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LIST OF SYMBOLS

Dimensioned Quantities*

IO critical current of single Josephson junction.
R shunt resistance of single Josephson junction.
C capacitance of single Josephson junction.
d flux quantum, ® = h/2e.

o o

L SQUID ring inductance.

T SQUID temperature.

Dimensionless Quantities

BC reduced capacitance or hysterysis parameter, BC =
2nIoR2c/¢o.

B intrinsic¢ flux ratio, B = 2LIO/¢O.

a critical current asymmetry parameter.

n inductance asymmetry parameter.

o] shunt resistance asymmetry parametec.

T Johnson noise figqure, ' = 2ﬂkBT/Io¢o.

6 dimensionless time, 8 = t/(@o/ZHIOR).

i dc bias current, i = I/Io.

3 time dependent circulating current, j = J/Io.

? time-averaged circulating current.

v time dependent voltage across the SQUID, v = V/IJR.

v time-averaged v<itage.

*Dimensioned quantities appear in upper case, undimensioned quantitics
in lower case, with the exception of T which has been previously

defined.3
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é6,58.,68 time dependent quantum mechanical phase differences

across the junctions.

¢a externally applied quasistatic flux, ¢ =90 /% .
a a" o
is externally applied quasistatic signal current, is =
IS/IO.
le,sz noise voltages, le = VNl/IOR, sz = VNZ/IOR'
u potential energy, u = U/(Io¢0/2n).
i critical current, i =1 /I .
c c c’ "o
Ai modulation depth, Ai = i -i ..,
c c cmax cmin
fJ fundamental Josephson frequency, fJ = /21 =

FJ/(¢0/2ﬂIOR).

(B;/Bi)¢a differential resistance at constant applied flux,
(3v/3i)y, = (3V/31)g /R.

(36/3¢a)i forward transfer function at constant bias current,
(3v/3¢a)i = (3V73¢a&/(I°R/¢O).

Sv(f) voltage ncise power spectral density, Sv(f) =

_ -27mTF
S,(F)/(I_R®_/2m), where S_(F) = 2 r"Avme at,

T
A, = lim = I(V(t)v(tn)) dt, and {} is the ensemble
T+o T 0
aw~rage.
S; low frequency voltage noise power spectral density,
S° =5 (f) for O < £ € £_.
v v J
Sj(f) circulating current noise power spectral density,
Sj(f) = SJ(F)/(IO¢O/2ﬂR).
s, low frequency circulating current noise power spectral
3

density, Sg = Sj(f) for 0 < f <€ fJ.
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correlation noise power spectral density Svj(f)
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SVJ(F)/(IO¢°/2n).

low frequency correlation noise power spectral density,

S°.

V]

S .(f) for 0 < £ € £ _,
v] J

e¢iivalent input flux noise power spectral density,

5

low frequency flux noise spectral density, S}
v

56

normalized low frequency flux noise spectral density,

¢

_ - 2 3
(f) = sv/(av/arba) = Sq,/(d’o /21110R).

(f) for 0 < £ < fJ.

=S$

/2T .
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Noise and Optimization of the dc SQUID
Claudia Denke Tesche
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Department of Physics

University of California
Berkeley, California 94720

ABSTRACT

A lumped circuit model is described for the dc SQUID. The junctions
are non-hysteretic, resistively shunted Josephson tunnel junctions.
Current-voltage (I-V) characteristics are obtained for the noise-free
case as functions of the applied flux, ¢a, SQUID inductance, L, junc-
tion critical current, Io, shunt resistance, R, and temperature, T.

The effects of asymmetry in L, Io' and R are discussed. (I-V) charac-
teristics, forward transfer functions, (3§/3¢a), and low fregquency
spectral densities for the voltage noise, SG, circulating current noise,
53, and correlation noise, SGJ, are obtained at experimentally interest-
ing values of the SQUID parameters in the presence of Johnson noise in
the resistive shunts. The flux spectral density, 55 = S;/(BG/3¢a)2, and
energy spectral 3density, S$/2L, are determined from the computed values
of SG and (3§/3¢a). The resolution of the SQUID with ac flux modulation
is discussed. The flux resolution calculated for the dc SQUID of

3
¢, approximately one

Clarke, Goubau, and Ketchen is 1.6 x 10-5 ¢o Hz
half the experimental value.

Optimization of the isolated SQUID energy resolution is discussed.
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1]

The optimal resolution is obtained for f = 2LI°/¢o 1 and BC =

\
—

, B.=11is

2
2nI°R C/¢° £ 1. The energy spectral density for 8 = c

S;/ZL = 4kBT(ﬂLC)%. Thus the energy speciral density is proportional
to the junction area. In the limit of small L, C, and/or T (i.e.
2kBT(HLC)H < hwith 8 =1, Bc = 1) the dominant noise source is the
shot noise in the Josephson junctions, and Sg/ZL ~ h/2, where h is
Planck's constant.

A model is developed for the SQUID coupled tc an input Li—Ri-Ci
circuit through a mutual inductance, Mi = aiLLi.~ The SQUID voltage
noise at the output in the presence of the input circuit is computed
as a function of the circuit and SQUID parameters, and the noise figures
SG. SS and SGJ. The model is used to compute the noise temperature of
the dec SQUID voltage preamplifier and the energy resolution of the
dc SQUID magnetometer in the tuned and untuned case.

The untuned noise temperature optimized at frequency wo for a
Johnson noise limited SQUID with B =1, I = 2‘nkBT/Io¢o = 0.05 is

Pt _

1
L OPt 5 = 8(r, Pt/ ) (L/R)T/a%, where R.OPY = 4 L. (141.50%40.70%) %
(o] 1 1 1 o1

N
. L . 2 , opt ~
In the shot noise limited SQUID with a” = 1/2, ’1‘N (wo) =17 h wo/kB.

1
. . . o opt -
For the Johnson noise limited tuned preamplifier, TN (wo) g
2
2.8(w L/R)T for ROP0.350 w L, and (1/w_c%P%)~(1+30°/4)w L. In the
[} 1 o1 oi oi
shot noise limit, 'I‘NoPt(wo) & 2.2hwo/kB. Both the tuned and untuned
shot noise limited optimal noise temperatures are consistent with the
uncertainty principle limit for the noise temperature of a linear
1ifi T > k.
amplifier, N(wo) > hwo/ B
The minimum resolvable energy density, u e in the input coil of a

tuned and untuned magnetometer is computed as a tunction of the SQUID



—x-
noise figures and input circuit parameters. For the tuned magnetometer,
the mean squared voltage signal developed across the coil inductance Lp
satisfies (Ef) = 2w§uoLp 2 4kBRiB(Ti+Tﬁ)' where Ri is the inout circuit
resistance at temperature Ti' Tﬁ is the noise temperature of the SQUID
preamplifier, and B is the bandwidth. For most applications, Tﬁ v
(woL/R)T < Ti over a wide range of values of the input circuit para-
meters. The SQUID noise temperature approaches the input circuit
temperature in the high Q, high frequency limit. For Q = 1000, wo =

1

6 . -
x S .= .= * = .
2 10" rad B Ll Lp and Tl T, TN(wO) T

i In the low temperature

limit, Ti + 0 and T *+ 0, the energy resolution is limited by the shot
2

i i I W > BYhw .

noise sources in the 3SQUID, 2 ouoLp (4kBRlB) o/kB
For the untuned magnetometer with R, = 0, the optimal energy
resolution for the Johnson noise limited SQUID with B = 1.0, T = 0.05,
and o = 1/2 is Pt~ ok T(B/F)) ~ 5 X 1073%(B/1Hz)J, where the Joseph~
son freguency FJ ~ R/10L. The optimal value of the input coil to the
. . opt . . L.

SQUID for this case is Li = 0.72 Lp. In the shot ncise limit,

wOPt = 11hs.
o



£ INTRODUCTION

The dc SQUID1 {Superconducting QUantum Interference Device) con-
sists of a superconducting ring of inductance L interrupted by two
Josephson junctions2 each with critical curxent Io' The SQUID is biased
at a constant current I and develops a voltage V which is a periodic
function of the applied flux ¢a threading the ring. Thus the dc SQUID
is a device w! ‘ch transforms an input signal in the form of a change
in magnetic flux, A¢a, into an output signal in the foxm of a chancge in
voltage, AV.

The performance of the Josephson tunnel junction SQUIDs presently
useda'4 is limited by the Johnson noise generated in the resistive
shunts used to eliminate hysteresis in the I-V characteristics. For
the case of the isolated dc SQUID used directly as a magnetometer, the
voltage nnise produced at the output by the Johnson noise sources can
be expressed as én equivalent flux noise spectral density, S¢,at the
input. Approximate expressions3'5 for Sq> have been obtained in the
limit B = 2LIO/¢C > I and B € 1. However, most dc SQUID's are operated
with 8 & 1, for which value no detailed calculation of S¢ has been made.

In addition, the dc SQUID can be coupled to various input circuits
and used as a magnetometer, gradiometer or voltage amplifier. In many
applications the SQUID is coupled to the input circuit via a mutual
inductance Mi to an input coil of inductance Li. If the effect of the
input circuit on the voltage noise at the SQUID output is ignored, the
performance of the SQUID is characterized by the effective flux noise
spectral density, the SQUID inductance, L, and the coupling efficiency

az between the SQUID and the input coil. The appropriate figure of



merit in this case is the equivalent energy spectral density referred
to the input coil,6 s, =1L.(S /M?)/2 = S /2&2L, where M.2 = azLL..
E F IR i1 ) i i

In other applications, the SQUID can be coupled via Mi to an input
Lini or Li—Ri-Ci circuit containing a voltage source. In the small
signal 1limit (A¢a < ¢0), the output voltage change is linearly related
to the applied flux change, and thus to the input voltage change. 1In
addition, the SQUID preserves the phase of the input signal. BAs a
result, the dc SQUID plus input circuit can be characterized as a linear
amplifier.7 The appropriate figure of merit is the noise temperature
TN(w), which is a function of the SQUID parameters, the input circuit
parameters, and the signal frequency w. In this case, the input circuit
affects the SQUID voltage noise at the output. Thus both the effective
flux noise spectral density, S¢, and the circulating current noise
spectral density, SJ, which is coupled back into the input circuit via
Mi, must be knoﬁn.

Finally, the SQUID can be operated as a magnetometer. In this
case, the input circuit can be a superconducting transformer or a tuned
Li-Ri~Ci circuit. The volume of the pick-up coil is considered to be
fixed by experimental limitations (dewar size, etc.). The quantity to
be optimized is the smallest detectable mean square signal energy in
the volume of the coil. Again, the voltage spectral density at the
output is a function of the input parameters, and a model for the SQUID

plus input circuit must be developed which involves both Sq> and SJ.

Previous calculations of the behavior of the ‘isolated dc¢ SQUID have

been concerned mostly with the noise-free properties of the isolated
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SQUID in the zero voltage state. For example, the dependence of the
critical current on applied external flux has been investigated by
Jaklevic, Lambe, Silver, and Mercereau,l Zimmerman and Silver,8 Schulz-

-
DuBois,” and by De Waele and De Bruyn Ouboterlo'11 for the symmetric

SQUID, by Fulton,12 Clarke and Paterson,13 and Tsang and Van Duzer14
for the asymmetric SQUID, and by Fulton, Dunkleburger and Dynes,15 and
Tsang and Van Duzer16 for the SQUID with non-sinusoidal current-phase
relationships. A qualitative discussion of the noise-free current-
voltage characteristic for the SQUID in the small inductance limit has
been given by DeWaele and DeBruyn Ouboter,10 and by Tinkham. However,
no quantitative calculation of the flux dependence of the current-
voltage characteristics, the effective flux noise spectral density S¢,
and the circulating current noise spectral density SJ as a function of
the SQUID parameters has previously been made.

Several autﬁors have discussed the characterization of SQUIDs uced
as low noise galvanometers, preamplifiers and magnetometers. Clarke,
Tennant, ana Woody17 discuss the effective noise temperature of super-
conducting galvanometers based on the SLUG.lB'19 Radhakrishran and
Newhou':se20 generalize the definition of noise figure and noise tempera-
ture to include amplifiers with superconducting inputs. Davidson,
Newbower, and Beasley21 characterize the use of SQUIDs as narrow-band,
low-impedance, low noise temperature voltage amplifiers. They derive
an expression for the noise temperature of the SQUID amplifier in terms
of the equivalent energy spectral density, S¢/2a2L, and the time con-
stant of the input circuit determined by the source resistance and input

inductance. In general, they find low noise temperatures (TN ~ PK) can
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be obtained only for source resistances RS < 1Q. Claussen6 discusses
the sensitivity of the SQUID used as a magnetometer, ammeter and volt-—
meter. He finds the effective energy resolution, S¢/2a2L, to be the
appropriate figure of merit for the SQUID in ail three cases. In all
of the above treatments, however, the effect of the circulating current
noise, S_, cn the device performance was igncred.

The natural bandwidth of ihe dc SQUID preamplifier is determined by
the input circuit parameters and SQUID impedance. The useful bandwidth
can be extended if the SQUID is used as a null detector in a negative
feedback circuit. The effect of feedback on bandwidth has been discussed
by McWane, Neighbor, and Newbower,22 by Newbower,23 by Gifford, Webb and
Wheatl;,24 by Davidson, Newbower, and I’-easley,21 and by Claussen.6 The
auihors find that, although feedback can improve the freguency recponse
and can enromously increase the dynamic range of changes in applied
flux over which a linear response in output voltage change can be
obtained, the bandwidth for which the optimal noise temperature is
obtained is still determined by the intrinsic input circuit bandwidth.

The low noise temperatuwes computed for the SQUID voltage amplifier
are obtained only for source resistances considerably less than 19.17'21'6
This is because the SQUID responds to the flux applied through the SQUID
loop, and thus to the current flowing through the input circuit. Small
input voltages will produce the required input currents only for the
case of small source resistances. For source resistances on the order
of 182, low noise temperatures may still be obtained provided a supercon-

ducting transformer is used to match the source resistance to the optimal

17 . .
input resistance. Clarke, Tennant, and Woody describe the operation
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of a superconducting transformer used with a SLUG galvanometer.
Davidson, Newbower, and Beasley21 calculate noise temperatures < 4K for
source impedances on the order of a few ohms for a SQUID amplifier used
with a superconducting transformer. Claussen6 discusses the effect of
a superconducting transformer on the effective flux noise spectral
density of the SQUID. Again, a complete treatment would also involve
the effect of the flux transformer on the contribution of the circulat-
ing current noise spectral density to the device sensitivity.

Davidson, Newbower and Beaslay21 compare a typical SQUID preampli-
fier to the commercially available Princeton Applied Research (PAR)
model 185. They find the P4R 185 to be a broadband, high-impedance
amplifier with noise temperature N 0.6K when ideally coupled through a
transformer to a 1! source, while the SQUID amplifier is a narrower-
band low impedan;e device with noise temperature on the order of 10_6K
when ideally coupled to a 12 source.

Heffner7 derives the minimum noise temperature of arbitrary linear
amplifiers which is consistent with the uncertainty principle. Giffard25
has developed a model for the rf SQUID preamplifier which predicts a
minimum noise temperature in agreement with Heffner's results. A
similar restriction on the dc SQUID preamplifier noise temperature must
also be derived.

In this thesis, we develop a lumped circuit model for the isolated
dc SQUID. We derive a set of coupled non-linear differential equations
for the output voltage and circulating current as functions of time.
Next, we develop a computer algorithm to compute the time-averaged SQUID

I-V characteristics and noise spectral densities. The noise source
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explicitly included in the SQUID equations is the Johnson noise in the
shunt resistances. For certain values of the SQUID parameters, the

Johnson noise sources are dominated by the shot noise in the Josephson

26,27 . . .
! We approximate the noise figures for the SQUID in this

2

junctions.
case. At low frequencies (F <10 Hz), 1/F noise is also generated in
the SQUID junctions.29 We do not include this noise source explicitly
in the calculation. Finally, we develop a model for the dc SQUID volt-
age preamplifier and magnetometer and compute the corresponding noise
temperature and energy resolution as functions of the SQUID and input
circuit parameters.

In section II we develiop the lumped circuit model for the isolated

30,31

dc SQUID. The resistively shunted junction model is used to

_____ b

describe the two non-hystcretic Josephison tunncl junctions. The bacgin
SQUID equations are derived for the general case of the completely
asymmetric SQUIﬁ and cast into a convenient dimensionless form.

In section III the SQUID characteristics in the absence of noise
are discussed. After briefly reviewing the relationship between criti-
cal current and applied flux as a function of the SQUID parameters, the
noise-free current-voltage characteristics for the symmetric and
asymmetric SQUID are calculated numerically.

In section IV the calculation is extended to include explicitly
the voltage noise sources associated with the shunt resistances. The
numerical techniques used to compute the noise-rounded current-voltage
characteristics and the noise power spectral densities are described in

detail. The algorithm is checked by computing I-V characteristics as a

function of the noise parameter T = ZWkBT/IOQO for the single Jjunction,
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and compared with the results obtained by Auracher32 using a similar
method, and by Ambegackar and Halperin33 using a Fokker-Planck calcula-
tion. The agreement is excellent. In addition, low freguency voltage
power spectral densities SG are computed for the single junction and
agree well with those computed by Vystavkin et al34 by another method.
A thermal activation model for the single junction noise rounded 1-v
characteristics and voltage noise spectral densities at values of the
bias current below the critical vurrent, Ic' is developed following a
treatment suggested by Kurkijarvi%sKurkijarvi and Webb,36 and Fulten.
The voltage noise spectral density predicted by the model agrees well
with the calculated results of Vystavkin et al34 and with Fulton's
activation model.37

The computer algorithm is extended to the do SQUID equations. We
compute noise-rounded current-voltage characteristics, voltage, circu-
lating current, and correlation noise spectral densities, and effective
flux noise spectral densities for experimentally interesting values of
the SQUID parameters. A thermal activation model is developed for the
dc SQUID by analogy to the single junction model for I < Ic, ¢a =
0.5 ¢°. The valuvees of SC predicted by the thermal activation model
are in good agreement with the values calculated from the computor algo-
rithm. The model is then used to compute 53 for I < IC, ¢a = 0.5,
A large increase in S; below Ic is observed.

The equivalent energy spectral density, S;/ZL, is computed as a
function of the SQUID parameters. The values obtained in the limits
B> 1 and B € 1 are compared with values obtained from approximate

expressions valid in those limits. The agreement is excellent. The
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measured value of S$/2L for the dc SQUID developed by Clarke, Goubau
and Ketchen,3 approximately 4 x 10_30 J Hz—l for 8 v 2.5, is greater by
a factor of four than the calculated value.

In section V the optimization of the SQUID equivalent energy reso-
lution for fixed coupling efficiency, a2, is discussed for the case in
which the SQUID is operated in a flux-locked loop at ¢a = 0.25 ¢0.

We show that, if the values of the SQUID inductance and capacitance are
fixed by the geometry of the SQUID, then the shunt resistance and junc-
tion critical current are determined by the two constraints Bc =
2TTIOR2C/¢o <1 ana B = 2LIO/¢o %W 1. As an example of optimization, we
consider possible improvements in the tunnel junction dc SQUID of Clarke,
Goubau, and Ketchen.3 If the inductance were lowered by a factor of 3
to 0.35 nH, and if the junction capacitance were lowered by a factor of
200, the predicted energy resolution would be Ss/ZazL V4 x 10—323H2—1
for a2 v oi/2, Tﬂis is a factor of 25 smaller than the predicted energy
resolution for the SQUID with L = 10-9 H and C = 200 pF. 1In general,

the optimal energy spectral density is fixed by the inductance and
capacitance, S;/zL = 4kBT(WLC)l/2, for the SQUID limited by Johnson
noise in the shunts. The ultimate resolution is obtained when the SQUID
noise is dominated, not by the Johnson noise in the shunts, but rather
by the shot nzise in the junctions. In this case, 55/2L =~ hf2.

In section VI a model is developed for the dc SQUID preamplifier
and dc SQUID magnetometer. The noise tempesrature of the preamplifier
is computed as a function of the freguency, SQUID parameters L and R,

SQUID noise figures SG, 53' and SGJ' and the imput circuit parameters.

The model used is compared to the model developed by Davidson, Newbower
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. 21 . R . . . , .
and Beasley involving the single noise figure SG. The optimal noise

temperature at frequency mo for the untuned preamplifier with a Johrson

noise limited SQUID with 8 = 1, I = 0.05 is T:Pt ~ a(R‘i’Pt/L/RLi)T/a2
b

where the optimal source resistance is R?pt ~ moLi(l + 1.50L2 + 0.7G4) .

The optimal noise temperature for the tuned input circuit for 8 = 1.0,

T = 0.05 is 7Pt RisCi) & 5 g (0 L/R)T where R?pt ~ 0.35 szoLi and

N
1/w Pt = 1 (1 + 30%/4). 1In the shot noise limit, T_ 2 17hw /k_ for
o1 o i N o' 'B
a2 = 1/2 in the untuned case, and TN 2 2.2hwo/kB in the tuned case. Both

relationships are consistent with the minimum noise temperature consis-
tent with the uncertainty principle as determined by Heffner,7
T 2h .
N wo/kB

The minimum resolwvable input energy density, u s in the input coil,
L , of a dc SQUID magnetometevy is computed from the model in the untuned
and tuned case. In the untuned case, the optimal Johnson noise limited

. opt . - L .
value is ug ~ 9kBT(B/FJ), and the optimal shot noise limited wvalue is
opt 2 _ .
ul v 11hB for a© = 1/2. 1In the tuned case, the mean square signal
2 s oo 2, _ 2 .
voltage { E;} satisfies {(E]) = 2w u L 2 4k_R.B(T,+T*) where R. is the
i i ocop B 1 1N i
resistance, Ti is the temperature of the input circuit, and Tﬁ is the
noise temperature of the SQUID. 1In the low temperature limit, Ti + 0
and T + 0, the SQUID noise temperature Tﬁ v 2.8 (moL/R)T + hwo/kB. Thus
the minimum value of (Ei) is determined by the SQUID shot noise sources,
(E?) 2 4k_T*R.B.
i v B'N i

Many of the results reported in this thesis have been published

previously in the literature. The isolated SQUID results appear in

references 38-40. The SQUID preamplifier and magnetometer results are

discussed in reference 41.
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I1. LUMPED CIRCUIT MODEL FOR THE DC SQUID

A. The Resistively Shunted Junction Model

The dc SQUID1 consists of a superconducting loop interrupted by
two Josephson junctions (see Fig. la). The dc SQUIDs presently used
are thin film devices. The behavior of the Josephson tunnel junctions
used is adequately described by the resistively shunted junction model
developed by Stewart30 and McCumber31. Many of the features of the
single junction behavior appear in the behavior of the SQUID. Thus
we discuss this model in some detail.

The tunnel junction is modeled by an ideal Josephson junction
with critical current Io in parallel with a resistance R and capaci-
tance C (see Fig. 1lb). The total current through the combination depends
on the quantum mechanical phase 8 across the junction according to

I,= Iosiné. (2.1)

The voltage across the junction, V, is given by

- - as
V=ogo-or= (¢o/2ﬂ) ac (2.2)

The total current through the combination satisfies

2
_ . as a“s
I-= Ios.mé + (&_/2TR) g + (CO /2m) ——dtz (2.3)

It is convenient to use the following dimensionless units:
voltage in units of IoR' current in units of Io, flux in units of ¢o,
and time O in units of ¢o/2wI°R. The dimensionless quantities are
expressed in lower case letters. The reduced capacitance is

2
Bc = (ZﬂIOR /¢°)C. Eg. (2.3) then becomes
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L/2
/ R L/2

VI =
(a)
¥ [
o
|
C == x I, §R Y

YI
(b)

XBL78I1-6190

Fig. 1: (a) Lumped circuit model for the symmetric dc SQUID, and
(b) resistively shunted junction model for the Josephson
junction.
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4§ a8 _ -du
B — + = (] (2.4)
cd92 ao N
where
u = U/(Io¢o/2ﬂ) = -cosf -~ i {2.5)

corresponds to a potential energy for the junction.

Eq. (2.4) has the same form as the equation of motion of a par-
ticle moving in a viscous medium under the influence of gravity aown
a washboard surface (see J. R. Waldram's review of the Josephson ef-
fects in weakly coupled superconductors42). The mass of the particle
corresponds to the reduced capacitance Bc, and the velocity of the
particle to the voltage across the junction. For the case i = 0, the
washboard tilt is zero. The particle velocity then damps to zero and
the particle settles into a minimum at § = nT (n = 0, +1, +2..,).
This corresponds to zero voltage across the junction. As the bias
current increases, the corresponding tilt of the washboard increases
until, at some critical tilt angle corresponding to a critical current
ic’ the particle is no longer stationary, but moves freely down the
washboard. The periodic particle velocity corresponds to an oscil-
lating voltage developed across the junction. For the case Bc =40,
the instantaneous voltage v(0) is given by

v(0) = 32/(i + cos(vO)), (2.6)
where Vv is the time-averaged voltage4

7= 2 - Dk (2.7)
For the case Q:# 0, the particle has inextia. If the particle is in-

itially at rest, then it remains at rest for all values of tilt cor-
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responding to i < ic. If the particle is given an initial velocity,
then it can sustain motion down the board over a range of tilt angles
(i < ic) depending on the value of Bc. Thus the corresponding i - v
characteristics are hysteretic., For most applications of the dc SQUID
hysteresis in the junctions results in a loss of sensitivity and is
undesirable. This places a constraint on the parameter Bc. For
R . . < . 30,31
Bc <1, the effects of hystersis on the junctions are negligible .

In the equations which follow, we will take Bc = 0.

B. The Thermal Activation Model

The main sources of noise in the tunnel junctions are the Johnson
noise generated in the resistive shunt and the shot noise generated
by the interaction of thc current through the junction and the elec-
tromagnetic field in the junction cavity. The Johnson noise is the
domi. ant noise source for the junctions used in the dc SQUIDs fabri-
cated at this time. The Johnson noise is modeled by a voltage noise

source Vv, in series with the shunt resistor. Eq. (2.4) then becomes

N
2
Bcé._s. + d.% = -—g%l- + VN’ (2.7)
agc “
where the potential u = -cosbd - i§. The noise voltage Yy is a func-

tion of the temperature T. In the analogous problem of a particle on
a washboard surface, vN corresponds to a random force acting on the
particle. The particle undergoes Brownian motion in the force field,
-(3u/96), oscillating within the washboard valleys and also making tran-
sitions between valleys. The average particle velocity, (d5/48),

corresponds to the time-average voltage v develuped across the junc-
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tion.

- .35 . ) 36 37

Kurkijarvi™, Kurkijarvi and Webb™ , and Fulton have developed

a thermal activation model to describe the behavior of the junction
for bias currents i < ic. In terms of the analogy to a particle on
a washboard, the transition between w=lls is modeled by the thermally
activated classical escape of a swarm of particles from a potential
valley over a potential barrier. In so doing, they igunore the contri-
bution of the motion of the particle within the well to the time-aver-

. 44 . . , . 45
aged velocity. Chandrasekhar following a discussion by Kramers ~,
has given an expression for the escape probability in terms of the
curvature of the potential well and barrier, (32u/362)min and
(32u/862)max, the barrier height, Au, the dimensionless thermal en-
ergy, I = 2ﬂkBT/I°¢o, and the inertia, which corresponds to the re-
duced capacitance Bc' In the limit B_ < 1 and Au >> T, the frequency

with which a particle switches from one well to the next is given by

1 82u 5 Bzu 3
.= 2-”('—3.6_2”!“1‘“(ladzl)max exp (-Au/T). (2.8)

At the potential minimum and maximum for the single junction, we have
u/d8 = siné - i = 0, IDzu/aézl =1 - iZ, and Au = 2/1 - i2 - 2i arc
cos i, where the bias current i < 1.

The escape of the particle from one well to the next corresponds
to the generation of a voltage pulse across the junction. The area of

the pulse, a, is

wells
a=/ vd® = 2m, (2.9)
well,

(in dimensioned units A = Qo). The time averaged voltage for i < 1 is
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v = af_ = (1 - iz)'”“exp((z/r)(-m + i arc cos i)}. (2.10)
This approximation ignores the possibility that the voltage pulses ov-
erlap, and thus is accurate provided the pulse duaration T Vv 27 << l/fs'
The low frequency voltage noise spectral density, 53, can ke approxi-
mated as follows37. The average number of pulses in unit time is fq.
The root mean square fluctuation in the number of pulses in unit time
is /?;: The area of each pulse is a = 27M. Thus the mean square voltage
in a unit bandwidth is (vz) = a2f and the voltage noise spectral den-
sity at freguencies f satisfying 0 < f < fs

sotf) = a’f = 2mv . (2.10)

Fulton37, following the model described by K_irkijarvi35 uses a
slightly different expression for the switching frequency fs' He takes
Au = 1.88(1 - 1) 7% ana thus

v, = exp(-1.88(1 - 1%/ (2.11)
The voltage noise power spectral density is again given by S: = 21v.

Ivanchenko and Zil'berman46 and Ambegaokar ané Halperin47 have
calculated the i - v characteristics directly for all values oi bias
current using a Fokker-Planck technique. Their results are compared
with Fulton's thermal activation results and our therﬁal activation
results in Fig. 2a. 1In addition, voltage noise power spectral densi-

4 . .
Their results are

ties have been computed by Vystavkin, et a1.3
compared with the thermal activation models in Fig. 2b. Notice that
both thermal activation models give S: @ v. The agreement is adequate

in both cases. We shall generalize our thermal activation model to

the dc SQUID in section IV.S.
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C. Equations for the dc SQUID

We now derive the equations for the lumped circuit model of the
dc SQUID. We consider the general case of a completely asymmetric
SQUID (see Fig. 3a). The critical currents of the two junctions are
(1 - oL)I0 and (1 + a)Io (lu| < 1). The shunt resistances are
R/(1 - p} and R/(1 + p) (|p| < 1). The self inductances of the two
arms are Ll and L2, the mutual inductance between the arms is M, and
the ring inductance is L. The constant bias currxent is I, and the
time-dependent currents in each are Il(t) and Iz(t). Thus

I-= Il + 12. (2.12)
We define the circulating current J(t) to be

J = (I2 - Il)/2. (2.13)

We assume that the flux threading each junction is always much

less than a flux quantum, ¢o' and that the currents flowing through

he junctions obey the Josephson current-phase relation. The currents

¢t

Il(t) and Izlt) are related to the voltages Vl(t) and Vz(t) and phase
differences Sl(t) and Gz(t) across the junctions by

I1 = (1 - OL)Io sin(S1 + (1 - p)(Vl - Nl)/R, (2.14)

and

I, = (1 + oz)IO sin62 + (1 + p)(V2 - V. . )/R. (2.15)

2 N2

Here, V. and VN are the t:ime-dependent Johnson noise voltages in

N1 2

series with the shunt resistours. The phase differences develop in
time according to the voltage-frequency relations
dﬁl/dt = (2e/h)Vl, (2.16)

and
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d62/dt = (2e/M)v,, (2.17)
The total voltage V developed across the SQUID is

v = vl + leIl/dt + MdIz/dt (2.18)

v = v2 + L2dI2/dt + MdIl/dt. (2.19)

The phase differences 61 and 62 are related by8

61 - 62 = 2H¢T/¢o, (2.20)

where ¢T is the total flux threading the superconducting ring. The
total flux is the sum of the individual fluxes ¢l and ¢2 produced by
the currents I1 and I2 and the externally applied quasistatic flux,
¢a. We can restrict ¢a to the range 0 < ¢a < ¢o without loss of gen-
erality since all SQUID responses are periodic in ¢a with period ¢o.
The fluxes ¢l and ¢2 are proportional to the currents Il and 12. De-
fining £1 = - @1/1l and £2 = + ¢2/12 we can easily show that
£l +L, = L; we take £, = (1 - mL/2 and L, =1 +nL/2 (In] s .
The total flux thus becomes

@T = ¢a + LJ + NnLI/2, (2.21)
where we have used Egs. (2.12) and (2.13). The geometric quantities
5t Ll' £2, and M are related in the following way. Suppose
that in some time-dependent mode dIl/dt # 0 and dIz/dt = 0. The in-

L, Ly, L

ductive voltage drop around the entire loop (neglecting any contribu-
tions from the junctions or shunts! is V = leil/dT - MdIl/dT. The
rate of change of flux in the ring yields V = £1dIl/dt (again ignoring
any flux contributions from the junctions or shunts). Hence

fl = Ll -M, and, similarly, £2 = L2 - M. Using these expressions for



~-20-

M and the fact that dJ/dt = - dIl/dt = dIz/dt (since I is constant),
we can reduce Egs. (2.18) and (2.19) to

L ag

v = Vl - {1 -n) 3 ac’ (2.22)
and
L 4J
V-—V2+ (1 + n) RET (2.23)

These equations include the effect of the mutual inductance even
though M does not appear explicitly.
The final set of equations for J and V in terms of the bias cur-

rent I, the applied flux ®a, the noise voltages VN and V. and the

1 N2’
SQUID parameters Io, R, L, &, p, and n are obtained@ from Egs. (2.12) -

1 12, Vl, and V2. As in the single junction

(2.23) by eliminating I
model, we use the following dimensionless units: voltage in units of
IoR' current in units of IO, flux in units of ¢O, and time 8 in units
of ®0/2ﬂIOR. Tﬁe dimensionless quantities are expressed in lower case
letters. We define B = 2LIO/¢O. Hence from Egs. (2.20) and (2.21}:

j = (61 - 62 - 2ﬂ®a)/ﬂ6 - ni/2; (2.24)

from Egs. (2.16) - (2.23):

_ 1+ EEL J-m ffg_
B 2 do 2 de -’ (2.25)
and from Egs. (2.12) to (2.17):
dél i/2 -3 - (1 - sin(Sl
Tﬁf = 1-7p + le' (2.26)
and
d62 i/2 +3 - (1 +q) sinG2
—d—6—= 17 ) + VNZ. (2-27)
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Equations (2.24)-(2.27) can also be used to describe the behavior
of the SQUID shown in Fig. 3(b). This confiquration is used in the
SLUG48, and the thin film gradiometer4. In this case, the applied flux
is coupled to the SQUID by means of a signal current, Is~ The current
Is generates a current Is/2 in the inductances Ll and L2 and in L3 and
L, together with a circulating current Iy These currents are super-
imposed on the currents I/2 and J produced by the bias current, I.

, and L  are

Hence the currents through 1L L2, L

1’ 3 4
I, =1/2-3-1/2-3, (2.28)
I,=1/2+3+ Is/2 +J_. (2.29)
I3 =I/2-J+ IS/2 = I (2.30)
and
14 =I/2+ J - 15/2 + JS. (2.31)

The bias current I is constant in time; we assume that Is is quasi-
static. Thus dIl/dt = dI3/dt = = dI4/dt = —dIz/dt = - dJT/dt, where
JT=J+JS.

Since only the time dependent circulating currents J and Js de-

termine the voltages across the inductances, Egs. (2.22) and (2.23)

become

V=V, - -/ @ssae, (2.32)
and

vV = V2 + (1 + n)(L/Z)(dJT/dt). (2.33)

The parameter N describes the imbalance between the inductance of the

and the arm containing L_ and L

9 a° Equations

arm containing Ll and L3,

(2.14)-(2.17) for Vi v 51, and 62 are unchanged. Equation (2.21)

2I
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for the total flux $_ is modified by IS. We define a parameter §

analogous to 1N that describes the imbalance between the inductance of

the arm containing Ll and L2, and the arm containing L3 and L4; the
signal flux is then ¢s =LJ_ + ELIS/Z. Hence
¢T = LI, + nLI/2 + ELIS/Z. (2.34)

From Egs. (2.28)-(2.34) with Egs. (2.14)-(2.17), the basic equa-

tions in dimensionless parameters are:

ip = (61 - 8,)/m8 - ni/2 - £i_/2, (2.35)
ds dasé
_ 1 +m "1 (1 -m "2
v = 3 30 + 5 38 (2.36)
&= i/2 = (1/2 + §g) - (1 - o) sind, . -
ae (1 - o N1’ :
EEZ ~ i/2 + (is/2 + jT) - (1 + a) sind2 . 2381
o - X+ p) N2* .

Equations (2.35)~(2.38) have the same form as Egs. (2.24)-(2.27) if
we identify j with (j, + i_/2) and ¢a with -(1 - £)B i,/4. With these
substitutions, all of the enusing results can be applied to SQUIDs in
this configuration. 1In particular, the critical current and voltage
across the SQUID are periodic in the signal current with period

(1 - E)LIS/Z.
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III. SQUID CHARACTERISTICS IN THE ABSENCE OF NOISE

In this section we discuss the behavior of the SQUID in the absence
of noise. We thus set Va1 = Va2 = 0 in Egs. {2.26) and (2.27).

A. Case I: v =20

Consider first the case in which the bias current i is sufficiently
low that no voltage is produced across the SQUID. The largest such
current, ic' is a function of a, B, n, and ¢a. Although curves of
ic(¢a) have appeared previously in the literature,g-16 for future ref-
erence, we include here plots of iC vS. ¢a for various values of @, B,

and n. For v = 0, we can set the time derivatives in Egs. (2.24)-

(2.27) egual to zero to obtain

i=(1-m sin(S1 + (1 + o) sin(S2 , (3.1)

2j = =(1 - o sin(S1 + (1 + @) sin(S2 , (3.2)
and

8, =6 - 2mp_ - mBj - mBNi/2 . (3.3)

Egs. (3.1) to (3.3) are independent of the shunt imbalance, p, as we
expect for v = 0. We compute the variation of iC with ¢a by numerically
solving these equations.*

The procedure used to calculate ic(¢a) is as follows. By combining
Egs. (3.1)-(3.3) we eliminate j, and express 52 as a function of 61
and i:

62 = 61 - 2v¢a - m8i(l + m)/2 + TB(1 - ) sinal . (3.4)

We define a function of i and 61 to be

F(i,Gl) =i-(1-a sin('S1 - {1 + o) sin('S2 . (3.5)

*An elegant_alternative method of solution has been given by Tsang and
Van Duzer.



-24-

Egq. (3.1) is satisfied when F(i,Gl) = 0. Plots of F(i,Gl) vs. 61 for
fixed i generate a family of continuous curves each labeled by the value
of i. Since F is also continuous in i, the curve corresponding to the

greatest value of i that still has a zero (i.e. F(i,51) = 0 for some

61) will necessarily satisfy 3F/361 = 0 at that point. Hence,
BF/Bﬁl = —(1 - 0) cos(Sl - (1 + )1 + mR(L -a)cosél] Cosﬁ2 . (3.8)

Equation (3.5) with F = 0 and Eq. (3.6) with BF/BGl = 0 allow us to

express 61 in terms of i:

2y
(1 - a) cos(Sl

. (3.7)

. _ . 2 _
i= (1 o) s:Ln(Sl +4(1 + a) T3 7801 - o) COSdl

Now both F and 8F/361 can be expressed as funrction of a single variable

61. We search for the simultaneous zeros of F and BF/BBl with respect

to 61 using a Newton-Raphson search routine in one variable only, and
thus determine the maximum supercurrent, ic' as a function of o, B, n,
and ¢a.

Curves of iC vSs. ¢a for variable o and n with B8 = 1.0 appear in
Figs. 4(a) and 4(b) respectively. Equations (3,1)-(3.3) imply that ic
attains the maximum value, 2.0, for some ¢a whatever the values of «,
n, and B. With 61 = 62 = 1m/2, we have j = 0. and ¢a =-B{o + M/2 at
that point. The values of ic at other values of ¢a depend on N and o

in the following manner. When N = 0, the modulation depth Aic = icmax

- i falls to zero as @ is increased from Q0 to 1. In addition, the

cmin’

value of ¢a at which icmin occurs shifts away from 0.5 as the SQUID

asymmetry increases. In the limit lal =1, iC = 2 for all ¢a. It
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should be noted that in the large B limit, Aic is much less sensitive
to the value of 0: Zimmerman and Silver8 demonstrated experimentally
that Aic becomes significantly reduced only when the critical current
of one of the junctions fall below Aic(a = 0).

The modulation Aic is independent of the value of N, as can be seen
from Fig. 4(b). For o = 0, the value of ¢a at iCmin is shifted from
¢a = 0.5 for n = 0 tc ¢a = 0.5 - Bnicmin/4 for n # 0. 1In fact, the
entire iC vs. ¢a curve for arbitrary N can be readily generated from the
corresponding N = 0 curve. A particular value of ic at ¢Z forn =0
will occur at ¢2 = ¢: - Bnic/4 for n # G. Since the amount by which
¢2 is shifted increases with ic, the N # 0 curves appear skewed. To
see this, suppose the set of values(vo, jo, ¢:) satisfy Egs. (2.24)-
(2.27) for arbitrary &, P, B, and i with n = 0. We want to show that
the set(vn, jn, ¢2) for n # 0 can be shifted so that the shifted values
satisfy the n = 0 equations, and hence have the n = 0 time-averaged

values. Now the set (vn, jn, ¢2) satisfy Eqs. (2.24}-(2.27) with n # O.

Rewriting these equations, we have

3" = (8, - 8,)/m8 - (9] - mBi/4)2/B , (3.8)
and v - (46 /d6 - 48,/a0)n/2 = (d§ /dB + d6,/d8)/2 . (3.9)
Since both ¢a and i are independent of time, we have

ngaj"/ae = d8,/d6 - d6,/d6 . (3.10)

Hence

v - (mgs2ydiVzae = (46,/a6 + 36,/d6)/2 . (3.11)

If we take v° = L (ﬂnB/Z)djn/dG, jS = jn, and ¢§ = ¢2 ~ mMBi/4 we see
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that the shifted set (v°, j°, qa:) satisfy Eqs. {2.24)-(2.27) for n = 0.

Hence the time-averaged values v® and aghevaluated at ¢: will equal the

original average values v° and jo at ¢: = ¢§. But jS = jn, and v° = N

~ (ﬂnB/Z)djn/dt = ;ﬁ: Hence the values ;ﬁ

and jn at some ¢2 are just
) el n . . .
the values of v and j at ¢a - nBi/4. Consequently, an imbalance n in
the SQUID inductance appears as an effective external flux - nfli/4 for
fixed bias current i.
Curves of ic vs. ¢a for various values of B with a =n = 0 are
. . - R 4
plotted in Fig. 5. Similar curves have been published elsewhere.
Notice the cusp in the curve at ¢ = 0.5. Let AT =21 - I (9 /2)
a c o c o
be the modulation depth in dimensioned units. We display the dependence
of AIC on the parameters L and Io in Fig. 6. For variable L and fixed
I , the modulation depth is expressed in dimensionless units as
(AIC/ZIO), and plotted vs. B = L(ZIO/¢O) in Fig. 6(a). As L is reduced
below a value corresponding to B = 0.1, AIC approaches the limit 210
independent of L. Hence decreasing the SQUID inductance below 0.1
¢ /21 has little effect on AI .
o o] c
The dependence of AIc on Io for fixed SQUID inductance L is plotted
in Fig. 6(b). Here, the modulation depth is plotted as the dimension-
= . B= $). F 2 40, AT_~ ¢ /L.
less parameter AIc/(¢0/L) vs. B IO(ZL/ o) or B c 0/
Thus the modulation depth approaches a limit independent of Io for
sufficiently large values of Io. The experimental points shown were

obtained by Clarke and Paterson using a SQUID with SNS junctions. The

agreement is excellent.
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B. Case II: v > 0

When the SQUID is biased at a constant current i > ic, the circu-
lating current j and voltage v oscillate in time. We integrate Egs.
(2.24) to (2.27) stepwise in time to determine the dependence of v(8)
and j(8) on o, B, M, p, and ¢a. The initial conditions are cnosen to
minimize tlie transient response of the SQUID. The results shown for
v(0) and j(0) are taken after several oscillations, and thus reflecct
the steady state behavior corresponding to the state of least energy of
the SQUID. Fig. 7 shows v(0) and j(O) vs. time for several values of the
SQUID parameters. The period of oscillation for v(8) is T = 21m/v in
all cases, where v is the time-averaged voltage. For the special case
of a completely symmetric SQUID (00 =0 = p = 0} at ¢a =0, 3{B) = o,

For the symmetric SQUID at ¢a = 0.5, j(B) oscillates symmetrically about
zero with period T/2. For all other cases, the current j(B) also oscil-
lates with the period T of the voltage oscillations. For bias currents
very near ic' v(D) and j(P) exhibit sharp spikes, indicating the pres-
ence of many higher harmonics of the fundamental frequency. As i is
increased, v(9) and j(9) become progressively wiore sinuscidal. This
behavior is very similar to that observed in single junctions.

The curves of voltage vs. time can be averaged over a complete
cycle to yield i-v characteristics as functions of the various SQUID
parameters. In Fig. 8(a) we plot i-v characteristics for the symmetric
SQUID with B = 1.0 for several values of ¢a. The effect of changing B
on the i-v characteristics for ¢a = 0.5 is seen in Fig. 8{(b). As i
increases, the characteristics approach the equivalent single Jjunction

curve (represented in Fig. 8(a) as ¢a = 0, and in Fig. 8(b) as B Vv =),
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Hence the SQUID voltage becomes essentially independant of the applied
flux, ¢a' for large values of i (i 2 4.0). At lower vaiues of i, the
presence of instantaneous circulating currents through the junctions
for ¢a # 0 produces an increase in v over the single junction value.

The dependence of the average v and average circulating current 5
on ¢a for the symmetric SQUID for various values of B at i = 2.1 is
shown in Fig. 9. We see that j = 0 for ¢, = 0 and 0.5 only.

The dependence of the i-v characteristics and the curves of 5 vs.
¢a and v vs. ¢a on the degree of SQUID asymmetry is shown in Fig. 10
for 8 = 1. wNotice that the discontinuity in slope in the ic vs. ¢a
curvas is not present in the v vs. ¢a curves. Consider first the family
of curves [Figs. 10(a)-(c)] for M # 0. The curves of j and Vv vs. ¢a
with N # O are found by shifting the curves for N = 0 by flux - nBi/4
as discussed in section 3A. However, since the shift is proportional
to i, the i-v characteristics for N # 0 cannot be generated by a simple
shift of the N = 0 characteristics.

The i~V characteristics for ¢a = 0.5, and curves of j and v vs. ¢a
for i = 2.1 are plotted in Fig. 10{(d)-(f) for several values of 0, the
critical current imbalance. As |a] + 1, the i-v characteristic becomes
independent of ¢a' and approaches the single junction charactexistic.
This behavior can also be seen in v vs. ¢a [Fig. 10(f)). 1In addition,
as |a| +1, 5 increases for all values of ¢a.

The curves in Fig. 10(g)-{(i) for various values of p show the ef-
fects of an imbalance in the shunt resistances. For ¢a = 0.5, the i-v
characteristics are relatively independent of p. This insensitivity to

p is reflected in the v vs. ¢a curves. However, the curves of 5 vs. ¢a
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are relatively sensitive to the value of P; in the limit of large i, j
approaches ip/2.

C. Discussion

We conclude that the behavior of the dc SQUID is relatively insen-
sitive to quite large asit.metries in the inductance of the two arms,
in the critical currents, or in shunt resistances of the two junctions,
provided that neither critical current falls below Aic(a = 0). Conse-
quantly, it appears that near-optimum performance can be achieved with

a wide range of values of N, o, and p. In the remainder of the thesis

we will be concerned only with the symmetric case n = a = p = 0.
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IV. SQUID CHARACTERISTICS IN THE PRESENCE OF NOISE

In this section we discuss the behavior of the SQUID in the pre-
sence of Johnson noise generated in the resistive shunts. We first
discuss our numerical techniques. BAs a check on these techniques, we
show that our results for the noise-rounded i-v characteristics and
voltage noise spectral densities for a single shunted junction are in

32,33,34,37. We then

good agreement with work previously published
compute the i-v characteristics, voltage noise spectral density, cur-
rent noise spectral density, correlation noise spectral density, and

flux resolution of the SQUID as functions of the relevant parameters.

A. Numerical Technigques

We assume that the Johnson noise voltages across the external
shunt resistances dominate any other source of noise in the SQUID, for

6’27, or thermal fluctuations in

example, shet noise in the junctions2
the critical currentzg. The voltage noise sources le and Vi in Egs.
(2.24)-(2.27) are then uncorrelated, each having a white voltage spec-
tral density, Sg = 4kBTR, or, in dimensionless units, 55 = 4T, where34
T = 2ﬁkBT/IO¢O. We approximate the random voltages vN(e) by trains of
voltage pulses each of duration AO and random amplitude v - We have
used two different techniques to generate the V- In Method I we gen-
erate a pseudo-random set of Gaussian distributed Vi We then inte-
grate Eqs. (2.24)-(2.27) using a simple integration routine. The re-
sultant v(8) is used to calculate noise-rounded i-v characteristics.

Unfortunately, as we shall discuss, the calculation of spectral den-

sities from these v(B0) requires large amounts of computer time. 1In
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Method II we use an approximation for the Vk that reduces significantly
the computation time for the spectral densities.

Method I. We use a pseudo-random number generator to generate a
Gaussian~distributed set v of zero mean with (vﬁ) = 2I'/AB6. The com-
puted power spectrum of the voltage pulses averaged over many sets Vi

is white and tends to a constant, 4T, as required. Two independent
trains of voltage pulses are used to approximate Vi and Va2 in Egs.
(2.24)-(2.27). We integrate the phases 61(6) and 62(6) using an
iterative scheme 6(6 + AB) = &§(6) + AD 46/d6. The value of AB is chosen
so that AB d8/d® <€ 2m. The noise-rounded i-v characteristics labeled
Method I in Figs. 13(a) and 14(a) and the transfer functions in Fig. 15
were generated by time-averaging v{0) computed in this way. We estimate
that the results are accurate to * 5%.

Spectral densities, Sv' Sj' and Svj' can be calculated directly
from the v(8) ana j(8) generated by Method I. For example, N values of
v(0) at equal time steps AB can be used to calculate Sv at frequency
intervals of §f = 1/NAB. For the case of a single shunt resistance
(iC = 0), the values of v(f) are just the vy and the spectral density
(averaged over many sets of Vk) tends to 4 as required. We shall be
interested in computing spectral densities for the single junction and
the SQUID from values of v(B) sampled at time intervals corresponding
to nA8 (n is an integer). In those cases, the averaged spectral density
for a single shunt resistance is white with a magnitude n4l'. The addi-
tional factor n is a result of the normalization of the vk. For Vi
defined over time steps A8, (vi) = 2T/A8, while for Vi defined over

nAg, (Vi) = 2'/nAB. Hence generating v, over time steps AB and sampling



-39-

the resultant v(6) over time steps nA8 increases the spectral density by
a factor n. It is importan* to notice that this simple relationship

will not hold in general for the case of the single shunted junction or
SQUID, since in the limit ' + O those spectral densities must be inde-
pendent of n. Hence to obtain results for Sv that are consistent in both
the noise~dominated and noise-free limits, we must take n = 1.

The restriction n = 1 limits our ability to calculate spectral
densities efficiently from v(8) and j(8) generated by Method I. To see
this, we briefly discuss the general behavior of the spectral densities
for i # 0, T # 0. The spectral densities contain noise-broadened peaks
at the fundamental Josephson frequency fJ = v/27 and its harmonics. We
are interested in computing the low frequency spectral densities, S;,
s¢, and S;., at frequencies well below fJ, where the spectral densities
are white. As the bias current, i, is lowered towards ic the harmonics
become more impoftant, and, as ['(T) is increased from zero, the broaden-
ing increases. Thus, for i v ic' and fcr experimentally interesting
values of T, Sv’ S_ and S must be computed for frequencies well above

J vJ

and well below fJ. However, the lowest frequency is §f = 1/NAB, where

A6 ~ 10'4/fJ. Thus N » 107 (for example, for i v i_and T % 0.05,

N 106), and the cecmputation cf a single spectral density is very time
consuming. In addition, many spectral densities (typically 40) must be
averaged together to obtain accurate results. We thus use an alternative
method to generate Vi i this method significantly reduces the computation

time for spectral densities at experimentally relevant values of i and

r.
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Method II. We generate values of the Fourier transform, ;k' of the
Johnson noise voltages at N equal frequency intervals §f. The
interval 8f is fixed by the requirement §f < fJ, and N is fixed by the
requirement NSf > £,. The actual values of N and Gf!;re determined
empirically by computing low frequency spectral densities S; for the
SQUID for variable N and §6f. N is increased and O6f is decreased until
S; becomes independent of N and 8f. Typically, N = 512 and 6f = 0.01
fJ. Our values ;k approximate the Johnson noise in the following way.
The Fourier transform of a set of Gaussian distributed noise voltages,
Vi, is a set of complex numbers with Gaussian distributed amplitudes and
uniformly distributed phases.51 We approximate the FPourier transform
of the noise pulses by a set of complex numbers with constant amplitude
and uniformly distributed phases. The amplitude of ;k is fixed by the
requirement (vi) = 2I'N§f, and the random phases are generated by a
pseudo-random nuﬁber generator with uniform distribution over ({0, 2T}.
We 1iind that the voltage pulse amplitudes, T generated in this way are
Gaussian distributed. Figure 11 shows a histogram of the vy obtained
from 30 sets of ;k in this way, together with the exact Gaussian distri-
bution with (vz) = 2IN6f. The agreement between the two curves is good.
This approximation enables us to compute smooth average spectral densi-
ties for a single junction using only one set of Gk' and for the SQUID
using only a small number of sets of Gk'

The Fourier transforms of the Gk were taken as representative
values of the Johnson noise over pulse times 88 = 1/2NG6f. Since 6 was

considerably larger than the value of A8 used in Method I, we interpo-

lated between adjacent noise values. We found our results for S; ware
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independent of the details of the interpolation scheme used. Hence we
use a linear interpolation for convenience.

We found Methods I and II yielded identical noise-rounded i-v
characteristics for a single junction (section IV.B). We also computed
spectral densities of the voltage noise across a single junction for
i» ic from v(8) generated by Methods I ‘and II. The two methods yielded
spectral densities that were in good aéreement. However, whereas we
needed to average the spectral density typically 40 times using Method
I, only a single set of v, was required * _ng Method II. We also com-
puted spectral densities using ;k with Gaussian distributed amplitudes.
The values for S; averaged cver many trials were in agreement with those
obtained with constant amplitude V- We conclude that our approximation
scheme adequately represents the Johnson noise for our purposes.

Method II was used to compute the voltage noise spectral densikies
[Fig. 16}, the current noise spectral densities ([Fig. 17], and the cor-
relation spectral densities [Fig. 18}. Equations (2.24}-(2.27) were
integrated with interpolated noise values determined by the v, as in
the singie janction case. We checked the values of the average voltage
computed from v{8) at time intervals 66 with those ohtained by Method I,
and found good agreement. Because the SQUID invclves two indepeudent

random noise sources, we found it necessary to average the spectral

densities over typically 8 sets of Vi to achieve a satisfactory result.

We estimate that our values are accurate to % 5%.

B. Single Junction with Noise

In order to test our numerical techniques, we first applied Methods

I and II of sectionIV.A to the case of a single resistively shunted
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Josephson junction. For a junction biassd at a constant current i, the
voltage v and phase § across the junction satisfy33

v=i—sin(5+vN, (4.1)
and

as/dae = v , (4.2)
yhere Yy is the Johnson noise voltage across the shunt resistance. We
have eliminated the junction capacitance, Bc' as discussed in section II.
We integrated these equations stepwise in time for various values of
i and T. Representative plots of 6(8) and v(8) for i = 0.9 and T = 0.05
appear in Fig. 12. The phase ${9) undergoes random excursions of con-
siderably less than 2T about an equilibrium position for a period of time,
then makes a fairly sharp transition of + 27 to an equivalent equilib-
rium position. These transitions are randomly timed and, according to
Eqg. (4.2), give rise to voltage pulses during the ﬁransitions. These
voltage pulses are somewhat obscured in the plot of v vs. 6 in Fig.
12(b). The v vs. € curve appears to be dominated by the random noise
source v,  shifted by a constant voltage. This behavior is consistent
with Eq. (4.1) since the term (i -~ sin §) is approximately constant
between the transitions 6 + 6 + 2m. Nctice that, although the excursions
of § around the equilibrium positions are small compared with 2m, the
time Jerivative, d8/d6 = v, is not small compared with the amplitude of
the voltage pulses associated with the transitions in §. 1In fact, as
we decrease AQ to improve our approximation for the Johnson noise source,
v Vg © 1/AB8 increases. Since the voltage pulses associated with the

2T transitions of § have fixed 2rea 2nd dwratic~ +%~v bezome “uriced iu

the Johnson noise voltage pulses as Af decreases.
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This behavior is consistent with the thermal activation model
described in section II.A. The oscillation of the phase about the
equilibrium value corresponds to the Brownian motion of the particle
within the well. Since the well is not symmetric for i > 0 but skewed
slightly downward for increasing values of §, the average velocity
{corresponding to the average voltage) due to the motion within the well
is slightly positive. The jumps of 2T between equilibrium values of
the phase correspond to the transitions of the particle between wells.
Note that in the thermal activation model, the contribution to v and
Sv from the oscillations within the wells is neglected, and the calcula-
tion restricted to bias currents i <€ 1.

We obtained i-v characteristics by time-averaging v{8) at fixed i.
The i~v characteristics obtained using both Methods I and II to generate
v(0) are shown in Fig. 13(a). The smooth curves are from the Fokker-
Planck calculation of Ambegackar and Halperin.33 The results of the two
numerical techniques are in excellent agreement with each other, with

. 33 . .
the Fokker-Planck calculation, and with other numerical calcula-

tions.w’b2

We also computed voltage power spectral densities, Sv' from curves
of v vs. 08 using Method II. We observed that the peaks in Sv corres~
ponding to the noise-free Josephson frequency, fJ, and its harmonics
become broadened in the presence of thermal noise. As i is reduced,
the noise broadening increases in a manner that is consistent with the
results of Vystavkin et al.34 At freguencies well below fJ the power

spectrum is white. We take the value of Sv in this region to be the

low frequency spectral density S;. In Fig. 13(b) we plot the square
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(a) Current-voltage characteristics of single resistively

shunted junction in presence of noise computed with Method I

(®) , and Method II (&, O, o). So0lid curves are from Ambegaokar
. 47 . . . s

and Halperin. Dotted line is noise-~free charactericstic.

{b) Low fregquency voltage spectral density vs. average voltage

for single resistively shunted junction computed with Method

IT (A, O, o). Solid curves are from Vystavkin et al.34
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root of the normalized low freguency voltage spectral density (S\"’/lﬂ‘)l/2
vs. the noise-rounded voltage v for two values of I'. These values are
in excellent agreement with the results of Vystavkin et a134 (obtained
by another method) that are plotted as smooth curves in Fig. 13(b). By
comparing Figs. 13(a) and (b), we observe that the maxima in {3v/9i)
and in S; occur at the same value of current, i = ic' In addition, a
decrease in the maximum of (3v/9i) (for example, as a result of
increasing T) is accompanied by a decrease in the maximum of S;.

C. SQUID Characteristics in the Presence of Noise

1, SQUID Transfer Function

We now use the metheds of section IV.A to compute from Egs. (2.24)-
(2.27) the voltage v(6) and circulating current j(8) for the SQUID in
the presence of noise. BAs in section III.B, we frequently select the
value 8 = 1.0 in_calculating results, since, as we shall see later,
this value is optimum for practical SQUIDs. If we choose B = 1.0 and
L =1 nH, we find I° ~ 1 UA and for T £ 4.2 K, I £ 0.2. Noise-rounded
i-v characteristics for the symmetric SQUID are plotted in Fig. 14(a)
with ' = 0,05 and B = 1.0 for several values of ¢a' The noise-free i-v
characteristics are alsc shown. We observe that the differen
tance, (3.\.7/31)453, is a function of both i and d)a. In particular, the
maximum differential resistance decreases as ¢a increases from 0 to 0.5,
From these i-v characteristics we obtain the variation of v with ¢a
[Fig. 14(b)) for several values of i with I' = 0.05 and 8 = 1.0. The
corresponding noise-free curves are also shown. For bias currents
i 2 3, v becomes relatively independent of ¢a' while for i1, v is

=

zero for most values of ¢a. At intermediate values of i, the SQUID
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Fig. 14: (a) Current-voltage characteristics of the SQUID in presence
of noise as functions of applied flux computed with Method I
(e) , and Method II (A, J, 0). Dotted lines are noise-free
characteristics. (b) Average voltage vs. applied flux for
the SQUID as function of bias current, i, in presence of

noise with I' = 0.05 (solid lines). Dotted lines are noise-

free values.
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transfer function, (B;/6¢a)i, depends on ¢a and the parameters B(L, IO)
and F(Io, T).

We plot (3;/8¢a)i vs. i for variable ¢a, L, T, and I, in Figs.
15(a)-(d). All the curves show a peak in (B§/8¢a)i at a bias current
corresponding roughly to the noise-free critical current determined by
¢a and B. The height and width of the curves are a function of ¢a, B,
and I'. For example, the family of curves in Fig. 15(a) for variable
¢a (' = 0.05 and B = 1.0) shows maxima which decrease as ¢a + 0 and
¢a - 0.5. At ¢a = 0 and 0.5, (3;/3¢a)i = 0 for all values of i. Thus,
changes in ¢a can produce substantial changes in (3;/8¢a)i. The curves
of (36/3¢a)i vs. i for fixed I0 and T, and for variable L{«< B) are
plotted in Fig. 15(b) for T = 0.05 and ¢a = 0.25. For B £ 0.1, the
curves approach a limit independent of L. This result reflects the
fact that for B ﬁ 0.1, AIC hd ZIO independent of L. For large L
B> 1) (3v/3), * 0.

The temperature dependence of (a§/a¢a)i is plotted in Fig. 15(c)
for ¢a =(0.25 and B = 1.0. As T (=) increases, the SQUID i-v charac-
teristics approach the i-v characteristics of the shunts, and hence
(BG/atba)i +0. For T+ 0 (I £ 0.001), the SQUID i-v characteristics
approach the noise-free curves. Thus (33/3¢a)i approaches a noise-free
limit that diverges at i = ic (B, ¢a).

The critical current Io appears in both”the parameters f (o Io) and
I' {= l/Io). Thus, in Fig. 15(d), the curves of (aG/a¢a)i vs. i for
variable Io reflect a combination of Figs. 1§(b) and (c). Since the

dependences of (3;/8¢a)i on B and T tend to cancel as I0 is varied,
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(8;/8¢a) is less strongly dependent on IO than on B ér I' separately.*
In the limit of large 1 (T € 0.1, B> 10) the values of (3;/3¢a)i ap-
proach the noise-free large B limit, and (36/3¢a)i + 0’ for all i. This
result is consistent with the fact that as B + <, AIC g g/l,[Fig. 6(b)1,
or Aic = AIC/Io he ¢O/LIO'= 2/B. Hence the i-v curves for all i and ¢a
collapse into the ¢a = 0 curve as B + ®, and (35/3¢a)i + 0. Although in
the range displayed in Fig. 15(d)‘(8\_r/3¢a)i increases as Io decreases, in
fact, for very low values of Io’ (36/3¢a)i must fall off, and tend to
zero as Io + 0. This behavior is a result of the fact that when B -+ 0,
(3;/8¢a)i -+ constant [Fig. 15(b)}, whereas when I + =, (8;/3¢a)i + 0
[Fig. 15(c)}.
2. SQUID Voltage Noise Power Spectral Density

We compute voltage spectral densities for the SQUID as a function
of the various parameters using Method II of section IV.A. The spectral
densities have the same general characteristics as the spectral densities
of the single junction. There are a series of noise broadened peaks at
the Josephson frequency, fJ, and harmonics. Well below fJ the spectral
density is whi*e; we are interested in S;, the average value of the
spectral density in this low frequency range.

In Fig. 16(a), we plot the normalized frequency voltage spectral
density S;/ZF vs. i for B = 1.0 and ' = 0.05 for four values of ¢a.
For i > ic(¢a) the spectral densities approach the Johnson noise limit
of 1.0 (for two shunts in parallel, the shunt spectral density is 2I').

Near ic(¢a), the spectral density is a maximum, as in the case of the

* -

Notice that (av/a¢a)i is a dimegsionless gquantity. The corresponding
dimensional variable (IgR/¢o) (9v/3¢;); is roughly proportional to I,
fQr the range of parameters in Fig. 15(d).
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single junction. The value of the maximum decreases as ¢a increases
from O to 0.5. This effect is consistent with the decrease in the
maximum differential resistance, (B;/Bi)¢a, with increasing flux that
is observed in the noise rounded i-v characteristics (sec. IV.C.1).

The dependence of S%/ZT on the variables L, T, and IO for ¢a =
0.25 is plotted in Figs. 16(b)-(d . BAs the inductance L (= B) increa es
fFig. l6(b)], SS/ZT approaches the 'imit of a single junction with
critical current 210. In the low inductance limit (B £ 0.1). *+re spe -
tral densities approach a limiting form. This result is consistent w h
the independence of AI_ [Fig. 6(a)] and (aG/a¢>a)i [Fig. 15(b)} on L
in the low B limit.

The dependence of 53/2T on temperature {Fig. 16(c)] is similar t
that of the single junction. As T+ 0 (I' £ 0.01), the spectral densiiy
approaches a limit determined by the noise-free diiterential resistan :;
as i+ ic' (33/3i)¢a + ®, and 53/2T diverges. In the large temperature
limit (I 2 1) the noise tends to the Johnson noise of the shunts, and
S;/ZT + 1 for all i.

The dependence of 33/2T on Io [Fig. 16(d) ]} is a combination of the
effects in Figs. 16(b) and (¢). 1In the limit Io + o(f +o, ' > 0), the
curves approach the corresponding single junction noise-free limit. BAs
'&o + 0 (B~ 0, ' +», the B~dependence drops out for B £ 0.1, and tnae
curves a;proach the Johnson noise limit, S;/ZT = 1.

3. SQUID Equivalent Flux Noise Power Spectral Density

We take as a measure of the rms flux noise the square root o the

normalized low frequeacy flux noise power cpe >tral density, C¢ =

1 - 1
(S;/2F)1/(3v/3¢a)i. Curves of Cg vs. i for variable ¢a’ L, T, aad I0
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are plotted in Figs. 17(a)~(d). The family of curves for variable ¢a

with [' = 0.05 and B = 1.0 [Fig. 17{a)] exhibit minima at i " ic(¢a).

1
For 0.1 < ¢ < 0.4, the value of Cﬁ . 1s relatively independent of ¢
a ¢min a
1
for B = 1.0, T = 0.05. For ¢a + *n/2 (n =0, 1, 2, ..., g; + o for all

values of i[(35/8¢a)i - 0)].
1
The family of curves of Cz vs. i for variable L (= B) [Fig. 17(b)]

with I = 0.05 and ¢a = 0.25 also have minima at i ic(B). As B> O
1
2

. approaches a limit
¢min pp

the curves become progressively flatter, and [

2

0.5. BAs B increases beyond unity, the curves become sharper with

4
¢min

z growing roughly as B.

1
The dependence of Q& on temperature [Fig. 17(c)] is weak for 0.025
< T < 0.075, where €¢ ~ 1.0. 1In the high temperature limit (T « [ - =),
1

S;/2F -+ 1 and (B;/a¢a)i + 0; hence we expect QZ +®, For [ « T ~> 0,

hecomes a sharp

€

both 53/2F and (3;/8¢a)i diverge at i = iC(B, ¢a); z

function of i, falling to zerc as i ic.

1
2

A family of curves of Q¢ fox variable I0 is plotted in Fig. 17(d)

1
for ¢a = 0.25. As Io increases, the curves of €$ become progressively

1
"2

sharper, and C¢min increases. As I0 decreases, the curves flatten for

intermediate values of B; however, for very small values of I, the
%

1
dependence of C¢ on B drops out, and C; + ® g5 ' > o,

4. SQUID Current Noise Power Spectral Density and Correlation
Power Spectral Density

Figures 18 and 19 show the circulating current noise power spectral
density, S;, and the imaginary part of the correlation noise power
spectral density, S;., as functions of i for several values of ¢a. The

real part of the correlation power spectral density is computed to be
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v

zero for all values of i as expected." For simplicif;, we have plotted
only the cdse 8 = 1, I' = 0.05. These quantities must be known in addi-
tion to S; and (3;/3¢a) to properly optimize the SQUID plus input circuit
in the general case. Notice that for bias currents i > 1, S; tends to
the circulating Johnson noise value determined by the two shunts in
series: Sg + 2l = (ZkBT/R)/(IO¢O/2ﬂR). Furthermore, since the voltage
and circulating current noises produced by the Johnson noise in the two
resistors are uncorrelated, S;j + 0 for i ® ic' Near ic' the effect of
the junctions and loop is to increase both SG and S; above the value for
the resistors, 2I', and, in addition, to correlate the voltage and current
noises. The correlation can be understood qualitatively from the follow-
ing argument. The totazl flux through the SQUID is ¢T = ¢a + Bj/2. Thus,
Johnson noise superimposed on j produces a noise in the total flux that
is similar to an .externally applied flux noise. The SQUID transfer
function, 35/3¢a, relates changes in the time averaged voltage v to
changes in ¢a' and thus relates the effective flux noise due to noise in
j to the total voltage noise. For i v ic’ 35/3¢a # 0 and the voltage
noise is correlated with the current noise. For i » ic, 35/8¢a + 0 and
no correlation is introduced between the voltage and current noises.

Note that in the special case ¢a = 0, 0.5, 3§/3¢a = 0, and S;j = 0 for
all values of bias current.

As ¢a is increased from 0 to 0.5, S; decreases in a way that is
consistent with the corresponding decrease in the dynamic resistance of
the SQUID.5 On the other hand, the maximum value of S; increases as ¢a
is increased from O to 0.5. 1In addition, for ¢a = 0.5, Sg rises rapidly

as i is lowered below ic' This behavior can be understood by developing
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a thermal activation model for the SQUID along the lines of the single
junction model.
5. Thermal Activation Model, ¢a = 0.5
We first express the equations of motion, Egs. (2.24)-(2.27), in
terms of a potential energy for the phases 61 and 62. Thus, for the

symmetric SQUID,

as
1 du
& 736t m @.3)
and
daé
—2_ _ du
EC T I P (4.4)
where 2
u=- cosé1 - c0562 - (61+62)i/2+8nj /2, (4.5)
and
j = (61-62 - 21r¢a)/1rB . (4.6)

A contour plot for u as a function of 61 and 62 for i = 0 and ¢a = 0.5

is shown in Fig. 20. 1In this case, the first minimum shown at A occurs

at Glmin = 0.21 and 62min = =0.21. The next minimum at B occurs at

6lmin = 2T ~ 0.27, 62min = + 0.27. The maximum at C occurs at 61 =17

and §  =0. For i =0, u . =~-1.05andu = 0 in all cases. Notice
2 min max

+ 0.6, and at C, j = 0.

that at A, j = - 0.6 at B, 3
We can understand the time development of the phases under the
influence of the noise voltages Va1 and Va2 by analogy to the single
junction case discussed in section II.B. A classical particle with
coordinates 61 and 62 undergoes Brownian motion in the two dimensional
potential u. If it is initially within the well centered at A, it will
bounce around in the well under the influence of the thermally induced

noise voltages VN1 and sz. In addition, at some random time the
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particle will be kicked over the barrier at C and settle down into the

next well at B. In the process, the current will switch from j = - 0.6
through zeroc to j = + 0.6, and a voltage pulse will be generated. This
behavior can be observed in Fig. 21 for i = 0.9, ¢a = 0.5, B =1.0 and

I = 0.05.

The switching frequency, fs' can be approximated roughly by consider-

ing motion only along the line joining the two wells (AB). Then

2 \? 2 \?
£ A 1l {37 97 u e-Au/I‘ , (4.7
LN TS R FY
AB A AB C
where
2
9 ul 2 . 2
GEE:>— cos eAcos(SlA + sin GACOSGZA
AB
+ (1 - 2 51nGAcoseAJ/ﬂ , (4.8)
and
BA = arctan (lézAI/w—lélAl) . (4.9)
The circulating current noise spectral density is
o0
S = 2 f a(mye 12T gp (4.10)
-0
where the autocorrelation function is
1 ¢T
A(D) = Lim = | (3(8)5(8+1))a8 . 14.11)
Ty & -
0

Now j(B)j(6+1) = + jz if the number of switches between 6 and 8+T is
even, and j{0)3(B+1) = —j: if the number of switches is odd. The prob-

ability of n switches occurring during T is given by the Poisson
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distribution

te_|Th®

S
P(n) = ——+— exp(-fslTh ' (4.12)

provided the switching time is much shorter than the average time between
switches. This will hold for bias currents i < ic’ the region in which
the thermal activation model is expected te hold. The autocorrelation

function becomes

-f_jt} X (-f l h" ~2f_|1|
am =32 8 Yo% S (4.13)
n=0

The circulating current noise spectral density is
_ .2 2 2.2
Sj(f) = 2fSJS/(fs + £y, (4.14)
and the low frequency value for f <€ fS is

.2
o =
Sj 2]S/fS
00

Notice that (jz) = I Sj(f)df = jz, independent of fs, as expected.
0
The voltage noise power spectral density is approximated as in the
single junction case (see section II.B). The area of each voltage pulse

is

B
A

the average voltage is v = afS = nfs, and the voltage noise power spec-

tral density is

s° = wlf_ . (4.16)
v S

The switching frequency, fs, is dominated by the exponential, exp(-Au/T).

Since Au increases as the bias current decreases, as i -+ 0O, S; approaches
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a maximum, while S; approaches zero.

The correlation noise spectral density is identically zero in this
case. This is because the current switches are alternating between
+js to —jS and -jS to +jS, while the voltage pulses are always positive.
Thus the ensemble average {(v(8)j(8+1)) = 0 and Ssj = 0. This is in agree-
ment with the computer model results.

In Fig. 22 we compare the predictions of the thermal activation
model with the computer curves of S; and Sg versus 1 for B = 1 and
' = 0.05. Notice that the thermal actijation model is applicable only
for values of i < ic = 1.04. Also notice that the computer calculation
of S; is plotted only for i % ic. This is because the low frequency
value of Sj(f) must be obtained for f < fs' However, for i ic'
fS Q" fJ. Thus, as i is reduced below ic, f5 < fJ, and values of Sj(f)
must be calculatéd not just for f < fJ, but for £ < fS < fJ. This is
impractical with the present algorithm.

At i =0, I' = 0.05 and ¢a = 0.5, the thermal activation model
yields fS = 10_10. Foxr Io = 1pyA and R = 1§}, this corresponds to a
frequency of FS = fS(ZWIOR/¢o) = 0.3 Hz. Thus well below 0.3 Hz, the
currentc noise spectral density is white and Sg = 7.2 X 10 (SS =

10 .2 2.2
a = X = m
Sj(ZkBT/R) 1.4 10 kBT/R). Well above 0.3 Hz, Sj stfs/ f

7.3 X lO_lz/f2 (SJ(F) ~ 109 kBT/RFZ, fior frequency F in Hz).

In conclusion, we see that the thermal activation model for ¢a
0.05 gives good agreement with the computer calculation for S;. In
addition, the model permits calculation of S; for i < ic and provides
an explanation for the large values of Sg below ic' Finally, notice

that the model has been applied only to the case ¢a = 0.5, where two
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(a) Current-voltage characteristic for 8 = 1.0, ¢a = 0.05,

and I' = 0.05 and (b) low frequency, voltage power spectral

density and low frequency, current-power spectral density vs.

bias current, i. The smooth curve is from the computer

calculation; the dotted curve is from the thermal activation
model. The dashed curve is the critical current, ic
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families of equilibrium states with ijs are observec. At values of

¢a # 0.05, the two families have unequal magnitudes of j, and
unequalbswitching frequencies. B&As a result, the circulating current

is also pulselike, and thus both sgaf_ >0 and s; af *0asi=~+o0
(see Fig. 16 and Fig. 17). Since no difficulty in computing S; and S;
in the region i v iC (where most practiéal SQUID devices are used) was
encountered, we did not extend the thermal activation inodel to values

"ﬁ’;»} C.5.

6. SQUID Energy Resolution

In most applications,6'17’20’21 a relevant figure of merit is the
. ° o /2 " eo 2 2 _ 2
energy spectral density, SE = Li(s¢/Mi)/ = S¢/2a I, where Mi = Q LLi

is the mutual inductance of the input cc1il, Li' coupled *o the SQUID. If
the effect of the input circuit on the total SQUID noise at the output

is ignored, then SE becomes the only igure of wmerit. (Note: SE is a
function of (33/3@3), S; and a2L. T2 the general case, the total SQUID
noise at the output also depends ¢ S;’ S;j and the input and SQUID
circuit parameters. See section 1I.) Notice that SE is only a function
of the SQUID parameters and the coupling efficiency, a2. Practical SQUID
devices3'4 have a2 N~ 1/2. We assume in the following discussion that

the SQUID inductance is restr c-ted to values for which a2 v1/2 1s

obtainable.

In this scction, we relate the computcd narmalized fiux noise

spectral density, ;¢, to he effective energy resolution, S$/2L. We
3,5

discuss an approximation for S$/2L developed previously for g > 1,

and derive an approximace expression for S$/2L for 8 € 1.

We take the flux noise referred to the input of the SQUID as
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0 @ 7 2 s T = o o - o r
Sy = Sv/(av/afba)l. With (av/acpa)l = (av/a¢a)ixoa/¢o, Sy = (sg5/20) 2k TR,

and 2L = B¢°/Io, we have the following expression for S&/ZL in terms of

€¢-

It

° 2 ; .
S¢/2L (¢o/ﬂ)4¢(8, r, i, ¢a) r'/rg (4.17}

co 2 3
or u¢/2L (2k ;TL/R) (2/8%¢ B, T, 1, ¢a) . (4.18)

$
Equations (4.17) and (4.1B) are exact expressions for the energy resolution
in terms of the computed flux spectral density, C¢.

From a different viewpoint, approximate expressions for the energy

resolution in the high- and low-B limits can be obtained as follows.

It

For & = (n % 1/4)0_, we take (a\‘z/a¢a)I ~ (aG/alc)Icazc/a¢a) ~ ROI /%,

where we have set (dV/BIC)I ~ (R/2) for I = Ic, and QIC/8¢a 2AIC/¢O.

From Fiy. 6(b)}, we find AIc = ¢O/L for 8 2 40, so that (Bv/a®a)I =~ R/L

~

as B+, From Pig. 6(a), we find that for B < GC.1, AIC = 21O x B¢O/L,

and (BV/3¢a)I =~ BR/L. We make thc followirg approximdtion3 for SG. For
Io = 0 (shunt resistances only}, the vcltage spectral density is SS =

4kBT(R/2) and the circulating current spectral density is Sj’= 4kBT/(2R),

where SS and S§ are independent and uncorrelated. For the SQUID (Io #

0), the voltage is a function of the currents flowing through the junc-

tions and arourd the SQUID loop. Hence for ¢a # 0, 0.5, Sv and S, are
R
no longer uncorrelated, as we have found in sec. IV.C.4, and SG > Sv for

I Ic' The contribution of the circulating currents to SG for ¢a = 0.25

is approximatea by (33/3¢a)i Sg, where Sg = Lzsg. Thus

R = 2 _2_R
5; = Sv + (3V/34>a)I L SJ . (4.19)

In the high B limit, (aﬁ/a¢a)1 = R/L, and
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S&;/ZL = 2kBTL/R, (> 1) , {4.20)

while in the low B limit, (aﬁ/3¢a)1 =~ R/BL and

sg/2L ~ kT/RES, (B <L) . (4.21)
We now compare the compu*ed expression for S¢ [Eq. (4.18)] with the
approximate expressions [Egs. (4.20) and (4.21). 1In the high fE-limit,

our calculated curves of Cg vs. 1 become sharp functions of i. We
choose the minimum value of LE corresponding to i = ic(¢a, B) for the
comparison. Calculations of Lm for ¢a = 0.25 and B 2 10 yield

C¢ = 82/2 at i~ ic(¢o, 8), and hence S%/ZL = 2kBTL/R, in agreement with
Eg. (4.20). Fr n Fig. 17(b) for T = 0.05 and @a = 0.25, we see that

L: approache . a limit of about 0.5 for B £ 0.1 over a wide range of bias
currents. Hence, from Eq. (4,18}, S%/ZL he kBTL/RB2 as B »* 0, in agree-
ment with Eq. (4.21). We conclude that Eq. (4.i8) shows the correct
limiting behavior for high and low B.

Finally, we compared our computed results with the measured flux
resolution of the tunnel junction dc SQUID of Clarke et al.3 It should
be noted that whereas the model calculacion assumes that the junction
capacitance is zero, practical junctions have a capacitance and are

usually operated with BC = 2HIOR2C/¢O ~ 1. However, since the I-V

characteristics with BC = 1 are not very different from those with

Bn = 0,30 and since we are concerned with frequencies much less than
(RC)_l, we do not expect the calculated flux noise power spectra with
B. =1 to differ substantially from our calculated spectra.

In the tunnel junction SQUID, the ainductance was L = 1 nH, the
shunt resistance was R = 0.6 §, and the critical cur-ent of each junc-

tion, was about 2.5 WA. Thus B = 2.5 and ' = 0.072. The SQUID was
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biased above the critical current at i &~ 2, and a modulating flux of
peak amplitude ¢°/4 was applied. The ac véltage across the SQUID was
demodulated with a lock-in amplifier, and the output from the lock-in

was fed back to flux-lock the SQUID in the usual manner. The measured

1 - =7
flux resolution was S; * 3,5 x 10 5 ¢o Hz %, We compute a flux resolu-
1 - =L
tion for the SQUID with ¢a fixed at ¢o/4 of S; = 1.3 x 10 5¢OH2 ‘. This

value applies to a SQUID that is not flux modulated, but is used as a
small signal amplifier for ¢a near ¢o/4. The flux modvrlation scheme
increases Sz as follows. First, the voltage noise S; of the SQUID is

a function of the modulation flux. For a SQUID biased at i = 2 and
modulated about ¢a = 0, we estimate that the effective modulated voltage

noise is Scm <2 s; (¢a = 0.25) {see Fig. 17(a)). Second, the transfecr
function (3§/B¢a)1 at ¢q = ¢O/4 must be replaced with (va/acbq)I at

¢q = 0, where Vm is the amplitude of the Fourier component of the SQUID
voltage at the mddulation frequency, wo/Zﬂ, and ¢q is the guasistatic
applied flux. By plotting V vs. t for ¢a = ¢q + (¢0/4) cos wot from the
curves cf V vs. ¢a [Fig. 14(b)1, we find (va/3¢q)I at ¢q = 0 is approxi-
mately equal to 1.3(3{'/Bd>a)I at ¢a = ¢o/4. From these results, we compute
a flux resolution for the modulated SQUID of Sz = 1.6 % 10_5¢°Hz_%. In
view of the uncertainty ir the measured values of the SQUID parameters

and of the neglect of the capacitance in the calculation, we conclude

that the computed spectral density of the flux noise is in sensible

agreement with the experimentally measured value.
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V. SQUID OPTIMIZATION

A. Determination of the Optimal SQUID Parameters

We now consider the choice of the SQUID parameters L, R, Io' and
the bias current i that minimizes the energy spectral density,
S;/ZaZL, at a given temperature T. Since S% o« L2 in the high R limit
[Eq. (4.20)}], S$/2a2L can be reduced by decreasing L, provided that a2
.. not also correspondingly decreased. In practice, the constraint on

10 9

a2 appears to impose a lower limit on L of 10~ to 1077 H. To avoid

hysteresis, the junction parameters must also satisfy the constraint
ZHIORZC < ¢o, where C is the junction capacitance. 1In practice, there
is a lower limit on C that is set by the area of the smallest tunnel
junction that can be fabricated. Hence, there is an upper limit on R
for fixed IO of R2 < ¢0/2ﬂIOC. Thus for L and C fixed, S%/ZQZL becomes
a function only qf I0 and T, or of B = I°(2L/¢o) and [ = 2ﬂkBT/Io®o.

We consider first the simpler case in which the SQUID is not in a
flux~locked loop, but is operated as a small signal amplifier with no
ac flux modulation. We assume that o is essentially independent of L.
From Eqs. (4.20) and (4.21) we find S3/2L « 8% (g > 1) and Sg/2L « g~/
(B € 1). Conseguently, there is an intermediate value of B that mini-
mizes S%/ZL. As an example of a calculation to find the optimal value
of B, consider the following parameters for a hypothetical SQUID.
Suppose the SQUID is a cylindrical tunnel junction SQUID with the
diameter of the cylinder reduced from 3 mm to 2 mm, and the area of the
junctions reduced from 10 2 mm> to 7u X 74 = 0.5 x 102 mm®. The induc-
tance of the cylinder is reduced from 0.75 nH to 0.35 nH. This is the

SQUID inductance provided a geometry is used which reduces the parasitic
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inductance of the junction region substantially from the value v 0.5 nH
estimated for the SQUID of Clarke, Goubau, and Ketchen.53 The junction
capacitance is reduced from 200 pF to 1 pF. With L = 0.35 nHd and

C = 1 pF, Rzlo = 200 QzuA (BC =~ 0.6). Let T = 4.2 K. Thus the value
of Io = B¢o/2L fixes the value of R and . In Fig. 23 we plot computcd
values of S$/2L vs. B for variable Io. The value of S;/ZL is taken at
the optimal bias current, i " ic(¢a,8) where ¢a = 0.25. Equations ({4.20)
and (4.21) are also plotted for all values of fB: Notice that the com-
puted value of S;/ZL agrees well with these equations in the appropriatc

limits. The computed curve is almost constant for 1 £ 8 $ 10. A SQUID
2

~

operated as a small signal amplifier with o = 1 at ¢a = 0.25 and

i=1 (¢a, g) would have S¢/2L==L6 X 10—32JH2_1, relatively independcnt

c
of B8 in that range.

When theASQUID is flux modulated and operated in the usual flux-
locked mode, the energy resolution depends more strongly on £ than in
the unmodulated case. Since the optimal choice of bias current depends
on the applied flux, the SQUID operated at constant bias current cannot
be optimally biased over the entire modulation cycle. As a result, as
B increases the average value of S$/2L at fixed bias current also in-
creases. In addition, from Fig. 17 we see that S;/ZL becomes a sharp
function of i = I/I0 for large B. Thus small variations in the bias
current I or the junction critical current Io can lead to substantial
increases in S$/2L. Hence, for the flux modulated SQUID with L = 0.35
nH, C = 1 pF, RzIo = 200 QzuA and T = 4.2 K, the optimal value of B is

approximately 1. Similar calculations at other values of the SQUID

parameters also lead to 8 ® 1 as the value for optimal energy resolution
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in the flux-locked mode. We estimate an cnergy cpectral density
S;/ZQZL, with a2 172, of 4 % 10_32 JH::_l for the flux-locked SQUID
from an analysis similar to that in Sec. IV.C.6.

1n summary, the procedure to obtain optimum performance from a
tunnel junction SQUID is as follows. One first chooses a SQUID vonfig-
uration, and thus one fixes L. The critical currents of the junctinns
are set bx the constraint § = 2 LIO/(pO = 1. The shunt rogistance, 3,
for each junction is chosen to satisfy 2 HIOR2C/¢0 <1, where C is
determined by the area of the junction. Finally, the SQUID is operated
with a bias current approximately equal to the total critical current in

the absence of noise.

B. Ultimate Performance of the dc SQUID

The dependence of S$/2L on L, C, and T for B = 1 can be approximated
as follows. From Fig. 17 we find Cz (B, I') =1 for ¢ = 1. Hence, from
£g9. (4.18), we find S$/2L = 4 kBTL/R or

S$/2L ~ 4 kBT(vTLC)’/2 (B =1), (5.1)
where we have used the constraint R2 = QO/EHIOC = L/TMC. Thus, apart
from numerical factors close to unity, the energy resclution for B =1
is just kBT divided by the resonant frequency of the ring, 1/2ﬂ(LC/2)%.
We expect Eq. (5.1) to remain valid provided the Johnson ncise associated
with the shunts is the dominant noise source. However, when kBT/eV =~
kBT/eIoR <€ 1 (Vv is the bias voltage), the shot noise in the tunnel junc-
tions will be the dominant noise source.26 For junctions biased at a
current of ahout ZIO, the shot noise voltage will have a low frequency
spectral density of approximately 2e(21°)(R/2)2 = eIoR2 in the low

temperature limit. If we replace 2kBTR with eIOR2 in Egs. (4.20) and
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A(4.21), we obtain
o = > I P
5¢/2L hB/4 (B 1, e OR # kBT) , {5.2)
o ~ < 5, .
and S¢/2L h/eg 8 1, eIOR 4 kBT) . (5.3)

For the optimumbvalue B =1, Eq. (6.1) hecomes

Sa/2L = h/2 (B =1, eI R¥® Xk T) . (5.4)
& Q B

For 8 = 1, Egs. {5.1) and (5.4) imply that the inductance ard capaci‘ance

1

must satisfy 8)<B'I‘UTLC)'i <h. For T =2¥ and L = 0.35 nH, this 1s C =

-2 . . < =6 : e o .
10 pF, or a junction area A £ 0.5 = 17 mm for a RL-Nl+ --ibL junction
similar to that used in the SQUID of Clarke, Goubau and Kctchu’? (e ala, Ref o 54y,
In principle juncti. . with these ch acteristics can be fabrica ! with
electron beam milling technigues. For # - 1 and L = 0.3% -3, the
required critical current, Io = 3 pA, cocrresponds to A curcent density
of about 0.6 Ka cm_z, a value that is readily achieved wih junctions

54 . : . P
or larger area. The shunt resistance is about 100 I for £ ™ 1.
1

These values of L and C correspond to a SQUID frequen,, 1/27T(LC/2) 7,

cf approximately lOll Hz. Although this frequency is below the gap

frequency (v 3 x 1011 Hz), other relaxation processes may limit th
SQUID to a lower freguency of operation. In that case, it will not be

possible to achieve the resclution given by Eg. (5.4) with a SQUID

operated at 2 K.

One may also attempt to achieve the resolution suggested by Eg.

(5.4) by operating the SQUID at a lower temperature: With L = 0.35 nH

and C = )L pF, the temperature must be below 0.2 K. The corresponding

frequency at which the SQUID would operate is about 1010 Hz. A pre-

amplifier with a ncise temperature below 0.2 K would be required.



VI. AFPLICATIONS

A. The Low Noise de SQUID Preamplifier

In this section we develop a model for the de SOUID preamplifaer.
Firot we adapt the basic clireuit for a cuperconducting voltmeter Aovel-
oped by McWane, Heilghbor, and Ncwbowerzy to the particuiar cawe of a
de SQUID magnetometer.  Hext we review the discutscion of noine tompera-
ture, frequency response and bandwidth for the SQUID preamplificr ohar-
acterized by a single voltage noisc source and purcly ncluctive input
impedance.  Finally, we develop @ model for the de SQUTL preamplificr
characterized by both current and voltage noisc sources. We determine:
the dependence of the noise temperature on the input clroult parameter:s
and the SQUID neoise figures SC/ZF, 53/2T and S;j/zr. We compute valuc:.
of TN for the particular case of a dc SQUID with L = 1U~UH, R = 17,
IO ~ 1pA operated at T = 4.2 K (S;/Zr =~ g, S;/Zr =~ 5.5 and Szj/ZT = ¢
at ¢a = ¢O/4),

1. Basie Circuit

The basic negative feedback circuit developed by McWane, Neighbor,
and Newbower c is shown in Fig. 24. The input circuit consists of a

1 ltage source Ei(t) with impedance Zi in series with a capacitance Ci’
inductance Li and feedback resistance RF' The mutual inductance between
Li and the SQUID inductance L is Mi = azLLi. The current Ii(t) in the
input circuit generates a flux @a(t) = MiIi(t) through the SQUID. The
resultant voltage across the SQUID, V(t) = (3§/B¢a)¢a(t), is usually
amplified first by a cooled resonant circuit or transformer,3 and then

by a room temperature amplifier. The output voltage is then Vo(t) =

AV(t), where A is the gain of the amplifier chain. The output voltage



Fig. 24:
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Basic circuit for the dc SQUID preamplifier.
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produces a feedback current IF = VO/RO, which tends to null the input
current Ix(t)'

The cquivalent circuit for the dc LQUID magnetometer is shown an
Fig. 25. The SQUID s modeled by a current-controlled voltage source
with output voltage Zfli(t), where Zf = Mi(8§/8¢a). In the limat

wl <€ RD (w <€ wJ), the SQUIL output impedance is approximated Ly the

dynamic resistance 2= RD = (80/81)¢a, and the SQUID input imp.eedance 14

Ladi O

. 2 . .
approximated by Zq = RS = w M /4RD. We will also use the aprroximation
(a\7/a¢a) = R/L.

2. Model for the de SQUID Preamplifier
. 21 . .

Davidson, Newbower, and Beasley characterize the noise in the
SQUID by the effective flux noise power spectral density (¢i) = Sg.
This is equivalent to characterizing the SQUID noise by a voltage noise
source at the output (SG = S& (30/3¢a)2). Thus they take Ei(t) = 0 in

Fig. 25. Now, the voltage noise at the SQUID output due to a source

resistance Ri maintained at temperature ’I‘i is

(4k_T.R.)
giource _ B 11 2 33,5012 (6.1)
v (R2 + x2) a a
vt ¥

where ZT = RT + jXT is the total input impedance. The noise temperature

Tg, of the SQUID preamplifier is defined to be the value of the source

temperature at which the source wvoltage noise equals the intrinsic SQUID

voltage noise. Thus Davidson, et al21 take

D
4k _T R,
6 . <o (AD 2, _BN1 2 s 2
sV = s¢(av/a¢a) —— M, (av/ad>a) ' (6.2)

(R;+x§)



Fig. 25:
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Equivalent circuit for the dc SQUID preamplifier.
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From Eq. (6.3) we sec that the only fiqgure of merit for the de 50UID an

this approximation is the encrgy spectral density, Sg =

2
Se/2u 1.,
74
determined by the i1solated SQUID voltage noise ss and transfer functaon
T L . D
= z ( Y ] wore 1 =
(av/a¢a). In the limit RT Ri XT' TN(u) oE/szli, whore Y

Li/Ri' Note that SE is independent of the input circult pararmcters
RT' XT, Ri’ and Li' Note also that the authors take the SQUID impedanc:
reflected into the input circuit to be purely inductive. (Their discus-
sion was actually applied to the case of an rf SQUID magnetometer.

The results mentioned here also hold for the precamplifier with a dc
SQUID magnetometer under the same approximation scheme.)

In general, the voltage ncoise at the output of a preamplifier is
not independent of the input circuit parameters. The dependence on thu
input circuit is often described by defining an amplifier voltage noise
source, EN(t), in the input circuit (see Fig. 25). The resultant noise

current in the input circuit, EN(t)/ZT, produces a voltage noise at thc

output of EN(t)Zf/ZT. The total voltage ncise at the SQUID output is
\ = t) + t . .4
T(t) VN( ) EN( )Zf/ZT (6.4)

The actual total voltage noise at the cutput for the SQUID loaded
down by the input circuit could in principle be calculated by including
the input circuit into the basic SQUID equations, Eg. (2.24)-(2.27).
However, it is impractical to apply the computor altorighm to solving

the loaded equations for all cases of interest. A reasonable
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af cuximation 1s the following. The SQUID 1s coupled to the input cir-
¢.1t through the mutual i1nductance Mi' The current circulating around
he 1solated SQUID loop, J(t), induces a voltage across the coupiing
cil o1n the input circuit of MldJ(t)/dL. Thus, we take the voltage
source in the input circuit to be proportional tq the unloaded circvlat-

1ng current,
EN(L) = Mi(dJ(t)/dt) . (6.9}

From Egs. (6.4)-(6.5), the spectral density of the totel voltage noise
at the output in terms of the voltuge noise spectral density, SC, the
current noise spectral density, 53, and the imaginary part of the corre-

latron noise spectral density, 531, ig

2 2.2 2 2
° = §° 4 g° oM, % + s° . .
Sop =S¢ * 5oy szlzfxT/|bT| §3 wMy zf/lle . (6.6)

where we have taken the voltage source at the output to be VN(t) for the

isolated SQUID. The noise temperature, TN, is then

. - -2\, 2 2
T ) S VT(SV/8¢a) (RT + XT) .7
N 2021, 2k R L.

In terms of the normalized dimensionless spectral densities computed in

section 1V,

SD
T (@) = — ( w ) e ] s +
N 22 \R/L R WL, or
X s°. WL, S.
2(°T v] 4 Y3
20 Ri) 5T/ t @ R, (2F ' (6.8)

&
°© - (go 3 - o/
where we have used SV ,sv/2F)2kBTR, SJ (Sj,2T)2kBT/R, and
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A

Va3

(5 /2012 T, and the approximatyion (57/5% ) for the loasies
v B a

SOUIL (afr/a@a) for the 1sclated SLULL, where (39/5% ) - (va/ % y(7/2)
[} a

(/L) = (F/L).

So0 tpramel U for the Dntuned Drpuwt Cipoutt
I :

From krj. (6.8) we e that TN 15 o [urcition of the 1solat-f 50010

parameters, the frequency, G, and the pnput clroult parameters,  The

usual tnput circurt confiquration 1 with /¢ = 0, Then KT - Ll arndd
i 1

.
T

2 . .
tances and RS = w Mi/4RD 1s the effective SQUID input resistanor.

optimize Tn(w) at a particula:r frequency wo by setting (UTw(Mi/bkl)

a.

= Ri + RF 4 Rs' where Ri and RF are the source and fecdback resin-

Wi

The optimal value of the source resistance 1s then a function of o,

2,22 2 g t
R’ = . + ;LY 204°5° /89 s°/s°]1 ¢, £
wOLl[l (RF+RS) /woLl + 2u sv]/sv by a]/sv] (

the optimized value of TN at w 1is

@]

o Opt )
+
2Pty = I (o A SR (6.1,
N o 2 \R/LJ \2T w L, . e
[0} o 1

and the noise temperature at arbitrary w is

i 2,2 2
Pty = e%Pt () & TSyE0 W fwTl) 1 - s , (6.11)
N N0 /) @, /R0PY ROPE

Notice that both Tgpt(wo) and Tgpt(w) depend on the SQUID parameters

through Ri

(S;/ZF)kBT/az(R/L). Also note that the minimum in T

w

} . 2
Opt and through the usual figure of merit, S$/2a L =

(]

Npt(w) occurs at

. Opt _ ,Opt Opt _Opt
0 and not at wo. That is, 'I‘N (0) = TN (uJo)(Ri + RF + RS)/2ni .

For the SQUID parameters given in section VI.A., in the limit
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[ )
(o]

Lo R s rs KPT e up e 30%2 + 110%/16)% ana

Tgpt(mo) = S(wOL/R)T(l + 3&2/2 + llaq/lb)a/uz. Notice that the nulsce
temperature 1s proporticnal to the SQUID temperature, T. This 1§ as
cripected since for these values of the (QUID parameters, the dominant
rncine source 15 the thnermal Johnson noiwe 1in the shunts. As the
temperature is decreased, however, the Johnson nolse will eventually bLe

~Opt
i

dominated by the shot noilse in the junctions.  We can cowmput.: {w )
(e}

in this limit as follows. We assume that the ratios 533/53 and SS/SC

opt

arc not changed.  Thus R?pt 1s unchanged, and from Eg. (6.11), TN 1S @
function of the usual figure of mer:t, S:/2T. From Eq. (5.4) we

have sé/ZL = (S;/ZT)kBT/(R/L) + h/2 in the shot noise limit. Thus

the noise temperature optimized at Wy in the shot noise limit

_ opt LIV (1+362/2+116%/16) '

is TN (wo) M 3 . As the coupling constant

B a

2 L .
a” + 0, Tgpt[wo) + ©, In the limit of perfect coupling between the

input circuit and the SQUID, Tgpt(mo) 2 Bhwo/kB. For the particular case

of the dc SQUID with g =1, [ = 0.5, a2 = 1/2 enu (36/3¢a) = R/L, the

shot noise limit is Tgpt(wo) = l7hwo/ka. Both the approximations for

Tgpt(wo) are consistent with the relat »snship between noise temperature

and operating frequency for a linear amplifier determined by Heffner.
He found that the uncertainty principle i1imits the optimal noise tempera-

ture to T < hw/kB in the limit of large amplifier gain.

Opt

Notice that Egq. (6.9), Ri = woLi, and Eq. (6.10), TN (wO) =

(woL/R)T/cx2 imply that the optimal noise temperatures are obtained for

source resistances Ri € 1Q. For a SQUID inductance L 10'9ﬁ, reasonable


http://noi.se
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values of az(az =~ 1/2) are obtainable for 10—6H < Li S 10-9H. This

3K for a SQUID

implies for w_ 10%1z, 19 < R?pt < 1073Q, and Tgpt ~ 10~
operated at 1K with 1 shunt resistances. At w v 1Hz, the optimal
resistance, Rgpt, falls to 10‘69.
4. Optimal Ty for the Tuned Input Circuit

We assume that the input circuit is tuned with some capacitance Ci
in series with the coupling coil Li and the feedback and source resistan-
ces, RF and Ri" Then RT = Ri + RF + RS and XT = wLi - 1/wci. We can
optimize TN(w) at a particular frequency W_ by setting BTN/BCi = 0.

From Eq. (6.B), the optimal relationship between the inductance and

capacitance is

op* _ 2 10
1 = W + QO N .
/w C* L. (1 5°./8°) ’ (6.12)

and the optimal noise temperature at wo is

l 2 o o

TOptCi( oz W, R s Lo IRAVES:

N W) =TI \R/ | R, \IT R, 2T
o 1 O 1 e 1

2
se. (s°,
)oYl . {6.13)
s° 2T
Optc;
We now optimize TN (wo) with respect to Ri by setting
optc,
BTN (mo)/QRi = 0 to obtain
optC, 3
i 422 .o o 2y ,002 2
= - . + .14
Ri o woLi(SvSj sVJ )/Sv (RS+RF) (6 )
and
OptC,

° 1
TO?tC.Ri - £L wo Ez Ri + RF + RS (6.15)
N Y o2\ \2T o L :
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The value of the optimized noise temperature at arbitrary w is given

OptCj
?pt and Ri replaced by Rip 1.

by Eg. (6.8) with l/wocj replaced by l/woc
. Red

As an example, we plot the reduced noise temperature TN (w) =

OptCj . ; ;
TN (w)(R/moL)/T versus the reduced frequency w/w° in Fig. 26. Capaci-
tance has been optimized according o Eg. (6.12). A range of input
resistances Ri have been chosen. Nc¢ .ce that the parameter Qo = woLi/Ri
is not the "Q" of the input L-R-C cirruit, since w > 1//Lic;. The
noise figures Ss, 5° and S;. are those for the dc SQUID with the para-
meters given in section VI.A. The coupling constant a2 = 1/2.

For the SQUID parameters given in : -ction VI.A., in the limit

s opt 2 OptCj 2
woLi > RS + RF'l/woCi (1 + 3¢ /4)moL Ri 0.35 a woLi, and

OptCj,Rj . 2 .

N (wo) = Z.B(MOL/R)T independent o 0°. (Notice, however, that

R?Ptci >0 as 0?2 + 0.) For w_/2m = 10%uz, L, = 10°%, T = 4.2, and
OptC. OptCj ,Rj

o® = 0.5, cgpt ~ 1.8VF, Rip i~1.10 and 7 1" %~ 0.74mK. Notice

OoptC;

that Ri can be reduced to a more convenient value if necessary by

reducing the coupling constant uz. In the limit a2 <1/2, C?pt

OptC. ,R:

1/m§Li = 2.50F and T 1 1 % 0.74 K independent uf o?, while

OptC;
R P i
1

~ 2.20°0.

For the shot noise limited SQUID in the general case from Eg. (5.4),

Optci'Ri > ° 02 02 o~

TN (mo) 2 hmo/kB, where we have assumed (S;Sj-svj)/sv =~ (0.125 as

given by the values of (S;/2T). (S;/ZF) and (S;j/2F) for B =1, T = 0.05.
OptC. ,R.

For the particular case of the SQUID with B =1, T = 0.05, Ty 1 1(wo)
= 2.2hwo/kB from Eg. (6.13). As for the case of the untuned magnetometer,
both expressions are consistent with the restriction, TN(wo) > hub/kB’

placed on the noise temperature by the uncertainty principle,
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Fig. 26: Normalized optimal noise temperature Tgptci (w)(R/woL)/T vs.

reduced frequency u)/u)o as a function cf Q% = moLi/Ri.
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B. Magnetometers

The basic circuit for a dc SQUID magnetometer is similar to the
preamplifier shown in Fig. 24. The input voltage source consists of a
single input coil or a system of coils*threaded by a time dependent
magnetic field. The input impedance is purely inductive. The feedback
signal is often applied by coupling a feedback coil directly to the
SQUID. The untuned magnetometer (1/Ci = 0) can thus be constructed with
an extremely small input resistance, RT = RS = wsz/ARD. For the tured
case, there will be some resistance Ri associated with the losses in the
tuned circuit.

1. Untuned Magnetometer

We begin by considering the case of a single pick-up loop threaded
by an axial magnetic field. For a long n-turn solenoid of length £ and
radius r, the inductance is Lp = uoﬂrznz/l. The mean square voltage

induced by a magnetic field of magnitude B° oscillating sinusoidally at

frequency w is

2, _ 2,224 2 _ 2
(Ei) = wB Tr'n"/2 = 2w uoLp (6.16)
where uo = Bzﬂrzl/ uo is the mean signal energy in the volume of the

. 2.2
ccil. We take RF = Ri =0, R =W Mi/4RD, and X

S

= WL, + WL_ for the
T i bl

untuned case (l/uJCi = 0). The mean square signal voltage at the SQUID

output is
2 CEDM; - 2
(VZ) = ———  (3V/3%.) ' (6.17)
S 2,..,2 a
(RS+XT)

and the mean square SQUID noise at the output in the bandwidth B from

Sq. (6.6) is
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2 - -
(VT) =82 B = [(R

2,c0
+ °
+XT)SV 2uM,Z X _S

i“f7TVa

N N

2 2_ 010 002, 2
+ W M.ZfSJ]B/(RS+xT) . (6.18)

M

We set <v§) = (v;) and use the approximation (36/3¢a) =~ R/L to obtain

2 2

k. TB L. 2 L

B 1 . O WL P

u = ~———— {{5°/27) ) + (1 + ——)
° az(R/L)Lp v (4RD L
2 L 4
+2a° (se./2 (1 + £ ) + a®(se/2m) . (6.19)
vj Li 3

We now minimize uo with respect to Li for fixed input coil LP' and obtain

opt _ 2.0 ,e0 4 o se0 2 2,-%
L] Lp {1 + 2¢ svj/sv +a sj/sv + {a“WL/4R)) } (6.20)
and
2k _TB(s°/2T'} o 2
ugpt - 132 v/ (1 + L /L(i)pt . oLzs:,,./sv) (6.21)
a“ (R/L) P J

In the limit wLi > RS' for the dc SQUID with the parameters listed
2 Opt Opt
in section IV.A. with a” = 1/2, L;* = 0.72L_ and u PC ~ 9k T(B/E,) =

5 x 10—30 (B/1Hz)J. As in the case of the voltage preamplifier, previous

<
calculationss'lj of L?Pt and ngt have included only the voltage noise S;.

opt Opt

2 2
= =~ (s° ~ ° .
In that case, Li Lp' and U° ZkBTB‘Sv/ZF)/a (R/L) 2(S¢/2a L)B

In the shot noise limit for the SQUID parameter listed with

o? = 172, ugpt ~ 11hB. From Eq. (5.4) (S3/2L > %o, ugpt 2 2nB/a® for

a2<]u Notice that, although the minimum resolvable mean signal energy
u° is limited by the shot noise in the junctions, the minimum resolvable
mean square field, Ez, is not. Wz have u = §2V/4u°, where V is the
volume of the pickup coil. Thus the optimal B, =~ 7 x 1077 (kBTB/V)%

where Lgpt = 0.72 LP as before. Now one can in principle
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make V arbitrarily large for fixed inductance Lp. Thus the ultimate
resolution is limited only by the dewar size, provided that parasitic
noise sources can be made negligible.
2. Superconducting Input Cireuit

The untuned magnetometer input circuit with pick-up coil Lp and
coupling coil Li can also be made purely superconducting. This is not
equivalent to the untuned magnetometer input circuit with Ri + Q. The
superconducting input circuit introduces the additional constraint that
the flux must be quantized around the input locp. In this case, the
basic equations which describe the SQUID plus input circuit can be
reduced to the isolated SQUID equations. The SQUID loop inductance L

is replaced by an effective inductance Leff = L(1 ~ azr), where r =
Li/(Li + Lp) < 1. Thus, instead of approximating the total loaded
voltage spectral density at the output, SGT by Eq. (6.6), we can use
o wi - _ 42
the computer model results for SV with BL = 2Lefflo/¢‘o = B(1 a“r)
and TL = 2ﬂkBT/Io¢o = ', These two numbers are not equal in general.
- AR 2—. = = o0 =z
For 8 =1, T = 0.05 « 1/2 and r 0.5 (Li = LP), Svr 23 kBTR and
°
SV 17 kBTR.

For the superconducting transformer, the minimum energy that can

be resolved in bandwidth B is

o
59 B
° 40%L  r(l-r)?

’ (6.22)

where S; is the flux resolution of the isolated SQUID with parameters

Br and I'. We use the approximate expressions for S%/ZL in the high

Br and low Br limits [Eq. (4.18)~(4.19)} to optimize ug with respect to
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opt

r. For B_<1 and o =1/2, ¢ 0.42 and uzpt = 23(53)/2a2m.

opt

opt _ 0.5 and u
(e}

For Br ¥ 1 and arbitrary az, r ZB(S%/ZGZL). Thus

for Br v 1, we reproduce the standard result, Li é Lp and

opt TLB/azR. Notice that, although the approximate value for

* 16 k
Y B

SGT for the untuned magnetometer with Ri + 0 is substantially larger
than the value of S; for the superconduvctor input circuit magnetometer,
the energy resolution and optimal coil ratios are essentially the same.
3. Tuned Magnetometer

In this case, the input circuit is tuned by a capacitance Ci in
series with Li and Lp. The resistance Ri in series with Ci accounts for
the losses in the tuned circuit. The mean squarea voltage induced by
the incident magnetic field is (Ei) = 2m2uoLp. This circuit is now
identical to the tuned peramplifier circuit, with XT = Lu(Li + LP) -
l/wCi, and RT = Bi + Rs. The voltage noise in the input circuit due
to the resistance Ri is 4kBTiRiB, and the voltage noise of the SCUID
preamplifier referred to the input circuit is 4kBTNRiB, where TN is
given by Eg. (6.8). Notice that the temperature in Eq. (6.8) is the

SQUID shunt resistance temperature, T, and not the input resistance

temperat : e, Ti' The two noise sources are incoherent. Thus we take

RiB . (6.23)

2 2
{ = = +
.Ei) 2w uoLp 4kBTiRiB 4kBTN

The minimization of U, with respect to Ci at some fixed frequency Wy
yields
1/w cPt = 1. (1 + L /L. + o §°./5°) (6.24)
o i oi P vi’ v

(compare with Eq. (6.12)), and
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5 optCi optCi
2w = R,
OLpUO 4kBTiRiB + 4kBTN lB, (6.25)
optCi
where TN is given by Eg. (6.13).

L optCi | ,
Minimizing Uo * with respect to Li for fixed Lp and Ri at the

same frequency wo yields

-1
opt 2 2 4. 0 e0 ° 02 } ¢
w N = 3° - . .
OL1 Ri{(u woL/4RD) + O (°]/Sv SVJ/SV ) (6.26)
and
2 optCi,Li
= *
ZMOLPUo 4kBTiRiB + 4kBTNRiB, (6.27)
optCi,R.

where Tﬁ has the same form as T in Eq. (6.15) with R?pt - Ri

N

and Li - L?pt (also compare Eq. (6.27) to Eg. (6.14)). The optimal

value for Uo is then

D) optC. ,L.

i’7i
. = *R. . .
2wOLpU0 4kBTiRiB + 4kBTNRlB (6.28)

Using the SQUID parameters listed in section VI.A., for woLi > RS,

“ opt 2 opt .. opt + 2 +
we have moLi 2.8Ri/a ’ 1/woci woLi (1+307/4) woLp' and
2 optCj ,Lj s 5 n . 2
W =~ X ‘*R., = 2. .
2 oLpUO kBTi 1B + 4kBTNRlB, where TN 8(woL/R)T For most

applications, T = T ~ 4.2K, and w < R/L 10° rad sec™’. Thus for a
wide range of the parameters wr R, Ly C; and Lp, Ty < T,, and

2 < :
20 L U = 4k T.R.B. This is just the condition that the signal voltage

opo B 11
should dominate the Johnson noise voltage of the resistance Ri in the
input circuit.

In some applications (typically high @ input circuits operated at

high frequency) Tﬁ 2 Ti' For a particular choice of operating freguency

wo at which the noise temperature is to be optimized, we express Tﬁ(w)
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. . 2
in terms of t 11 am = =
he following parameters, r Li/LT, Y& 1/u)oLTCi and
QT = QBLT/Ri for L, =1L, + Lp. Notice that Qp is not necessarily the Q

of the input circuit. From Eg. (6.8) with xT = WL, - l/wci,

T
se s°\ v, s° .
= Yl Ll T
Trea = 9r (2r) 2 2<2r> T (zr) Yr
Qpr

2 2
(m s° Y
[<} v T
4 \m) (_21‘) = . (6.29)
. N opt = ° ° -
The optimal value of Yo 18 Yq 1+ (Svj/sv)r/z + 1 for L, < LP. In

. . t
this case w ad 1/¢LTCi and O =~ Q input. The optimal value of Op is Q;p

1
e
= 2/r [sg/s;-)s;j/sz)z] . Thus Q;pt o 1/r. The value of T;ed at optimal
: 1
a g is T*OPt °/2T) (s2/2T o /ol 2]2 This is identical
YT an QT isT . q = [(sv/z )(sj/2 )~-(Svj/ ) . is is identical to
the result obtained for the tuned voltage preamplifier. For the dc
SQUID mentioned in section VI.A, Y;pt = 1 + 3r/8, QT = 5.,6/x and

0Pt _ : : : . > < ~
Tred 2.8. Thus for an input circuit with LP 2 Li (r £ 1), Yo 1

and QT = @ = 1000, the actual noise temperature is substantially larger
than the optimal value. For example, for r = 1, Tﬁ = QT(UO/(R/L))T.
Thus for T = T, = 4.2k, £ = 2 x 10%1z, R = 12, L = 107K and @ = 1000,
Tﬁ = 4.2K at w, - For w # W Tﬁ > 4.2K. To illustrate the dependence
of Tﬁ on W and r for the highly tuned input circuit, we plot the

reduced noise temperature T;e versus (w/mo) for Qp = 1000 for various

d

values of r in Fig. 27.
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Fig. 27: Normalized noise temperature Tﬁ(w)(R/moL)/T vs. reduced

frequency (w/wo) as a function of r = Li/(Li + Lp) for

= , = 1000.
QT wo(Li + Lp)/Rl



~96-
At very low temperatures T and Ti' the energy resolution will be
limited by the shot noise in the SQUID. In that case we have from
R 2 optL;Cj
* 1v1 = * =
section VI.A.3, TN -+ hwb/kB' and 2u)°LpUo 4kBTNRiB
4hwoRiB. This is the optimal energy resolution consistent with the

uncertainty principle restriction on the noise temperature for the

SQUID magnetometer in this configuration.
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