=1,4N . o .
BESJ(I=TKAET I J)
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IF{NMAX) 98,455,455
1IF(XeLFe9,8).GO TN 300
X82=lo /1644 %¥X%X)
AK=POX=1e § BK=CCX==o125/X
DO 60 J=1,8
CAY=FLCAT(J=1) $ CAY2=CAY+CAY $ CAY4=CAY2+CAY2
AKPL=={({{CAY4+3, ) % {CAY4+]1,) ) %%x2)
AKPL=AKP1%X82%AK/((CAY2+1o ) *(CAY2+424))
POX=PCX+AKP1 $ AK=AKP1 .
BKPLl=={({CAY4+3, ) %(CAY4+5,))*%2)
BKPL1=BKPL1#XB82%BK/{ (CAY2+2,)13{CAY2+3.))
WHOX=QOX+BKP1l $§ BK=BKP1l
CUNTINLE : .
XP4=X—~0,T785398163367448 ¢ TI=SQRT(PI/X)
BESY(1)=TI*(POX.SIN{XP4)+CCX*CCSIXP4))
60 TO 302
DX=X
OSUM1=.0 $ DSUM2=40 $ DX2=,25%DX%DX
DXX=1l, $ DT=1,
v0 99 ¥=1,NU22
DT==DT ¢ DFFM=M $ DFM=1,0/(0FFN%DFFM)
DX3=DX2*DFM $§ DXX=DXX*DX3 ¢ DSUM2=DSUN2+1,/0FFp
DSUML=DSUML+DT*DXX*DSUM2 .
BeSY{1)=PI*{B8ESJ{1)*{(EULFR+ALOG(,52DX))=DSUMI)
IF(NalTa2) GO T0O 98
BeSY{2)=(BTSJ(2)1%BESY(1)-(PI/X))/BESJI()
IFI{NeLTe3) GO TO 98
DG 10 J=34N
FM=(Jd+J=-4)
BESYL J)=FM2*BESY(J=1)/X-RESY(J=~2)
RczTURN § END.
SUBRCUTINE BAND(J)
LEVEL 24y £ § CCMMON /DUMMY/ E
CUMMCN A,BsCyDyGeXsYyNyNJ
MUDIFI®D 12/30/76 TO REDUCE STORAGFE AND COMPUTATION TIMF IN CASF
THERE ARE UNKNOWN CONSTANTS, FOR EXAMPLE, PROBLEMS WITH OPZRIODIC
BOUNDARY CONDITICNSe. FOR EQUATIONS NN+1 TO N2, THE BOUNDARY
CONDITIONS SHOULD BE DN YHE RIGHT, FCR FQUATICNS N2+1 THROUGH N,
THE BCUNCARY CONDITIONS SHOULD B8F ON THF LEFT,.
DIMENSION A(31931)4B(31+31)4D(21463)46(31),X(31,31),Y(31,31),

1C(314103)yF010,224103),FE(21,422),EP(31,22)

101 FORMAT (1SHODETERM=0 AT J=, I4)

22
24

25
26

217

IF{JoGTal) GO TO 3 & NN=(N=1)/3 $ N2=2aNN+1$ NP1=N2+1 $ ND=N2-NN
NNPL=NN+1 $ NP2=NN+N2+1 $ CO 1 I=1,N $ IN=I & IF(I.LE.NN) GO TN 23
IF(IeLEaN2) GO TO 1 § IN=IN-ND $ D0 22 L=1,NN & D{IN,L)=D(I,L)
BUINyL)=B(I,L)

DO 24 K=NNP1l,N2

ODCINs KI=DUTyK)+B{T4K)+X{1,K) & DO 25 K=NP1l,N
BUINyK=ND}=B{I,K)+D(T 4K} +X{T4K) $ D0 26 K=1,4NN

DUINs KEN2)=X{I4K) & DUINSNP2)=G(I)

CONTINUF $ CALL MATINV{(N-ND,NP2,DETERM)

IF(DETERMeEQeQeQ) PRINT 101, 4

DO 2 K=14NN $ E(KyNP1,1)=D{(KyNP2) $ DC 2 L=1,N2

IF(LeLEaNN) X{KyL)I==D(KyL+N2)

E{KyLo1)==D(KyL) $ DO 27 K=NP1yN $ EF(KyNPL)=D(K~ND,NP2)

DO 27 L=1yN2 ¢ TF(LoLEGNN) X{KyL)==D(K=ND,L+N2}

EE(Ks L)==D{K~ND,L) ¢ RETURN

IF(Ja%5QaNJ) GO TO 9 $ DO 4 I=1,NN & DO 4 K=NNP1,N

BlIsKI=DUIIsK) + A(I4K) + B(I,K)

All:K)=B(I¢K) $ IF(J.GT.2) GC TO 6

DO 5-1=14NN § DO 5 K=1,NN ¢ DO 5 L=1,N

IF(LoLEGNN #0Rs LeGTeN2) DUIoKI=DIIoKI+A{ T, LI%X(L,K)
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DU 28 I=1,NN $§ D{TI4NPL)==G(I) $ DC 7 L=1,N

IF(LoLZeNN) D(IsNPLI=D(IJNPLI+A(TI,L)RT(LyNPLyJ=1)

IF{LeGToN2) DIIsNPLI=D(I,NPLI+A(I,L)IXFE(LyNPL) $ DD 7 K=1,M2
IFCLe LEONN) BT +KI=BLIoKI+ALT L )I%E(LyKyJ~1)

IF{LoGTaN2) BIT K)=BUIsKI+A(I,L)%ET(L,K)
DO 28 K=NNP1lyN2

DIIsKI=B{I,K)
CALL MATINV(NNs,NP1,DFTERM) & IF(DETERM, FQoQ.O’ PRINT 1031,
DU 8 M=1,NP1 $ DO 17 I= NPI1,N
EPLIyMI=ES(I4M) § DO 8 K=1,NN
E{KeMyJ)==DIK,y¥M) $ DO 19 I=NP1,N $§ DO 19 L=1,NP1

IF(LoaGToNN) GO TC 18 $ FE(I4L)=000 $ IF{JofQe2) FE(I,L)=X{I,L)
DO 19 K=1,NN
Ec{IosLI=EF(T2LI+EP(T KI*E(KyLyJ) & RETURN
DO 12 TI=14N2 & D(I+1)=G(I) $ DC 10 L=1,NN
D{Is1)=D{Is1)-Y(I,L)XF{L,NP1yJ=2) $ DN 1D K=1,N2
ATy KISATT o KI+Y(ToL)%S(LoKyJ-2) & DC 11 L=1,NN
Dl )=DlI s )-A(TIyL)XE(LyNPLyJ=1) $ CC 11 K=1,N2
BUIoK)ZBUI KI+ALTIZLIXE(L4Kyg=1) $ DO 20 L=NP1,N
A(TyL)I=A(T4L)+Y(ToL)+B(IoL) & C(Io1)=D(141)=A(T,L)2ES(L,NP1)
DU 20 K=1,4N?2
BOIoK)=BITJKIFA(TZLIXEE(L,K) & CO 12 K=1,N2

IF(Ke GToNN) B{T1,K)=B{1,K)+Y({I,K)+A(I,K)
CALL MATINV(N241,DFTERM) ¢ IF(DETSRM.EQ.N.C) PRINT 101, J
DO 13 K=14N2
CUKyJ}=DI(Ks1) $ D0 21 I=NPLlyN & C(I,J)=EE{I,NPL) $§ DD 21 L=1,N2
ClIod)=CUIyNI+RE(LyL)*CILy ) $ DO 15 JJ=2,NJ $ M=NJ-JJ+]
DO 14 K=14N $ ITF(KoLEoNN) C(KyM)I=E(KyNP1,M)

IFIKeGTeNN) CIKyM)I=C{KyM+1) $ CC 15 K=1,NN $ DC 15 L=1,N2
CIKpM)I=CUKyMI+E(KyLyMIXC (L M+1) & DO 16 K=1,NN ¢ DO 16 L=1,NN
CIKe1)=CUKy L)+ X{KyL)2C{L»3) $§ RETURN ¢ END

SUBRCOUTIN® MATINV (NyMyDETERM) SCOMMON A4B,CHD
OIMENSION A(31431)+B(31431)9C(214103)yC(31+63),JCOL(35),X(31,63)
NMl=N=1 § DETERM=1.0 $ DC 1 I=1,N $ JCCL(I)=T ¢ DO 1 K=1,M
X{IsK)I=D{T4K) $ DO 6 II=14NM1 & IP1=1141 § BMAX=ABS{B(II,7I))
JC=1I1 ¢ DC 2 J=IP1sN § IF(ABS(B{ITsJ))olBaBMAX) GO TO 2 $ JC=4
BMAX=ABS(R{(II,J))
CONTINUF ¢ DETERM=DETERM*BIII,JC) $ IF(DETFRM,%Qe000) RETURN
IF{JCoREQeII) GC TO & 8 JS=JCNL(JC) $§ JCNL(JC)I=JCOL(1])
JCOL(IT)=JS § DO 3 1=1yN § SAVE=B(1,JC) § BI{I,JC)=B(I,II)
plIyI1)=SAVE $ DETERM==DETERM:
DU 6 I=IPLl,N & F=B(I,1IV/R(II,II} & CC 5 J=1P1,N
BlilgJI=BlI4J)=F%B(II,J) & DN & K=1,M
K{ToKI=X{T4K)=F2X(IT4K) $§ DETERM=DETERMXB(N,N) '
IFIDETFRMeZQe0e0Q) RETURN & DC 7 I1122,N $ IR=N=TI+2 ¢ IM1=1R~-]
JC=J4COLLIR) & DO 7 K=14M $ F=X(IRyK)/B(IRyIR) $ D(JCyK)=F
DO 7 I=1,1IM1
K{ToK)=X{IsKI=BITI4IRIXF $§ JC=JCNL(1) $ DO 8 K=z=l,M
DEUCs KI=X{1sK)/B{Ls1) & RTZTURN $ END -
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Program LOWPEC
This program performs the identical calculations as LOWPE.
A double collocation procedure as given by equations 5.14 and 5.18
is used to approximate the solution. The input parameters are identical
to those of LOWPE. 1In addition, the number of Fourier terms, NFT,
must be specified. Thebsubroutines MATINV, BESSELL and BESSJY are

required. These are listed in LOWPE.
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PRUGRAV LOWPFCLINOUT,QUTPUT}

VIMENSTEON A(225,225),AA(125),B(225),BB(125)4BJIC(15),BIC1(15),
i BJOZUI5)»TTALYI5) 4721401 4SN(20),CS5120)

DIMENSINN X(225,225)

Level 2y AyByX
CUMMON /RMAT/ X4A,8

SEZT UP STATEMAENT FUNCTICNS

RW(ZI=PAR{1,~ARARCOS(2.%PInZ) )
RWL{L)=RA%2 AP IXARAXSIN{( 2, %P T2 )
RWZULI=RAXG K ARARCNS (2o % PIRZ ) K P [ %42

FAZI= {2, *%PT*ARARSIN(2¥PI*7) 1/ {1 ~BRARCOS(2.%PI%7))
FLULY==F(7)%%2 + (Go%ARAXCOS{2,3PI*Z)#PI#22)/(1o~-ARASCOS(2, %P 122} )

RATIC(Z)=1o/01-ARAXCCS(2:%PI%7Z) |}
PI=30141592€54

RECAD IN CATA

RCAD 5.NPM
FORMAT(IS)
DO 9SS NP=1,NPM
RCAD 1Py RAZARAZNCP,NFT
FURMAT (2F15.104215)
RzAD 11, (ETA(L),L=1,NCP)
FURMAT{5F15.,10)
NL=2%NFT=-1 $ READ 1243(2Z2(L)sL=14yNZ)
FURMAT(8F1D45)
PRINT 204FA ARASNCPWNFTyNZ
FURMAT (1H1 95Xy £AVERAGS WALL RACIUS =2,F15,10,//,5X,2RATIO AMP
1 =#9F15017,//4#NUMBTR OF TTA CCLLC PCINTS =#,15,//,¢NUMBER OF ENU]
2ER TERMS =#,154//4#MUMBER CF 2 COLLC PCINTS =#,15)
PRINT 24
PRINT 2543 (=TA(L)sL=1¢NCP)
FORMAT (/77774 10Xe2THE ETA PRINTS ARTC#,///7,5X,F15,10)
FURMAT(1X,5X,F15.12)
PRINT 27
PRINT 264, (Z2{L)yL=14N7)
FURMAT({1X,5X,F10,5)
FORMAT{///7/7s1NXy2THE 7 POINTS ARE£4,///745X,F15410)

IFINP CT,1) GO TC 104
INITIAL GURSS

FACTOPR=2.,4048255577

Ml=NCPXNFT $ DN 84 I=1,M1 $ AA(TI)=D,
BBII=N,

AA(L) =Y,

START ITEPATICNS

ITERC=0



" 90

199

CONTIMNUF

MM=NC PR{24NFT-1)}+¢1 ¢ DO 83 T=1,MM ¢ D0 83 J=1,MM
A(lpJ,=Qo

ICETA IS THE FTA COLLC PCINT COUNTER

DO luC ICFTYA=]1,NCP
CALL BESSFL(ZTA(LICTTA)NCP,BUN,BUCL,BIC2)
11 IS 2 Z CCLLC PCINT CCUNTER

NS=2%NFT-1

DO 1038 TT=14NS

L=LL011)

CALL SUBSIN(Z4MFT,SN,CS)

1 IS THE EQUATICN NUMBFR CCUNTER
I={ICETA-1)*(2*NFT-1) + 11

ISA IS THC BRLSTL FUNCTICN COCUNTFR

TL=(RPATIN(Z)1%%*2 + (PAXETA(ICTETAIRF{2))%%2)%BIC2{ISA) +

DO 90 ISA=1,NCP :
1 ((RATIOUZ)1%%2)/FTA{ICTTA) + RAXGTA(ICTTA)*(RAXF(Z)*%2-RA%F1{Z)
2+2:%F (1) *FACTOR) }*BYQL(TSA)

IR IS THE FCUIFR COFFF CCUNTER
DU 90 IR=1,NFT
IRR IS THEE J PCSITION CCUNTFR OF THE A MATRIX

IRR={ ITSA=-LI*NFT + IR
T2=TL+(FACTOR##2-(24%PT*RAXFLCAT(JR-1))*%2)%BJC{I1SA)
T3=4,%PI*RAXFLCAT(IP~1 )% (RAXFIZ)XETA(TCTTA)¥BINLI(ISA}+FACTORXBIO(]
154A))
AlLy IRRY=T2#CS{IR) + T3%SN[IR)
IF(IREQeY) GO TC 90

A(TyNCPENFTHIRR=ISA)==T3%CS(IR) & T2%SN(IR}
CONTINLET

SAVEBL=0.
SAVERFS=0,

IU IS THE BESSFL RCCT COUNTER

DC 95 IuU=1,NCP
Th=2o¥F(7)#ETACICETAIXBIOL(TU ) ERA +20 * FACTORX*BJID(IU)
T5=22 e ¥BJOLTUIRFACTORXX 242 J#RAXF(Z)XETA{ICTTAYXFACTOR¥BINI(IY)

iv IS THE FCUITR TFRM CCUNTEFR

DU 95 TV=1,NFT _

To=4 o #PIXFLOAT(IV=-11%BJC(TU)*RA
T7=40*PI¥RAXFACTOR*FLOAT(IV=1)2BJN(IU)
SAVEBL=SAVEBL+{T4*CS(TVI+To¥SN(IV) ) *AA(LTU=1)ANFT+IV) +

1L ATa*SNCIVI-T6XCS(IV) I*EE((TU-1)ENET+1V)



95

100

101

30

150

928

927

200
35

225
40

999

10

200

SAVERHS=SAVERHS 4 (TSHCS{IVIHTT*SNIIVII*AA({IL=-1)8sNFTHIV) +
L QI5xSNUIVI-TT2CSOIVII*BRUCTIU=-1)%NFT+IV)

CONTINLE

ALy NCP®(2%NFT-1)41)=SAVERL
B{I)=SAVERHS

CUNT TRUE

DU 101 KK=1,4NFT
A(NCP*(23MFT-1)+14KK}=1,
CONTINUE
BINCP*(2%NFT~1)+1)=1,

NA=NCFX{2%NFT=1) + 1 $ CALL MATINVINA,!,CETERM)
IF{DETFRM.EQoNe) PRINT 30

FORMAT(///#DFTERM FQUALS ZERC#)

IF(OETIRM.EQeOs )  CALL EXIT

DU 150 1SA=1,NCP $ DT 150 IR=1,NFT

IRR={ ISA-1)aNFT. + IR

AA(IRR)=R(TIRR}

IF{IR.FQol} BB{IPR)=0,

IF{IR2CGTol) BBLIRRI=B(IIRR+NCPENFT-ISA)

CONTINLE :

ITERC=ITERC + 1
FACTCRO=FACTNDR $ FACTCP=R{NA)

PRINT 628y ITERC,FACTCR

FURMAT(//74+10X415,30X4E29,17)

PRINT 927+ (AA(I}+BBUI)yI=1,M1)
FORMAT{10X,2E20,10)
AF(ABS(FACTOR-FACTORD) . LTLFACTCR*1.F-8) GO TO 200

ITERMAX=10

IFLITERC.GTLITFRMAX) GC TC 225

IF{ITZRCaGTa10) GO TO 225

6O TO &5

CUNTINLE
PRINT 35, ITFRC,FACTOR
FORMABTU///77 93X g #AFTTR 213 ,2Xy #ITERATICNSyFACTOR=2520,10)
U TC 999
PRINT 40,ITERC,FACTNR,FACTCRN
FORMATU///7/9v1Xs#AFTER#913,42Xy2ITERATICNSINO CONVERGENCEE£,/7/,1X,
12THE LAST TWN FACTOR VALUFS ARE#,2(5X,F20,10))
CONTINU®
caLL £xIT
£ND
SUBROUTINE SUBSINI(Z «NFT,SN,CS)
DIMENSTON SN(1),CS(L)
Pi=3,141592654

DO 10 I=1,NFT
SNEI)=SIN(2.%PI*FLOAT(I-1)%2)
CSUL)=COS(2,*PI*FLNAT(I~1)27)
LF(ABSISN(I1)eLTo1s05=8) SN(I)=0,
IF(ABS(CSIT))olTolo0%~8) CS(1)=0,
CONTINUE ; _
RzTURN $ £ND
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Program INTERI

This program calculates the integral I (equation 6.10)

used in the Lévéque-like mass—-transfer coefficient calculations.

The input_is identical to that of INTER. The subroutines BAND,

MATINV and POLY are required. These are listed in INTER.
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PROGRAM INTERIJUNK, INPUT,CUTPUT)

CXTZRNAL NTLTY

DIMENSION DELF(103}),GG{2011,VI201),VP(201),VTo¥M(201) ,7"(2)
VDIMENSION P(20),
LPLU20)Y+P2(200+sP2(20)9P4020)4A1 (19200 9A2(0142C)4A2(1420)4A4(241),
20300 103)56G(301,8(30,30)98(39,30),D120,61},X(30,3%),Y(23,29),
3AETA(15) '

DUUBLT PRECISICN PyPlyP2yP23P4yPTyPTYyPT24PT2,PT4,HeH1  H2,H3,4H4,
1 HTyHTY1yHT24HT3,HT4,HOLD A1 ,A2,A3,A4

DOUBLE PRFECISICN FWoFWloFW24FW23FWCoyFWIC,FW2CyFWRC,T1A2,T147,
1T2A3,T3A34T1A4sT2A44T3A4sT4A4yTLAS,T285,T3A5,T4AS A ALy AA2,AA2,AAG,

C2AAS

DOUBLT PRTCISICN AyBoCoCoXyY 9T yGyDTTORM
CUMMON AsByCsDeGyXyeYeNyNY

COMMON /MAIN/ PSISTARWNCPsJ9PsPLl4P2,P2,P4
CUOMMUN /NOQ/ Z1(22423,103)

LeVEL 25T

SeT UP ALL FUNCTICM STATEMENTS

RA(Z) =RA = AMPXCGS(?2,%PI%7)
RANL{ZL)=2.*PI*xAMPRSIN(2,*PIa7)
RA2(L)= 4o %AMPXCOS(2 XPI%*Z2)%xPI%P]
RA3(L)==BoHAMPHSIN(2#PTI %) %D k%3
RWALL)==164 *AMPRCOS (2 *P %7 ) %P [ #%4
RARW{Z)=14/11s~ARAXCOS(2.%PI%2) )

FISTAI=STARETAS (1 0-2,0%FTA%%D + TTA%%4)
FLIETA)=23FTAR(1ls = 4o#TTAXN2 + 2,3MTA%%X4)
F2LETA)=240 = 6, %"TAXETA%R(G4, = 5,4 TA%%2)
F3(ETAI==24,%TTAX{2,N = S xFTA%%2)
FAISTAI=24,%(15,3=TAX%2 = 2,)

ENCETA)=ETAX (140 = 2,0%FTA%RK2 4+ TTAdX4)
FNI(ETA)=2,0%(1e0 ~{40=3o%5TARKD2)XTTA%%D)

FR{Z)=PWL{Z)/RW(Z)

FALlZ)=PW2(Z)/RW(Z) -~ FW(Z)#%2

FA2UL)=RW3LZ)/RW(Z) = R #FW(Z)#RW2({Z)/RWIL) + 2.%FW(Z)#%%3
FABCLI=(RWALZ) =4 *FW(ZV*RWI(Z) =3 *FWLIZ)*RW2( 2142 ¥RW2(Z) *FW( ) %%2
1 ¢ 00¥FWIZ)AFWL(Z)RFW(Z)**2)/R0W(Z)

HTIETASPT)I=F(TTA)¥PT

HTL(ETAPTPTYL I=FL{"TA}*PT + F(FTA)2PT]
HT2(CTAPTyPTLyPTR2)=F2(FTA)RPT4#2:%¥FL(TTA)RPTLI+F( " TA)RPT2
Hi3(uTAyPTPTLyPT24PT3)=F3(STA)RPT+2 % F2(TTA)EPTL43,%F]{"TA)%:DTD &
1 F{ cTa)2pPT3 '

HTA(ETAsPToPTLoPT24PT34PTA)=FA(STA)RPT & 4, %F3(FTA)RPTY + 6. %F2("T
LARPT 2 + 4o *FLISTA)*PT3 + F(ETA)*PT4

PI=34141592654%

KcAD IN CATA

READ NUMBTR OF COLLT SET PLINTS TP = PROCESSES
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903

11

31
12

13

14
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RZAD 54 NCS
FURMATY{IS)
DC 999 T11=1,NCS

RAb IN CCLLC SFT DATA

RiAU 69 NCPyNJyMSKIPy ZMIN G IMAX4RAJAMP

FURMAT(315,4F15,10}

ReAD Ty (ATTA(I)yI=1,NCP)

FURMAT (5F15,10)

PRINT GO3 NMCPyNJyZMAXyRAHAMP

- FURMAT(LH1 41Xy #NUMRER CF COLLEC PCINTS =#,15/1X, #NUMAER NOF 7 MSSH
LPUINTS=#,I5/1Xy#IMAX=2F15,10/1Xy#WALL RADIUS =2£,F15,17,10X,2AMP=¢,
LF1ve1C/77)

PRINT 7y (ATTA{I),I=1,NCP)

AKA=ANP/RA
START RAND CALCULATIONS

DELZ=(IMAX=ZMIN) /FILCAT(NJ=3) ¢ N=2%NCP & J=0
DU 9 I=1.N
Ou 9 K=1,?\
Y(I'K’:O.
X{1sK)=D
J=J+1
L=UELLRFLOAT(J=-2) + ZMIN
FAC=FW(Z) ¢ FWIC=FW1{Z) $ Fw2C=FW2(Z) $ FW2C=Fw2(2)
DO 11 I=1,N $ G(I)=0. $ DO 11 K=1,1 $ A{I4K}=0,
B8{I4+K)=00
O(1+K}=00

IF(3~1112,12414
U0 13 I=1,NCP $ B(IyI
BINLP +TyNCP+I)=1, $ x{1
KENCP+I MCP+]I ) =~1,
CALL EBAND(J} $ G TO 19
IFLJ-NJ) 16418,18
DO 17 I=1,NCP
ETA=AETA(])
FLAG=1, $ CALL PCLY(ETANNCP 4 FLAGyPsP14P2,P2,P4)
T1lA2==4« ¥*ETAXFWC
T1IA3=€o* T TAXETARFWCHFWE
T2A3=6,3FTAX(FRC#*%2 - FK1C)
T3A3=2./RW{Z)%%2
TLA4=~4o ¥TTARFRCR (ETAXTTARFEWCHAD + 1, /RWIZ)2%2)
T2A4= 12, T TAXCTASFWC X (FWIC~FWC*%2)
VT3A4=4 K TTAKX[ I o *FWCXFWIC-FRCEX¥2-FR2C)
T4A4=43FWC/RW(Z) 932
TLAS=(STAXFWC Y ¥%4 + 2% (" TAXFWC/RW(Z ) )¥%x2 + 1o/RW(Z)%%4
T2A5=20o X [ETAXLR ) (FWCRA2 )X (FWCH#2=-FWIC) + (2. ¥ETASRWIZ )% %D ) # (4o % FWC %
L¥2-FH1IC) = 2o /7{FTAXPW(Z)*=24)
TIAS=CTARETAX(T o #FWOKEE 4 4 AFWCAFW2C. 4 B, %FWICH%2 = 18, %FWI1CKERCH
1%20 3 /AFTAXRWILZIRA2) k%2 4 Dok (FHCHX2=FWICH/RW(Z ) *%2
TAAS=ETAX(FUCH %4 + Qo AFWCHFW2C + 3o %FWIC*%2 - Eo#FWICRFRCH%D2 ~ BW2
1CF = B /UTTAR(ETAYKWIZ ) R%2)%%2) = 2 X {FWCAX2=FR1C)/ (FTAXRW(Z ) %%2)
H1==240 % (To ¥ (ETASFWC ) 224 ~ Go3FWICH(FRCAMTASI2) 222 + 1N, #(FWCHITA/
IRWIZ)IX%2 = 2, %FWICX(ETA/RW(Z) )*%2 )
HZ= (2B X (FTAKFWCKH2) 2% 2 & V1ELHFWCHFW2CRFTAXND 4 12,% (TTANFNIC)%%2
L = T2.3FHICH(TTAIFCIFH2 ¢ Bo# {FWCHH2-FWIC) /PW{2) 232 )% (1o-B3o%UT AN



17

18
19

555
517

550

99

190

50

204

221

H3= (4o ¥ (ETARFHCHR2)H%2 + 16, 3FRCHFW2CHTTARR? ¢+ 12, 2(TTARFRIC) %D
L = 24, *%FWICH(ETARFWC ) %%2 ~ 4o %FW3CHTTASX2 ~ 8o (FWC*%2=FEW1C)/Fw(7)
IRR2)X{(1e-"TA¥%2)

Gli)=H1 + H2 + H3 $ GEI)=G1)%DF1 Z%%2

wli)==-G(1)

VO 17 K=1,NCP

H=HT{ETALP(K) )

AL=HTL(STALRP(K) 4, PLIK))

H2=HT2(ETA,P(K)yPL(K)yP2(K))
H3=AT2(ETA,PIK)yPLIK}P2{K),P3(K))
Hae=HT4(ETAyP(K) 4 PLIK) 4yP2(K)4P3(K)yP4I(K))

AAl=H

AA2=T1A2%H]1

AAS=T3A3%(H2-H1/5TA) + T2A3%H] + T1A3*KH2

AAG=T 4A4F (HL/ETA~F2) + TIA4¥HL + T2A4%K2 + T1A4%H3
AAS=T4ASHHL + T3AS5%H2 + T2A5%H3 + T1AS5%H4
AlLsK)==DZLZ*AAL4/ 2,

A{TyNCP+K})==DFELZ%AA2/2s + AAL

IF{IeZCeK) A(NCP+I,K)=1,

BlIlyK)=AASRDEL Zx%2

BIIyNCP+K)=AABXDELZ2%%2 « 2,%AA)

IF{Io ZQoXK) BINCP#I4K)=-25 $ IF(To%GoK) B{NCP+I,NCP+K)==DNFLZ%%?
DIy yKI=NELZ*AAG/2,

D{LoNCP+KY=DSLZ%AA2/2. + &M

IF(Io®GeK) D(NCP+I,Ki=1,

CUuNT INUE

CALL BANDLJ) $ GC TC 10

DO 19 T=1,NCP ¢ B(I, I)——1° $ BINCP+I,NCP+I)==1s $ Y(I,1)=1,

YINCP+IyNCP+I)=1,
CALL EBAND(J)

U0 555 J=14NJ 8 Z2=DFLZ2FLCAT(J-2)
PRINT 5574324 (C(KyJ)yK=14NCP)
FORMAT(1X4F10654+10X, 5(020 8))

PRINT 558 :

FORVMATI(//7)

DO 70 J=2,MNJyNSKIP
(=LMIN + DELZXFLCAT (J=-2) $ PHWALL=RW(Z)
RAN=SRARW(Z) ¢ WR1=RW1(Z)
PRINT 69, ZsRWALL
FURMAT{//+1Xe#21=229F10e595X s #RWALL=£,F1C,0)
PRINT 100
FURMAT (10X g #R# 9 15X o V£ 925Xy #VR£428X 0 2VXT 220Xy £PST+2,/)

U 65 I=1,11 & CSTA=,1%FLCAT(I-1)

SUMLI=0o $ SUM2=Nn, $ SUM2=0,

FLAG=0o $ CALL POLY(FTA,NCP,FLAG,P,P1,P2,P3,P4)

DO 53 K=1,NCP $ KK=NCP+l-K

SUML=SUML+HT(ETA,P(KK) IXC{KKyJ)

SuMZ= SUM2+(FN1(FT&)*P(KK)*Fk(ﬁTA)*PI(KK))*((KK.JD
SUM3= SUM’+FN("TA)*P(KK)*( {CIKKy J+1)=C KKy J=1))/12,%D%LZ) )

CUNT INUS

VEi={2%(1o=ETA®%2 )4, 5%SUM2 ) %R AWEXD

VR=ZTAXWRI*VI~o SHPAXRAWESUM2 '

PSIHAT=(2,~FTA#32)#FTA252 + SUM]

VXI=SCQRY(VZ%%x2 + VRx%2 |}



102
65
70

802

8ol
803

88

89

810

999

R=LTA¥PWALL
PRINT 1029 RsVZsVRyVXT4PSIHAT
FORMAT{1X,F1268+4(5XyF206o19))
CUNT INUF®
CONT INUT

Nd=NJ-1

DU 801 J=2,NJ

Z=OELZAFLCAT(U~-2)
SUM=0.,

Du 802 K=1,NCP

KK=NCP+1~K
SUM=SUM+C KKy J)

HULD=4o*{1lo=-SUM)

WC=HULDR (1o +RWILZ ) *%x2 ) %RARW(Z) #3%2

PKINT B803,Z24WC
IF{WColTeNe )} WC=0,

DELFUJ-11=SQRT({1a+RWL(Z)%%2)%hC/RARW(Z))I/RARKI(Z)

CONTINUT

FURMATU15X,F10a595XsF20010,5X4F20,10)

SAVE=Q,
NZ=NJ -1
DU 88 I=1.N2

IF(Je5Cel) SAVFE=SAVE + ,53DELF(I)
IF{I.TQ.N7) SAVE=SAV™ + ,S#DFLF(1)
IF(ieFQel o0Ra IaFQeMZ}) GC T 88

SAVE=SAVE + DELF(I)
CONTINUT

TlH=SAVE=*DELZ
SAVE=0Q,

00 89 I=14NZ,2

IF{ieFQol) SAVF=SAVF + (5*DFLF(])
IF(I+3QeNZ) SAVE=SAVT + S¥DELF(I])
IF(leFQel oNRa 1.FQoNZ) GC TC 89

SAVE=SAVF + DFLF{I})

CONT INUE
T2H=SAVF*CELZ*2,
GRAND=TLIH ¢ (T1H-T2H)/3,
PRINT 810, GRAND

FORMAT(///+5Xs2THT FRICTICN INTEGRAL FQUALS#,F20.1D

CONT INUE
LALL £XI7 $ END

205

)
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Program MAIN

This program calculates the quantity

.(2€/arAd)

assuming the sinusoidal PCT model. The input parameters are: N ,

the number of parameter sets to be processed; RA and AMP, the average

radius and wall amplitude.
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PRUOGKANM MAIN(INPUT,,NUTPUT)
CUMMUN AMP,RA, P
CSXTLRNAL F
PI=3.141592653589793238462643D0
KzAD 34N

3 FURMAT(I5)
DU 15 I=1,M
READ Ty PAyBMP

7 FURMAT(2F10,8)
A=0 § B=2,%P] $ FpE=1,%-10
K=RMBRG{F ,4,B,EPSyAREA)
RESULT=(142 + (SH*(AMP/RAJ*%2)/ARZA
ReSULT=4o % (PT*RTSULTY ) %%2
PRINT 9 y RAYAMPLARTALRESULT

9 FOURMAT U/ /9 Xe 2P A=#4F1048,5Xy2AMP=2,F10,8,5Xy#INTEGRAL=%,F10,8,5X,
L FE/RAXA=#4F10,48)
1o CONT TAUF

CALL EXIT $ “ND

FUNCTICN F(X)

LUMMON AMPLWRALPI
F=llo=(AMP/RAIXCOSIX) I*SQPT{ 1o+ {2, *PISXAMPECLS(X) ) 2%2)
KeTURN $ FND

FUNCTICN RMBRG(FyAyBy"PSyAFTA)

UATA NXRyMXCyINDFF/20,4,17772CQC200C0C00C000087
OIMENSIDN T(20,420)

Al=0.

IF{EPS ol 7o Ne) Al=AREA
ERR=0.

BA=g-A

Tniw=(FLA}) + F(B) ) /2.
TCigl)=TN"HW

DiNl=1,

D0 10C¢ L=24MXR
KH4BRG= L
DENZ2=2 % DEN]
DX=BA/CFN2
KUP=DFN2~1,
" SUM=DL2
DO 120 K=1l,KUP,?
X=A+K*DX
120 SUM=SUM+F(X)

T(Le1) = (SUM/DFNL + T(L-141))/26
Da=1.

JO=MIND(LMXC)

IF(JC oFQa 1 )} GO TD 210

Ce 200 J=2,JC

C4=4,%D4 |
200 TAL o) =TULy J=10#(TULyJ=1) =T(L=1od=1))7/{Cé=1q)
210 TOLD=TNEW '

TNTW=T(L,JC)

DA=TNEW=TOLD )

IF(ABS{CA) olFo ABS(TPS*{TNEW+AI)) ) GO TC 150
100 DENL=DFN2
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RMBRG=-1,
EKR=DABA
Aok ol ok g o ook dok ok ok R ke toiok ZRROR RETYRN sk oo dokodok ok aokok s oo 3ok oo e ool

ARGA = INDEF o CRo MXR
RCTURN _ )
£ et oK oo et e e et sk kol o ot i o e e ot s koot SOl ot ok R R R IR R R RGR S Kol KK KRR R R

150 AREA=TNEW*EA
RETURN
END
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Program PHETHET

This program calculates the dimensionless ohmic potential
drop in a pofous electrode according to the Newman and Tiedemann
analysis. The Péclet numﬁer and convefsion are the specified parameters;
The Péclet numbers are specified in a DATA statement and the GL
values are read. The function FSHB is the Sherwood number (ShB)
correlation and the function EDO is the dimensionless dispersion
cbefficient (E/Do) correlation. The film Sherwood number (Ekf/aDO)

is also calculated.
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PRUGRAM PEETHET(INPUT,,NLTPUT)
COMMCN /ARGS/ AlyA2.SHB,SHF
DIMENSICN PFB(30), THETALA(29)
COMMUN JALARGS/ PRLyEPS THETAMAL
DATA NMVAX PFB/1191¢9205150910092549500910%09253¢95006910024452300./
EPS=o 4
KZAD SeNTEE $ RFEADG » (THETALA(I) o 1=1,NTHT)
5 FORMATL{I2)
6 FURMAT({F15,10) . s
DO 100 IT=1,NTHT ¢  THETA=THTTALA(IT)
" PRINT 104THETA : _ .
10 FORMAT(1IBL1,10Xy#THETA  =#,511,5)
PRINT 59 _ , : .
50 FURMATL/// 14X o #PE£eTXy 2ALE,6X g #SHBE, TXy £SHF#,6X,y 2RATIN 2, 4X,
LEOPRINT #3X s #PCT DPE 24X #PCTDRPH 244Xy 2RTL NIFF£94X,2THETAL/ /)
DU 10C IP=1,NMAX $ . PE=PIBLIP) $ CALL FINDAL
CALL CCTCFF{PE,AL,=PS)
THETAL=THRETA
OPRIME=A1%SHF /4,
B=(1la+SQRT(1e+4¢%DPRIMF) )/ 2,
ALPHAL=(ALXSHF )/ {TPSkpr)
THE=EXPLALASHF*{1./B~-SHB/SHF) /{TPS*P~))
DPRE=PF4PRX(B#B*THF =DPRIME /B~ (ALPHAL +1,+DPRIMT ) %T
1HcTALY/SHF
RATIO=SHF/SHB
IF(THETAL.ZQe00s) DPHEO=PEXPS/SHts
IF(THETALoGTo0o) DPHEQ=PEXPRX(1a=(lo—-ALOGITHRTAL) )2THFETAL)/SHR
RELD=(CPHE-DPHFO)/DPHF ¢ T=EXP((-SHBXAL)/(EPS%PF))
PRINT 759 PEoALsSHBySHFyRATIO,CPRINME,DEREGWDPESEE LRTLD, T
T5 FORMAT(3XsE8:391X9080391X9F% 401Xy F9ob 91Xy T8o391X, 853,1X,79,4,
L 1X3£9e412X9E9e492X4F964)
100 CUNT INUE
CALL EXIY $ cND
SUBRCUTING FINDAL
COMMGN /ZALARGS/ PELCFPS,THETAWAL
LXTERNAL ALRHS
DIMENSION £(2)
E{1l)=1eE~-5 $ E{2)=F(1)

A=.1

Pl=gPS*PEXALOG(1e /THETAY $§ P2=21o/.914 + 1o/(1o2%PF)
B=plep2

CALL Z7RCUZyAyByEHALRHS) $ AL =/

RETURN $ £ND

FUNCT ICN ALRHS(X)
COMMON /ALARGS/ PE,FPS,TEETALAL
SHB=F SFB{PE,X,EPS)
RHS=SHB®X/(PEXEPS)
RAS=RHS + ALRG(THSTA)

ALRHS=RHS

RzTURN $ END
SUBRCUTINE COEFF (Pl AL,EPS)
CXTERNAL RHS
VIMeNSICN £(2)
CUMMON /ARGS/ Al,A2,S5HB,SHF
ell)=1.F=7 ¢ ZE{2)=F(1)
Al=(4o*EDCIPL,FEPS) )/ PEX%2 $ A2=FPSxpPR/AL
OSHB=FSHRB(P=4AL,FPS)
A=SHB*,1

B=lle

CALL ZFRC(Z,A4ByEyRHS)

SHF={
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R&TURAN $ FNC
FUNCT ICN FSHB(P,AL,™)
X=loULTH{"/AL)**(1o/3,)
Yolo/ (162%P) + 1o/(oQ14+X%Dd%()4/2,))
FSHB=1o/Y
nETUFN $ MDD
FUNCTICN RHS(X)
CoMMON JARGS/ Al +22,SHB
ALXR=AL*X
SWI=SCRT(14¢41X) ¢ T1=2,¥X/(1.45Q1) .
OSHF= (=23 X#{1a/ (1o #SQLI+(1o+SQYI/(AIX))) /02
RivUM= {1, ¢SQ1)/724 ¢ ([ oO%ALX/(2.42,%SQV4AIX V%1 ,~SQLIRTXP (G SHF )
DEeNOM=lo +AIX/ (2o 42,2 SQ1+A1X)
RHUS=T 1+A2* AL OGI{RNUM/DTNMNM)
KH5=SHR=FHS
RETURN ¢ END
FUNCTION =D00{(P,7)
TAU=SQRT(2.)
IF{PeGTal5,) G TC 25
X=iCa ECO6/PAX(Ha /o)
X2=2 o0 %X
EDU=1./TAU + 22,5294%P¥(1yg=(1o=SXP(=X2))/X2}/X
RETUKN
X=8o T21/P%%(24/35)
GU T2 1C
=NO
SUGKOUTINE ZFRA(Z4A14B14FR,F)
DIiMcNSICN "R(2)
A=Al
8=01
Re=ABSIFR(1}))
AC=ABS(RBRI(2))
FA=F(A)
Fa=F(8) .
iF ((FA3FR 41T, DaC) oAND, (AMAXY(RELAF) ,GTe 2eJ)) GO TO 70
H=Ca O
Gu TO 110
(=A
FU=FA
5=C
F3=FC

CUNTINUT

H=0a 9 ¥ (B4C)

T=ABS (H%*RE) +AF

IF(ABS(H=") (LF, T) GN TC 110
IF (ABS(FB) .LE., ABSIFC)) GC TC 15
Y=b

FY=FB

G=8

Fo=FB

5=(

FS=FC

L0 TGO 20

Y=$

FY=FS

6=C

Fo=FC

S=8

F>=FB

CUNTINLF

IF (FY oNTs FS) G T 2)
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35

1lo0

B=H

Gu TO 29

LONTINUR
c=(S¥XFY=YXFS)/(FY~FC)

IF (ABS(E~S) oLFe T) ==S+SIGN(T,G-S)
IF ((7=-H)Y*{S=-Z) oLlTe Q0o0) G TC 28
B=g ] oo

60 -TO 29

B=H

FB=F(B)

CONT INUF

IF (FG*FRB oLTe No0) GO TC 35
=S

FC=FS

60 TC 19

CUNTINUE

C=5

FC=FG

Ly TO 10

L=H

RETURN

END

212
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Program PHE
This routine is similar to PHETHET. The conversion and
potential drop are calculated as functions of specified aL and Pe

The film Sherwood number (ekf/aDO) is also calculated.

B *
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PRUGRAM PERZ{INPUT yNUTPUT)
UIMENSINN PEB{30),AAL(1D)
CUMMON /7ARGS/ Al422,SHB,SHKF
UATA P$B/o°01v0002590005'o010oCZSygUS'o1'u259o5910120515o'100v
1 ¢5595061100e925009520Q06 170009500047 ' )
NMAX=2C '
EPS=64 '
FORMAT(12)
FURMAT(F10,5)
ReAD 5yNAL $ READ 6, {AAL(I),1=1,NAL)
D0 100 TA=1,NALS AL=AAL(IAM) $  PRINT 10,AL
FORMATLLIHLy1OXy k4% Al =2,F10oSy#hkke//)
PRINT SO
FURMATU/ /793X 9#PT NQo#92X92SH BED#44Xy2SH FILNZ,4X#QATIN2,4X,
LETHET A2 4X s #POT DRP£y4Xy 2DPRIME£,4X, tPCTORP22/)
DO 100 1P=1,NMAX
PE=PCEE(IP)
CALL CCEFF{PF AL,EPS)
THETAL=TXP{(-AL*SHB)/ (FPS%PF))
DPRIME=AL*SHF /4,
B=(le +SQRT (1o +4¢%0PRIME) )/ 2,
ALPHAL=(AL%SHF) /{"PS%PT)
THE=FXP(AL*SHFX(1o/B~SHB/SHF)/(EPS#Pr))
OPHE=PEXPE X (REBARTHF =DPRIMT /B~ (ALPHAL 41 ,+DPRIM™)%T
1HeTAL ) /SHF
KATiO=SHF/SHB
IF{TH"TAL.ZQe0e) DPHEN=pPpLXPT/SER
IF{THETAL,GTa0s ) DPHEN=PFRPTH(1o=(1o=8LCGITHFTAL) ) XTHETAL ) /SHB
PRINT 754PFEySHBySHEF,RATICyTHET AL y DPHy CPRIME ,DEHTN
FURMAT (LX e T0 291 X0E1005901X9% 9401 X0FB0291X 9790491 Xs%F0b91Xy 90k,
11X4E944)
CONT INUE
CALL EXIT $ IND
SUBRCUTINZT COEFF(PE,AL,SPS)
cXTe RNAL RHS
UIMENSICN £(2)
COMMON 7ARGS/ Al1,82,SHB,SHF
ll)=1F=7 ¢ F£(2)=5(1)
Al={442TD0(PELEPS) ) /PE%*%2 $ A2=FPS*PT /AL
SHB=FSHB(PS,AL,EPS)
A=SHB*.1
B=lle
CALL ZERC(Z4A4ByTyPHS)
SHF=(
RETURN $ END
FUNCTION FSHB(P.AL %)
K=1leO1T7x{F/AL)*%(14/3,)
Y=1le/{1e2%P) 4 1470914 ¢XkPR%(]1,/3,))
FSHB=1o/Y
RETURN $ TND
FUNCTICN RHS(X)
LUMMCN /ARGS/ Al,A2,SHB
ALX=AL1%X
SWi=SQRT(Io#ALX) $ T1=2,%X/{1,+5Q1)
GSHF={(=24%X#*(14/{1o+SQL)+(1o+SQL)/(ALX))) /A2
KiNUM={144SGL)/2, + (J5%A1X/{24+42.,%5Q1#81X))%(1=SQLIXSXP(GSHF)
UENOM=10 #ALX/ (2, 42, %SQL+A LX)
RHS=T1+A2%ALOG{RNUM/DENCM)
RH3=SHE-RHS
KETURN ¢ FEND
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FUNCTICN FCO(P,%)
TAU=SGRT (2,)
IF(PeGTalSs) GN TN 25
X210 666/P%%(64/T4)
XL=2 03X
EDU=16e/TAU + 2355294%P*(1e={(1a=~FXP(=X20)/X2)/X%
RETUKN
A=8oT21/P22(20/3,)
GuU TC 10
cihNu
SUBROULTINE ZERC(Z4A14BY4FR,F)
ODIMENSIGN =R(2)
A=Al
B=b61
Re=ABS(ER(1))
AC=ABS(ER{2))
FA=F(A)
Fg=F(B)
IF [(FA*FB olTe Q.0) JAND. (AMAXI{RFHyAT) LGT. 7.2)) GO TO 70
H=0e 0
b0 TO 11¢
C=A
FC=FA
S=C
FS=FC

CUONT INLF

H=0e5%(B+C)

T=ABS (H*RF) +AF

IF{ABS{H=-B) .Lfe« T) GO TC 110
IF (ABS{FB) oLEe ABS(FC)) GO TC 15
Y=3

FY=FB

6=8

FG=FB

S=(

FS=FC

Gu TO 20

Y=S

FY=FS

6=C

FG=FC

S=8

FS=FB

CUNTINUF

IF (FY «NEo FS) GO TD 21

B=H

GU TO 29

CUNTINUE
C=(S*FY=-Y*FS)/(FY=-FS)

IF (ABSIE=~S) JLEs T) £=S+SIGN(T,G-S)
IF ((E=-H)3(S=F) oLT, 0.,0) GC TC 28
B=g

GU YO 29

d=H

FB=F(B)

CONTINLUE

IF (FG*FB oLTs 04C) GO TC 35
C=§

FC=FS

6u T0 10

COUNTINUE
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C=¢
FL=FG

6t TG 10
L=H
KRETURN
ENU

216
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Appendix c*
Solution of Coﬁbled, Ordinary Differential Equations
with Associated Constant Unknowms

The BAND subroutine is.designed to'effect efficient solution
of coupled difference'equations (Newman 108,63). At an
interior point j , these equations take the form

N
k£1 [A; (€ (3-1) + By L (HC, (3 + Dy L ()€ G+ = 6, () .

(c-1)

Frequently, there will be unknowns which are independent of position.
An example is the eigenvalue in an eigenvalue problem (see.Newman
64, pp. 204-208). An example encountered in this thesis involves
collocation solutions of problems with periodic ‘boundary conditiomns.
Here there may be one or two constant unknowns for each spatially
variable unknown. Such situations can be handled with the standard
BAND subroutine by appending to NN spatially dependent unknowns
Ck(j) a set of unknown constants Ck decomposed in turn into two
subsets. For the first subset, for i = NN+ 1, ..., N2 , one writes

for equation 1
() =c,3+1, ¢85, (c-2)
and for the second subset, for i =N2+ 1, ..., N, one writes

c,(»=cG-1, j#1. | (c-3)

%.
Written by J. Newman.



218

In both cases, no value is explicitly specified for the constant
unknown. Instead, the form of equation‘Z, excluding the point at

the right for vj = NJ , permits the specificagion of an additional
boundary condition or auxiliary condition on the spatially dependent
unknowns. Similarly, the form of equation 3 permits an extra boundary
condition at the left, at =1 .

Use of the standard BAND subroutine and equations 2 and 3 may be
attractive when the unknown constants are few in number, but significant
“improvements in computational efficiency result when the special
-subroutine in this appendix is used for problems with more  unknown
constants. This improvement in efficiency is achieved by avoiding
calculations of a trivial nature and avoiding the storage of numbers
of a trivial nature. For example, the standard solution form assumed

for equation 1 is

N

€i(3) = £,() +.Q£1 By o(C,(3+ 1D . (C~4)

Substitution into equation 2 would yield, after trivial calculations,

(for i =NN+1, ..., N2)

gi(j) =0 and’ Ei,.Q,(j) = 61,2/ (C—S)

where 61 s is. the Kronecker delta equal to 1 if 1 = £ and equal
?

to zero otherwise.
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Interior points

For an interior point j , the assumed solution form for a

spatially dependent variable is

NN N2
c,(i) =&, + I E, ,(Hc,G+t1) + [ E, ,()C, , (C-6)
i i 9=1 i,% L Q=N i,2 L

a simplification of equation 4. A consideration of the disposition
of the boundary conditions suggests that the unknown constants Ci
for i =N2+1, ..., N need not appear in equation 6 and can themselves

be expressed at any point j in the assumed solution form

NN N2
C; = £, + Rgl BE; ((DC (341 + [ EE; ,(§)C) . (C-D)

2=NN+1

(New arrays can be defined for EE because it is not necessary to
"store the values for more than one value of j .)

Consider fifst an interior point j for j > 2 , and assume that
Qalues of the &, E, and EE arrays have been obtained for j - 1 .
Substitution of equations 6 and 7 into equation 1 (for 1 =1,2, .;., NN)
yields equations to solve for Ei(j) and Ei,l(j) :

NN .
kgl by  (DELD) = gi(j) (c-8)
and
NN

L P DB ) = 4y () for =12, W2, (69)
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where the square NN by NN matrix of coefficients is given by

NN
by k() = B; L () + gzi A fDE LG - D
(c-10)
g , .
+ [A, ,(j) +B, ,(3) +D, ,(3)] EE (G -1
0=N2+1 i, i, iR L,k

The right side of equation 8 is

NN
B () = 6@ - ] Ay (DB - D
| (c-11)
N .
) z=§z+1 (4,3 + By p @) + Dy (318, G - 1)

The right side of equation 9 is simply given by

di,g(j) = Di’g(j)’ for & =’l,2, evey NN, (C-12)

but takes the form

NN :
dg g(3) = Ay ((3) + By ((3) +D; ((5) + kzl Ay DB G- D)

Hd

: (Cc-13)
)
+ [A, ., (§) + B, ., () +D, .(j)] EE (-1
K=N2+1 ik i,k ik k,&
for L =NN+1, ..., N2 . Bear in mind that i takes on values

from 1 through NM in equations 8 throdgh 13.
To obtain values of Ei(j) and EEi Q(j); substitute equations
b .

6 and 7 into equation 3 (for i = N2 + 1, ..., N), yielding
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NN
£, =8, -1+ kzl EEi,k(j - g (c-14)
_ NN » ,
EEi’z(j) = kzl EEi,k(j - 1)Ek’2(j) for % =1,2, ..., NN , (C-15)
and
NN

EE; () = EE; (3 - 1) + k:z__l EE; (G - DE () (C-16)

for L =NN+1, ..., N2 .

Right boundary

For j = NJ , the equations are simpler because terms in Di,k(j)
are absent. However, the problem statement is generalized by including
terms at j - 2 , so that complex boundary cond;tions (involving
derivatives) can be treated. At j = NJ , equation 1 is replaced

by equations of the form

N
) [Yi,kck(j—z) + Ai,k<j)ck(j'1) + Bi’k(j)Ck(j)] = 6,() . (c-17)

k=1
This equation applies for 1 = 1,2, ..., N2 , while equation 3 still
applies for 1 =N2+1, ..., N.
First use equation 6 to eliminate Ck(j - 2) . This leads us

to define auxiliary quantitieé as follows:

NN

LT AL@ ]

Y, E, . (§ - 2) (c-18)
W2y 1.8k
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for k=1,2, ..., N2 , and

NN
' - 3 — 5 — ——
Gi =6 (D - 1 Y, 5 G- . (c-19)
=1
Next use equation 6 to eliminate Ck(j - 1) and equation 7 to eliminate
Ck for k=N2+1, ..., N. The equations to solve then become
N2

kgl by 1 (DC D = g (C-20)

where the square N2 by N2 matrix of coefficients has the form

: NN
s — » [} s _
by () =By (D) + 221 A} gEg (3 - D)
(c-21)
g .
+ [y + A, ,(3) +B, ,(PIEE, ,(J - 1)
Q=N2+1 i,% i,% i,% L,k

for k=1,2, ..., NN . The same form applies for k=NN+1, ..., N2 ,

H
but Yi,k and Ai

of equation 20 has the form

are also added into b, ,(j) . The right side
sk l,k

NN : N
g, =G' - )} A! &£ ,(-1) [Y, , + A, ,(3) + B, (i)IE,H-1)
i 17 G5 iR 2=§2+1 i,2 i,8 i,8 2

(C-22)
The inve?sion-of equation 20 then givés values of Ck(j) at
j = NJ as well as the constants Ck for k=NN+1, ..., N2 . The
constants Ck for k‘= N2 f"l, «.+«y N can now be obtained by applying

equation 7 with j = NJ - 1 . Back substitution with equation 6 for

decreasing values of j then completes the solution for Ck(j)
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Left boundary

The governing equations at j = 1 take the form

N .
LB DG+ Dy (DO + Xy (GG = 6,) (6229
except that the simple form 2 still applies for i=NN+1, .., N2 .
The Di k(j) term is missing from equation 23, but the Xi x term is

. H H
added in order to permit the use of an image point and derivative
boundary conditions. The solution form 6 is extended at j = 1 to read

N2 - NN

c,(3) =&, + 221 By pDC (D) + gz %y pCp(3¥2) . (C-24)

1
Equation 7 must be extended to a form similar to equation 24 when applied
to the constants Ci for 41 = N2+1, ..., N. Substitution of equation 24
and the extended form of equation 7 into equation 23 leads to matrix
equations which should be solved for Ek(l), Ek,l(l) (for £ =1, ..., N2),
and ) (for £ =1, ..., NN), all for k=1, ..., NN and for k = N2+1,

. N . In the computer program, the matrix can be collapsed somewhat
since k values from NN+l through N2 are absent and eduation 23
is not applied for i = NN+1, ..., N2 .

The point at j = 2 cannot be treated completely like an interior

point because equation 24 should be used instead of equation 6 to

eliminate Ck(j - 1) from equation 1.

Program notes

The subroutine BAND(J) listed in this appendix can be used in

the programs of chapter 5 just like the regular BAND subroutine listed
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in appendix B. This means in particular that NN and N2 are calculated
within the subroutine in a special manner, whereas in general they would
be used as parameters for the subroutine.

' Some slight additional economy could be achieved by reducing the
size of the EE array, since the first index does not range over values
from 1 through N2. The programming would then be somewhat more
complex. Another economy measure would require that only the B array,
not A, D, X, or Y be used in equations 1, 17, and 23 when referring
to one of the constant unknowns in the calling pfogram, This could

then be assumed in the subroutine.
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SUBRCLTIN® BAMC(J)
MUGOIFIGED 12730776 TC REDUCE STCRAGF ANT COMPUTATION TIMT IM CASS
THERE ARE UNKNOWN CONSTBNTS, FCR EXAMPLE, PROBLEMS %ITH PTRINDIC
BOUNDARY CCNDITIONS. FfOP SQUATIONS NN+1 TO N2, THS BOUNDARY
CONDITICNS SHOULD BF ON THF RIGHT. FOR TQUATICNS N2+1 THRPUGH N,
THC BCUNCARY CCNDITIONS SHOULD BF ON THE LFFT,
LaVEL 2,%
COMMEN AsByCyDeGo Xy YaNyNJ
LUMMON /NG/ E(22,454123)
DIMCNSION A{66466)¢4B(66166)+C1669103)401669133),X(66966),
L Y(66466)2G(66) 4FEE(66446)4"Pl664+406)
FURMAT (1SHODET=RM=0 AT J=, [4)
IF(JoGTel) GO TL 3 ¢ NN=N/3 § N2=2%NN $ NP1=N2+1 $ ND=N2-NN
NNPL1=NN+1 $ NP2=NN+N2+1 ¢ DD 1 I=14,N $ IN=I $ IF({IeLFaNN) GN TO 23
IFLI.LFaN2) GO TD Y $ IN=IN-ND $ DO 22 L=14KN ¢ D(INsL)=D(I,L)
BOINy L)=8(1,L)
DU 24 K=NMNPLl,N2
DCINSKY=PUT oK) +B (19K} +X(TyK) $ DU 25 K=NP1,N
BUINy K=ND)=BlI,K)+DII K)+X{TyK) $§ D0 26 K=1,NN
DUIN)KEN2)=X{T4K) & DUINSNP2)I=G(])}
GUNTINUE & CALL MATINV{N-ND,NP2,DETFRM)
IFIDETFRM,TQa0,0) PRINT 101, J
DU 2 K=19NN $ E(KNP1y1)=D(KyNP2) $ DC 2 L=1,N?
IF{Lo LTaNN) X{KyLI==D{(K,yL+A2)
EARyL o1 )==D(KyL) $ DO 27 K=NPLN $ EF({KyNPL1)I=D(K-MD,NP2)
DU 27 L=19N2 8§ IF(LoLESNN) X(KgL)=~DIK~ND,L+N2)
EE(Ky L)==D{K=NDyLL) $& RTTURN
IF{JeFGaMNJ) GO TO 9 $ DO 4 I=14NN $ DO & K=NNP1,N
BIigsK)I=D(I4K} + A(T4K) + B(I,K)
AlL1sK)=B{IyK} ¢ IF(JaGTo2) GC TO 6
DU 5 I=1,MN 8§ DO 5 K=14NN $§ DO S5 L=1,N
IF{LeLEoNN oORs LoGToN2) DUIsKIZDUToKI4ALT L) XL, K)
DO 28 I=14NN ¢ D(T4NP1)=~G(1) ¢ DO 7 L=1,N
IF(Lo LFoNN) DCIWNPL)=D(INPL)+A{T4LIXE(LyNP1yJ-1)
IF{LoGTaN2) DII4yNPLI=DLTI4NPLI+ACT L) BTF(L,NPL) $ DD 7 K=1,N2
IF(Le Lo NN) BUT4KI=BLIsK)I*A{T4L)IXT{LyKyJ=1)
IF{LaGToN2) BUYoK)=BII KI+ALT,L)I%XFE(L,K)
DO 28 K=NNP1,N2
DII»K)=BI{IsK)
CALL MATINVINNGNP1,DFTERM) ¢ TF(DFTORMaEQeNeN) PRINT 101,4

DU 8 M=1,NPL & DC 17 I= NPLyN

EPU1yM)=FN{IsM) § DD 8 K=1,NN

E(KyMeJ)=~-ClKy¥) $ DO 19 I=NPLl,N $ DO 19 L=1,NP1

IF(L.GTNN) GO TO 18 $ TE(I,L)=0.0 $ IF(Ja%Qa2) SS(I,L)=X(I,1)
DG 1Y K=1,NN

Callsl)=ER (T L)+EP(TKIXE(KyLyJ) $ RETURN

U0 12 I=14N2 $ DI{T1,1)=G(I) $ DC 10 L=1,NN
DUIy11=DUTIs1)=Y{IsL)=E(L,NPLyJ=2) § D7 10 K=1,A2
ACLeKI=ACT KI+Y{TH LIS (L4KyJ~2) & DO 11 L=14NN
DUIs1)=CUIo1)-ALTyLIXT{L4NPLyJ~1) $§ DO 11 K=1,N2
BUIyKI=BUI KI+A(T LIXT{L4KyJ=1) $ DC 20 L=NP1,N
ALTyLI=ALT L) ¢Y{I,LI+B(I4L) $ CUI41)=DUTI,10-A(T,L)%*E0(LyNPL)
DO 20 K=1,N2

BAL)KI=BUT KI+A(T LI%S=S(L,K) $& £O 12 K=1,N2

IF(KoGToNN) B(IsKI=BII KI+Y(T9K)+A(]I,K)

CALL MATINVIN2,1,DFETRERM) $ IF(CETERMaTGeDeD) PRINT 101, J

DU 13 K=1,N2 .

ClKy J)1=D(Ky1l) $& D 21 I=NPLyN $ CLI,J)=EF{I,NPL) § DO 21 L=1,N2
CALyd)=CUTyJI+TE(T4L)%*CULyJ) $§ DG 15 HJ=24NJ ¢ M=NJ=JJ+1

U0 14 X=1yN $ IF{K,LELNN) C(K,M)=BE(KyNPLyM)

IF(KaGTaNN) CIKyM)I=C{KsM+1) $ CC 15 K=1,NN $ OC 15 L=1,N2
CAKaMI=C UKy MI+T (KoL o MIRC(LoMeL) $ DO 16 K=1yNN $ DN 16 L=1,NN
ClKy1)=CIKy 1)+ X(KsLI%XC(Ly32) $ RETURN § END
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Appendix D

Data Compilation

‘The following table lists the measured values for all the pertinent
variab}es of the mass-transfer experiments. All experiments were
carried out at 25°C. The notation is the same as that used in the
main body of the thesis. Some preliminary data reduction has been
performed and is fepofted here. The diameter of the bed was 3.00"
and the packing was 1[8" spherical bearings for all experiments.

Runs 1 through 25 inclusive were made in the power supply control

mode while the remainder were done with potentiostatic control.



[cu 1

(8,50, 1

c./c

L' F
Run € aL (m&/min) D M # {mV) (mA)
10 0.366 30.1 18.4% 1.10><10—3 0.9704 1 -45 28.0 0.600
+.7 0.1 2 -78 40.2 0.407
3 -100 42.4 - 0.374
4 -138 44 .0 0.337
5 187 45.2  0.315
6 =234 45.9 0.307
7 =294 47.6 0.278
8 -307 51.6 0.292
11 0.391 29.0+ 35.5% 1.09%+.03 0.9704 1 -43 27.1 0.815
1.0 0.1 x10—3 2 ~65 45.8 0.654
3 -90 54.6 0.575
4 -106 58.1 0.552
5 -130 61.3 -0.519
6 -165 65.0 0.484
7 -197 67.3 0.469
8 -230 68.7 0.459
9 -300 71.6 0.443
10 =330 74.5 0.443
12 0.382 30.4% 18.2+0.1 5.06%,02 0.9880 1 -39 160.0 0.480
: 1.1 X10~3 2 ~95 196.7 0.346
3 -143 208.3 0.306
4 -180 211.4 0.296
5 -240 213.7 0.292
6 -293 215.9 0.291
7 =310 218.2 0.287
8 -340 221.8 0.295
15 0.372 100£.2 18.4%0.1 5.11><10"3 0.9880 1 -57 260.9 .0628
+.02 2 -79 276.4 .0511
3 -93 280.0 .0616
4 -102 281.9 .0532"
5 -119 284.7 .0354
6 -136 286.9 .0354
7 -156 . 288.6 .0297
8 -228 290.0 .0227
9 =272 291.0 .0211
10 ~290 293.0 .0204

Lzt
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q [Cu ]F [HZSOA]F Sample Vc—d)R Ic cL/cF
Run £ aL (m2/min) ) M # (mV) (mA)
18 0.385  30.4% 35.6% 4.89x10™% 0.9408 1 -53 18.9 0.708
0.7 0.2 2 -74 26.7 0.577
3 -100 29.8  0.503
4 -121 31.3  0.470
5 -144 32.9  0.448
6 -173 33.8  0.421
7 -286 29.2  0.405
8 ~-298 35.0 0.411
19 0.374  30.3% 35.6% 4.91x10™% 0.9408 1 -77 207.5 0.613
0.7 0.0 2 -150 271.8  0.501
3 -175 291.1  0.464
4 -200 300.9  0.448
5 -220 310.4  0.432
6 -233 313.7  0.420
7 -267 319.9  0.418
8 -277 321.9  0.418
20 0.385 10042 35.6% 5.04x1073 0.9408 1 -48 432.8  0.236
0.2 2 -119 526.2  0.0913
3 -175 544.5  0.0663
4 -194 551.0 0.0628
21 0.406  30.3% 7.60 5.01x1072 0.9408 1 -66 100.5  0.227
0.9 0.08 2 -131 106.0  0.157
3 -186 108.1  0.134
4 -165 111.8  0.134
5 -278 108.5 0.118
6 -287 112.1  0.125
22 0.390 100%0.3 7.60+ 0.0102 0.9895 1 -40 237.2  0.0913
0.05 2 -111 258.2  0.0101
3 -222 257.0  4.80x10-3
4 ~284 254.2  2,70x10-3
5 -150 258.4  4.50x10-3
6 -284 252.9  3.05x1073

8¢¢C



q [Cu ]F [HZSO4 ]F Sample Vc—q)R | Ic cL/cF
Run € aL (0 /min) G M # (nV) {(mA)
24 0.390 29.1% 10.8% 0.0102 0.9895 1 -75 243.9 0.279
0.7 0.0 2 -133 264.3 0.231
3 -166 272.4 0.201
4 -185 278.7 0.185
5 -205 283.3 0.169
6 -272 283.9 0.169
7 -250 283.6 0.170
8 -297 288.8 0.171
25  0.393 29.7+  4,13% 9.84x1073 0.9895 1 -102 111.6 0.207
0.6 0.02 : 2 -141 115.2 0.116
3 -173 118.4 0.0922
4 -252 116.6 0.0694
5 -184 120.7 0.141
6 -267 116.0 0.0679
7 -281 119 0.0783
27 0.385 100%0.7 3.90% 0.0380 0.9797 1 -51 384 0.210
0.02 2 -100 453 0.0599
3 -140 466  0.0298
- 4 -176 474 0.0140
5 -210 477 7.49x10-3
6 -246 481  4.78x1073
28  0.385 100+0.7 5.73% 0.0380 0.9797 1 -49 519 0.284
0.04 2 -100 650  0.0850
3 ~145 695 0.0209
4 -175 697 0.0124
5 -205 701 8.50x10~3
6 -245 700 7.45x10™3
7 -275 700  9.10x1073
30 0.394 29,7+ 3.78+ 0.0380 0.9797 1 -25 314 0.316
0.7 0.03 2 -100 400  0.127
3 -150 418 0.0916
4 -180 422 0.0784
5 -210 422 0.0739
6 -250 423 0.0655

62T



q [Cu "] [H2504]F Sample VC—¢R Ic cL/cF
Run € aL (ml/min) ¢y M # (mV) “(mA)
31 0.392  30.4% 14.3% 0.0144 1.016 1 -100 471.3 0.230
0.7 0.05 2 -116 499.4 0.230
3 ~145 519.6 0.213
4 -176 528.8 0.198
5 -196 530.7 0.201
32 0.396  30.5% 2.15+ 0.0102 0.9796 1 -70 67.2 0.0675
' 0.9 0.05 ‘ 2 -110 68.0 0.0494
3 -145 69.4 0.0433
4 -175 69.5 0.0375
5 =205 70.3 0.0308
6 -245 71.5 0.0269
33 0.396  30.5% .867+ 0.0102 0.9796 1 -30 27.2 7.26x10~%
0.9 0.018 . - 2 -75 0 29.0 3.17x107%
3 -115 28.4 1.45%x10™%
4 -155 1 28.9 1.46x10™%
5 -190 29.1 1.04x10™%4
6 -235 26.8 6.61x10™>
34 0.396  30.5% 11.8+0.0  0.0102 0.9796 1 =72 328.5 0.169
0.9 2 -115 340.0 0.138
3 -150 343.4 0.0755
4 -180 345.5 0.118
5 -205 345.8 0.116
6 -235 346.4 0.114
7 -255 347.5 0.112
35 0.392 1011 2.51+ 0.0102 0.9796 1 -75 76.5 0.0928
0.02 2 -120 80.3 0.0209
3 -155 82.4 0.0248
4 -180 80.5 1.13x10-3
5 -205 78.9 1.82x10™3
6 -235 75.2. 5.00x10~%4

0€e



++

q [Cu ]F {HZSO4]F Sample Vc—d)R | Ic cL/cF
Run € aL (m%/min) (M M # (mV) (mA)
36 0.392 101f1  4.50% 0.0102 0.9796 1 -100  149.8  4.32x1073
0.03 2 -135 149 2.71x10™3
3 -160 148.6 - 2.30x1073
4 -185 146.0  1.54x10™3
5 -205 145.6 1.82x10~3
6 -235 144 1.58%x10™3
37 0.392 1011  14.7+ 0.0102 0.9796 1 -110 469 2.40x10™%
0.1 2 -150 471 1.76x10~%
3 -170 470 1.59x10~%
4 -145 470 1.27x10™4
5 -220 471 1.09x10™%
6 245 471 9.86x10~2
40  0.400 30.4*  6.00% 5.14+0.4 0.9842 1 -160 86.8 0.147
0.6 0.02 x10™3 2 -185 88.4 0.112
3 -210 88.9 0.115
4 -235 89.4 0.115
5 -255 89.0 0.113
41  0.393 99.9+  10.7+ 5.14%,04 0.9842 1 -155  169.4 0.0440
- 0.5 0.05 x10™3 2 -180  173.5 0.0344
3 -195  175.6 0.0137
4 -215 175.6  8.77x10-3
5 -230 175.8 5.25x10~3
6 -250 176.5 3.91x10™3
42 0.393  99.9+  4.36% 5.14%0.4 0.9842 1 -125 72.3  9.72x107%
0.5 0.03 x10~3 2 -180 73.3  5.64x107%
3 -205 72.8  2.92x1074
4 -230 72.2  2.33x107%4
5 -250 72.3  1.83x107%4
43 0.393 99.9x  9.00: 5.14% 404 0.9842 1 -125  148.8  4.05x1073
0.5 0.04 x10~ 2 ~180 148.8  3.02x10™3
3 -205  148.5 2.92x103
4 -280  148.5 2.51x1073
5 -255  148.4 2.59x10™3

€T
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q [Cu ]F [HZSO4]F Sample _Vc_d>R IC cL/cF
Run € aL (m&/min) 6] M # (mV) (mA)
A 0.393 99.9% 16.0% 5.14%.04 0.9842 1 -125 260.0 0.0107
0.5 0.05 x10™3 2 -170 261.6 0.0125
3 -200 262.2 0.0108
4 -225 262.1 9.59x10™3
5 -250 262.3 0.0101
45 0.393 99.9% 20.0+ 5.14%,04 0.9842 1 -100 324.3 0.0302
0.5 0.1 x10~3 2 -165 326.4 0.0204
3 -190 327.0 0.0162
4 -210 327.7 0.0150
5 -230 327.0 0.0161
6 -250 327.1 0.0134
47 0.393  99.9% 29.7+ 5.14%,04 0.9842 1 -75 445.0 0.102
0.5 0.2 x10™> 2 -150 447.2  0.0492
3 -185 476.3 0.0387
4 -205 479.5 0.0368
5 ~225 480.7 0.0323
6 -250 480.9 0.0309
48 0.393 99.9+ 33.9% 5.14% .04 0.9842 1 -100 511.5 0.0856
0.5 0.4 x10™3 2 -165 531.1 0.0539
3 -190 535.5 0.0463
4 -210 538.7 0.0424
5 -230 541.0 0.0411
6 -250 543.3 0.0379
7 -270 546.0 0.0366
51 0.373 30.3%  42.5% 1.02%,005 0.9916 1 -90 77.6  0.464
0.8 0.4 x10~3 2 -180 84.3 0.429.
3 ~200 86.1 0.443
4 -220 87.0 0.432
5 -240 87.5 0.415
6 ~260 88.1 0.414

[A%4



++

q [Cu ]F [HZSO4]F Sample Vc—¢R Ic CL/CF
Run € aL (mf/min) ¢) M # (mV) (mA)
52 0.373 30.3%  49.2% 1.02+,005  0.9916 1 =95 86.0 0.513
0.8 0.3 x10-3 2 -170 92.0 0.468
3 -200 93.6  0.454
4 -220 94.7  0.455
5 -240 95.4  0.447
6 -260 96.0 0.436
53  0.373 30.3%  58.6% 1.02+,005  0.9916 1 ~100 97.0 0.552
0.8 0.5 x10™3 2 -185 104.2  0.481
3 -205  105.2 0.477
4 -225  106.2 0.473
5 -250  107.2 0.466
6 -275  108.3 0.466
7 -300  109.4 0.467
55  0.383 100+l  25.1 1.83%.02 1.019 1 -80 157.4 0.0913
0.2 x10~3 2 -190 163.4  0.0362
3 ~220  162.6 0.0334
4 -250  161.7 0.0320
5 -275  160.5 . 0.0328
6 -300  164.4 0.0327
56  0.383 100+l 44,7+ 1.83+.02 1.019 1 -80 247.5 0.172
0.3 x10™3 2 -190  271.3 0.0934
3 -220  273.2  0.0880
4 -250  274.6 0.0863
5 -275 276.7  0.0825
6 -295 279.3  0.0820
57 0.383 100+1  36.5% 1.83+,02 1.019 1 -80 220.5 0.124
0.2 x10™3 2 -195  231.7 0.0659
3 -225  231.4 0.0634
4 -250  231.4 0.0612
5 -275 232.0  0.0596
6 -300  235.1 0.0590

€€q
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q [Cu ]F [HZSO4]F Sample VC—dJR Ic cL/cF
Run € aL (m? /min) D M # (mV) (mA)
58 0.383 100+l 50. 6% 1.83%.02 1.019 1 -80 284.8  0.161
0.3 x10~3 2 -190  305.5 0.0967
' 3 -220 307.8 - 0.0913
4 -245 309.8  0.0863
5 -270 312.5  0.0874
6 -290 315.6  0.0847
59 0.383  100*1 63.9% 1.83%.02 1.019 1 -90. 340.9  0.192
0.4 x10~3 2 -190 372.7 0.127
3 -220 377.4  0.120
4 -245 381.6 0.115
5 -270 386.0 0.110
6 -300 393.0 0.108
61 0.400 29.9+ 5.04% 7.91+,05 1.000 1 -90 110.2  0.185
0.9 0.02 x10~3 2 -180 117.4  0.117
: 3 -215 118.7  0.0805
4 -245 118.6  0.0697
5 -270 120.2  0.0576
6 -230 119.2  0.0598
62 0.400 29.9% 1.41% 7.91+.05 1.000 1 -90 35.5  0.0253
0.9 0.02 x10~3 2 -195 36.0  0.0140
3 -225 35.4  0.0134
4 -245 34.8 0.00813
5 -265 35.0 0.00786
6 -290 36.6 0.0108
63 0.400 29.9+ 6.85+ 7.91+,05 1.000 1 -90 154.1  0.123
0.9 0.04 x10™3 2 -190 160.7  0.0845
3 -215 162.5 0.0638
4 -245 163.0  0.0625
5 -265 162.5 0.0589 -
6 -295 163.1  0.0551

A XA



++

q [Cu ]F [1-12804]F Sample Vc—be Ic CL/CF
Run € aL (n?/min) 629 M 3 (mV) (mA)
64  0.400 29.9+  2.99: 7.91%.05 1.000 1 -90 73.8  0.0359
0.9 0.03 x10™3 2 -200 74.5 0.0193
3 ~225 74.7  0.0192
4 -245 74.2  0.0214
5 -270 74.0  0.0181
6 -300 76.2 0.0158
65 - 0.400 29.9+  12.3% 7.91+.05 1.000 1 -90 249.6  0.159
0.9 0.1 x10~3 2 -190 268.5 0.134
3 -220  269.9 0.126
4 -245  270.8 0.120
5 -270  271.5 0.118
6 -295  272.8 0.11l4
66  0.400 29,9+  18.2+ 7.91%,05 1.000 - 1 -90 347.0 0.230
0.9 0.1 x10~3 2 -190  372.3 0.212
3 -220  375.5 0.188
4 -245  376.6 0.186
5 -275  378.3 0.183
6 -310  381.8 . 0.178
67  0.387 100+l  3.00% 7.91+,05 1.000 1 -90 75.0  0.0244
0.02 x10™3 2 -190 76.3  2.64x10™3
3 -225 76.4  1.83x1073
4 -250 77.4  1.02x1073
5 -275 76.7 1.13x1073
6 -305 76.6  7.59x10~%4
68  0.387 100:1  1.93% 7.91+.05 1.000 1 -90 47.8  1.99x1073
0,06 x10~3 2 -210 48.4  1.90x10™%
3 -240 52.8  3.67x10~%4
4 -270 49.5  6.19x10™%
5 -300 51.3  2.40x10™%

GET
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q [Cu ]F [HZSO4]F Sample Vc—d)R IC CL/CF
Run e aL (m? /min) D M # (mV) (ma)
69 0.387 100*1  5.97+ 7.91%,05 1.000 1 -90 150.8 9.72x1073
0.07 x10~3 2 -190 151.8  4.86x10~3
3 -225 151.3  3.15%x1073
4 -250  149.1  3.22x107
5 -275  146.3  3.19x10"
6 ~300  151.2 3.86x1073
70  0.387 1001  8.29% 7.91+£.05 1.000 1 -90 207.8  0.0l44
0.04 x10~3 2 -190 209.1  6.14x10~
3 -225  208.2 2.57x1073
4 -250  208.8 4.97x107>
5 -275  208.6 5.70x1073
6 -310 210.2  4.51x10”
71 0.387 100+1  12.3t 7.91%,05 1.000 1 -90 297.6  0.0224
0.1 x10™3 2 -190  303.9 7.96x1073
3 -225 305.5  9.63x10™3
4 -250  305.8 9.27x1073
5 ~275 305.4  9.09x10~
6 -305 305.2  8.93x10”
72 0.387 100%1 7.09+ 7.88+,06 1.000 1 -90 179.0  9.59x10~3
0.05 x10~3 2 -190  181.0  3.41x10"
3 -225 181.5 2.63x1073
4 -250 182.4  2.04x1073
5 -275 183.5  2.79x10~3
6 -310  182.0 2.82x10~3
Runs 74 Through 83 Contain 2.99 M Glycerol
74 0.388 30.0t  4.06% 4.99+,01 1.434 1 -90 57.3  0.148
0.7 0.04 x10-3 2 -190 58.0 0.126
3 ~225 58.4 0.112
4 -250 59.0 0.105
5 -275 59.4  0.101
6 -300 59.8 0.0978

9¢¢
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4 [Cu"Ig [H,80,1; Sample V. —$p I, ep/ep
Run € al (m2/min) (M) M # (V)  (mA)
75 0.388 30.0% 1.72% 4.99+,01 1.434 1 -90 26.7 0.0537
0.7 0.03 x10~3 2 -190 27.3  0.0387
3 -225 27.7 - 0.0337
4 -250 28.0 0.0335
5 -275 27.8  0.0327
6 -300 28.6 0.0327
76 0.388  30.0% 5.76% 4.99+,01 1.434 1 -90 76.6 0.175
0.7 0.03 x10~3 2 -190 80.0 . 0.151
3 -225 79.5  0.155
4 -250 80.2 0.146
5 -275 80.4 0.147
6 -300 80.6 0.1l44
77 0.388 30.0% 7.62% © 4,99%,01 1.434 1 -90 90.9 0.240
0.7 0.03 x10~3 2 -190 97.9  0.204
3 -225 98.2  0.204
4 -250 99.0 0.191
5 -275 99,5 0.190
6 -300 100.0 .0.196
78 0.388  30.0% 9,43+ 4.99+,01 1.434 1 -90 107.0  0.269
0.7 0.03 x10-3 2 -190  114.5 0.240
3 -225 115.5 0.240
4 -255 116.1  0.226
5 -285 116.6  0.226
6 -310 117.6  0.222
79 0.388  30.0% 11.8% 4.99+.01 1.434 1 -90 125.1  0.301
0.7 0.04 x1073 2 -190 133.7 0.291
3 -225 135.0 0.277
4 -250 135.6 0.275
5 -275 136.1 0.269
6 -305 137.2  0.267

LET



[Cu++]

[HZSO4]F

Sample

Vc_(bR

I

F c L' F
Run € aL (mf/min) oD M # (mV) (mA)
80  0.388 30.0+  15.1% 4.99% .01 1.434 1 -90 152.5 0.369
0.7 0.1 x10~3 2 190  164.3 0.321
3 -225  165.5 0.309
4 -250  166.1 0.307
5 -275  166.6 0.301
6 -305  167.6 0.299
81  0.388 30.0&  19.8% 4.99+,01 1.434 1 -90 173.7  0.433
0.7 0.1 x10™3 2 -190  195.2  0.391
3 -225 - 197.0  0.383
4 -250  198.7  0.369
5 -275  200.5 0.365
6 -300  201.8 0.363
82  0.388 30.0f  25.7% 4.99%,01 1.434 1 -90 202.2  0.479
0.7 0.2 x10~3 2 -190 228.9  0.441
3 -225  232.6 0.425
4 -250  234.2  0.419
5 -275  236.0 0.419
6 -305  238.2 0.423
83  0.388 30.0f  33.6% 4.99+,01 1.434 1 -100  237.5 0.551
0.7 0.1 x10™3 2 -200  269.3 0.503
3 -240  274.1  0.485
A -275  276.6 0.473
5 -300  278.1 0.473
6 -335  281.3 0.461
7 -365  286.3 0.471

8¢€¢
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