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LIST OF SYMBOLS

Dimensioned Quantities*

I
o

R

c

L

T

S

n

p

r

critical current of single Josephson junction.

shunt resistance of single Josephson junction.

capacitance of single Josephson junction.

flux quantum, ~o = h/2e.

SQUIO ring inductance.

SQUIO temperature.

Dimensionless Quantities

reduced capacitance or hysterysis parameter, SC

27fI R2C/~ •
o 0

intrinsi~ flux ratio, S = 2LI /~ .o 0

critical current asymmetry parameter.

inductance asymmetry parameter.

shunt resistance asymmetry parameter.

Johnson noise figure, r = 27Tk T/I ~ .
Boo

8 dimensionless time, 8

i

j

j

dc bias current, i = 1/1 .
o

time dependent circulating current, j

time-averaged circulating current.

J/I .
o

v

v

time dependent voltage across the SQUID, v

time-averaged v-:.,l tage.

*Dimensioned quantities appear in upper case, undimensioned quantities
in lower case, with the exception of r which has been previously
defined. 34
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time dependent quantum mechanical phase differences

across the junctions.

externally applied quasistatic flux, el>a = ~a!~o.

externally applied quasi static signal current, is

noise voltages, v
Nl

u potential energy, u = U!CI 4> /27f).
o 0

i
c

critical current, i = I /1 •
c c 0

lii
c

modulation depth, lii
c i - i . .cmax cm~n

«lv/(lel> ).
a ~

fundamental Josephson frequency, f
J

= ~/27f

differential resistance at constant applied flux,

forward transfer function at constant bias current,

C(lV/del> ). = (dv/(l~ )I/(! R/~ ).a ~ a 0 0

s (f)
v

dT,

S. (f)
)

sa.
)

T

AV = i~ ~ f~VCt)VCt+T) > dt, and (} is the ensemble

a"~rage .

low frequency voltage noise power spectral density,

circulating current noise power spectral density,

s. (f) := SJ(F)/CI 4> /27fR).
) 0 0

low frequency circulating current noise power spectral
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correlation noise power spectral density 5 .(f)
V)

low frequency correlation noise power spectral density,

5 D = 5 ,(f) for 0 < f < fJovj V)

ec,'.:.ivalent input flux noise power spectral density,

low frequency flux noise spectral density, SD
.~

normalized low frequency flux noise spectral density,
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Noise and Optimization of the dc SQUID

Claudia Denke Tesche

Materials and Molecular Res~arch Division
Lawrence Berkeley Laboratory

and
Department of Physics

University of California
Berkeley, California 94720

ABSTRACT

A lumped circuit model is described for the dcSQUID. The junctior.s

are non-hysteretic, resistively shunted Josephson tunnel junctions.

Current-voltage (I-V) characteristics are obtained for the noise-free

case as functior.s of the applied flux, ~a' SQUID inductance, L, junc-

tion critical current, 1
0

, shunt resistance, R, and temperature, T.

The effects of asymmetry in L, 1
0

, and R are discussed. (I-V) charac-

(aV/a~ ), and low frequency
a

spectral densities for the voltage noise, S~, circulating current noise,

S;, and correlation noise, S~J' are obtained at experimentally interest­

ing values of the SQUID parameters in the presence of Johnson noise in

- 2
The flux spectral density, S~ = S~/(av/a~a) , and

energy spectral density, S~/2L, are determined from the computed values

of S~ and (av/a~a). The resolution of the SQUID with ac flux modulation

is discussed. The flux resolution calculated for the dc SQUID of

Clarke, Goubau, and Ketchen is 1.6 x 10-5 ~ Hz-\ approximately one
o

half the exp~rimental value.

Optimization of the isolated SQUID energy resolution is discussed.
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The optimal resolution is obtained for B = 2LI /~
o 0

2nI R2e/~ $ 1. The energy spectral density for B 1, Be = 1 is
o 0

S;/2L = 4kBT(nLC)~. Thus the energy speL~~al density is proportional

to the junction area. In the limit of small L, e, and/or T (i.e.

2kBT(nLC)~ ~ h with B = 1, B
c

= 1) the dominant noise source is the

shot noise in the Josephson junctions, and S~/2L ~ h/2, where h is

Planck's constant.

A model is developed for the SQUID coupled to an input Li-Ri-e
i

circuit through a mutual inductance. M
i

a~LL.. The SQUID voltage
1 1

noise at the output in the presence of the input circuit is computed

as a function of the circuit and SQUID parameters, and the noise figures

The model is used to compute the noise temperature of

the dc SQUID voltage preamplifier and the energy resolution of the

de SQUID magnetometer in the tuned and untuned case.

The untuned noise temperature optimized at frequency W
o

for a

Both the tuned and untuned~ 2.2hw /k .
o B

opt 2
8CR. /L.) (L/R)T/a , ",here

1 1

noise limited SQUID with a
2

'1' opt(w i =
N 0

2.8(w L/R)T for R~P~.3sa2
o ~

shot noise limit, T opt(w )
N 0

Johnson noise limited SQUID with B = I, r = 2TIkBT/Io~0 = 0.05 is

R. opt = w L.(1+l.sa2+0.7a4 )!:>
1 0 1

= 1/2, TNopt (w
o

) '" 17 f1 wOlkB.

For the Johnson noise limited tuned preamplifier, T opt(w ) ~
N 0

w L. and \l/w e~Pt)~(1+3a2/4)wL.. In the
01 01 01

In the shot

shot noise limited optimal noise temperatures are consistent with the

uncertainty principle limit for the noise temperature of a linear

amplifier, TN (wo ) ~ hWo/kB·

The minimum resolvable energy density, u
o

' in the input coil of a

tuned and untuned magnetometer is computed as a function of the SQUID
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noise figures and input circuit parameters. For the tuned magnetometer,

the mean squared voltage signal developed across the coil inductance L
p

satisfies (E:) = 2W~UoLp ~ 4kBRi B(Ti +TN), where Ri is the in~ut circuit

resistance at temperature Ti , TN is the noise temperature of the SQUID

preamplifier, and B is the bandwidth. For most applications, TN ~

(WoL/R)T ~ Ti over a wide range of values of the input circuit para-

meters. The SQUID noise temperature approaches the input circuit

temperature in the high Q, high frequency limit. For Q = 1000, W
o

2 x 106 rad -1 LG , i

limit, Ti + 0 and T + 0, the energy resolution is limited by the shot

2
noise sourc~s in the SQUID, 2W

oUoLp > (4kBRi B)hwo/kB.

For the untuned magnetometer with R, = 0, the optimal energy

resolution for the Johnson noise limited SQUID with B = 1.0, r = 0.05,

and a 2 = 1/2 is uopt ~ 9k
B

T(B/F ) ~ 5 x lO-30(B/IHZ)J, where the Joseph-
o J

son frequency FJ ~ R/IOL. The optimal value of the input coil to the

SQUID for this case is L~Pt ~ 0.72 Lp ' In the shot nc.ise limit,

uopt ~ IlhB.
o
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i INTRODUCTION

T~e dc SQUID
I

(Superconducting QUantum Interference Device) con-

sists of a superconducting ring of inductance L interrupted by two

Josephson junctions
2

each with critical current I. The SQUID is biased
o

at a constant current I and develops a voltage V which is a periodic

function of the applied flux ¢u threading rhe ring. Thus the dc SQUID

is a device ~ 'ch transforms an ~nput signal in the form of a change

in magnetic flux, ~¢
a'

into an output signal in the form of a chanse in

voltage.~v.

The performance of the Josephson tunnel junction SQUIDs presently

used
3

,4 is limited by the Johnson noise geneYated in the resistive

shunts used to eliminate hysteresis in the I-V characteristics. For

the case of the isolated dc SQUID used directly as a magnetometer, the

voltage n0ise produced at the output by the Johnson noise sources can

b~ expressed as an equivalent flux noise spectral density, s~.at the

input. Approximate ex?ressions
3
,5 for S¢ have been obtained in the

limit S = 2LI
o

/¢o ~ I and S ~ 1. However, most dc SQUID's are operated

with S ~ 1, for which value no detailed calculation of S¢ has b2en made"

In addition, the dc SQUID can be coupled to various inpu~ circuits

and used as a magnetometer, gradiometer or voltage amplifier. In many

applications the SQUID is coupled to the input circuit via a mutual

inductance M
i

to an input coil of inductance L
i

. If the effect of the

input circuit on the voltage noise at the SQUID output is ignored, the

performance of the SQUID is characterized by the effective flux noise

spectral density, the SQUID inductance, L, and the coupling efficiency

a 2 between the SQUID and the input coil. 1ne appropriate figure of
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merit in this case is the equivalent energy spectral density referred

2 2
S~/2a L, where M

i

In other applications, the SQUID can be coupled via M. to an input
~

Li-Ri or Li-Ri-Ci circuit containing a voltage source. In the small

signal limit (6~a ~ ~o)' the output voltage change is linearly related

to the applied flux change, and thus to the input voltage change. In

addition, the SQUID presen'es the phase of the input signal. As a

result, the dc SQUID plus input circuit can be characterized as a linear

.. 7
ampl~fler. The appropriate figure of merit is the noise temperature

TN(W), which is a function of the SQUID parameters, the input circuit

parameters, and the signal frequency w. In this case, the input circuit

affects the SQUID voltage noise at the output. Thu~ both the effective

flux noise spectral density, s~, and the circulating current noise

spectral density, SJ' which is coupled back into the input circuit via

M
i

, must be known.

Finally, the SQUID can be operated as a magnetometer. In this

case, the input circuit can be a superconducting transformer or a tuned

Li-Ri-C
i

circuit. The volume of the pick-Up coil is considered to be

fixed by experimental limitations (dewar size, etc.). The quantity to

be optimized is the smallest detectable mean square signal energy in

the volume of the coil. Again, the voltage spectral ~ensity at the

output is a function of the input parameters, and a model for the SQUID

plus input circuit must be developed which involves both S~ and SJ"

Previous calculations of the behavior of the isolated dc SQUID have

been concerned mostly with the noise-free properties of the isolated
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SQUID in the zero voltage state. For example, the dependence of the

critical current on applied external flux has been investigated by

Jaklevic, Lambe, Silver, and Mercereau,l Zimmerman and Silver,S Schulz-

9 10 11
DQ~ois, and by De Waele and De Bruyn Ouboter' for the symmetric

12 Ij 14
SQUID, by Fulton, Clarke and Paterson, and Tsang and Van Duzer

15for the asymmetric SQUID, and by Fulton, Dunkleburger and Dynes, and

16
Tsang and Van Duzer for the SQUID with non-sinusoidal current-phase

relationships. A qualitative discussion of the noise-free current-

voltage characteristic for the SQUID in the small inductance limit has

. 10 . 5
been given by DeWaele and DeBruyn Ouooter, and by T1nkham. However,

no quantitative calculation of the flux dependence of the current-

voltage characteristics, the effective flux noise spectral densiLy S¢,

and the circulating current noise spectral density SJ as a function of

the SQUID parameters has previously been made.

Several authors have discussed the characterization of SQUIDs u~ed

as low noise galvanometers, preamplifiers and magnetometers. Clarke,

17
Tennant, an~ Woody discuss the effective noise temperature of super-

18,19
conducting galvanometers based on the SLUG. Radhakrishnan and

Newhou~e20 generalize the definition of noise figure and noise tempera-

ture to include amplifiers with superconducting inputs. Davidson,

21
Newbower, and Beasley characterize the use of SQUIDs as narrow-band,

low-impedance, low noise temperature voltage amplifiers. They derive

an expression for the noise temperature of

of the equivalent energy spectral density,

the SQUID amplifier in terms

2
S~/2a L, and the time con-

stant of the input circuit determined by the source resistance and input

inductance. In general, they find low noise temperatures {TN'\, )JKl can
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be obtained only for source resistances R < In. Claussen6 discusses
s

the sensitivity ~f the SQUID used as a wagnetometer, ammeter dnd volt-

meter. He finds the effective energy resolution, S¢/202L, to be the

appropriate figure of merit for the SQUID in all three cases. In all

of the above treatments, however, the effect of the circulating current

noise, SJ' on the device performance was ignored.

The natural bandwidth of the de SQUID preamplifier is determined by

the input circuit parameters and SQUID impedancEc. 'l'he useful bandwidth

can be extendeci if the SQUID is us~d as a null detector in a negative

feedback circuit. The effect of feedback on bandwidth has been discussed

. 22 23.
by McWane, Ne~ghbor, and Newbower, by Newbower, by Gifford, Webb and

. 24 .., 1 21 6
Wbeatly, by Davidson, Newbower, and ,,,eas ey, and by Claussen. The

authors find that, although fcet1back cun imp~ovt=' Lhe freg'uency response

and can enromously increase the dynamic range of changes in applied

flux over which a linear response in output voltage change can be

Obtained, the bandwidth for which the optimal noise temperature is

obtained is still determined by the intrinsic input circuit bandwidth.

The low noise temperatu'.es computed for the SQUID voltage amplifier

. n 17,21,6
are obtained only for source resistances cons~derably less than 1".

This is because the SQUID responds to the flux applied through the SQUID

loop, and thus to the current flowing through the input circuit. Small

input voltages will produce the require~ input currents only for the

case of small source resistances. For source resistances on the order

of In, low noise tell'peratures may still be obtained provided a supercon-

ducting transformer is used to match the source resistance to the optimal

input resistance.
17

Clarke, Tennant, and Woody describe the operation

http://temperatu-.es
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of d s~perconducting transformer used with a SLUG galvanometer.

21
Davidson, Newbower, and Beasley calculate noise temperatures < 4K for

source impedances on the order of a few ohms for a SQUID amplifier used

wi th a superconducting trans former. Claussen
6

discusses the effect of

a superconducting transformer on the effective flux noise spectral

density of the SQUID. Again, a complete treatment would also involve

the effect of the flux transformer on the contribution of the circulat- , -

ing current noise spectral density to the device sensitivity.

21
Davidson, Nel'bower and Beasley compa.re a typical SQUID preampl~-

fier to the commercially available Princeton Applied Research (PAR)

model 185. They find the PAR 185 to be a broadband, higil-impedance

amplifier with noise temperature ~ 0.6K when ideally coupled through a

transformer to a In source, while the SQUID amplifier is a narrower-

-6
band low impedance device with noise temperature on the order of 10 K

when ideally coupled to a In source.

Heffner? derives the minimum noise temperature of arbitrary linear

amplifiers which is consistent with the uncertainty principle.
25

Giffard -

has developed a model for the rf SQUID preamplifier which predicts a

minimum noise temperature in agreement with Heffner's results. A

sin'-Llar restriction on the dc SQUID preampli fier noise temperature must

also be derived.

In this thesis, we develop a lumped circuit model for the isolated

dc SQUID. We derive a set of coupled non-linear differential equations

for the output voltage and circulating current as functions of time.

Next, we develop a computer algorithm to compute the time-averaged SQUID

I-V characteristics and noise spectral densities. The noise source



-6-

explicitly included in the SQUID equations is the Johnson noise in the

shunt resistances. For certain values of the SQUID parameters, the

Johnson noise sources are dominated by the shot noise in the Josephson

. . 26,27 .
Junct1ons. We approx1mate the noise figures for the SQUID in this

case. < -2At low frequencies (F - 10 Hz), IIF noise is also generated in

h
.. 29

t e SQUID Junct10ns. We do not include this noise source explicitly

in the c~lculation. Finally, we develop a model for the dc SQUID volt-

age preamplifier and magnetometer and compute the corresp~nding noise

temperature and energy resolution as functions of the SQUID and input

circui.t parameters.

In section II we develop the lumped circuit model for the isolated

d h · . 1 h d' . d 1 30 ,31 .c SQUID. T e res1st1ve y s unte Junct10n mo e 1S used to

describe the two !1cn-hy·stcrctic J06eIJht:Jon tunnel junctions. The h~'3"ir.

SQUID equations are derived for the general case of the completely

asymmetric SQUID and cast into 3 convenient dimensionless form.

In section III the SQUID characteristics in the absence of noise

are discussed. After briefly reviewing the relationship between criti-

cal current and applied flux as a function of the SQUID parameters, the

noise-free current-voltaqe characteristics for the symmetric and

asymmetric SQUID are calculated numerically.

In section IV the calculation is extended to include explicitly

the voltage noise sources associated with the shunt resistances. The

numerical techniques used to compute the noise-rounded current-voltage

characteristics and the noise power spectral densities are described in

detail. The algorithm is checked by computing I-V characteristics asa

function of the noi~e parameter r = 2rrkBT/lo~o for the single junction,

http://Jo6epht.Gr
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32a"j compared with the results obtained by Auracher using a similar

method, and by Ambegaokar and Halperin
33

using a Fokker-Planck calcula-

tion. The agreement is excellent. In addition, low frequency voltage

power spectral densities s; are computed for the single junction and

agree well with those computed by Vystavkin et a1 34 by another method.

A thermal activation model fer the single junction noise rounded I-V

characteristics and voltage noise spectral densities at values of the

bias current below the critical.:urrent, I c ' is developed following a

treatment suggested by Kurkijarvi~5Kurkijarviand Webb, 36 and FUlton. 37

The voltage noise spectral density predicted by the model agrees well

" k" 1 34 d "w1th the calculated results of Vystav 1n et a an w1th Fulton's

activation model. 37

The computer algorith~ is ext~nd~d to the de SQUID equations. WP

compute noise-rounded current-voltage characteristics, voltage, circu-

lating current, and correlation noise sp8ctral densities, and effective

flux noise spectral densities for experimentally interesting values of

the SQUID parameters. A thermal activation model is developed for the

dc SQUID by analogy to the single junction model for I < I
c

' ~a

0.5 ~o' Tr,e vah'e!" of s~ predicted bv the thl'nnal activation model

are in good agreement with the values calculated from the computor algo-

rithm. The model is then used to compute SJ for I < I c ' ~a = 0.5.

A large increase in SJ below I is observed.
c

The equivalent energy spectral density, S;/2L, is computed as a

function of the SQUID parameters. The values obtained in the limits

B> 1 and B< 1 are compared with values obtained from approximate

expressions valid in those limits. The agreement is excellent. The
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measured value of S;/2L for the dc SQUID developed by Clarke, Goubau

3 -30 -1and Ketchen, approximately 4 x 10 J Hz for B~ 2.5, is greater by

a factor of four than the calculated value.

In section V t~e opLimization of the SQUID equivalent energy reso-

2
lution for fixed coupling efficiency, U , is discussed for the case in

which the SQUID is operated in a flux-locked loop at ~a = 0.25 ~O.

We show that, if the values of the SQUID inductance and capacitance are

fixed by the geometry of the SQUID, then the shunt resistance and junc-

tion critical current are determined by the two constraints B
c

2nI R2C/~ $ land B= 2LI /~ ~ 1. As an example of optimization, we
o 0 0 0

consider possible improvements in the tunnel junction dc SQUID of Clarke,

Goubau, and Ketchen. 3 If the inductance were lowered by a factor of 3

to 0.35 nH, and if the junction capacitance were lowered by a faLtor of

200, the predicted energy resolution would be S¢f2U
2

L ~ 4 x 10-32JHz-l

for u 2 ~ l/2. This is a factor of 25 smaller than the predicted energy

-9
resolution for the SQUID with L = 10 Hand C = 200 pF. In general,

the optimal energy spectral density is fixed by the inductance and

capacitance, S;/2L = 4k
B

T(rrLCl l / 2 , for the SQUID limited by Johnson

noise in the shunts. The ultimate resolution is obtained when the SQUID

noise is dominated, not by the Johnson noise in the shunts, but rather

by the shot no~se in the junctions. In this case, S$/2L ~ h/2.

In section VI a model is developed for the dc SQUID preamplifier

and dc SQUID magnetometer. The noise temp2rature of the preamplifier

is computed as a function of the frequ~ncy, SQUID parameters Land R,

SQUID noise figures S~, S~, and S;J' and the imput circuit parameters.

The model used is compared to the model developed by Davidson, Newbower
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, 1 21. l' h' . f' 0ana Beas ey ~nvo v~ng t e s~ngle no~se ~gure SV' The optimal noise

temperature at frequency W
o

for the. untuned preamplifier' with a JohT'son

noise limited SQUID with B ~ I, r ~ 0.05 is

where the optimal source resistance is R~Pt

Topt ~ 8(R~Pt/L/RL.)T/u2
N ~ ~

~ W L. (1 + 1.5U2 + 0.7U4)~.
o ~

The optimal noise temperature for the tuned input circuit for B = 1.0,

in the untuned case, and TN ~ 2.2hwo/kB in the tuned case. Both

In the s'lOt noise limit, TN :2; 17hW
o
/kB for

r ~ 0.05

l/W c~pt
o ~

u2 ~ 1/2

is T(opt
N

~ W L. (1
o ~

Ri,Ci) ~ 2.8 (w
o

+ 3u2
/4).

L/R)T where R~Pt ~ 0.35 u 2w L. and
~ 0 ~

relationships are consistent with the minimum noise temperature consis­

tent with the unce.rtainty principle as determined by Heffner,7

The minimum resolvable input energy density, uo ' in the inp~t coil,

~ of a dc SQUID magnetomete~ is computed from the model in the untunedp'

and tuned case. In the untuneu case, the optimal Johnson noise limited

value is u~Pt ~ 9k
B

T(B/FJ ), and the optimal shot noise limited value is

uopt ~ IlhB for a 2
= 1/2. In the tuned case, the mean square signal

o

voltage <Ef> satisfies (Ef> = 2W~UoLp :2; 4kBRiB(Ti+T~) where Ri is the

resistance, Ti is the temperature of the input circuit, and TN is the

noise temperature of the SQUID. In the low temperature limit, Ti + 0

and T + 0, the SQUID noise temperature T~ ~ 2.8 (WoL/R)T + hWo/kB. Thus

the minimum value of ( E~) is determined by the SQUID shot noise sources,
~

Many of the results reported in this thesis have been published

previously in the literature. The isolated SQUID results appear in

references 38-40. The SQUID preamplifier and magnetometer results are

discussed in reference 41.
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II. LUMPED CIRCUIT MODEL FOR THE DC SQUID

A. The Resistively Shunted Junction Model

The dc SQUIDl consists of a superconducting loop interrupted by

two Josephson junctions (see Fig. la). The dc SQUIDs presently used

are thin film devices. The behavior of the Josephson tunnel junctions

used is adequately described by the resistively shunted junction model

30 31developed by Stewart and McCumber Many of the features of the

single junction behavior appear in the behavior of the SQUID. Thus

we discuss this model in some deta.il.

The tunnel junction is modeled by an ideal Josephson junction

with critical current 1
0

in parallel with a resistance Rand capaci-

tance C (see Fig. Ib). The total current through the combination depends

on the quantum mechanical phase <5 across the junction according to

I J = I sino.o .

The voltage across the junction, V, is given by

(2.1)

V
h do do

- - = (el> /211) ­2e dt 0 dt (2.2)

The total current through the combination satisfies

I do d
26

I sino + (el>0/211R) - + (cel> /211) ---2
o dt 0 cH:

(2.3)

It is convenient to use the following dimensionless units:

voltage in units of I oR, current in units of I 0' flux in units of el>0'

and time e in units of el> /2111 R. The dimensionless quantities are
o 0

expressed ill lower case letters. The reduced capacitance is

a = (2nI R
2

/el> )e. Eq. (2.3) then becomes
coo
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r
o

L/2

v

R

I

(0 )

r
V

ItI

=.:= .f' 10
~R
~

1
I

c

(b)

XBL 7811-6190

Fig. 1: (a) Lumped circuit model for the symmetric dc SQUID, and
(b) resistively shunted junction model for the Josephson
junction.
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where

u = U/{I ~ j2rr) ~ -cosO - io
o 0

corresponds to a potential energy for the junction.

(2.L.)

(L5)

Eq. (2.4) has the same form as the equation of motion of a par-

ticle moving in a viscous medium under the influence of gravity QQwn

a washboard surface (see J. R. Waldram's review of the Josephs0n ef-

fects in weakly coupled superconductors42 ). The mass of the particle

corresponds to the reduced capacitance 8
c

' imd the veloci\:y of the

particle to the voltage across the junction. For the case i 0, the

(2.6)

washboard tilt is zero. The particle velocity then damps to z~ro and

the particle settles into a minimum at 0 = nrr (n = 0, ~ I, ~ 2 ..• ).

This corresponds to zero voltage across the junction. As the bias

current increases, the corresponding tilt of the washboard increases

until, at some critical tilt angle corresponding to d critical current

i
c

' the particle is no longer stationary, but moves freely down the

washboard. The periodic particle velocity corresponds to an oscil-

lating voltage developed across the junction. For the case 8
c

= 0,

the instantaneous voltage vee) is given by

v{e) = v2/{i + cos{ve»,

43where v is the time-averaged voltage

2 I,V= (i - l)~. (2.7)

For the case 8c~ 0, the particle has inertia. If the particle is in­

itially at rest, then it remains at rest for all values of tilt cor-
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responding to i < i
c

' If the particle is given an initial velocity,

then it can sustain motion down the board over a range of tilt angles

(i < i c > depending on the value of B
c

' Thus the corresponding i-v

characteristics are hysteretic. For most applications of the dc SQUID

hysteresis in the junctions results in a loss of sensitivity and is

undesirable. This places a constraint on the parameter Bc ' For

B
c
~ I, the effects of hystersis on the junction~ are negligible 30 ,31

In the equations which follow, we will take Bc = o.

B. The Thermal Activation Model

The main sources of noise in the tunnel junctions are the Johnson

noise generated in the resistive shunt and the shot noise generated

by the int~raction ~f the currEnt through the junction a~d the elec-

tromagnetic field in the junction cavity. The Johnson noise is the

domi. 'lIlt noise source for the junctions used in the dc SQUIDs fabri-

cated at this time. The Johnson noise is modeled by a voltage noise

source vN in series with the shunt resistor. Eg. (2.4) then becomes

where the potential u = -cosO - io. The noise voltage vN is a func­

tion of the temperatu;:'e T. In the analogous problem of a particle Oil

a washboard surface, v
N

corresponds to a random force acting on the

particle. The particle undergoes Brownian motion in the force field,

-(du/ao), oscillating within the washboard valleys and also making tran-

sitions between valleys. The average particle velocity, (do/de),

corresponds to the time-average voltage vdeveloped across the junc-
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tion.

Kurkijarvi 35 , Kurkijarvi and webb 36 , and Fulton 3? have developed

a thermal activation model to describe the behavior of the junction

for bias currents i < i
c

. In terms of the analogy to a particle on

a washboard, the transition between wells is modeled by the thermQlly

activated classical escape of a swarm of particles from a potential

valley over a potential barrier. In so doing, they ignore the contri-

bution of the motion of the particle within the well to the time-aver­

aged velocity. Chandrasekhar44 following a discussion by Kramers
45

,

has g~ven an exp~ession for the escape probability in terms of the

curvature of the potential well and barrier, (a2u/ao2) . and
m~n

(a2u/a0 2) , the barrier height, ~u, the dimensionless thermal en-
max

~rgy, r = 2rrkBT/Io~o' and the inertia, which corresponds to the re­

duced capacitance B
c

• In the limit Be < 1 and ~u » r, the frequency

with which a particle switches from one well to the next is given by44

(2.8)

At the potential minimum and mar.imum for the single junction, we have

~, and ~u =2~ - 2i arc

cos i, where the b.eas current i < 1.

The escape of the particle from one well to the next corresponds

to the generation 01 a voltage pulse across the junction. The area of

the pulse, a, is

weI12
a = f vd8

well)
2rr, (2.9)

(in dimensioned units A ~o). The time averaged voltage for i < 1 is
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v = af = (1 - i2)~exP«2/r) (-~ + i arc cos i);.
s (2.10)

This approximation ignores the possibility that the voltage pulses ov-

erlap, and thus is accurate provided the pulse dJration T ~ 2n « Ilf .
5

The low frequency voltage noise spectral density, S°, can be approxi­
v

~ated as fOllows 3? The average number of pulses in unit time is f
s

"

The root mean square fluctuation in the number of pulses in unit time

is ~. The area of each pulse is a = 2IT. Thus the mean square Voltage
s

and the voltage noise spectral den-

(~.ll)

sity at frequencies f satisfying 0 < f ~ f
s

SOlf) = a 2f 2n;. (2.10)
v s

FUlton3
?, following the model de~;cribed by Kirkijarvi 35 uses a

slightly different expression for the switching frequency f
s

' He takes

~u = 1.88(1 - i)j;~ and thus

Vf = exp(-1.88(1 - il 3/2;rl.

The 'To1tage noise power spectral density is again given by s~ =
46 d 1 . 47Ivanchenko and Zil'berman and Arnbegaokar an Ha pen.n

2ITv.

have

calculated the i-v characteristics directly for all values oi bias

current using a Fokker-Planck technique. Their results are compared

with Fulton's thermal activation results and our thermal dctivation

results in Fig. 2a. In addition, voltage noise power spectral densi­

ties have been computed by Vystavkin, et al. 34 Their results are

compared with the thermal activation models in Fig. 2b. Notice that

both thermal activation models give SO a V. The agreement is adequate
v

in both cases. We shall generalize our thermal activation model to

the dc SQUID in section IV.5.
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Fig. 2: (a) Current-voltage characteristic for the single junction

with r = 0.05. The solid curve is fLom Ambegaokar and

Halperin,47 the dotted and dashed cune is from Fulton's

37activation model, and the dotted curve is from the actiJa-

tion model developed here. (b) Voltage spectral density vs.

average voltage. The smooth curve is from Vystavkin, et al,34

the dotted curve is from the activation models.
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C. Equations for the dc SQUID

We now derive the equations for the lumped circuit model of the

dc SQUID. We consider the general case of a completely asymmetric

SQUID (see Fig. 3a). The critical currents of the two junctions are

(1 - alI and (1 + alI (Ial ~ 1). The shunt resistances areo 0

RI(l - p) and R/(l + p) (Ipl < 1). The self inductances of the two

arms are Ll and L
2

, the mutual inductance between the arms is M, and

the ring iwductance is L. The constant bias current is I, and the

time-dependent currents in each are II (t) and I
2
(t). Thus

We define the circulating current J(t) to be

(2.13)

We assume that the flux threading each junction is always much

less than a flux quantum, ¢o' and that the currents flowing through

the junctions obey the Jose~lson current-phase relatjQn. The currents

Il(t) and 1
2

(t) are related to the voltages VI(t) and V
2

(t) and phase

differences 0l(t) and 02(t) across the junctions by

(2.14)

and

(2.15)

Here, V
NI

and VN2 are the t:,me-dependent Johnson noise voltages in

series with the shunt resistors. The phase differences develop in

time according to the voltage-frequ~ncy relations

(2.16)

and
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(2.17)

The total voltage V developed across the SQUID is

V = V
2

+ L
2
dI

2
/dt + MdIl/dt.

The phase differences 01 and 02 are related by8

(2.18)

(2.19)

where ¢T is the total flux threading the superconducting ring. The

total flux is the sum of the individual fluxes ~l and ¢2 produced by

the currents II and 1
2

and the externally applied quasistatic flux,

¢a' We can restrict ¢a to the range 0 ~ ¢a ~ ¢o without loss of gen­

erality since all SQUID responses are periodic in ¢a with period ¢o'

The fluxes ¢l and ¢2 are proportional to the currents II and 1
2

, De-

fining £1

£1 + £2 = L; we take £1 = (1 - n)L/2 and £2 = (1 + n)L/2 (Inl ~ 1).

The total flux thus becomes

¢T = ¢a + LJ + nLI/2, (2.21)

where we have used Eqs. (2.12) and (2.13). The geometric quantities

L, L
l

, L2 , £1' £2' and M are related in the following way. S'lppose

that in some time-dependent mode dIl/dt # 0 and dI 2/dt = O. The in-

ductive voltage drop around the entire loop (neglecting any contribu-

tions from the junctions or shunts) is V = LlOil/dT - MdIl/dT. The

rate of change of flux in the ring yields V = £ldIl/dt (again ignoring

any flux contributions from the junctions or shunts). Hence

£1 = L
l

-M, and, similarly, £2 = L2 - M. Using these expressions for
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dIl/dt = dI
2
/dt (since I is constant),

we can reduce Eqs. (2.18) and (2.19) to

L dJ
V = VI - (1 - T) 2" dt'

and

L dJ
V = V2 + (1 + 11) 2" dt·

These equations include the effect of the mutual inductance even

though M does not appear explicitly.

(2.22)

(2.23)

The final set of equations for J and V in terms of the bias cur-

rent I, the applied flux ~a' the noise voltages V
Nl

and V
N2

, and the

SQUID parameters 1
0

, R, L, a, p, and 11 are obtained from Eqs. (2.12) -

(2.23) by eliminating II' 12 , VI' and V2 . As in the single junction

model, we use the following dimensionless units: voltage in units of

loR, current in units of 1
0

, flux in units of ~o' and time e in units

of ~0/2rrloR. The dimensionless quantities are expressed in lower case

letters. We define 8 = 2Llo/~0' Hence from Eqs. (2.20) and (2.21):

j = (01 - 02 - 2rr~a)/rr8 - T)i/2;

from Eqs. (2.16) - (2.23):

(2.24)

v =
(1 + n) dOl 1 _ ) d0 2-,-=---=--,-,',"- __ + 1.:-__11 _

2 de 2 de (2.25)

and from Eqs. (2.12) to (2.17) :

dOl i/2 - j - (l - a) sinO
l

de = 1 - P + vNl '

and

d0
2 i/2 + j - (1 + a) sin0

2
de = 1 + P

+ v N2 ·

(2.26)

(2.27)
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Equations (2.24)-(2.27) can also be used to describe the behavior

of the SQUID shown in Fig. 3(b). This configuration is used in the

SLUG48 , and the thin film gradiometer4 In this case, the applied flux

is coupled to the SQUID by means of a signal current, Is' The current

Is generates a current I
s
/2 in the inductances Ll and L2 and in L3 and

L4, together with a circulating current J
s

• These currents are super­

imposed on the currents 1/2 and J produced by the bias current, I.

Hence the currents through L
l

, L2 , L3' and L4 are

II 1/2 - J - I s /2 - J s '

12 1/2 + J -I- I s /2 + J s '

13 1/2 - J + I s /2 - J s '

and

14 = 1/2 + J - I
s
/2 + J

s
• (2.31)

The bias current I is constant in time; we assume that Is is quasi­

static. Thus dIl/dt = dI 3/dt = - dI4/dt = -dI2/dt = - dJT/dt, where

J T = J + J s '

Since only the time dependent circulating currents J and J
s

de­

termine the voltages ucross the inductances, Eqs. (2.22) and (2.23)

become

and

v VI - (1 - T) (L/2) (dJT/dt) , (2.32)

v = V
2

+ (1 + T)(L/2) (dJT/dt). (2.33)

The parameter T) describes the imbalance between the inductance of the

arm containing L
l

and L
3

, and the arm containing L2 and L
4

• Equations

(2.14)-(2.17) for VI' V2, 01' and 02 are unchanged. Equation (2.21)
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for the total flux ¢T is modified by Is. We define a parameter ~

analogous to n that describes the imbalance between the inductance of

the arm containing L
l

and L
2

, and the arm containing L
3

and L
4

; the

signal flux is then ¢s = LJ
s

+ ~LIs/2. Hence

¢T = LJT + nLI/2 + ~LIs/2. (2.34)

From Eqs. (2.28)-(2.34) with Eqs. (2.14)-(2.17), the basic equa-

tions in dimensionless parameters are:

v =

jT = (01 - 02)/nS - ni/2 - ~is/2,

(1 + n) dOL (1 - n) d0 2
2 d8 + 2 d8 '

dOL i/2 - (i
s
/2 + jT' - (1 - 0:) sinO

l
d8= + vNl '(1 - p)

d0
2

i/2 + (i
s
/2 + jT) - (1 + 0:) sin0

2
dEf= (1 + p) + v N2 ·

(2.35)

(2.36)

(2.37)

(2.38)

Equations (2.35)-(2.38) have the same form as Eqs. (2.24)-(2.27) if

we identify j with (jT + i
s

/2) and ¢a with -(1 - ~)B i s /4. with these

substitutions, all of the enusing results can be applied to SQUIDs in

this configuration. In particular, the critical current and voltage

across the SQUID are periodic in the signal current with period
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III. SQUID CHARACTERISTICS IN THE ABSENCE OF NOISE

In this section we discuss the behavior of the SQUID in the absence

of noise. We thus set v
Nl

= v
N2

= 0 in Eqs. (2.26) and (2.27).

A. Case I: v = 0

Consider first the case in which the bias current i is sufficiently

low that no voltage is produced across the SQUID. The largest such

current, i c ' is a function of a, 8, n, and ~a' Although curves of

9-16
ic(~a) have appeared previously i.n the literature, for future ref-

erence, we include here plots of i
c

vs. ~a for various values of a, B,

and n. For v = 0, we can set the time derivatives in Eqs. 12.24)-

(2.27) equal to zero to obtain

i = (1 - a) sinO
l

+ II + a) sin0
2

'

2j = -II - a) sinO
l

+ (1 + a) sin02 '

and

(3.1 )

(3.2)

(3.3)

EqS. (3.1) to (3.3) are independent of the shunt imbalance, p, as we

expect for v = O. We compute the variation of i
c

with ~a by numerically

solving these equations.*

The procedure used to calculate ic(~a) is as follows. By cOmbining

Eqs. (3.1)-(3.3) we eliminate j, and express °2 as a function of 01

and i:

We define a function of i and 01 to be

F(i,Ol) = i - (1 - a) sinO
l

- (1 + a) sino 2 .

(3.4)

(3.5)

*An elegant alternative method of solution has been given by Tsang and
Van Duzer. 16
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Eq. (3.1) is satisfied when F(i,Ol) = O. Plots of F(i,Ol) vs. °
1

for

fixed i generate a family of continuous curves each labeled by the value

of i. Since F is also continuous in i, the curve corresponding to the

greatest value of i that still has a zero (i.e. F(i,Ol) = 0 for some

°1 ) will necessarily satisfy OF/OO
I

= 0 at that point. Hence,

(3.6)

Equation (3.5) with F = 0 and Eq. (3.6) with aF/aO
l

express 01 in terms of i:

o allow us to

i (1 - a) sin,\ + (3.7)

Now both F and OF/aO
l

can be expressed as fur.ction of a single variable

°1 , We search for the simultaneous zeros of F and OF/OO I with respect

to °
1

using a Newton-Raphson search routine in one variable only, and

thus determine the maximum supercurrent, i c ' as a function of a, S, n,

and ¢a'

Curves of i
c

vs. ¢a for variable a and n with B = 1.0 appear in

Figs. 4(a) and 4(h) respectively. Equations (3.1)-(3.3) imply that i c

attains the maximum value, 2.0, for some ¢a whatever the values of a,

n, and B. With (\ = °2 = rr/2, we have j = a and eJ>a =- B(a + n)/2 at

that point. The values of i
c

at other values of ¢a dep(nd on n and a

in the following manner. When n = 0, the modulation depth lH = ic cmax

- i
cmin' falls to zero as 0: is increased from o to l- In addition, the

value of ¢ at. which i cmin
occurs shifts away from 0.5 as the SQUID

a

asymmetry increases. In the limit 10:1 = I, i = 2 for all eJ> . It
c a
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should be noted that in the large B limit, ~ic is ~'lch less sensitive

to the value of U: Zimmerman and Silver
8

demonstrated experimentally

that ~ic becomes significantly reduced only when the critical current

of one of the junctions fall below ~i (u = 0) •
c

The modulation ~ic is independent of the value of n, as can be seen

from Fig. 4(b). For a = 0, the value of ¢a at i
cmin

is shifted from

¢a 0.5 for n = 0 tc ¢
a

0.5 - Bni . /4 for n i O. In fact, the
cmln

entire i c vs. ¢a curve for arbitrary n can be readily generated from the

corresponding n = 0 curve. A particular velue 0f i
c

at ¢: for r, = 0

will occur at ¢n = ¢o - Bni /4 for n ~ o. Since the amount by which
a a c

¢n is shifted increases with i , the n i 0 curves appear skewed. To
a c

see this, suppose the set of values (vo, jO, ¢o) satisfy Eqs. (2.24)­
a

(2.27) for arbitrary u, P, B, and i with n = o. We want to show that

the set~n, jn, ¢:) fo~ n ~ 0 can be shifted so that the shifted values

satisfy the n = 0 equations, and hence have the n = 0 time-averaged

values. Now the set (vn , jn, ¢n) satisfy Eqs. (2.24)-(2.27) with Ii i o.
a

Rewriting these equations, we have

(01 - 02)/nB - (¢~ - wBi/4)2/B

and vn - (do
l
/d8 - d02/d8)n/2 = (do

l
/d8 + d0

2
/d8)/2

Since both ¢a and i are independent of time, we have

Hence

(3.8)

(3.9)

(3.10)

(3.11)

¢n _ nBi/4 we see
a



-27-

that the shifted set (v
s

, jS, $s) satisfy Eqs. (2.24)-(2.27) for n = O.
"a

Hence the time-averaged values ~ and js evaluated

original average values V
O

and jO at ¢~ = ¢:.

- (TIn8/2)djn/dt =~. Hence the values ;n and

at ¢s will equal the
a

But J
's -:n 5 nJ and v v

jn at some ¢n are just
a

the values or- VO and J'o at ~na - n13'/4. Consequently an 'mbalance n 'n,+,. ,..

the SQUID inductance appears as an effective external flux - nBi/4 for

fixed bias current i.

Curves of i
c

vs. ¢a for various values of 8 with a = n = a are

1 ,., ubI' 49P otted ~n F~g. 5. Sim~lar curves have been p ~shed elsewhere.

Notice the cusp in the curve at ¢a = 0.5. Let ~I = 21 - I (~ /2)
c 0 c 0

be the modulation depth in dimensioned units. We display the dependence

of ~Ic on the parameters Land 1
0

in Fig. 6. For variable L and fixed

1
0

, the modulation depth is expressed in dimensionless units as

(~I /21 ), and plotted vs. 8 = L(2I /¢ ) in Fig. 6(a) 0 As L is reduced
coo 0

below a value corresponding to B ~ 0.1, ~Ic approaches the limit 21
0

independent of L. Hence decreasing the SQUID inductance below 0.1

¢ 121 ha~ little effect on ~I .
o 0 c

The dependence of ~Ic on 1
0

for fixed SQUID inductance L is plotted

in Fig. 6(b). Here, the modulation depth is plotted as the dimension-

less parameter ~I /(¢ /L) vs. B = I (2L/¢ ). For 8 ~ 40, ~I ~ ¢ /L.
coo 0 c 0

Thus the modulation depth approaches a limit independent of 1
0

for

sUfficiently large values of 1
0

• The experimental points shown were

. h . . 50obtained by Clarke and Paterson using a SQUID w~t SNS Junct~ons.

agreement is excellent.

The
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B. Case II: v > 0

When the SQUID is biased at a constant current i > i
c

' the circu-

lating current j and voltage v oscillate in time. We integrate Eqs.

(2.24) to (2.27) stepwise in time to deter~ine the dependence of v(8)

and j(8) on a, 6, n, p, and ¢. The initial conditions are chosen to
a

minimize the transient response of the SQUID. The results shown for

v(8) and j(8) are taken after several oscillations, and thus refllct

the steady state behavior corresponding to the state of least energy of

the SQUID. Fig. 7 shows vee) and j(e) vs. time for several values of the

SQUID parameters. The period of oscillation for vee) is T = 2TI/v in

all cases, where v is the time-averaged voltage. For the special case

of a completely symmetric SQUID (a = n = P = 0) at ¢a = 0, j(8) = o.

For the symmetric SQUID at ¢
a

0.5, j(8) oscillates symmetrically about

zero with period T/2. For all other cases, the current j(e) also oscil-

lates with the period T of the voltage oscillations. For bias currents

very near i c ' vee) and j(8) exhibit sharp spikes, indicating the pres­

ence of many higher harmonics of the fundamental frequency. As i is

increased, v(e) and j(e) become progressively ,flore sinusoidal. This

behavior is very similar to that observed in single junctions.
43

The curves of voltage vs. time can be averaged over a complete

cycle to yield i-v characteristics as functions of the various SQUID

parameters. In Fig. ala) we plot i-v characteristics for the symmetric

SQUID with B = 1.0 for several values of ¢a. The effect of changing 6

on the i-v characteristics for ¢ = 0.5 is seen in Fig. B(b). As ia

increases, the characteristics approach the equivalent single junction

curve (represented in Fig. S(a) as ¢a = 0, and in Fig. S(b) as 6 ~ 00).
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Hence the SQUID voltage be~omes l,ssentially indepenG~~t of the applied

flux, ~a' for large values of i (i ~ 4.0). At lower values of i, the

presence of instantaneous circulating currents through the junctions

for ~a j 0 produces an increase in v over the single junction value.

The dependence of the average v and average circulating current j

on ~a for the symmetric SQUID for various values of 8 at i = 2.1 is

shown in Fig. 9. We see that j = 0 for ~a = 0 and 0.5 only.

The dependence of the i-v characteristics and the curves of j vs.

~a and v vs. ~a on the degree of SQUID asymmetry is shown in Fig. 10

for B = 1. Notice that the discontinuity in slope in the i c vs. ~a

curves is not present in the v vs. ~ curves. Consider first the family
a

of curves [Figs. lo(a)-(c)] for n j O. The curves of j and v vs. ~a

with n j 0 are found by shifting the curves for n = 0 by flux - n8i/4

as discussed in section 3A. However, since the shift is proportional

to i, the i-v characteristics for n j 0 cannot be generated by a simple

shift of the n = 0 characteristics.

The i-v characteristics for ~a = 0.5, and curves of j and v vs. ~a

for i = 2.1 are plotted in Fig. 10(d)-(f) for several values of a, the

critical current imbalance. As lal + I, the i-v characteristic becomes

independent of ~a' and approaches the single junction characteristic.

This behavior can also be seen in v vs. ~ [Fig.lO(f)]. In addition,
a

as lal + I, j increases for all values of ~a.

The curves in Fig. 10(g)-(i) for various values of p show the ef-

fects of an imbalance in the shunt resistances. For ~a

characteristics are relatively independent of p. This insensitivity to

P is reflected in the v vs. ~a curves. However, the curves of j vs. ~a
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are relatively sensitive to the value of P; in the limit of large i, j

approaches ip/2.

c. Discussion

We conclude that the behavior of the de SQUID is relatively insen­

sitive to quite large as~~~etries in the inductance of the two arms,

in the critical currents, or in shunt resistances of the two junctions,

provided that neither critical current falls below ~ic(a ~ 0). Conse­

quantly, it appears tha~ near-optim~~ performance can be achieved with

a wide range of values of n, a, and p. In the remainder of the thesis

we will be concerned only with the symmetric case n = a = p = O.
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IV. SQUID CHARACTERISTICS IN THE PRESENCE OF NOISE

In this section we discuss the behavior of the SQUID in the pre-

sence of Johnson noise generated in the resistive shunts. We first

discuss our numerical techniques. As a check on these techniques, we

show that our results for the noise-rounded i-v characteristics and

voltage noise spectral densities for a single shunted junction are in

good agreement with work previously published 32 ,33,34,37

compute the i-v characteristics, voltage noise spectral density, cur-

rent noise spectral density, correlation noise spectral density, and

flux resolution of the SQUID as functions of the relevant parameters.

A. Numerical Techniques

We assume that the Johnson noise voltages across the external

shunt re£istances dominate any other source of noise in the S~UID, for

1 h . . th' . 26,27 h 1 fl ' ,examp e, s ct nOl.se l.n e Junctl.ons , or t erma uctuatl.ons l.n

the crl.'tl.'cal current29. h l' d' ET e vo tage nOl.se sources vNl an vN2 l.n qs.

(2.24)-(2.27) are then uncorrelated, each having a white voltage spec­

tral density, S~ = 4kBTR, or, in dimensionless units, S~ = 4f, where
34

f = 2TIkBT/Io~o' We approximate the random voltages VN(e) by trains of

voltage pulses each of duration ne and random amplitude vk . We have

used two different techniques to generate the vk • In Method I we gen­

erate a pseudo-random set of Gaussian distributed vk • We then inte-

grate Eqs. (2.24)-(2.27) using a simple integration routine. The re-

sultant vee) is used to calculate noise-rounded i-v characteristics.

Unfortunately, as we shall discuss, the calculation of spectral den-

sities from these vee) requires large amounts of computer time. In
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Method II we use an approximation for the v
k

that reduces significantly

the computation time for the spectral densities.

Method I. We use a pseudo-random number generator to generate a

Gaussian-distributed set v
k

of zero mean with (v~) = 2['/Lle. The cam-

puted power spectrum of the voltage pulses averaged over many sets v
k

is white and tends to a constant, 4f, as required. Two independent

trains of voltage pulses are used to approximate v
Nl

and v
N2

in Eqs.

12.24)-(2.27). We integrate the phases 0lle) and 02(e) using an

iterative scheme ole + LIe) = ole) + LIe dO/de. The value of LIe is chosen

so that LIe dO/de «; 271. The noise-rounded i-v characteristics labeled

Method I in Figs. 131a) and 141a) and the transfer functions in Fig. 15

were generated by time-averaging vIe) computed in this way. We estimate

that the results are accurate to ± 5%.

Spectral densities, S , S., and S ., can be calculated directly
v J vJ

from the vIe) and jle) generated by Method I. For example, N values of

vIe) at equal time steps LIe can be used to calculate Sv at frequency

intervals of of = l/NLle. For the case of a single shunt resistance

li
c

= 0), the values of vIe) are just the v
k

' and thp spectral density

laveraged over many sets of v
k

) tends to 4f as required. We shall be

interested in computing spectral densities for the single junction and

the SQUID from values of vIe) sampled at time intervals corresponding

to nLle In is an integer). In those cases, the averaged spectral density

for a single shunt resistance is white with a magnitude n4f. The addi-

tional factor n is a result of the normalization of the v
k

· For v
k

2
defined over time steps LIe, <v

k
) = 2f;Lle, while for v

k
defined over

nLle, <v~> = 2f/nLle. Hence generating v
k

over time steps LIe and sampling
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the resultant v(8) over time steps n~8 increases the spectral density by

a fa.::tor n. It is importar.~ to notice that this simple relationship

will not hold in general for the case of the single shunted junction or

SQUID, since in the limit r ~ 0 those spectral densities must be inde-

pendent of n. Hence to obtain results for S that are consistent in both
v

the noise-dominated and noise-free limits, we must take n = 1.

The restriction 11 = 1 limits our ability to calculate spectral

densities efficiently from v(e) and j(e) generated by Method I. To see

this, we briefly discuss the general behavior of the spectral densities

for i f 0, r ~ O. The spectral densities contain noise-broadened peaks

at the flmdamental Josephson frequency f
J

= v!2TI and its harmonics. We

are interested in com~uting the low frequency spectral densities, s~,

Sj, and S~j' at frequencies well below f
J

, where the spectral densities

are white. As the bias current, i, is lowered towards i
c

the harmonics

become more important, and, as r(T) is increased from zero, the broaden-

ing increases. Thus, for i ~ ie' and fer exper~mentally interesting

values of r, Sv' SJ and SVJ must be computed for frequencies well above

and well below f
J

However, the lowest frequency is of = l!N~e, where

Thus N ~ 10
4

(fur example, for i ~ i and r ~ 0.05,
c

N ~ In6 ,
~ J, and the computation of a single spectral density is very time

consuming. In addition, many spectral densities (typically 40) must be

averaged together to obtain accurate results. We thus use an alternative

method to generate V
k 1 this method significantly reduces the computation

time for spectral c~nsities at experimentally relevant values of i and

r.
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Method II. We generate values of the Fourier transform, v
k

' of the

Johnson noise voltages at N equal frequency intervals of. The

interval of is fixed by the requirement Of ~ f , and N is fixed by the
J t,

requirement Nof ~ f
J

. The actual values of N and Of are determined

empirically by computing low frequency spectral densities S~ for the

SQUID for variable N and Of. N is increased and Of is decreased until

S~ becomes independent of ~J and of. Typically, N = 512 and of = 0.01

f J . Our values V
k

approximate the Johnson noise in the following way.

The Fourier transform of a set of Gaussian distributed noise voltages,

vk ' is a set of complex numbers with Gaussian distributed amplitudes and

51
uniformly distributed phases. We approximate the Fourier transform

of the noise pulses by a set of complex numbers with constant amplitude

and l~niformly distributed phases. The amplitude of v
k

is fixed by the

requirement (v~) = 2fNof, and the random phases are generated by a

pseudo-random number generator with uniform distribution over [0, 2TI].

We tind that the voltage pulse amplitudes, v
k

' generated in this way are

Gaussian distributed. Figure 11 shows a histogram of the vk obtained

from 30 sets of v
k

in this way, together with the exact Gaussian distri­

bution with ( v2 ) = 2fNOf. The agreement between the two curves is good.

This approximation enables us to compute smooth average spectral densi-

ties for a single junction using only one set of v
k

' and for the SQUID

using only a small number of sets of v
k

•

The Fourier transforms of the v
k

were taken as representative

values of the Johnson noise over pulse times 08 = 1/2NOf. since 08 was

considerably larger than the value of ~e used in Method I, we interpo-

lated between adjacent noise values. We found our results for SO wer~
v
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independent of the details of the interpolation scheme used. Hence we

use a linear interpolation for convenience.

We found Methods I and II yie1ged identical noise-rounded i-v

characteristics for a single jWlction (section IV. B). We also computed

spectral densities of the voltage noise across a single junction for

from vee) generated by Methods I <and II.i ~ i
c

spectral densities that were in good agreement.

The two methods yielded

However, whereas we

needed to ave1age the spectral density typically 40 times using Method

I, only a single set of v
k

was required, _ng Method II. We also com­

puted spectral densities using V
k

with Gaussian distributed amplitudes.

'The values for S~ averaged ever many trials were in agreement with those

obtained ~;th constant amplitude v
k

. We conclude that our approximation

scheme adequately represents the Johnson noise for our purposes.

Method II was used to compute the voltage noise spectral densities

[Fig. 16], the current noise spectral densities [Fig. 17], and ~he cor­

relation spectral densities [Fig. 18]. Equations (2.24)-(2.27) were

integrated with interpolated noise values determined by the v
k

as in

the single :i.mction case. We checked the values of the average voltage

computed from vje) at time intervals 68 with those obtained by Method I,

and found good agreement. Because the SQUID invclves two indepe',ldent

random noise sources, we found it necessary to average thc s~~ctral

densities over typically 8 sets of v
k

to achieve a satisfactory result.

We estimate that our values are accurate to ± 5%.

B. Single Junction with Noise

In order to test our numerical techniques, we first applied Methods

I and II of sectionI~A to the case of a single resistively shunted
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Josephson junction. For a juncti.on biased at a constant current i, the
•

It d h .r: ..... • f 33vo age v an p ase u across t\le Junct10n sat1s y

and

v = i-sin 0 + v
N

(4.J)

dO/d6 = v , (4.2)

where v is the Johnsoh noise voltage across the shunt resistance. We. N

have eliminated the junction capacitance, B , as discussed in section II.
c

We integrated these equations stepwise in time for various values of

i and r. Representative plots of 0(6) and v(6) for i = 0.9 and r = 0.05

appear in Fig. 12. The phase 0(6) undergoes random excursions of con-

siderably less than 271 about an equilibri urn position for a period of time,

then makes a fairly sharp transition of + 271 to an equivalent equilib-

rium position. These transitions are randoJTlly timed and, according to

Eq. (4.2), give rise to voltage pulses during the transitions. These

voltage pulses are somewhat obscured in the plot of v vs. 6 in Fig.

12(b). The v vs. 6 curve appears to be dominated by the random noise

source v
N

shifted by a constant voltage. This behavior is consistent

with Eq. (4.1) since the term (i - sin 0) is approximately constant

between the transitions 0 -+ 0 + 271. Not:i.ce that, although the excursions

of 0 around the equilibrium positions are small compared with 2n, the

time Jerivative, d~/d6 = v, is not small compared with the amplitude of

the voltage pulses associated with the transitions in O. In fact, as

we decrease ~6 to improve our approximation for the Johnson noise source,

V ~ v
N

~ l/~e increases. Since the voltage pulses associated with the

the Johnson noise voltage pulses as ~e decreases.
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This behavior is consistent wH:h the thennal activation model

described in section II.A. The oscilla~ion of the phase about the

equilibrilli~ value corresponds to the Brownian motion of the particle

within the well. Since the well is not symmetric for i > 0 hut skewed

slightly downward for increasing values of 0, the average velocity

(corresponding to the average voltage) due to the motion within the well

is slightly positive. The jumps of 2n between equilibrium values of

the phase correspond to the transitions of the particle between wells.

Note that in the thermal activation model, the contribution to ~ and

Sv from the oscillations within the wells is neglected, and the calcula-

tion restricted to bias currents i ~ 1.

We obtained i-v characteristics by time-averaging vie) at fixed i.

The i-v characteristics obtained using both Methods I and II to generate

v(e) are shown in Fig. 13(a). The smooth curves are from the Fokker-

'Arnb 1 . 33Planck calculat~on of cgaokar and Ha per~n. The results of the two

numerical techniques are in excellent agreement with each other, with

the Fokker-Planckcalculation,33 and with other numerical calcula-

t
' 32,52
~ons.

We also computed voltage power spectral densities, Sv' from curves

of v vs. e using Method II. We observed that the peaks in Sv corres-

ponding to the noise-free Josephson frequency, f
J

, and its harmonics

become broadened in the presence of thermal noise. As i is reduced,

the noi~e broadening increases in a manner that is consistent with the

results of Vystavkin et al.
34

At frequencies well below f
J

the power

spectrum is white. We take the value of Sv in this region to be the

low frequency spectral density S~. In Fig. 13(b) we plot the square
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Fig. 13: (a) Current-voltage characteristics of single resistively

shunted junction in presence of noise computed with Method I

(e) , and Method II (~, 0, 0). Solid curves are from Ambegaokar

and Halperin.
47

Dotted line is noise-free characteristic.

(b) Low frequency voltage spectral density vs. average voltage

for single resistively shunted junction computed with Method

II (~, 0, 0). Solid curves are from Vystavkin et al. 34
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1<
root of the normalized low frequency voltage spectral density (So/4f) 2

v

vs. the noise-rounded voltage v for two values of f. These values are

in excellent agreement with the results of Vystavkin et a1 34 (obtained

by another method) that are plotted as smooth curves in Fig. 13(b). By

comparing Figs. 13(a) and (b), we observe that the maxima in {dV/dil

and in S~ occur at the same value of current, i ~ i
c

. In addition, a

decrease in the maximum of (av/ail (for example, as a result of

increasing f) is accompanied by a decrease in the maximum of S°.
v

C. SQUID Characteristics in the Presence of Noise

1. SQUID Tmnsfer Function

We now use the methC'ds of section IV.Ato compute from Eqs. (2.241-

(2.27) the vol~,ge vee) and circulating current j(e) for the SQUID in

the presence of noise. As in section III.B, we frequently select the

value B = 1.0 in. calculating results, since, as we shall see later,

this value is optimum for practical SQUIDS. If we choose B = 1.0 and

L = 1 nH, we find I ~ 1 ~A and for T ~ 4.2 K, f $ 0.2. Noise-rounded
o

i-v characteristics for the symmetric SQUID are plotted in Fig. 14(a)

with f = 0.05 and B = 1.0 for several values of $a' The noise-free i-v

characteristics are also shown. We observe that the differential resis-

tance, (dV/dil4>a' is a function of both i and $a. In particular, the

maximum differential resistance decreases as $a increases from 0 to 0.5.

From these i-v characteristics we obtain the variation of v with $a

[Fig. 14{bl) for several values of i with f = 0.05 and B = 1.0. The

corresponding noise-free curves are also shown. For bias currents

i ~ 3, vbecomes relatively independent of cl>a' while for ill: 1, v is

zero for lnoSt values of cl>a. At intermediate values of i, the SQUID
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(al Current-voltage characteristics of the SQUID in presence

of noise as functions of applied flux computed with Method I

(e), and Method II (6, 0, 0). Dotted lines are noise-free

characteristics. (b) Average voltage vs. applied flux for

the SQUID as function of bias current, i, in presence of

noise with r = 0.05 (solid lines). Dotted lines are noise­

free values.
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(3v/3¢ )., depends on ¢a and the parameters 8(L, I )
a 1 a

and f (I , T).
a

We plot (3v/3¢a)i vs. i .for variable iP
a

' L, T, and 1
0

in Figs.

15(a)-(d). All the curves show a peak in (3v/3iP ). at a bias current
a 1

corresponding roughly to the noise-free critical current determined by

iP
a

and 8. The height and width of the curves are a function of iP
a

' 8,

and f. For example, the family of curves in Fig. 15(a) for variable

~a (f = 0.05 and 8

¢a -+ 0.5. At ¢a

1.0) shows maxima which decrease as iP
a

-+ 0 and

o and 0.5, (dv/3¢ ). = 0 for all values of i. Thus,
a 1

changes in ¢ can produce substantial changes in (3v/3¢ ) ., The curves
a a 1

of (3v/3¢ ). V5. i for fixed I and T, and for variable L(cr 8) are
a 1 0

plotted in Fig. 15(b) for f = 0.05 and <P
a

= 0.25. For 8 : 0.1, the

curves approach a limit independent of L. This result reflects the

fact that for 8 ~ 0.1, ~Ic -+ 21
0

independent of L. For large L

(8 ~ 1) (3v/3<P ). -+ O.
a 1

The temperature dependence of (dv/3¢ ). is plotted in Fig. 15(c)a 1

for <P
a

0.25 and 8 = 1.0. As T (cr f) increases, the SQUID i-v charac-

teristics approach the i-v characteristics of the shunts, and hence

(3v/3<P ). -+ O. For T -+ 0 (f ~ 0.001), c2e SQUID i-v characteristics
.'1 1

approach the noise-free curves. Thus (3v/3<P ). approaches a noise-free
a 1

limit that diverges at i = i c (8, ¢a)'

The critical current 1
0

appears in both the parameters 8 (cr 1
0

) and

Thus, in Fig. I5(d), the curves of (3v/3<P). vs. i fora 1

variable 1
0

reflect a combination of Figs. I5(b) and (c). Since the

dependences of (3v/3¢ ). on 8 and r tend to cancel as 1
0

is varied,
a 1
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(dV/d~ ) is less strongly dependent on I than on B or f separately.*
a 0

In the limit of large 1
0

(f ~ 0.1, B ~ 10) the values of (dV/d~ ). ap­
a 1

proach the noise-free large Blimit, and (dV/d~ ). ~ O'lfor all i. This
a 1

result is consistent with the fact that as B ~ 00, ~Ic ~ ~o/L [Fig. 6(b)],

or ~i
c

collapse into the ¢a o curve as B~ 00 and (dV/d~ ). ~ O. Although in, a 1

the range displayed in Fig. 15(d) (dV/d~ ). increases as I decreases, ina 1 0

fact, for very low values of I , (dV/d¢ ). must falloff, and tend to
o a ~

zero as 1
0
~ O. This behavior is a result of the fact that when B ~ 0,

(dv/d~a)i ~ constant [Fig. 15(b)], whereas when f ~ 00,

[Fig. 15(c)].

(dV/d¢ ). ~ 0
a 1

2. SQUID Voltage Noise Power Spectral Density

We compute voltage spectral densities for the SQUID as a function

of the various parameters using Method II of section IV.A. The spectral

densities have the same general characteristics as the spectral densities

of the single junction. There are a series of noise broadened peaks at

the Josephson frequency, f
J

, and harmonics. Well below f
J

the spectral

density is whi~e; we are interested in S~, the average value of the

spectral density in this low frequency range.

In Fig. 16(a), we plot the normalized frequency voltage spectral

density S~2f vs. i for B ~ 1.0 and f ~ 0.05 for four values of ¢a'

For i ~ ic(¢a) the spectral densitie~ approach the Johnson noise limit

of 1.0 (for two shunts in parallel, the shunt spectral density is 2f).

Near ic(~a)' the spectral density is a maximum, as in the case of the

*Notice that (dv/d~a)i is a dimensionless quantity. The corresponding
dimensional variable (IoR/~o)(dv/d~a)i is roughly proportional to 10
fQr the range of parameters in Fig. 15(d).
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singLe junction. The value of the maximum decreases as ~a increases

from 0 to 0.5. This effect is consistent with the decrease in the

maximum differential resistance, (dv/di) ¢a' wi th increasing flux tha t

is observed in the noise rounded i-v characteristics (sec. IV.C.l).

The dependence of S~2r on the variables L, T, and 1
0

for ~a =

0.25 is plotted in Figs. 16(b)-(d. As the inductance L (0: S) increa es

[Fig. 16(b)], S~/2r approaches the 'imit of a single junc~ion with

critical current 21. In the low inductance limit (S ~ 0.1). rr.e spe ­
o

tral densities approach a limiting form. This result is consistent v; tl

the independence of IHc [Fig. 6 (a)] and (dV/dtj> ). [Fig. 15 (b») on L
a 1

in the low S limit.

The dependence of S~/2r O~ temperature [Fig. 16(c)] is similar t

that of the single junction. As T ->- 0 (f :$ 0.01), the spectral densiLy

approaches a limit determined by the noise-free diiferential resistan ';

as i ->- i c ' (dv/di)¢a ->- 00, and S~2r diverges. In the large temperature

limit (r ~ 1) the noise tends to the Johnson noise of the shunts, and

S~2r ->- 1 for all i.

The dependence of S~/2r on 1
0

[Fig. 16(d») is a combination of the

effects in Figs. 16(b) and (c). In the limit I ->- 00(8 ->- 00, r ->- 0), the
o

curves approach the corresponding single junction noise-free limit. As

I ->- 0 (S ->- 0, r ->- 00), the S-dependence drops out f0r S :$ 0.1, and t~e
o

a-
curves approach the Johnson noise limit, S~/2r = 1.

3. SQUID Equivalent nux Noise Power Spectral Density

We take as a measure of the rms flux nois2 the square root 0 the

l<
normalized low frequency flux noise power spE~tral density, ~¢

!,;
Curves of ~¢ vi;. i for variable ¢a' L, T, a.ld 1

0
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are plotted in Figs. 17(a)-(d). The family of curves for variable ¢a

with r = 0.05 and 6 = 1.0 [Fig. 17(a)] exhibit minima at i ~ ic(¢a)'

For 0.1 < ¢a < 0.4, the value of S~min is relatively independent of ¢a

fnr 6 = 1.0, r 0.05.
!<

-+ ±n/2 (n = 0,1,2, ... ), S~ -+ c>, for all

values of i [(a~/a¢ ). -+ 0)].
a 1

~The family of curves of sep vs. i for variable L (0: 6) [Fig. 17 (b) 1

with r = 0.05 and ¢a ~ 0.25 also have minima at i ~ i (6).
c

As 6 -+ 0

!<
the curves become progressively flatter, and s:. approaches a limit

'l'mln

~ 0.5. As 6 increases beyond unity, the curves become sharper with

k
s:. growing roughly as 6.

'l'ffilrl

k
The dependence of s~ on temperature [Fig. 17(c)] is weak for 0.025

< r < 0.075, where s¢ ~ 1.0. In the high temperature limit (T 0: r -+ 00),

(a~/a¢ ). -+ 0;
k

S~2r -+ 1 and hence we expect s'-+oo For r 0: T -+ 0,
a 1 <P •

(d~/a¢ ).
k

both SOj2r and diverge at i i (6, <P
a

); s: hecomes a sharp
v . a 1 c lj!

function of i, falling to zero as i -+ i
c

k
A family of curves of s¢ for variable 1

0
is plotted in Fig. 17(d)

for ¢a 0.25.
y,

As 1
0

increases, the curves of s¢ become progressively

y,
sharper, and s increases. As I decreases, the curves flatten for

¢min a

intermediate values of 6; however, for very small values of I , the
o

~ ~
dependeace of s¢ on 6 drops out, and s; -+ 00 as r -+ 00.

4. SQUID Current Noise Power Spectral Density and Corre lation
Power Spectral Density

Figures 18 and 19 show the circulating current noise power spectral

density, Sj' and the imaginary part of the correlation noise power

spectral density, So., as functions of i for several values of ¢a' 'l'he
V)

real part of the correlation power spectral density is computed to be
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zero for all values of i as expected. For s~mplicity, we have plotted

only the c~se S = 1, f 0.05. These quantities must be known in addi-

tion to SO and (dV/d¢ ) to properly optimize the SQUID plus input circuit
v a

in the ~eneral case. Notice that for bias currents i. ~ I, S~ tends to
)

5
the SQUID.

the circulating Johnson noise value determined by the two shunts in

series: S~ ~ 2f = (2k
B
T/R)/(I ¢ /2nR). Furthermore, since the voltage

) 0 0

and circulating current noises produced by the Johnson noise in the two

resistors are uncorrelated, S~j ~ 0 for i ~ i c ' Near i c ' the effect of

the junctions and loop is to increase both S~ and Sj above the value for

the resistors, 2f, and, in addition, to correlate the voltage and current

noises. The correlati.on can be understood qualitatively from the follow-

ing argument. The total flux through the SQUID is ¢T = ¢a + Bj/2. Thus,

Johnson noise superimposed on j produces a noise in the total flux that

is similar to an.externally applied flux noise. The SQUID transfer

function, dV/d¢ , relates changes in the time averaged voltage v to
a

changes in ¢a' and thus relates the effective flux noise due to noise in

j to the total voltage noise. For i ~ i
c

' dV/d¢a ~ 0 and the voltage

noise is correlated with the current noise. For i ~ i , dV/d¢ ~ 0 and
c a

no correlation is introduced between the voltage and current noises.

Note that in the special case ¢a = 0, 0.5, dV/d¢a = 0, and S~j = 0 for

all values of bias current.

As ¢a is increased from 0 to 0.5, s; decreases in a way that is

consistent with the corresponding decrease in the dynamic resistance of

On the other hand, the maximum value of S~ increases as ~) ~a

is increased from 0 to 0.5. In addition, for ¢a = 0.5, Sj rises rapidly

as i is lowered below i
c

' This behavior can be understood by developing
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a thermal activation model for the SQUID along the lines of the single

junction model.

5. Thermal Activation Model, epa = 0.5

We first express the equations of motion, Eqs. /2.24)-/2.27), in

terms of a potential energy for the phases °1 and °2 . Thus, for the

symmetric SQUID,

dOl au
de= - -- + vNl ,a0

1

and

d0 2 au
de = - a0

2
+ vN2

,

where
/01+02li/2+Bnj2/2u - coso

l - cos02 -
and

j /°1-°2 - 2rrljla)/rrB

(4.3)

(4.4)

(4.5)

(4.6)

A contour plot for u as a function of °1 and °2 for i = 0 and epa 0.5

is shown in Fig. 20. In this case, the first minimum shown at A occurs

at 0lmin O.2n and 02min = -0.2n. The next minimum at B occurs at

0lmin = 2n - 0.2n, 02min = + 0.2n. The maximum at C occurs at °1 = rr

and °2 = O. For i 1.05 and u = 0 in all cases. Noticemax

that at A, j - 0.6 at B, j + 0.6, and at C, j = O.

We can understand the time development of the phases under the

influence of the noise voltages v
Nl

and vN2 by analogy to the single

junction case discussed in section II.B. A classical particle with

coordinates °1 and °2 undergoes Brownian motion in the two dimensional

potential u. If it is initially within the well centered at A, it will

bounce around in the well under the influence of the thermally induced

noise voltages vNl and v
N2

" In addition, at some random time the
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particle will be kicked over the barrier at C and settle down into the

next well at B. In the process, the current will switch from j = - 0.6

through zero to j + 0.6, and a voltage pulse will be generated. This

behavior can be observed in Fig. 21 for i = 0.9, ¢a = 0.5, 8 = 1.0 and

f = 0.05.

The switching frequency, f s ' can be approximated roughly by consider­

ing motion only along the line joining the two wells (AB). Then

-flu/fe , (4.7)

where

and

The circulating current noise spectral density is

Sj(f) = 2 JooA(1)e-i2TIfT d1 ,

-00

where the autocorrelation function is

IT

lim *I (j (A) j le+T) Ide
T......." • J

o

(4.8)

(4.9)

(4.10)

Now j(e)j(e+1) = + j; if the number of switches between e and e+1 is

even, and j(e)j(e+1) = _j2 if the number of switches is odd. The prob­
s

ability of n switches occurring during 1 is given by the Poisson
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distribution

(f IT I) n
PIn) = s, exp(-f ITI) ,n. s (4.12)

provided the switching time is much shorter than the average time between

switches. This will hold for bias currents i < i
c

' the region in which

the thermal activation model is expected to hold. The autocorrelation

function becomes

2 -f ITI ..,f.. (-f 1,l>n
A(T) = j e s ~ s I

s n=O n.
(4.13)

The circulating current noise spectral density is

S. (f) = 2f .2/(£2 + rr2
f 2) ,

J sJ s s

and the low frequency value for f « f iss

(4.14)

S~ = 2J,2/ f
J s s·

Notice that (j2) = JOOS.(f)df
- 0 J

j~, independent of fs' as expected.

The voltage noise power spectral density is approximated as in the

single junction case (see section II.B). The area of each voltage pulse

is

a = J:Vd8 = rr ,

the average voltage is v

tral density is

so = 1[2 fv s

af
s

(4.15)

rrfS' and the voltage noise power spec-

(4.16)

The switching frequency, f
s

' is dominated by the exponential, exp(-~u/r).

Since ~u increases as the bias current decreases, as i ~ 0, s~ approaches



-66-

a maximl~, while s; approaches zero.

The correlation noise spectral density is identically zero in this

case. This is because the current switches are alternating between

+js to -js and -js to +js' while the voltage pulses are always positive.

Thus the ensemble average (v(8)j(8+T» = a and 5°.
V)

ment with the computer model results.

O. This is in agree-

In Fig. 22 we compare the predictions of the thermal activation

model with the computer curves of 5° and S~ versus i for 8 = land
v )

r = 0.05. Notice that the thermal activation model is applicable only

for values of i < i
c

1.04. Also notice that the computer calculation

This is because the low frequencyof 5~ is plotted only for i ~ i
) c

value of Sj(f) must be obtained for f ~ f
s

. However, for i ~ i
c

'

f
s
~ f

J
. Thus, as i is reduced below i

c
' f

s
~ f

J
, and values of 5

j
(f)

must be calculated not just for f ~ f
J

, but for f ~ f
s
~ f

J
. This is

impractical with the present algorithm.

At i 0, r 0.05 and ¢a = 0.5, Lhe thermal activation model

yields f
s

10-10 • For I
o

l~ and R = l~, this corresponds to a

0.3 Hz. Thus well below 0.3 HZ, the

curren~ noise spectral density is white and 5~ = 7.2 x 10
9

(5° =
) J

5~(2kBT/Rl = 1.4 x lola kBT/R). Well above 0.3 HZ, 5. = 2j2f /TI
2

f 2
) ) s s

7.3 x 1O-
l2

/f2 (SJ(F) ,." 10
9 k

B
T/RF 2 , for frequency F in Hz).

In conclusion, we see that the thermal activation model for ¢a

0.05 gives good agreement with the computer calculation for 5~. In

addition, the model permits calculation of Sj for i < i
c

and provides

an explanation for the large values of 5~ below i. Finally, notice
) c

that the model has been applied only to the case ¢a = 0.5, where two
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(a) Current-voltage characteristic for B = 1.0, ¢a = 0.05,

and r = 0.05 and (b) low frequency, voltage power spectral

density and low frequency, current-power spectral density vs.

bias current, i. The smooth curve is from the computer

calculation; the dotted curve is from the thermal activation

model. The dashed curve is the critical current, i .
c
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families of equilibrium states with ±js are observec. At values of

¢a 1 0.05, the two families have unequal magnitudes of j, and

unequal switching frequencies. As a result, the circulating current

is also pulselike, and thus both So a f ~ 0 and S~ a f ~ 0 as i ~ 0
v s J s

(see Fig. 16 and Fig. 17). Since no difficulty in computing s~ and Sj

in the region i ~ i
c

(where most practical SQUID devices are used) was

encountered, we did not extend the thermal activation model to values

~"J 0.5.

6. SQUID Energy Resolution

1 · . 6,17,20,21 1 f' f .. hIn most app ~cat~ons, a re ~vant ~gure 0 mer~t ~s t e

S O /2 2L h M2. = a 2LL.~ a , w ere ~ ~

is the mutual inductance of the input CG~l, L
i

, coupled ~o the SQUID. If

the effect of the inp~t circuit on the total SQUID noise at the output

is ignored, then S~ becomes the only igure of lOerit. (Note: S~ is a

function of (dv/d¢ ), SO and a 2L. T, the general case, the total SQUID
a v

noise at the output also depends S~, So. and the input and SQUID
J vJ

circuit parameters. See section I.) Notice that SE is only a function

of the SQUID parameters and the ~oupling efficiency, a 2
. Practical SQUID

devices3 ,4 have a 2 ~ 1/2. We assume in the following discussion that

the SQUID inductance is restr ~ted to values for which a 2 ~ 1/2 is

obtainable.

I~ this :::;cction, we relate 'the c:cuoputcd nnrmalized flux noise

spectral density, ~¢' to he effective energy resolution, S;/2L.

discuss an approximation for S;/2L developed previously3,5 for B

and derive an approximace expression for S;/2L for B < 1.

We

~ 1,

We take the flux noise referred to the input of the SQUID as
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(dV/d~ ).1 R/~ , SVo = (svo/2f)2kBTR,a 100

and 2L ~ B~o/Io' we have the following expression for S~/2L in terms of

S~/2L (~~/n)s¢(B, f, i, ¢a) f/RB

or S~/2L = (2k BTL/R) (2/B2)s~(B, f, i, ¢a)

(4.17)

(4.18)

Equations (4.17) and (4.18) are exact expressions for the energy resolution

in terms of the comp~ted flux spectral density, s¢.

From a different viewpoint, approximate expressions for the energy

resolution in the high- and low-B limits can be obtained as follows.

From Fi~. 6(b), we find ~Ic ~ ~o/L for 8 Z 40, so that (av/a~a)I ~ R/L

as B-+<X>. From Fig. 6(a), we find that for B ~ 0.1, LlI
c

"" 21
0
~ B¢o/L,

and (avfa¢>a) I "" Bp/L. We make the,; followir g appro:<im.rT•.i.on 3 for S~. For

1
0

= ° (shunt resistances only), the voltage spectral density is S~

4kBT(R/2) and the circulating current spectral density is S; = 4kBT/(2R),

R R
where Sv and SJ are independent and uncorrelated. For the SQUID (1

0
t

0), the voltage is a function of the currents flowing through the junc-

tions and around the SQUID loop. Hen(;e for ¢a I" 0, 0.5, Sv and SoC are

>
R

forno longer uncorrelated, as we have found in sec. IV.C.4, and SO SvV

I '" I The contribution of the circulating currents to S~ for ¢ = 0.25
c V a

2 R
L SJ. Thus

(4.19)

In the high B limit, (av/a~a)I "" R/L, and
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(13 ;>. 1) (4.20)

while in the low 13 limit, (3v/3¢) ~ R/BL and
a I

(13 ~ 1) (4.21 )

We now compare the compu~ed expression for S¢ [Eq. (4.18)] with the

approximate expressions [Eqs. (4.2.0) and (4.21). In the high B-limit,

l-
our calculated curves of s¢ vs. i becGme sl.arp functions of i. We

l-
choose the minimum value of s¢ corresponding to i "" ic(¢a' B) for tLe

comparison. Calculat~ons of s~ for ¢a = 0.25 and B 2 10 yield

s¢ ~ 13
2
/2 at i ~ ic(¢o' B), and hence S;/2L ~ 2k

B
TL/R, in agreement with

Eq. (4.20). Fr:n Fig. 17(b) for r = 0.05 and "a = 0.25, we see that

l-
s¢ approache., a limit of about 0.5 for B ::: 0.1 over a wi.de range of bii'.s

currents. Hence, from Eq. (4.18), S~/2L ~ k
B

TL/RB
2

as B ~ 0, in agree-

ment with Eq. (4.21). We conclude that Eq. (4.18) shmls the correct

limiting behavior for high and low B.

Finally, we compared our computed results with the measured flux

resol~tion of the tunnel junction de SQUID of Clarke et al.
3

It should

be noted that whereas the model calculacion assumes that the junction

capacitance is zero, practical junctions have a capacitance and are

usually operated with B = 2nI R
2
C/¢ ~ 1. However, since the I-V

coo

characteristics with B
c

= 1 are not very different from those with

Be 0,30 and since we are concerned with frequencies much less than

(RC)-l, we do not expect the calculated flux noise power spectra with

B
c

= 1 to differ substantially from our calcul~ted spectra.

In the tunnel junction SQUID, the ~nductance was L = 1 nH, the

shunt resistance was R = 0.6 n, and the critical cur~ent of each junc-

tion, was about 2.5 ~A. Thus B ~ 2.5 and r "" 0.072. The SQUID was
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biased abuve the critical current at i ~ 2, and a modulating flux of

peak amplitude ~o/4 was applied. The ac voltage across the SQUID was

demodulated with a lock-in amplifier, and the output from the lock-in

was fed baCk to flux-lock the SQUID in the usual manner. The measured

~ 5-~flux resolution was S~ ~ 3.5 x 10- ~o Hz We compute a flux resolu-

This

function

noise is

value applies to a SQUID that is not flux modulated, but is used as a

small signal amplifier for ¢a near ¢0/4. The flux mod\'lation scheme

k
increases S; as follows. First, the voltage noise S~ of the SQUID is

a function of the modulation flux. For a SQUID biased at i = 2 and

modulated about <P
a

-, 0, we estimate that the effective modulated voltage

S~m::: 2 S~ (¢a = 0.25) [see Fig. l7(a»). Second, the transfer

(oV/3<l> )1 at ¢ = ¢ /4 must be replaced with (oV /o<l> )1 at
a q 0 m q

<l>q = 0, where Vm is the amplitude of the Fourier component of the SQUID

voltage at the modulation frequency, w
o
/2n, and <l>q is the quasistatic

applied flux. By plotting V vs. t for ¢ <l> + (~0/41 cos W t from the
a q 0

curves cf ij vs. ¢ [Fig. 14 (b) J, we find (oV /o¢ II at <l> o is approxi-a m q q

mately equal to 1.3(oV/o<l> )1 at <l> = ~ /4. From these results, we computea a 0

a flux resolution for the modulated SQUID of s; ~ 1.6 x lO-5¢oHZ-~ In

view of the uncertainty il the measured values of the SQUID parameters

and of the neglect of the capacitance in the calculation, we conclude

that the computed spectral density of the flux noise is in sensible

agreement with the experimentally measured value.
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v. SQUID OPTIMIZATION

A. Determination of the Optimal SQUID Parameters

We now consider the choice of the SQUID parameters L, R, 1
0

, and

the bias current i that minimizes the energy spectral density,

S~/2a2L, at a given temperature T. Since S¢ ~ L
2

in the high B limit

[Eq. (4.20)], S~/2a2L can be reduced by decreasing L, provided that a 2

.; not also correspondingly decreased. In practice, the constraint on

a 2 appears to impos~ a lower limit on L of 10-10 to 10-9 H. To avoid

hysteresis, the junction parameters must also satisfy the constraint

2TII R2C $ ~ , where C is the junction capacitance. In practice, thereo 0

is a lower limit on C that is set by the area of the smallest tunnel

junction that can be fabricated. Hence, there is an upper limit on R

for fixed 1
0

of R
2

$ ~0/2TIIoC. Thus for Land C fixed, S~/2a2L becomes

a function only of 10 and T, or of B = Io(2L/~0) and r = 2TIkBT/lo~0.

We consider first the simpler case in which the SQUID is not in a

flux-locked loop, but is operated as a small signal amplifier with no

ac flux modulation. We assume that a is essentially independent of L.

From Eqs. (4.20) and (4.21) we find S$12L ~ B~ (B Y 1) and S$/2L ~ B- 3/2

(B ~ 1). Consequently, there is an intermediate value of B that mini-

mizes S$12L. As an example of a calculation to find the optimal value

of S, consider the following parameters for a hypothetical SQUID.

Suppose the SQUID is a cylindrical tunnel junction SQUID with the

diameter of the cylinder reduced from 3 rom to 2 rom, and the area of the

junctions reduced from 10-2 rom2 to 7~ x 7~ = 0.5 x 10-
4

mm
2

The induc-

tance of the cylinder is reduced from 0.75 nH to 0.35 nH. This is the

SQUID inductance provided a geometry is used which reduces the parasitic



-74-

inductance of the junction region substantially from the value ~ 0.5 nH

estimated for the SQUID of Clarke, Goubau, and Ketchen. 53 The junction

capacitance is reduced from 200 pF to 1 pF. With L = 0.35 lill and

C = 1 pF, R2I = 200
o Let T = 4.2 K. Thus the value

of 1
0

= Bt
o

/2L fixes the value of Rand f. In Fig. 23 we plot computed

values of S;/2L vs. B for variable 10 , The value of S$/2L is taken at

the optimal bias current, i ~ ic(¢a,B) where ¢a = 0.25. Equations (4.201

and (4.21) are also plotted for all values of B: Notice that the com-

puted value of S;/2L agrees well with these equations in the appropriate

limits. The computed curve is almost constant for 1 S B ~ 10. A SQUID

operated as a small signal awplifier with a ~ 1 at t
a

= 0.25 and

i = i
c

(¢la' B) would have S<I/2L~1.6 x 10-32JHz-l, relatively independent

of B in that range.

When the SQUID is flux modulated and operated in the usual flux-

locked mode, the energy resolution depends more strongly on B than in

the unmodulated case. Since the optimal choice of bias current depends

on the applied flux, the SQUID operated at constant bias current cannot

be optimally biased over the entire modulation cycle. As a result, as

B increases the average value of S;/2L at fixed bias current also in-

creases. In addition, from Fig. 17 we see that S;/2L becomes a sharp

function of i = 1/10 for large B. Thus small variations in the bias

current I or the junction critical current 1
0

can lead to substantial

increases in

nH, C = 1 pF,

Hence, for the flux modulated SQUID with L = 0.35

200 Q2~A and T = 4.2 K, the optimal value of B is

approximately 1. Similar calculations at other values of the SQUID

paramete~s also lead to B~ 1 as the value for optimal energy resolution
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Fig. 23: S;/2L VB. 8 for L = 0.35 nH, T = 1.2K and variable critical

current I •
o
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in the flux-locked mode. We estimate an energy ~~ectral density

S;/2U2 L' with a
2 ~ 1/2, of 4 x 10-

32
JHZ-

I
for the flux-10cked SQUID

from an analysis similar to that in Sec. IV.C.6.

In surrunary, the procedure to obtair. oIJtimum ~erf'Jrm<.lnce j rom a

tunnel junction SQUID is as follo~s. One first chooses a SQUID P0nfi1-

uration, and thus one fixes L. The critical currents of the Juncti0ns

are set by the constraint R = 2 LI
o
/¢0 "" 1. The shunt. r ('sisti'lnce, ­

2
for each junction is chosen to satisfy 2 TIloR C/¢o ~ 1, where C is

determined by the area of the junction. Finally, the S0lJID is oJ,,,rated

with a bias current approximately equal t~ the total critical current in

the absence of noise.

B. Ultimate Performance of the de SQUID

The dependence of S¢/2L on L, C, and T for 6 = 1 can be approximated

1<
as follows. From Fig. 17 we find 1:;.; (6, f) "" 1 for l·:· ~ 1. Hence, from

Eq. (4.18), we find S¢/2L ~ 4 kBTL/R or

(6 = 1), (5.1)

. 2
where we have used the constralnt R

from numerical factors close to unity, the energy resolution for B = 1

1<
is just kaT divided by the resonant frequency of the ring, 1/2TI (LC/2) 2

We expect Eq. (5.1) to remain valid provided the Johnson nOlse associated

with the shunts is the dominant noise source. However, when kBT/ev ~

kaT/eIOR~ I (V is the bias voltage), the shot noise in the tunnel junc­

tions will be the dominant noise source.
26

For junctions biased at a

current of about 21
0

, the shot noise voltage will have a low frequency

spectral density of approximately 2e(2I ) (R/2)2 ~
o

eI R
2

in the low
o

temperature limit. If we replace 2k
B

TR with eI
o

R
2

in Eqs. (4.20) and
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(4.21), we obtain

S';/2L '" hBI4

and S¢/2L "" hieS

(5.2)

(').3)

For the optimwn value B'" 1, Eq. (6.1) becomes

S~/2L '" h/2
'"

(8 = 1, eI R ~ k T)
o B

(S. 4 1

For B 1, Eqs. (5.1) and (5.4) imply that the induct"!lce ar.rl c'iJ!-'acJ' "nce

I

must satisfy 8k
B

T{TT1£)'i ~ h. For T "" 21' and L '" 0.35 nH, uns IS C ~

10- 2 pF, or a junction area A ~ 0.5 j( l c)-6 Tnr,: fur a I.L-N)· ·.-'L J~,.ctlon

similar to that USH:J in the SQUID of Clarke, Goubau and Kf:tchu? (!('(e iJl!L Rr,: cAl.

In prir,ciple juncti._ .._w1th these ch acteristics can be fabrJC'c' ~ wi th

electron beam milling techniques. For:' I and L (J. 3~, the

required critical current, \) "" 3 ~A, cc.·rresp')nds to A eu,' "ne dens1ty

-2of about 0.6 KA cm ,a value that is readily achieved ",i'h junctIons

54
or larger area. The shunt resistance is about 100 0 for e ~ 1.

1

These values of Land C correspond to a SQUID frequen, e' 1/2TT (1£/2)'",

of approximately loll Hz. Although this frequency is below the gap

frequency (~ 3 x lOll Hz), other relaxation processes may limit th

SQUID to a lower frequency of operation. In that case, it will not be

possible to achieve the resolution given by Eq. (5.4) with a SQUID

operated at 2 K.

One may also attempt to achieve the resolution suggested by Eq.

(5.4) by operating the SQUID at a lower temperature: With L = 0.35 nH

and C = 1 pF, the temperature must be below 0.2 K. The corrEsponding

frequency at which the SQUID would operate is about 10
10

Hz. A pre-

amplifier with a noise temperature below 0.2 K would be required.



VI. A~PLICATIGNS

characterized by both current and volta'le nOIs" sources, We ,kt"rmlT,'

i.lnd the SQUID noise figures Svo/ZI', SO/;!I' and 5° ./LI'. W" compuU, vi.ll\Jl
J '!]

of TN for the ~i.lrtjcular case of a de SQUID with L
-'j

"" If, II,

1
0
~ I~A operated at T ~ 4.2 K (S;/ZI'

at ¢
a

1. Basic Circuit

~ 8, 5~/2r ""
J

5.5 and S° ./21' ~ f
V)

The basic negative feedback circuit developed by McWane, Neighbor,

and Newbower
22

is shown in Fig. 24. The input circuit consists of a

" ltage source Ei{t) with impedance Zi in series with a capacitance C
i

,

inductance L
i

and feedback resistance~. The mutual inductance between

L. and the SQUID inductance L is M. = a
2

LL .. The current I; It) in the
~ ~ 1 •

input circuit generates a flux ~a{t) = Mili{t) through the SQUID. The

resultant voltage across the SQUID, vItI = (3v/3¢ )~ It), is usually
a a

amplified fi~st by a cooled resonant circuit or transformer,3 and then

by a room temperature amplifier. The output voltage is then Volt) =

AV(t) , where A is the gain of the amplifier chain. The output voltage



R

I

R V(t)
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Fig. 24: Basic circuit for the de SQUID preamplifier.
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current I (t).
i

The equivalent CircuIt fur the dc ~'QUID InaynetuIneter is ~,'.udn HI

FIC!. 2". The SQUIIJ 'S Inud,:led by a cUln:rlt-controllerl vGltaq', s'Jurce

di'nd1T\ic r(;sistanc(~ z ;:::;:

(dV!d<l> ) '" R/L.
a

f<
D

(av/an 4>a' and the SQUID input im!",danc(' I'.

2 2
w Mi /4RD. We will also use the ar'EJroximatl,~r,

2. Model for the de SQIJIU Preamplifier

21
Davidson, Newoower, and Beasley charactL'rlZe the noise In the:

SQUID by the effective flux noise power spectral density (Y~) s~.

This is eqllivalent to character izing the SQUID noise by 3 vol tage noisL'

source at the output (S~ = S¢ (dV/d<l>a)2). Thus they take E
i

(t) = 0 in

Fig. 25. Now, the voltage noise at the SQUID output due to a source

resistance R
i

maintained at temperature T
i

is

ssource
V

(4k
B

T
i

R
i

)

(R
2

+ X
2

)
T T

(E..l )

where ZT ~ + jXT is the total input impedance. The noise temperature

T~. of the SQUID preamplifier is defined to be the value of the source

temperature at which the source voltage noise equals the intrinsic SQUID

voltage noise. Thus Davidson, et al
2l

take

D
4k

B
T

N
Ri

(~+x;)
M~ (lV/d<!> ) 2

1. a
(6.2)
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Fig. 25: Equivalent circuit for the dc SQUID preampli:ier.
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cJnd

this dl'proximation is th" energy spectral density, s~ 0/' l51- L'~ L,

d"termined by the isolated SQUID vol tag', noise So dnd transf"r func-lI":'
v

(;J;:;/lJ¢ ). In the limit R
T

"" R, P X
T

, TD«J) "" S"/2k '[,. wrwre 1
a 1 NEB 1

Li/R
i

. Note that s~ is indq,endent of the input circuit piHdcl"!I'rs

~, X'l" R
i

, and L
i

. Note also that the authors take the SQUID imp..,ddfll,"

reflected into the input circuit to be purely inductive.

sion was actually applied to the case of an rf SQUID magnetometer.

The results mentioned here also hold for the preamplifier with a dc

SQUID magnetometer under the S2,me approximation scheme.)

In general,' the voltage noise at the output of a preamplifier is

not independent of the input circuit parameters. The dependence on the

input circuit is often described by defining an amplifier voltage noise

source, EN(t), in the input circuit (see Fig. 25). The resultant noise

current in the input circuit, EN(t)/ZT' produces a voltage noise at the

output of EN(t)Zf/ZT' The total voltage noise at the SQUID output is

(6.4)

The actual total voltage noise at the output for the SQUID loaded

down by the input circuit could in principle be calculated by including

the input circuit into the basic SQUID equations, Eq. (2.24)-(2.27).

However, it is impractical to apply the computor altorighm to solving

the loaded equations for all cases of interest. A reasonable
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,,!.' ,,·;clniition 15 the follol.'lng. The SQUID is coupl(:d to the input cir·-

C.lt tiJrough the: mutual Inductance M
l

The current circulating dround

.he loculated SQUID loor" J (t), Induce:; :1 vultage across the coupling

coLi: In the inl·ut clrcuit of M
l
d,l{t)/dl. Thus, we take the voltage

source in the inl,ut clrcuit to be lJTuportional to the unloaded circ\'lat-

lIlg current,

(6.5)

From Egs. (6.4)-(6.5), the "!Jectr"l d,·w;ity of the toted voltage noise

at the output in terms of the voltuge noise spectral density, the

current noise spectral density, s;, dnd the imaginary part of the corre-

latron noise spectral density, SO , 1:',
v,1

SO
VT

so + So 2wM Z X liz 1
2

+ So W
2M

I

2 z2f/lzTI2V VJ i f T T J (6.6)

where we have taken the voltage source at the output to be VN(t) for the

isolated SQUID. The noise temperature, TN' is then

(6.7)

In tenns of the nonnalized dimensionless spectral densities computed in

section IV,

(;L) [(~i:~)(~) ,
(::) e;?) '0

4 (w::) (:f)] (6.S)

where we have used Sv
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(;J'/ I :J-:- )
.::t

( :, ~ I" ~ ) (;' I L)

"

USULll lnIJut circuit cOliflqurdt ll"Jn 1'; WIth 1/(· ~ (J. Tilui X
T

optimize TlJ (w) at il particular' frequency 0)0 by settinq

O. The optima! value of the source rc;istanct: IS tht-n a funellul, of

Opt 2 2 2
R. = W L. [1 + (R +R ) Iw L.

1 0 1 -T SOl

the optimized value of TN at W() IS

(C ,1',.

and the noise temperature at arbitrary W is

2 2
T(S~/2f) (w Iwo-l)

2U2 (R/L) (I.. IROPt )
1 1

[
2]R +R

1 - ( :~PtS) ,
(6.11)

Notice that both T~Pt(Wo) and T~Pt(W) depend on the SQUID parameters

through R~Pt and through the usual figure of merit, S~/2U2L =

(S;J2flkBT/U2(R/L). Also note that ~he minimum in T~Pt(W) occurs at

w = 0 and not at woo That is, T~Pt(O) = T~Pt(Wo) (R~Pt + Ry + Rs)/2R~Pt.

For the SQUID parameters given in ser.tion VI.A., in the lim~t

http://jpnroxim.it
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t"~'l,~rature IS prc'l,or-tlonal to the SQU1LJ temfJeratu!c', T. TLis IS ao

LC; ',e sourcc- IS the t:ierrnal Johnson nOl,-.e In the shunts. As thc'

~(_,:;l1nat('d by tht: shot nOJs(;' in the Junctlon~.

Hi thlS llmlt as follows. Wc.· <lssume thut the ratlos

are not chanyed. Thus ROr,t IS unchanged, ane: from Eg.
1

5"/5· and S"/~c
V) V ) V

Opt
(L.ll), TN IS a

function of the usual figure of merlt, :;~l2r. From Eg. (5.4) we

have Si/2L a IS;/2r)k
B
T/IR/L) ~ h/2 in the shot noise limit. Thus

the nOlse temperature optimized at W
o

in the shot noise limit

is TOpteW )
N 0

h w
o

~

2 4 l<
n (l+3a /2+J la /16) 2

2
Cl

As the coupling constant

a 2 ~ 0, TOPt(W )
N 0

In the limit of perfect coupling between the

input circuit and the SQUID TOptIW) > Shwo/k
B

., N 0- For the particular C<:lse

of the dc SQUID with Sal, r = 0.5, a
2

shot noise limit is T~PtIWO) ~ 17hW
o
/k

B
. Both the approximations for

Opt ( .TN w
o

) arc consIstent with the relal- )nship between noise temperature

and operating frequency for a linear amplifier determined by Heffner.?

He found that the uncertainty principle J.imits the optimal noise tempera-

ture to TN < hW/kB in the limit of large amplifier gain.

Notice that Eq. (&.9), R. ~ W ~., and Eq. (&.10), TONPt(W ) ~
101 0

(W L/R)T/a2 imply that the optimal noise temperatures are obtained for
o

source resistances R. ~ IQ. For a SQUID inductance L ~ 10-9ri , reasonable
1

http://noi.se
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values of a 2 (a2 ~ 1/2) are obtainable for lO-6H $ L. $ lO-9H. This
J.

implies for W ~ 106HZ, In $ R~Pt $ lO-3n , and TOpt ~ lO-3K for a SQUID
o J. N

operated at lK with In shunt resistances. At W
o
~ 1Hz, the optimal

resistance, R~Pt, falls to lO-6n.
J.

4. Optimal TN for the Tuned Input Circuit

We assume that the input circuit is tuned with some capacitance C
i

in series with the coupling coil L
i

and the feedback and source resistan-

optimize TN(W) at a particular frequency Wo by s·:;!tting aTN/aCi = o.

Fram Eg. (6.8), the optimal relationship between the inductance and

capacitance is

l/w c~p<: = W L. (1 + a 2
So ./SO)

o J. 0 J. V] V '

and the optimal noise temperature at W
o

is

(6.12)

( S~) 4(WoLi ) (Sj
2f + a R. 2f

• J.

(6.13)

Optc.
We now optimize TN J.(W

o
) with respect to R

i
by setting

OptC.
aT

N
J.(w liaR. = 0 to obtaino J.

and

(6.14)

(6.15)
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The value of the optimized noise temperature at arbitrary W is given

by Eq. (6.8) with l/w C. replar.ed by l/w c~pt and R. replaced by
OptCi

R.o ~ 0 1 1 1

As an example, we plot the reduced noise temperature T
Red

(W)
N

OptCi .
TN (w) {R/WoL)/T versus the reduced frequency w/w

o
in Fig. 26. Capaci-

tance has been optimized according 0 Eg. (6.l2). A range of input

resistances R
i

have been chosen. NG ~ce th~t the parameter Q
o

= WoLi/Ri

is not the "Q" of the input L-R-C cirruit, since ill > 1/1L."""c.-. The
011

noise figures Svo , S~ and So. are those for the dc SQUID with the parCl"
J vJ

meters given in section VI.A. The coupling constant a 2 = 1/2.

(Notice, however, that
2

Ci •

4 -4
W

o
/2TI = 10 Hz, L

i
= 10 H, T = 4.2, and

RO,ptCi ~ l.ln and optCi,Ri
1 "TN ~ 0.74mK. Notice

For the SQUID parameters given in ·ction VI.A., in the limit

OptCi 2
R

i
~ 0.35 a WoL

i
, and

0.5, C?pt ~ 1.8~F.
1

OptCiR
i

can be reduced to a more convenient value if necessary bythat

L ;:, R + R_. l/w c~Pt ~ (1 + 3a2/4)W L
Wo i SF" 0 1 0

optCi,Ri
TN (Wo ) ~ 2.8(WoL/R)T independent 0

R?ptCi ~ 0 as a 2 ~ 0.) For
1

0.74 mK

reducing

1/w2
L.

o 1

R~PtCi ~
1

the coupling constant

OptC. ,R·
2.5~F and T 1 1 ~

N

?a . In the limit a 2 ~ 1/2, c?pt
1

independent vf a2 , while

For the shot noise limited SQUID in the general case from Eq. (5.4).

OptC. ,R.
T 1 1{ ) > h /k h h assumed (SOS~_so~)/s02 ~ 0.125 asN Wo ~ Wo B' were we ave v J vJ v

given by the values of (S;!2r), (Sj/2r) and

For the particular case of the SQUID with S

(SO./2f) for S = 1, r = 0.05.
V)

OptC. ,R.
= 1, r '" o. as. T 1 1(W)z.. 0

~ 2.2hw /k from Eq. (6.15). As for the case of the untuned magnetometer,
o B

both expressions are c0nsistent with the restriction, TN(W
o

} > hWo/kB,

placed on the noise ternperatur~ by the uncertainty principle.
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B. Magnetometers

The basic circuit for a dc SQUID magnetometer is similar to the

preamplifier shown in Fig. 24. The input voltage source consists of a

single input coil or a system of coilsithreaded by a time dependent

magnetic field. The input impedance is purely inductive. The feedback

signal is often applied by coupling a feedback coil directly to the

SQUID. The untnned magnetometer (l/e
i

= 0) can thus be constructed with

an extremely small input resistance, R
T

= R
S
~ w2M~/4~. For the tuped

case, there will be some resistance R
i

associated with the losses in the

tuned circuit.

1. Untuned Magnetometep

We begin by considering the case of a single pick-up lovp threaded

by an axial magnet~c field. For a long n-turn solenoid of length £ and

~ nr2n2/£. The mean square voltage
o

induced by a magnetic field of magnitude B
o

oscillating sinusoidally at

frequency w is

2 2 242 2
W Bon r n /2 = 2w u L

o P
(6.16)

where u = B2nr2£/ ~ is the mean signal energy In the volume of the
o 0 0

coil. We take R
F

= R
i

= 0, RS = w2M~/4RD' and XT = WL i + WLp for the

untuned case (l/WC
i

= 0). The mean square signal voltage at the SQUID

output is

(6.17)

and the mean square SQUID noise at the output in the bandwidth B from

Sq. (6.6) is
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[(R~+X;)SV + 2WMiZfXTSVJ

+ W2M~Z:SJlBi(R~+X;) (6.18)

We set ( V
2

) = (V
2

) and use the approximation (llV/ll4> ) ~ R/L to obtCl ins T a

kBTB Li [(~~)' + (1 + ~:)']u , {'SOI,rl0 ex (R/L)L v
p

+ 2a
2

(SO./2f)(1 + ~) + .4(Sj/2n} (6.19)
vJ

We now minimize u
o

with respect to L
i

for fixed input coil L
p

' and obtain

and

(6.20)

2kBTB(S~2n

ex
2

(R/L)

(6.21)

In the limit WL
i
~ R

S
' for the dc SQUID with the parameters listed

in section IV.A. with a
2 = 1/2, L~Pt ~ O.72L and u

Opt ~ 9k T(B/f ) ~
1 P 0 B J

5 x 10-
30

(B/lHz}J. As in the case of the voltage preamplifier, previous

calculations6 ,19 of L~Pt and UOpt have included only the voltage noise SO.
1 0 v

In that case, L~Pt ~ L
p

' and u~Pt ~ 2kBTB(S~/2r)/ex2(R/L) ~ 2 (S;/2a
2
L)B.

In the shot noise limit for the SQUID parameter listed with

a 2 = 1/2, uOpt ~ llhB.
o

2hB/a
2

for

a 2 -< 1. Notice that, although the minimum resolvable mean signal energy

u
o

is limited by the shot noise in the junctions, the minimum resolvable

mean square field, B2
, is not. We have u B2V/4~, where V is the

o 0

1 f . k '1 h h . 1 ~ 7 x 10-7 hvo ume 0 the p1C up C01. T us t e opt1ma B
O

(kBTB/V) 2

where L~Pt
1

0.72 L as before.
p

Now one can in principle
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make V arbitrarily large for fixed inductance L
p

' Thus the ultimate

resolution is limited only by the dewar size, provided that parasitic

noise sources can be made negligible.

2. Supel>conducting Input Circuit

The untuned magnetometer input circuit with pick-up coil Land
p

coupling coil L
i

can also be made purely superconducting. This is not

equivalent to the untuned magnetometer input circuit with R
i

+ O. The

superconducting input circuit introduces the additional constraint that

the flux must be quantized around the inFut loop. In this case, the

basic equations which describe the SQUID plus input circuit can be

reduced to the isolated SQUID equations. The SQUID loop inductance L

is replaced by an effective inductance L
eff

= L (l - c?r), where r =

L./(L. + L ) ~ 1. Thus, instead of approximating the total loaded
l. l. P

voltage spectral density at the output, S~T by Eq. (6.6), we can use

the computer model results for s~ with 6L = 2LeffIo/~o = 6(1 - a 2
r)

and fL = 2TIkBT/Io~o = f.

For B= I, r = 0.05, a 2

These two numbers are not equal in general.

1/2 and r = 0.5 (L.
l.

For the superconducting transformer, the minimum energy that can

be resolved in bandwidth B is

u
o

B
2 'r(l-r)

(6.22)

where S¢ is the flux resolution of the isolated SQUID with parameters

B
r

and r. We use the approximate expressions for S~/2L in the high

B
r

and low B
r

limits [Eq. (4.l8)-(4.l9)J to optimize uowith respect to



r.

For

For S ~ 1 and 0 2 = 1/2, r opt
r

S ~ 1 and arbitrary 0
2

, r opt
r
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opt 2
0.42 and U

o
= 2B(S~/2a L).

opt ° 20.5 and U o 2B(S<l>/20 I.). Thus

for Sr ~ 1, we reproduce the standard result, Li ~ Lp and

u~Pt ~ 16 k
S
TLB/02R. Notice that, although the approximate value fOL

S~T for the untuned magnetometer with Ri ~ 0 is substantially larger

than the value of s; for the superconductor input circuit magnetometer,

the energy resolution anJ optimal coil ratios are essentially the same.

J. Tuned Magnetometer

In this case, the input circuit is tuned by a capacitance Cj in

series with L. and L. Th~ resistance R. in series with C. accounts for
1 p 1 1

the losses in the tuned circuit. The mean squar~ voltage induced by

the incident magnetic field is (E~)
1

2W2u L. This circuit is nowo p

identical to the tuned peramplifier circuit, with XT = W(L. + L ) -
1 P

l/WCi , and ~ = Ri + Rs ' The voltage noise in the input circuit due

to the resistance R
i

is 4kBTi R
i

B, and the voltage noise of the SGUID

preamplifier referred to the input circuit is 4k
B

TNRi B, where TN is

given by Eq. (6.8). Notice that the temperature in Eq. (6.8) is the

SQUID shunt resistance temperature, T, and not the input resistance

temperat. ,:e, Ti • The two noise sources are incoherent. Thus we take

(6.23)

The minimization of U
o

with respect to Ci at some fixed frequency Wo

yields

l/W C?pt = W L. (1 + L /L. + 0 2 SO./SO)
o 1 0 1 P 1 VJ V

(compar'~ with Eq. (6.12», and

(6.24)



2 optC.
2w L U l.

o P 0
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(6.25)

optc.
where TN l. is given by Eq. (6.13).

optCi
Minimizing U

o
with respect to Li for fixed L

p
a:ld R

i
at the

same frequencj W
o

yields

and

(6.26)

2
optC. ,L.

2w L U l. l.
o P 0

(6.27)

optc. ,R.
where T

N
* has the same form as T l. l. in Eq. (6.15) with R~Pt ~ R.

N 1. l.
opt

and L
i
~ Li (also compare Eq. (6.27) to Eq. (6.14)). The optimal

value for U is then
o

2 optC. ,L.
2w L U l., l.

o P 0
(6.28)

Using the SQUID parameters listed in section VI.A., for WoL
i
~ R

s
'

we have W L?pt ~ 2.8R./U2 l/w C?pt ~ W L?pt(1+3U2/4) + W L . and
o 1. 1.' 0 l. 0 1. 0 p'

2 optCi,Li
2W

o
L

p
Uo ~ 4k

B
T

i
P.i B + 4k

B
TNRi B, where T~ ~ 2.8(WoL/R)T. For most

applications, T ~ Tl. ~ 4.2K, and W
o
~ R/L ~ 109 rad sec- l Thus for a

wide range of the parameters Wo ' Ri , Li , Ci and Lp ' TN ~ Ti , and

2W
2

L U ~ 4k
B

T.R.B. This is just the condition that the signal voltageo POl. 1.

should dominate the Johnson noise voltage of the resistance R
i

in the

input circuit.

In some applications (typically high Q input circuits operated at

high frequency) TN ~ T
i

• For a particular choice of operating frequency

W
o

at which the noise temperature is to be optimized, we express TN(W)
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2in terms of the following parameters, r = Li/LT, YT = l/WoLTC
i

and

QT = WoLT/Hi for LT = Li + Lp • Notice that QT is not necessarily the Q

of the input circuit. From Eq. (6.8) with X
T

= WL
T

- l/WC
i

,

T;ed 0T [(:n O} 2en :T - (52?) YT

(6.29)

fo!: Li
« L Inp

value of QT
' opt
~s QT

of T* at optimalred

(:~) ~)(
SO,)-?t+

The optimal value of Y
T

is yO

T
Pt = 1 + (So ./SO)r/2 ~ 1

V) v

this case 00
0
~ l/ILTCi and QT "'" Q input. The optimal

~
~ 2/r [S~/SO_)so./so)2]. Thus QToPt ~ l/r. The value

J v V) v

YT and Q is T*oPd't = [(SO /2f) (S~/2f) - (SO ./2f) 2]J,. This is identical to
T re v J vJ

the result obtained for the tuned voltage preamplifier. For the de

. VI optSQUID mentioned in sect~on .A, YT = 1 + 3r/8, QT = 5.6/r and

T;~~t = 2.8. Thus for an input circuit with Lp ~ Li (r $ 1), YT ~ 1

and QT ~ Q = 1000, the actual noise temperature is substantially larger

than the optimal value. For example, for. r = 1, TN

Thus for T = T
i

= 4.2K, f
o

62 x 10 Hz, R In, 1. =

~ QT(Wo!(R/L)T.

-910 Hand QT = 1000,

T~ 4.2K at 00
0

• For 00 1 00
0

, TN > 4.2K. To illustrate the dependence

of TN on 00 and r for the highly tuned input circuit, we plot the

reduced noise temperature T;ed versus (00/00
0

) for QT = 1000 for various

values of r in Fig. 27.
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Fig. 27: Normalized noise temperature TN(W) (R/woL)/T vs. reduced

frequency (w/w ) as a function of r = L./(L. + L ) foro ~ ~ P

Q
T

= W (L. + L )/R. ~ 1000.
o ~ p ~
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At very low temperatures T and Ti' the energy resolution will be

limited by the shot noise in the SQUID. In that case we have from

section VI-A. 3 I TN -+ hWo/kB, and 2W2L uoPtLiCi "" 4kBTNRi B ""o p 0

4hw R.B. This is the optimal energy resolution consistent with theo ~

uncertainty principle restriction on the noise temperature for the

SQUID magnetometer in this configu~ation.
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