
Presented at the Fourth Geothermal
Reservoir Engineering Workshop,
Stanford University,
December 13-1&, 1978

STUDIES OF FLOW PROBLEMS WITH THE SIMULATOR SHAFT78

K. Pruess, R.C. Schroeder, and J. Zerzan

November 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

TWO-WEEK lOAN COpy

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Diuision, Ext. 6782

LBL-8515 C' 2.

f'.



-----~~~-----_. ------ =1

I

I
:

..

,--------..;..- LEGAL NOTICE ---------.

,.
:,.(

,',.'.,-

" ~ ::' j'

This report was prepared as ah account of work sponsored by the
United States Government. Neither the United States nor the Depart
menLof Energy, nor any of their employees, nor any of their con
tractors, subcontractors, or their employees, makes any warranty,
express or implied, orassumes any legal liability or responsibility for
the accuracy, completeness 9r lJ~etulne~sof any information, appa-
ratus, p ;i~sdisClosed,'orrepJ"e:sentsthat its use would
not inf }wned rights. .'....• i,'ii; •....

of' ;.>' \ , :., '~:' ;" .....-:...' +'~' ----1
~: (,i;,;"



LBL-8515

STUDIES OF FLOW PROBLEMS WITH THE SIMULATOR SHAFT78

K. Pruess, R.C. Schroeder, J. Zerzan

INTRODUCTION

In recent years, a number of numerical simulators for

geothermal reservoirs have been developed. The general purpose of

these is to aid reservoir engineers in (i) determining characteristic

parameters of reservoirs (most important among those being the reserves

of fluid and heat), and (ii) simulating the performance of reservoirs

upon production and injection.

The various simulators differ in the approximations made

in the underlying physical model (e.g., dependence of rock and fluid

properties upon thermodynamic variables), in the geometrical definition

of the reservoir (one-, two-, or three~dimensional, regular or

irregular shape); in the choice of thermodynamic variables, and in

the mathematical techniques used for solving the coupled mass and

energy transport equations •.

Criteria for desirable performance of numerical simulators

depend in part upon the particular problems to be investigated.

Different problems will often differ in the required level of detail

to be resolved, and in the optimum balance of speed and accuracy

of computation. Much can be learned about two-phase flow in porous

media from model studies for idealized systems. Such studies can be

performed with less-than-three-dimensional model~ and algorithms

which are based on regular grid spacings will be perfectly acceptable.

For modeling natural geothermal reservoirs, on the other hand, it is

important that irregular three-dimensional geometries may be handled

easily.
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In comparison with other two-phase simulators which have

been discussed in the literature, the main distinctive feature of

SHAFT78 is that it uses an integrated finite difference method (IFD).

We solve finite difference equations that are obtained by integrating

the basic partial differential equations for mass and energy flow over

discrete surface and volume elements. This method is as easily

applicable to irregular geometries of actual reservoirs as it is to

idealized, regular geometries; yet the relative simplicity of the

finite difference method is retained in the theory and algorithms.

The purpose of this paper is to give a brief review of

the basic concepts associated with SHAFT78 and the IFD approach, and

to present comparisons of SHAFT78 calculations with some analytical

solutions. The comparisons include both single-phase and two-phase

water problems and demonstrate the accuracy and calculational

stability of the algorithm.

The governing equations for mass and energy transport in

porous media when both rock and fluid are in local thermodynamic

equilibrium can be written

~at

Ua vol
at

....:.. ~- v • F + q (la) (Mass)

F F
+ {[~ + -!] VP + dissipative} + Q

Pv PQ,
(lb) (Energy)

~

F = (2)

Under suitable assumptions, we get the integrated form of

equations (1)
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(n the inward normal) (3a)

r J. j...31 ...0..

JAA{FnH n+ F H - F U - KVT}·nda + JV(Q-Uq)dV
= ---.:.=---...:IV=-...:.IV=--_v=---v=--__a=v-=-=e_~:__-~:___;_;~.,_;:_~--

{~ + (1 ~) [(aT) +(aT) (ap/at)]}
~p -~ crockProck au P ap U(aU/at) ave

(3b)

The solution to equations (3) is computed on a polyhedral

partitioning of the reservoir whose connected components share a common

polygonal interface. Volume and interface averages are computed using

standard finite difference techniques. l ,2 The fluid parameters are

obtained by bilinear interpolation (triangular interpolation near the

saturation line and in the liquid region)l using an inverted form of the

1967 ASME Steam Tables.

It is clear on examination that equations (3) are nonlinear

and coupled. These are solved by reduction to an appropriate linear

approximation at each time step. Accuracy controls are set to allow

only small variations in all parameters over a given time step. The

energy equation is solved first using density changes predicted by

the behavior of the system in the previous time step. Thus, a good

estimate for the expected change of fluid energy over the energy time

step can be made, which is subsequently corrected during the density

time steps. Special interpolation procedures and automatic time-step

controls ensure high accuracy of the calculation even when phase

transitions occur (elements crossing the saturation line).2

An iterative strategy is employed in solving the discretized

version of equations (3) after the first-order explicit solution has

been generated in each time step. The time-averaged flux terms F

(density) or FnH n + F H - F U (energy) are written asIV IV V V ave

F = F(t + 96t) = F + 96t aF
at

(4)
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and an iteration is performed over the whole mesh to m:!.-n:l.nrLze the

residual term. l ,8

SAMPLE PROBLEMS

In order to evaluate the SHAFT78 program, calculated results

were compared to numerical calculations reported in the literature

(e.g., Toronyi
7

and Garg
5
), and to analytic solutions. The remainder

of this paper is devoted to a comparison of the computed solutions

with the analytic results.

SINGLE-PHASE VAPOR

3In 1957 R.E. Kidder presented to the ASME the solution to

the problem of isothermal flow of a gas (obeying Darcy's and Boyle'S

laws) in the semi-infinite homogenous porous solid.

Specifically, the problem solved was

with initial conditions

(5)

and boundary conditions

p(x,O) P
o

° < x < 00 (6)

p(O,t) = ° < t < 00 (7)

SHAFT78 was run on a 30-element linear mesh with internode

distances of .2m, and large nodes at the boundaries of the grid with the

appropriate boundary conditions. Initial conditions were



S

P = SMPa
o

T = 300 °c
o

with rock properties

k = 10-
12

m
2

, Krock = 0 c = 10
7

J/kgOC, P k= 2200 kg/m
3

, ¢= .2, rock roc

Three boundary conditions on the left of the 'grid

PI 4MPa

PI = 2MPa

PI IMPa

were chosen and the results are compared with the analytic solution

for each case in Figure 1.

The computed solution shows a slightly lower pressure drop

than the analytic solution. This is probably due to inaccuracies

introduced in the boundary approximations.

SINGLE-PHASE LIQUID

To evaluate the performance of SHAFT78 in the liquid region,
4the "Theis problem" was run on a IS-element mesh with a large element

at the outer boundary to simulate the reservoir conditions at infinity.

Reservoir conditions were

Thickness 100 m

Initial pressure 20.37 MPa

Initial temperature 180 °c
Rock porosity .2

Permeability = 10-13 m2

Rate of fluid withdrawal 18 kg/s'm
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The results are compared in Figure 2 to the analytic solution

of the line source problem (t
D

vs P
D

on a log-log scale)

P (r, 0)

Lim P(r,t)
r-+<x>

Lim 2rrrk l:e.
II arr-+<x>

=

=

P
o

P
o

- q

initial conditions

boundary conditions

(8)

(9)

(Constant flux
with Darcy
assumption)

(10)

with solution given by the exponential integral

P P
o

2
+ .9..L E' C r Pllc}

4rrk 1. 4t k (11)

Agreement is close near the sink (to the right of the plot) with

deviations increasing to the left. The scatter of computed points

around the analytic solution seems to reflect a deviation from the

solution at late times and large radius when the boundary approximation

becomes less accurate.

TWO-PHASE RESERVOIR

5Gargderives an approximate diffusivity equation for

pressure in a two-phase reservoir initially at equilibrium pressure

p , which is valid near the wellbore.
o
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= 0 (12)

Here we have introduced the total kinematic mobility

kQ, . kv
k[- Po + ~ P ].

11Q, IV I-'v V

For a line source, we have the boundary conditions at the well

(13)

dP Ir dr
r=r

w

and at infinity

(v :: ~)
P

(14)

Lim P(r, t)
r~

P
o

(15)

The solution (after Carslaw and Jaeger) to the above equation is

P (r, t) = P + q
o 41T(k!v)T

(16)

For sufficiently large t (argument of the exponential integral
-2 5less than 10 ) we have for the wellbore pressure

p (t)
w

Per t)w,
P

o
1.15q

21T(k/V)T
+ .351} (17)
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This implies that a plot of P vs. log t should be a straight line,-w
with slope equal to 1.15q/2TI(k/V)T'

SHAFT78 was used to simulate the problem of a mass withdrawal

of .14 kg/s'm on a radial grid identical to that reported by Garg5

with

6r
l

= 6r2 = ... 6rll = 1m

6r
12

= 1.26r
ll

, •.• , 6r
50

using rock properties

Prock = 2.65 x 10
3

kg/m
3

~ = .2

c = 1000 J/kg' °crock

Krock = 5.25 W/m' °c

Permeability (k) = 10-13 m2 (100 millidarcy)

The relative permeability curves used
6

for the simulation are shown

in Figure 6A.

Results of our simulations for three different initial

conditions are given in Table 1 and Figures 3-5. P is seen to be a

linear function of log t, the slope of which gives a good estimate

of the total kinematic mobility (k/V)T' We have also plotted
2

p vs log(t/r ) for the same simulations, but including all elements,

not just the wellblock (Figures 3B, 4B, 5B). Again a straight line

results, with slope almost identical to that of the P vs. log t plots.

This result, which is outside the scope of GargIs theory, seems to

indicate that total kinematic mobilities could also be obtained

from observation well data rather than just from flowing wellbore

data.



Table 1

Results for Total Kinematic MObilities (k/V)
T

Initial saturation (8 ) (k/v) T from (k/V)T from Time Actual value
and 0 .')- .. of

pressure (P ) P vs log(t) P vs log (t7r'-) (sec)
(k/V)T

0 plot plot

= 8.5 MFa O. -7
Po 2.3117 x 10_7

-7 -7 1889. 2.2119 x 10_72.2146 x 10 2.4265 x 10 7490. 2.2154 x 10_78 = .9 10184. 2.2105 x 10
0

\0--
P = 8.6 MFa O. -7

0
3775.

1. 2633 x 10_7
-7 -7 1.1596 x 10_71.1610 x 10 1.2266 x 10 7033. 1.1479 x 10_7

8 = .5 19268. 1.1404 x 10_7
0 45883. 1.1314 x 10

P = 8.6 MFa O. -7
0

2336.
5.5535 x 10_7

-7 -7 4.0947 x 10_73.8239 x 10 4.161 x 10 19327. 3.9253 x 10_7
8 = .1 76549. 3.8568 x 10_7

0 142060. 3.7956 x 10_7217406. 3.7866 x 10
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In addition, saturation vs log (t/r
2

) was plotted for 3 times

for each of the three cases just discussed. As can be seen in Figure 7,

saturation appears to be a function of t/r
2

only. At a position

proportional to It there appears a broad saturation front, which

becomes more diffuse as vapor saturation increases. Changing the

relative permeability curves (Figure 6B) has only a slight effect on

the saturation profiles. We are still investigating these results.

Program SHAFT78 was also run to simulate a drawdown from a

liquid reservoir with initial conditions

T = 300 °c
o

P 9.0 MPa
o

k 10-14 m2

and the results are compared with GargIs reported results in Figure 8.

For this comparison, the Corey equation was used to generate

the relative permeability curves with the parameters

S =.3w

S = .05
g

From the slope of the straight line portion of the curve we compute

a (k/V)T value of .86E-8 as compared to numerical values ranging

from 1.4E-8to 1.9E-8. However, (k/V)T values computed from the

numerical simulation are decreasing with increasing time, while the

straight line portion of the curve appears to be flattening out as

time progresses. Thus, it appears that the computed (k/V)T values

are converging to the numerically generated values as the flash front

passes through the grid blocks.
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CONCLUSION

The simulator SHAFT78 has been verified for a number of

one- and two-phase flow problems involving subcooled water, water/steam

mixtures, and superheated steam. The flow of water and steam in porous

media, boiling and condensation, and heat exchange between rock and

fluid are all described properly. No difficulties are encountered in

crossing the saturation line (phase transitions).

Our simulation results confirm Garg's method of deducing

total kinematic mobilities in two-phase reservoirs from production

well pressure decline. It is suggested that total kinematic mobilities

can also be inferred from observation well data. For uniform initial

conditions we observe a simple dependence of vapor saturation upon

production time and upon distance from the producing well. This as

yet unexplained phenomenon indicates an underlying simplicity of

two-phase porous flow.

Apart from idealized model studies, SHAFT78 is also being

used for irregular three-dimensional systems. A simulation of production

and recharge in the Krafla geothermal field (Iceland) is reported

elsewhere. 9 At present, we are developing a history match for production

and injection in the highly irregular shaped field of Serrazzano
10

(Italy).
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NOMENCLATURE

Latin -- Upper Case

Q

T

U

U
vol

S

= total compressibility
2

= mass flux per unit area, kg/m s

= enthalpy per unit mass, J/kg

= rock heat conductivity, J/ms °c
Pa = N/m

2
pressure,

= dimensionless pressure
2= wellbore pressure, N/m

... 1 N/ 2= lnltla pressure, m

energy source term, J/m
3

s
o

temperature, C

energy per unit mass (specific energy), J/kg
3

energy per unit volume, J/m

volumetric vapor saturation

Latin .-- Lower Case

c

r
w

t

Greek

= rock specific heat, J/oC kg

absolute permeability, m
2

total kinematic mobility, s
3mass source term, kg/m s

wellbore radius, m

time, s

e time averaging factor (dimensionless)

p density, kg/m3

¢ = rock porosity, dimensionless

II dynamic viscosity, Ns/m
2

V = kinematic viscosity, Nsm/kg
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Subscripts

ave average (over volume or surface element)

t = liquid component

rock referring to rock

v = vapor component

vol volumetric measurement of the variable

(e.g., U 1 = Energy/unit volume).vo
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