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EQUILIBRIUM AND STABILITY IN
STRONGLY INHOMOGENEOUS PLASMAS

Harry Elliot Mynick
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

In some confinement schemes of current interest, for example
in conventional and field-reversed mirrors, and in the Tormac sheath,
the parameter n, defined as the ratic of ion gyroradius to the plasma
scale length L, perpendicular to the magnetic field, may take on appre-
ciable values, as large as 1/3. In this work, formalisms appropriate
to the study of such strongly inhomogeneous plasmas are developed and
applied, for three general aspects of plasma behavior. Each of these
three topics is studied using Hamiltonian formalism, which greatly aids
in expressing results in a general and concise manner.

In Part I we study the equilibrium of strongly inhomogeneous,
collisionless, slab plasmas, using a generalized version of a formalism
previously developed, which permits the generation of self-consistent
equilibria, for plasmas with arbitrary magnetic shear, and variation of
magnetic field strength. The principal accomplishment of Part I is the
development of an interpretive method, which connects the canonical
variables, in terms of which the formalism is expressed, to the physical

quantities needed to model a given physical system, and which is both
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valid and practical, even for cases of strong magnetic inhomogeneity,
and in particular for magnetic shear. The method provides a concrete
physical content for the canonical formalism, permitting application to
problems of interest. We apply the formalism to the particular problem
of the Tormac sheath, modeling both the magnetic field and the loss-cone
form of the ion distribution function in that region. The interpretive
method of Part I is also of considerable use in the formalisms of Parts
I1 and III.

Part II is concerned with the development of a systematic pro-
cedure for deriving the form of the guiding-center Hamiltonian K, for
finite n, in an axisymmetric geometry. In the process of obtaining K,
an expression for the first adiabatic invariant (the gyroaction) is ob-
tained, which generalizes the usual expression %nwlz/nc (QCE eB/mc),
to finite n and magnetic shear.

In Part III a formalism is developed for the study of the sta-
bility of strongly-inhomogeneous, magnetized slab plasmas; it is then
applied to the ion-drift-cyclotron instability. We restrict our study
to longitudinal pertu:sbations. Use of Hamiltonian formalism and operator
techniques permits a very concise expression of the full nonlocal mode
equation, in a form valid for arbitrary inhomogeneity, but which trans-
parently reduces in the appropriate limit to the weakly inhomogeneous
expressions usually used to study stability. Certain new effects of
potential significance are found, arising naturally from the mathematics.

1n particular, we find a generalized expression for the diamagnetic drift



frequency w,, of central importance in many plasma instabilities. For
nonzersc WI/(QC Ls)(where Yi is the parallel velocity of a particle at
its guiding center, and Ls is the shear scale length), w, becomes a func-
ticn of position in phase space, with a shift from its unsheared value
w3 given by w, = ud [1+ (v, /2. L)L,

The formalism is phrased in terms of a variational principle
which, in addition to serving as a labor-saving device in parameter
regimes where use of a finite-order differential equation is an adequate
approximation to the full nonlocal mode equation, also permits the der-

ivation of valid dispersion equations when the problem is fully nonlocal

in character.
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INTRODUCTION

In plasmas of current interest, for example in the Tormak sheath
Tregion, in mirror machines, and in some Tokamak experiments, the ratio
n of the ion gyroradius to plasma scale lengths perpendicular to the
magnetic field, may be an appreciably large parameter. The meaning of
“appreciably large'" will be clarified in each of the three parts of
this thesis, but generally we mean by this that the inhomogeneity is
strong enough to modify the actual form of the equations governing a
given aspect of the plasma behavior, rather than entering the equations
in only a parametric fashion. In the latter situation, we shall say
that the plasma is '"weakly inhomogeneous.'

Since in going from weak to strong inhomogeneity one removes a
simplifying approximation from the theory, formalisms applicable to
strong inhomogeneity will tend to be complicated and cumbersome. There-
fore any formal means which makes the formalism more succinct and el-
egant is desireable. All three areas of study here are accordingly
treated making maximal use of Hamiltonian formalism, in terms of which
the equations goverming different plasma geometries tend to look the
same, and those governing the strongly inhomogeneous case have a trans-
parent formal resemblance to their weakly inhomogeneous limits.

In the first part of this thesis we study the equilibrium of
strongly inhomogeneous Vlasov slab plasmas, extending and clarifying
the work of P. ('Jha.nnell.1 In Part 11 we develop a canonical formula-

tion of guiding center motion valid for particles having appreciable n



-X11-

("finite gyroradius''), moving in axisymmetric geometries. Part Il is
concerned with the development and application of a formalism appro-
priate to the systematic study of the effects on plasma stabiiity of
strong inhomogeneity.

Each of these three parts has its own introductory sectien, in
which the work of that section is described in greater detail. The
parts are presented in an order which allows for a natural progression
in the development of ideas and formalism, and later pirts do make some
reference to the preceding ones. Nevertheless the areas of study are
distinct, and any of the three parts should be comprehensible without

having to read the other two.
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PART 1. VLASOV SLAB EQUILIBRIA:

INTERPRETATION AND PRACTICAL APPLICATION
OF THE CHANNEL FORMALISM

I1.A. Introduction To Part ]

The work of P. Chanmel]1 enables one to generate self-consis-
tent, exact Vlasov eguilibria in a slab geometry (i.e., » geometry with
a single dir.ction of inhomogeneity, which we take to be the x direction),
allowing for arbitrary magnetic shear, as well as arbitrary variation in
magnetic field strength B = |B| and in plasma density, the scale lengths
of these quantities (Ls, LB' and Lo» respectively) being limited only
by the self-consistency of the equilibria generated. The possibility of
generating such equilibria is particularly interesting for plasmas in
which the ratio n of the ion gyroradius p; to the magnetic scale length
Ly = min (LB,LS) is not a negligibly small parameter. For such plasmas,
t;é ion orbits become complicated, distorted from the helical form valid
in the small n regime. Accordingly, calculations of plasma quantities
such as density, pressure, and magnetic field variation, using the more
elementary approaches adequate for small n, become of questionable valid-
ity.

in the Channell approach, from writing out the x-component of
the pressure balance equation in terms of the constants of the motion
(H, Py' Pz)(the single-particle energy, and the y and z components of
canonical momentum), one obtains an equation for the development in x of
the vector potential A = (o, Ay. Az), and the scalar potential $, for-

mally the same as the equation of motion of a particle in a three



dimensional space (A,%), propagating in pseudo-time x, in an effective
potential U(A,$). (U turns out to be a constant times the xx-component
nxx of the pressure tensor II.) Imposing quasineutrality on this system
enables one to eliminate one degree of freedom .(say ¢), and so have a two
dimensional particle motion problem.

Channell's work did not allow for a scalar potential, and his
formalism was derived only for a highly restricted class of distribution
functions fs (H,Py,Pz). H. Grad showed2 that, for the one dimensional
pseudo-motion problem of an unsheared magnetic field, the same formalism
holds, for arbitrary choice of fs' Recently, A. N. Kaufman showeds that
one can choose fs arbitrarily for the sheared (2-D) problem Channell
studied,

For the Channell formalism to be useful, one must be able to de-
sign the canonical form fs (H'Py’Pz) of the distribution fumction to model
systems of physical interest. Physically, one may be given a specifica-
tion of the desired magnetic field E(x), and so the reference trajectory
z(x) which yields that E, and a general description of the physical form
fs (Xo,vlz,v") (XOE guiding center positionj of the distribution function
(e.g., loss cone, with a prescribed density variation with XO) to be
modeled. The present work establishes the connections between these

WP_,f_,U) of the

physical quantities, and the canonical quantities (M, s

P
y
Channell formalism,

We begin in Sec. I.B by deriving the Channell formalism in its
generalized form. In Sec. I.C, methods of interpreting the formalism

are developed and applied. Section I.C.1 discusses the connection



between the canonical variables (H,Py,Pz) and the physical ones (Xo,v .
vy ). Graphical methods are developed which facilitate making this con-
nection, and which enable one to easily and rapidly extract a large
amount of information, even in situations where the corresponding alge-
braic expressions become analytically intractable. These methods are
extended in Secs. 1.C.2 to 1.C.4. In Sec. 1.C.2 we develop a prescrip-
tion for determining fs, given fs and E. Section 1.C.3 presents an ex-
plicit application of this procedure, modeling the Tormac sheath region,
in which ?s has a loss-cone form, and where z(x] gives a sheared magnetic
field.

Having determined fs’ in Sec. 1.C.4 we establish the comnection
between the topologies of fs and of U. The discussion is largely quali-
tative, again aided by graphical visualization of the algebraic state-
ments. This sort of analysis is continued in Sec. I.C.5, in which a
remaining question of self-consistency is answered, tliereby showing the
validity of the prescription for choosing fs, laid down in Sec. I.C.2.

Quantitative support for the qualitatively-determined conclusions
reached in Secs. I.C.2 to I1.C.5 is given in Sec. I.C.6, and in Appendix
A. Appendix A carries out in an analytic fashion an evaluation of U,
given fs’ and arrives at a form having the same features as expected
from the more qualitative analysis of Sec. I.C.4. Section I.C.6 dis-
plays the results of numerical adaptation by W. M. Sharp of the methods

developed in the foregoing sections. The results bear out the conclu-

sions and expectations developed in those sections.



1.B. Generalized Channell Formalism

As described in the introduction to Part I, we consider a slab
geometry, with x the sole inhomogeneity direction. The magnetic field
B(x) = (o, By(x), Bz(x)), cbtained from the vector potential A(x): (o,

lg,(x), Az(x)) through the relation

jeo

=9 x A= % x dA/dx, (I-1)

has at this point arbitrary variation with x, as does the electrcstatic
potential ¢(x). (Their x dependence will be determined self-consistently
from the Channell formalism.)

The pressure balance equation for species s is

ver=clj xB -p V0. (1-2)

In slab geometry, its only nontrivial component is the x-component:
3 _ Lloa, s _ - =z
) Hxx/ax =c "R (Jsxg) 0 30 /ox. (I-3)

Writi‘ng out Hf’cx in terms of canonical variables, we will see
shortly [cf. Eq.(I-8)] that it is a furctional of A and ¢, its x
dependence entering only through these functions of x. The canonical
momentum p = (px, py, pz) has y and z components which are constants of
the motion, (o, P

y
of the motion is the single-particle Hamiltonian Hg, given by

» P,) = (o, Py p,) = P = constant. A third constant

H, = p,2/2mg + V (x|P), (1-4)
where

Vo(x[P) 2 (P - (e,/c) AP /2mg + ey & (x) (1-5)



is the effective 1-D potential in which a particle with momentum P
oscillates.
With the distribution function fs written in terms of these

s
three constants, Hxx appears as

S -1 3 .2 .
Mo =m [ d7 pig £,(H,P). (1-6)

We now define hs by
-2 _ 2
ZmShS Ep, = 2mS (HS - VS) = 2mg (hs - estb) -(P- (esjc) AT (I-7)
and change the variables of integration in Eq. (I-6) from p to (hS P,
obtaining
S - - /2 _ _ 2,
HXX(A'¢) =2f dp !o dhS (ZmShS)1 fS{HS—hS+eS¢+ P (es/c)_j-'i] /st,f_}.
(I-8)
From this form of H)SO(, we see that we can write
3, T (A,0) = (3A/8x)« (3M15, /3A) + (3¢/3x) (33, /39)
(I-9)

=X 1(3M7 /oA )x B] + (30/0x) (31 /59).

Putting this into (I-3) and identifying the functions accompanying the
B and ¢ terms on the right and left hand sides, we find
s _ -1, -
BHXX/BA =c i (I-16)
and

s - . .
A /3¢ = - p_ . (1-11)

Using Eqs. (I-10) and (I-11) in Ampere's and Poisson's equations,

respectively, gives



a2 Afax® = - an ¢ . - (arem) UA,9) (1-12)
and

d%0/dx? = - dmp = - (3/34) U(A,%) (1-13)
where

U0 = an Z . (A,0). (I1-14)

Equations (I-12) and (I-13) are a ciosed set of equations for
exact, self-consistent equilibria, i.e., they embody the generalized
Charnell formalism. We iy obtain a somewhat simpler version, if we
replace (I-13) by the quasineutrality condition,

0=~ 4np = (3/3¢) U(A,?). (I-15)

One may solve this for ¢(A), and combine this with (I-12) to obtain
a*asdx? = - (d/dA) UIA,0(A)] . (1-16)
Equation (I-16) describes the motion of a pseudoparticle moving

in a 2-dimensional pseudospace A, evolving ir pseudotime x. It is the

form of the Charmell formalism we shall work with here.

1.C. Interpretive Methods

We want to develop an understanding of the connections between

the canonical variables (e.g., P,H U) in terms of which the Channell

s’fs’
formalism is couched, and the physical variables (e.g., Xo,vlz()(o) W (Xo),
'fs) in terms of which a system to be modeled is specified. Here we de-

scribe a simple graphical method to aid one in making these connections.



Using this approach, much of the relevant canonical and physical infor-
mation can be visually ascertained at a glance. To each graphically ob-
tained piece of information, there is a corresponding algebraic state-
ment. The graphical results are in principle as precise as the algebraic
ones, and enable one to make qualitative statements about the relations
among the various quantities in the theory, even in situations where the
algebraic counterparts become mathematically intractable. The technique

will also be useful in Parts 11 and 111,

1.C.1. Connecting the Physical and Canonical Variables

We begin by noting that A makes its appearance in the theory only
in the combination (P - (es/cJ.ﬁJ. Because of this, it will prove conve-
nient to visualize all quantities over a single P or A plane, where
A = (e/c)A. The Channell formalism becomes useful in the regime of
appreciable gyroradius to scale length, where insuring self-consistency
of an equilibrium becomes difficult. Therefore, in the following dis-
cussion, we shall be considering the ion species, e;=e; = e. Though
less useful, the formalism is equally valid for the electrons, however,
and everything that will be said here concerning the ions can be applied
(with appropriate changes of signs and of mass) to the electrons. This
is elaborated upon at the end of Sec. I.C.4.

Suppose we are given the physical information to be modeled,

?S (Xo, vlz, v") and the desired magnetic field E(x), through the reference
trajectory E_ (x). We want to design a canonical distribution fs('H, P)
which conforms to these physical requirements as closely as possible.

We first draw in E (x), as in Fig. 1. Using Eq. (i-1), we can then draw

in 1the corrzsponding magnetic field at various points Xys Xyp Xgeoo



along the trajectory. We have chosen z (x) to model Tormac, the elbow
in z yielding the shear in Ewhich occurs across the sheath region.

Now suppose we have found the self-consistent magnetic field
gsc(x) and its f'c(x). (We are designing things <o that f’c lies as
near E as possible). We can make a plot analogous to Fig. 1 for ésc'
Given ésc. the canonical variables (H, P) acquire a definite physical
significance. A natural definition of a particle's guiding center posi-
tion X  is the bottom of the well V(x|P) in which it is sloshing, i.e.,
we define Xo by

0 = (3/3x) V(x|P)| . (1-17)
x =
(s}

One may in principle solve this for XO(B). In practice, this wilil in
general be analytically intractable, so one may have to solve numerically
to obtain explicit results. A graphical visualization of (I-17) is,
however, much simpler. We refer to Fig. 2, which neglects e¢ in Eq.(I-5).
Neglect of ed gives a V which is simpler to analyse graphically (setting

c=m =1,

2
Vx[P) = S - 001 (1-18)

1n Tormac or mirror machines, where ¢ comes from the escape of electrons
along field lines, e¢~Te, and so for a hot-ion plasma, ed>~Te << Ti
~ %—(P-f)z. Neglect of et is thus a physically valid approximation in
these cases, in addition to aiding pedagogic clarity.

From (I-18), we see that V(xlg) is just half the square of the

distance, in the P- A plane, from the point P which characterize a



given particle, to the point ésc(x) on the trajectory. Ex:rema of this

distance, i.e., points A(x) at which Eq. (I-17) is satisfied, occur when
the liné passing from P to ééc(x) is normal to the trajectory ésc at
ﬁsc(x). Therefore all points P lying along this line have the same
guiding center position. This is illustrated in Fig. 2. All points P

on the lines labeled 1, 2, and 3 have as their guiding-center position
X1s Xy and Xz, respectively.

We have drawn Fig. 2 so that a certain ambiguity becomes apparent;
some values of P lie on more than one X, line, such as point a. This
corresponds to the potential V(x) having more than one extremum. For the
trajectory ééc(x) considered here, a little thought shows that V(xIE) has
either two minima and one maximum, as for point a, or a single minimum
and no maxima, as for points b and c¢. The former situation is illus-
trated in Fig. 3. Particles with energy H = H2 may be trapped in either
of the two wells, and so the canonical distribution fs(H, P) must in
general be double-valued for such (H, P).

Given XO(E), we are in a position to use Fig. 2 to read off
“I(xo) for particles having a given P. We introduce the x-dependent coor-
dinate system with right handed triad (gl, 82, 63), where 51 = ;,

63 H ﬁ(x) points along the magnetic field at x, and Bz = 53 x 81 forms
the third orthogonal unit vector. At a given point x = Xo, Hamilton's

equations tell us that the parallel velocity is

vy (X, P)=bg(X)) « [P - ACX BE (Py-A) (X).  (1-19)
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Graphically, Y is just the distance along the constant Xo line {rom the
trajectory _ASC to the point P in question, as shown for point ¢ in Fig.2.
Since Xo = Xo(g) » We may write v, =y, (P).

The final piece of physical information, "12 (Xo) , may now be ob-

tained using conservation of energy:

H= 0P+ X+ ev(xy),

and thus

v ) =vEG )+ vE (X)) = 2MH - ee(X )] - vf (X,). (1-20)
We see that vl2 is a function of P and H.

To clarify these ideas, we consider a simple illustration, viz.,
a magnetic field B(x) with constant modulus BO and shear length LSE Ks_l;
B(x) = Bo(;' simcsx + ; cos ncsx). This field is given by the circular

nseudotraiectory with radius Ao = pROLS,
A(x) = Ao()’ sinst+ z cosncsx) = eLsg(x),
as shown in Fig. 4. For any point P = P(; sinep + ; cosep), (P=0),
the effective potential V(x|P) = %[g - A(x)) 2 is then given by
1 2 2
V(x|P) = 5 (P°+ AO ) - P Ao cos(»csx- ep).

This has an infinite number of evenly spaced minima Xon’ satisfying
ston = ep +2m (n=0, 1, #2, ...). The parallel velocity at any of
these guiding center positions Xon is v (Xo) =P - Ao. The Xo = constant

lines in the P plane project radially outward from the origin P = 0.
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The point P = 0 has P = 0, and so V(x|P) = },Aoz, independent of x.

All other points P have a sinusoidally varying V(x).

1.C.2. Obtaining fS from Tq

Now that we know how to move between the camonical variables
el
(H, P ) and the physical ones [XO, VIAXY, \'"(.\' )}, we are in a

0 0
position to consider what fs(}l, P) to write down to give the desired
physical distribution f's. We visualize fs over the same P - plane as
in Figs. 1 and 2, with the direction nowmal to this plane serving as the
H - axis. Given A_SC (x), the physical distribution 'f's can be determined
from fs, using the interpretive methods just described. However, one is
not given A_SC from the outset (this is determined self-consistently from
Eq. (I1-16), which requires a knowledge of fs to determine U), but rather
the reference trajectory E We thus proceed as follows. Treating A as
though it were the real trajectory A_SC, we determine the functions io(g)’
?" (P), and ‘{:12 (H, P) in the same manner as Xo’ Yy and v, are determined if
fc is a known trajectory in the P plane. The functions io and C:II provide
a new coordinate system (in certain regions double-valued) of the P plane.
The basic prescription for writing down fs from fs is then to replace the
arguments XO, v‘lz, Vi in }:s with th‘ese new functions 3(’0, ‘\72,;7" of the
canonical variables H, P:

Bl

£, P) = lor Y 5%, @), 5 @, P, 5, @ (1-21)

Two points in Eq. (I-21) require elabcration. The first is the

presence of the factor |Q I'll, vhich adjusts between the normalizations

of fs and Pfs' Here @ = © = 8H/3J is the gyrofrequency of a particle
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with momenta P and gyroaction j, and T is the Jacobian T:= a(Py,PZ)/

a(io, '\T") of our two parametrizations of the P plane. The distribution
?S is normalized so that
n_(X)=[[dy v T =ffdvd\’2?(x vl v (1-22)
s 0 I - =1"s I s 7o’ L T

where n, is the density of guiding centers at XO.

Distribution fS 1s normilized over the cancnical phase space
Z:z(0, 5, Py; Z, PZ). (Here .J and O are the canonical gyroaction
and gyrophase, and Y and Z, the variables conjugate to Py and Pz, are the
guiding center y and z coordinates.)

Thus

dz = dodJdp dv dz = (2" T)do an v ax,

where dsl = diodY dZ is a volume element., Using (I-20), we have
2T ~ ~2 w1l 2o
dH dv" -dvl dvﬂa(H,v")/a vy \") =3 d\l d\” ,
and so the integral over velocity space analogous to (I-22) gives
~ ~ ~ -1 .
= - du -
n (X,) nfdxld\"‘ﬂ 1f,, (I-25)

and Eq. (I-21) follows.

The second point concerning Eq. (I-21) which requires clarifica-
tion is that, for a given P, H is always greater than or equal to the
value Hm.m(P)_ = V(XOIB} , and so it is only over this restricted, ''physical
region'" of the (H, P) - space that fs has any physical meaning. Inside

the physical region, we must have

£,> 0, (1-24)
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and we take fS there to be given by Eq. (I-21), unless (1-21) violates
condition (I-24). In this case we may take fs= 0.

Outside the physical region the value of fS is in principle
irrelevant, and so one may assign fs any convenient value there. How-
ever, the physical region is determined from the self-consistent trajec-
tory }ir ) or A7 (X), which is not known when writing down the distri-
bution fs' What is known is the reference trajectory g-:(x), which hope-
fullv lies close to A_SC(x), but in general not precisely on it. There-
fore we require condition (I-24) to hold not only in the region which
would be physical if 5_SC=E_, but also in a sufficiently large neighbor-
hood about this 'quasi-physical' region that (I-24) will hold in the true
physical region 3s well. A convenient choice which sctisfies these cri-
teria is to tale fs from (I-21) in the quasi-physical region, to have it
go rapidly to zero at this region's boundaries, and remain zero elsewherc

in the (H, P) space.

I1.C.3. Explicit Example: Loss Cone Distribution

We now illustrate these ideas more concretely. We denote by H'
the particle kinetic energy at Xo, H' = H- e<b(X0) =%[\'12 (Xo) + vﬁ (Xo)]
= h(Xo) + %—[E - 5(x0)12. Analogously, we denote by H' the kinetic energy
the particle would have if f’c lay precisely on E, H'z H-ed (Xo)
= %[ ?f(xo) + ‘V'HZ(XO)]. Since the reference potentials _I_, ¢ are known
functions, H' is a function of only the canonical variables (H, P).

We begin by visualizing the locus of the physical and quasiphys-
ical domains in the (H, P) space. As in Sec. I.C.1, we neglect e in

comparison with H in this visualization, for simplicity. Including the
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effect of et would distort the sketches somewhat from those shown (for
example, the line X, = constant in Fig. 4a would no longer be exactly
straight, and the domain boundaries of Fig. 4b would no longer be exactly
parabolic), but the basic features would remain.

In Fig. 5a we draw the P plane of the (H,P) space, showing the
self-consistent and nearby refe: :nce trajectories 5?Cand E, a single
Xo = constant line, and a number of sample points 5j on and off the tra-
jectories.,

The pseudopotential U(A) defined by Eqs. (I-8) and (I-14) is

2

. AP PR ~l_
valid for all A {or A). The lower limit Hmin = }ﬂnin =5 (P-4 )"

In

Fig. Sh we draw the integration domains for each of the ﬂj of Fig. 5a,

in the slice of the (H, P) space having XO = constant. The boundaries

are labeled by the corresponding j. The area above the O-boundary is the

physical region, and above the 1l-boundary is the quasiphysical region.
Now we specify a distribution fumnction. In the quasiphysical

region, we shall take fs to be of the general form

fH, P) = If g.(P) exp(-v.H). (I-25)
j=0 ]

In his workl, Channell assumed a special case of the form (I-25) through-
out the (H, P) space, namely f = e_YHg(B). Here we will be modeling a
loss-cone type distribution, such as exists in the Tormac sheath. We
assume a substracted Maxwellian form. We shall thus take N=1 in (I-25),
with g6 positive, and g negative. As a result, f will be positive in
the quasiphysical region, going to zero at the quasiphysical boundary.

Use of form (I-25) would make f negative outside the quasiphysical domain,



in violation of (I-24). We accordingly take f =0 outside thz quasiphys-
ical region.
For the physical form, ?LC’ of our distribution function, we

write

2 2, 2,
5 -Yn\-”/Z _ O-vl\l /2 _ Ry v, /2

f (\(O,\'l',\'”]=n e g “g;€ 1. (I-26)

LC™ 0

Here n = n[XO) is the guiding center density, and R = R(Xo) =1 gives the
loss cone width at ,'(0, R + = corresponding to a vanishingly narrow loss
cone. In Tormac, we expect R to vary from = in the interior, dropping

as onc moves across the sheath to some value R0 > 1, given by the sheath

mirror ratio. The normalizaticn condition (I-22) requires

1= (Zn/y")vz @2n/v) [g,- g/Rl. (1-27)
For simplicity we shall take y=y =y, and Eo = El' In preparation for
writing down fLC(H, P), we write (I-26) in the more nearly canonical form

H' -RYIDY (R—l)wuz/z)

fLC:n g (e -e e (1-28)

Finally, we apply Eq. (I-21) and the guidelines discussed subsequently,
to define f,.:

-YH'  -RyH' (R-l}y\~'"2/2
e

Igl'lln g le -e ). (1-29)

fLC (H,P) = max {

Here n, R, and \~'"Z are all evaluated at io (P). be is of the form of

(I-25) in the quasiphysical region, with Yo 5 Ys Y| = Ry, and £, and g3

given by
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1, - Ye¢(io)
go(g) = gl | n g, €

L Ryes(X ) (Re1)vY[/2
g, (P) = -2l ‘[ ng e e )

in the region where fLC > 0, and 8 = 81 * 0 clsewhere.

Using the relation i =% (?“2 + C’f), from (1-26) or (I1-29) one sees
that f, . passes through zero on the curve H' = :'”2/2. The loss-cone
boundary lies, roughly at F12= (R-l)-l THZ or H' = (l-R_l)-1 ;'"2. In Fig. ©

we sketch the contours of [LC = constant, in an Yo= constant slice of the

(ﬁ’ , P) space.

I1.C.4. Obtaining U from fg

From Eqs. (I-8) and (I-14), we write US (A), the contribution to

U(A) from species s.

U (A) [ap F_(P,A), where

F (P,A) = 8n [ ahzn) /2 £ =h+J-0)% + o0, PI. (1-30)

Here we are again setting mg=c= 1, and suppressing the ¢ dependence in
F_(P, A), it being understood that we willlet ¢ = ¢(A) afterwards.) In
the form written, Us appears as a simple integral transform of the h-

integrated distribution function. Using (I-25) for fS, we have

2
_ _3/2 -Y.ed 'Yj (B'é) /2
F (PA) = C; Jzyj e 7 e g; (B, (1-31)

3/2

where C; 8n vZ ]0 dy vy e = 2(2m)
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The factor exp-yj @ - A)Z/Z in (I-31) is of the same form as the propa-
gator for a diffusion equation, and accordingly doing the P-integration

on FS to get US will smear out the form of gj over a region of radius

= 1/2
RS
simple way; US will tend to have peaks where the gj have peaks and troughs

. The topologies of US and the gj will thus be related in this

where the gj have troughs. (Of course, if the differing gj have their
peaks and troughs in different places, cne must look more closely at Egs.
(I1-30) and (I-31) to develop valid qualitative expectations.) In partic-
ular, since the distribution fLC we have chosen in (I-29) is large only
around A= ﬁsc, with a height varying as n(io), we expect U to have this
same topology, i.e., a ridge centered about ASC, and decreasing with iﬁ
as n does.

We also observe that, since Fs has integrated over the h-dependence
of fS, US should be insensitive to the particular h-structure of fs. Thus,
whether fs is of the loss cone type (I-29) or just a Maxwellian with a
similar n(?o)-—variation, the qualitative features of Ug should be the
same. ?Physically, this is reasonable, since it is only very gross prop-
erties of the distribution function, e.g., its pressure and parallel cur-
rents, which determine the form B(x) of the magnetic field.

All the features discussed so far for the forms of fs, F_, and US

s?
are in principle applicable to the electrons as well as the ions. Retain-
ing the original definition for A, A = (ei/;) A = (e/c) A, we see that the
electron quasiphysical region lies around the trajectory A==-z, and so the
nart of fe of principal physical relevance should be centered around this
trajectory. The width of this region about E.is typically much narrower

for electrons than for ions, however, the ratio of thermal spreads in this

momentum space being (pe/pi) = (meTe/miT.l) 172 <1.
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In moving from fe to Ue’ the fact that €= " €5 introduwces another
reflection through the A origin, causing Ue to be centered along E, just
as is Ui' The mass ratic causes Ue to be narrower than Ui by the same
factor (pe/pi), provided we choose fe according to the same principles as
used for fi (namely, modeling the physical situation in the quasiphysical
region, and falling rapidly to zero outside this region).

Having fe fall to zero outside the quasiphysical region is not
necessary, however, nor is it always desirable. For comparable pressures,
and so comparable heights of the US ridges, since the electron ridge de-
signed in this way is much narrower than the ion ridge, aUe/35 >> an/aﬁ,
and so the electrons will dominate in causing any lateral accelerations
in the trajectory A?C(x), i.e., electron parallel current will be prin-
cipally responsible for any magnetic shear. This may not be called for,
by a given physical model. One may instead prescribe an fe which falls
off much more slowly than fi as the two move away from their quasiphys-
ical domains. This will cause the ion pseudopotential U, to be narrower
than Ue’ and sc allow the ion parallel current to induce the shear. How-
ever, the electron physical region will still be much narrower than the
ion physical region; this is independent of the choice of fs or the re-
sultant U_. In Sec. I1.C.6 we discuss a numerical application in which

this latter method for choosing fé has been employed.



-19-

1.C.5. Self-Consistency of ASC and E

In the following section and Appendix A, we will present more
quantitative substantiation of the gualitative features of the pseudo-
potential U. However we are already in a position to answer a final
important question concerning th: Channell formalism's practical appli-
cation. This is a question of self-consistency. We have chosen our
distributions {_ so that, if the seli-consistent trajectory é?c lies
close to the reference trajectory E, then the distribution function will
have the physical features prescribed by fs' The question is, then,
given the fs we have chosen, is the form of U capable of yielding an é?c
lying close to Z_? The answer to this question is ''yes', as we now ex-
plain.

From the preceding subsection, we see that US for both species,
and hence U, have the form of a ridge centered on E-(ié)’ and with height
varying as n(io). On a pseudopotential of this form, we want to be able
to shoot in our pseudoparticle, so that its trajectory é?c(x) follows the
ridge crest. (learly, for the incoming pseudo-kinetic energy
%-Idé/dxlz = % Q? not too large compared to the height of the pseudopoten-
tial ridge U = 4n N, ,» one can do this, injecting the particle far enough
on the lower downhill side of the ridge that it is accelerated around the
elbow in E, The ratio (pseudopotential/pseudo kinetic energy)=8nﬂxx/§?
is just the plasma B, so the constraint just described says that the
amount of shear a plasma can support becomes smaller with the plasma B.
ASC

Since the optimal trajectory must lie somewhat downhill from

the ridge crest (which lies at E), we see that, for a nonzero shear,
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E cannot lie exactly on Z, for the fs we have chosen. This disparity
points to an inappropriate feature of the model (I-26) we chose for fs;
as written, fLC there has no parallel current, which is necessary for
the shear stipulated by Z. From Fig. 6, we see that it is exactly the
effect of A?C lying somewhat downhill from Z_to make v“¢ 7", and thereby
to give the true distribution the parallel current necessary to produce
the shear in é?c. If desired, one could now adjust the choice of ?s’
for example introducing a parallel drift velocity w“(io),and adjusting the
io dependence in order to make A?C more nearly equal E, We shall use
this refined form for fs in choosing our distribution in Part III.
Support for the validity of these qualitative statements is given
in the next section, where we present results of numerical application of
the interpretive methods thus far presented, and in Appendix A, where we

make a more explicit estimate of the size and shape of the potential ridge

u.

I.C.6. Numerical application

In the foregoing sections we have seen how to apply and extract
information from the Channell formalism, using grapnical methods, from
which qualitative conclusions may he relatively easily reached, even in
situations where the corresponding mathematics becomes analytically in-
tractable. W. M. Sharp5 has employed these methods on a computer, numer-
ically generating self consistent Vlasov equilibria for an Z and ?s model-
ing the Tormac sheath region. Typical results are shown in Fig. 7.

The model taken is one in which the ions have a loss cone form,

and supply the parallel current which induces the shear. As discussed at



the end of Sec. I.C.4, this is achievable by taking fe to vary slowly
with P as one moves away from its quasiphysical region. Sharp took an
- -y H
fe with no P variation at all, fe = (constant) x e € . This yields
v ed

Ue = (constant) x e € , independent of A. The electron distribution is

thus a local Maxwellian, with zero parallel current, and density vari-
ation given by the Boltzmann factor eYee¢
in Fig. 7a are shown the reference trajectory g (dotted line)
and self-consistent trajectory 5§C. Sharp allowed for a parallel veloc-
ity u"(xo) in the physical form of the ion distribution, as discussed at
the end of Sec. 1.C.5, setting up an iterative procedure which adjusted
w, to get progressively better fits of é?c to E.
Figure 7b graphs the magnetic field versus x, and Fig. 7c shows
® (x). The nonphysical behavior at large x is a deficiency of taking fe
to be independent of P.  Quasi-neutrality requires that n,=n;. As x
becomes large, fi is modeled to go to zero, as occurs in Tormac. Since
ne ~ eXp Y, ed, -9 must become large as x does to maintain quasineutrality.
In Figs. 7d-7f are plotted contours of the ion distribution, in
the Tormac model interior (x/pi =-4.0), sheath center (x/pi = 0), and
sheath exterior (x/pi= 4.0). The left-hand colum shows fi in terms of
the reference variables %‘ ;i, while the right-hand colum plots fi in
terms of the true physical variables.
The equilibrium described by these figures is fully self-consistent,
yet from Fig. 7b we see that n in the sheath region is quite substantial
(n = 1/3), so that individual particle trajectories are appreciably dis-

torted from their form in the limit of a uniform magnetic field.
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The principal objective of this work was to establish a prescription
for writing down a canonical form of the distribution function which
yields self-consistent equilibria in this appreciable - n regime, con-
sistent with given physical specifications on the forms of the magnetic
field and of the physical distribution function. From the proximity of
the reference and self-consistent trajectories in Fig. 7a and the close
resemblance of the reference distributions to the physical ones in Figs.

7d-7f, we see that this goal has been achieved.
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APPENDIX A: SEMIQUANTITATIVE ESTIMATE OF U

In this Appendix we shall proceed further with the explicit eval-
uation of U5 from fs, to check that the qualitative expectations of the
previous Sec. I.C.4 were accurate.

We use fLC from Eq. (1-29) in (I-30), first obtaining FS = FLC'
For simplicity, we neglect the ¢ dependences. Then H'=H'=H=h
+ % (2-5)2. For a typical A, e.g., A, of Fig. 4a, the region of inte-
gration in h lies above the boundary 2 of Fig. 4b. In part of this region,
namely below the quasiphysical boundary (labeled 1 in Fig. 4b), fLC= 0,
and so the resultant region of integration is the intersection of these
two Tregions.

Neglecting ¢ turns the guiding center condition (I-17) into
0=bsIP-ARXIIZ (Py-4y) (X)), (A-1)

and so Eq. (I-19) says
v, 2 P =V [P =3 1P A (X)) (A-2)

This says that we are neglecting the ExB drift velocity, VEEV, (XO)«VX(XO).

If we now generalize the meaning of v"2 from (A-2) to arbitrary A,

vi e nEge- (A-3)
we can write (I-29) in the form
. W2 o Rh R-Dvhy
|Q1 Ing0 e (e -e e )
fLC = max { (A-4)

(]
- 2,2
where hl = (vII i )/2.
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The region of integration of h runs from h=h2 to =, where

hz = max (0, hl).

The only term in (A-4) which has an h-dependence besides those which
explicitly appear is 2, whose dependence on h is quite weak, as we shall
see in Parts II and III. (The N dependence of Q is more important.)
Neglecting this weak h-dependence, we perform the h-integration, obtain-
ing
Fe B8 = (21 n g, e 1" vz v
(A-5)

- (R-1)vh
3/2 e

x [T (3, ¥hy) - R 'rG,rvhy)1,

where T (1,y) = j: dx xn'l e * is the incomplete T - function of index
n.4 Since we have designed fLC in (A-4) to be nonnegative, we know that
the quantity in square brackets in (A-5) is also nonnegative, equaling
zero only when R = 1.

In Fig. 8a we sketch the behavior of T (%— » ¥). Using this form,
we show in Fig. 8b the appearance of the term R expl (R-1) Yh,)

T (-;-, RYhZ) in Eq. (A-5). It is a lopsided downward spike, peaking at

<?

y = Yy having magnitude R2 1r1/2/2. Because of the factor R-3/2,
this term will be negligible for large R. Even for smaller R, since the
basic dependence of FLC comes from the overall factor exp(-v Yy 2/2] , We
drop this factor in our present effort to get a rough estimate of U(A).

We are thus evaluating U for a Maxwellian distribution, i.e., we are
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letting R + =, Equation (I-27) then gives
g, = (v/m*2 (A-6)

Now we perform the P integration to get U from F. From Egs. (I-30),

(A-5) and (A-6), we have

2
--Y-\v"
UA =4 [ @ njar w2 e V2 r a2, Rvn). A7)

As discussed in Sec. 1.C.4, the factor exp(-yvuz/Z) = expl -y (P-AY/ 2] isa
diffusive propagator-like term, smearing out the form of the rest of the

1/2. The T-factor gives the

integrand over a region of radius v, = Y
ridge with crest at E, and the factor n modulates the height of this
ridge. To evaluate (A-7j, we assume that the falloff radius Veh is suf-
ficiently small in comparison with the scales over which n, @ and T vary,
that we may take them outside the integral. In particular, this means
that the shear, which gives rise to the elbow in z, is sufficiently weak
that, at least for A in the neighborhood of E (where T, and so U, will

be nonnegligible), we may set up a locally rectangular coordinate system
(PZ, \7" = P3), centered at that E (io) suca that A lies on the line io =
constant, and with coordinate axes in the increasing io (it vector I;Z)
and ‘\7" (unit vector 133) directions. This is illust-ated in Fig. 9. In
this coordinate system, vectors P and A are described by (PZ, P3 = 5")
and (o, A3), respectively, and so V“Z = (g-ﬁ)z = PZZ + (P3-A3)2, and
R RS N T
the point Py, given by o = h)(P;)). This yields Py = (P,2+4.2) /24,

The ridge from I has a flat top out to
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As Ps increases beyond this, the T ridge falls off, over a falloff dis-
tance given by h2 = h1 (P ) = R vth)/z A

In this coordinate system, and within the approximations made,
Eq. (A-7) becomes

2
R I R

] ] Y .
v =an Y2 njartfar, e 2T farge ¥ 13, Rvhy) . (A-8)

The factor hZ has both PZ and P3 dependence. The factor exp(~1%YP22/2)

makes P Vih in regions of significant contribution to U. Considered

2 <
as a function of AS’ P21 goes to infinity both as AS goes to zero and
infinity, with a minimm value of b, at Ag = PZ < vy Thus for

Ag/vy, * 0 (.., Amear &), P » =, and h, = 0, making T = 1272 over
the entire integration region, and so

1,.2
v

U(AS/Vth<<1):4”n [T~ Vb (A-9)

For A3/vth >>1, ZPS1 :AS, and so T has fallen off to zero in the

region where exp| - y(P3 - A3)2/2] is substantial. Thus
U(AS/Vth >>1)=0. (A-10)

Finally, in the intermediate region As/vth~ 1, we eliminate the P2 depen-

dence of h2 in (A-8) by letting P2 take a typical value P Then

i 2
Pgy =Py

the integration limits in the PS integral of the Gaussian:

21 % Ve
+ A32)/2A3 ~ Ve and so I will introduce a cutoff in one of

Japs e r=r@0{, due z (\/_.%__)E[ (B AV, ] -

(A-11)
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(E is normalized to satisfy E(z+®)=1. One may readily express it in
terms of the error function, erf (z). InseTting {(A-11) into Eq. (A-8).

we obtain

. e 1Y= rl, 2 . , -
U(As/\th 1)=4n ni{Ql I\th E {[PSI(PZI) AS” Veh } (A-12)

From Eqs. (A-9), (A-10) and (A-12) we see the qualitative expecta-
tions for U(A) developed in Sec. I.C.4 are born out; U has the form of a
ridge, with height proportional to n(io) and width on the order of Vehe
and with ridge crest at A = E

Finally, we can put Eqs. (A-9) and (A-12) into a more recogniz-
able form, by evaluating the factor IQI'II. This factor is to be eval-
uated at P on or near the reference trajectory E For such points P,
we may again use the locally rectangular coordinate system (PZ’ PS)'
Thus 12 3 (P, P)/3 (X, V)= 3(P,,Po)/a(X ) = (3P,/3K )= (34,/0% ),
where the last equality follows from the guiding center condition, Eq.
(A-1) (with A replaced by E, and Xo by iu). The potential V is given
approximately by V = %(Gx)z (322/33('0)2, where 6&x = x- io , and so the
associated gyrofrequency Q satisfies 92 = (9 7(2/ B'io)z. We thus see that

(restoring factors of m) |QI-1| =m, and so the coefficient in Eqs. (A-9),

(A-12) is given by

4 nv,dz1 IQI-]1 =4n nT, (A-13)

4n times the usual scalar pressure.
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PART 11. PARTICLE MOTION IN REALISTIC GEOMETRIES AND THE
FINITE GYRORADIUS GUIDING CENTER HAMILTONIAN

I1.A. Introduction to Part 11

In the present portion of this thesis, we will study particle
motion in realistic geometries, with particular interest in cases in
which the perpendicular inhomogeneity parameter n, defined (as in the
Introduction to Part 1) as the ratio of gyror:;dius p to the magnetic
scale length L, perpendicular to the magnetic field, is a nonnegligible
parameter. Such strong inhomogeneity occurs, for example, in mirror
machines and in the Tormac sheath region, where n may take on values as
large as 1/3. In contrast to the slab geometry assumed in Part 1, the
geometries considered here are assumed to have a small but finite in-
homogeneity along the field lines. We characterize this longitudinal
inhomogeneity by a second parameter €, the ratio of p to the parallel
magnetic scale length LII (or equivalently, the ratio of the longitudi-
nal bounce frequency w, to the gyrofrequency ). We shall consider
systems which have a single symmetrv direction, as does any axisym-
metric device. The resultant particle motion problem then has a single
exactly conserved canonical momentum (versus two for the slab geometry),
and two nontrivial degrees of freedom.

The assumption that e <<1 ("'near-slab' geometry) implies a sep-
aration between the time scales on which the gyromotion and longitudi-
nal motion occur. This time scale separation enables one to find a

good adiabatic invariant, the gyroaction J. In the limit of n+0 (along
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with certain additional restrictions to be discussed), J reduces to mc/e
times the usual magnetic moment %!ﬂle/B, but it is important to note
that, as long as ¢ <<1, a good invariantJ can be found, even for n
comparable to one.

Use of J in the equations of motion reduces the number of non-
trivial degrees of freedom in the problem by one, giving a guiding

6,7,8 on finite gyroradius (n#0) guiding

center theory. Previous work
center motion has made the assumption that the scale lengths Lll and L
were of the same order, and an expansion in the single parameter € ~ n
was performed. The assumption ¢ ~ n is insufficiently flexible for the
configurations to which the theory to be developed here is applicable.

Some inroads have been made in studying finite gyroradius guiding
center motion. Gardner(j outlined a prescription by which one could in
principle obtain a finite gyroradius guiding center Hamiltonian K, in
which one performs a series of canonical transformations on the original
Hamiltonian H to remove the dependence of H on the gyrophase © to suc-
cessively higher orders. Stem7 then carried out this scheme explicitly
to first order. Even to this order, the algebra involved becomes cun-
bersome, and finding the appropriate canonical transformations is an
unsystematic process. Yet the first order result is simple; K has the
same form as its zero order limit, but with the variables having a slight-
1y different meaning.

More recently, Northrop and Rome8 studied guiding center motion
to second order, using a non-canonical framework. In so doing they dis-

pense with the need for transformations which are canonical, but sacrifice
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the advantages of a Hamiltonian theory, where all of the equations of
motion come from the single function K, and symmetries and conservation
laws are most readily apparent. As a result, these authors find a break-
down at second order in conservation of canonical angular momentum P>
which a canonical formulation automatically avoids.

The findings of Ref. 8 parallel those of Ref. 7; to first order,
the equations of motion have the same form as the zero order equations,
but with a generalized form of gyroaction. The second order corrections
to the perpendicular drifts are also obtained in Ref. 8, but require, in
the words of those authors, an amount of algebra which is "truly exten-
sive and presents an almost infinite opportunity for mistakes."

Here we describe a treatment of the guiding center motion prob-
lem which attempts to minimize the difficulties and shortcomings encoun-
tered in the work just described. We adopt a canonical framework, to
take advantage of the elegance and power of canonical methods, but employ
a rather different method from that of Refs. 6 and 7 for canonically
transforming H. This method (described in Sec. II.B) is systematic, and
enables one to obtain explicit expressions for the guiding center Hamil-
tonian K to arbitrarily high order in both € and n. The transformation
process relies heavily on Lie perturbative methods,9 which greatly sim-
plify the task of making canonical transformations.

The organization of Part II is as follows. In Sec. II.B, we
describe in general terms the procedure we shall use to transform from
H to K. Sections II.C through 11.1 supply the specifics of the proce-

dure outlined in Sec. II.B, obtaining the guiding center Hamiltonian K,
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valid to 0(e?,en, n), in Eq. (11-89)of Sec. II.I. This is the most
important result of Part II.

In Sec. 11.J we use the form of K and transformation equations
obtained in previous sections to derive another important result, a gen-
eralized expression for the gyroaction J, valid for finite € and n, and
in the presence of magnetic inhomogeneity, including shear. Section II.K
applies the formalism developed to that point. Specializing to the neg-
ligible ¢ regime, we obtain more explicit expressions for J, as well as
developing results describing particle motion in an inhomogeneous mag-
netic field, which will be of use in Part III. Finally, in Sec. II.L we
discuss possible directions for extension and application of the formal-

ism.

I1.B. Overview of the Procecure for Obtaining K

We now describe the general nature of the transformation process
which takes us from H to K. The more specific mechanics of each stage of
the process will be presented in the following sections.

The theory is first phrased in a form which is perturbative in €,
but non-perturbative in n, reflecting the fact that it is only e <<1
which is necessary for a valid guiding center theory. To obtain explicit
expressions for K, one must then also do an expansion in n. Two variants
of Lie methods are employed to facilitate the two expansions.

The procedure is carried out to second order in both € and n.

The resultant guiding center Hamiltonian K will then be expressed as a

double expansion,
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K= 3§ M« (i1-1)

where we explicitly calculate '('00’ KOI' KIO’ Kll’ KOZ’ and KZD' KOO
tums out to have the same form as the zero-gyroradius guiding center
Hamiltonian usually calculated. 1n addition, we find that KOl ® KlO =
Kll = 0, so that K equals KOO plus terms second order in € and n. This
is in accordance with the findings of Refs. 7 and 8, whose first order
guiding center equations were of the same form as the zero order ones,
but with modified definitions of the variables.

The transformation process from H to K proceeds in two stages,
designated S and T. The original coordinates and momenta z, in terms of
which H is expressed, include a, which measures the poloidal radius, and
its conjugate momentum Py- These variables correspond to x and Py of the
slab model Hamiltonian (e=0), Eq. (I-4) of Part I; they are the variables
of the gyromotion. Stage S of the transformation process transforms from
(u,pa) to action angle variables (00, Jo). The resultant Hamiltonian H®
has an O(e) dependence on 90, so that J° is not quite the adiabatic in-
variant J in terms of which K is expressed. The remaining portion T of
the transformation process is perturbative in character. The angle depen-
dence of the Hamiltonian is removed to successively higher orders in €,
by the sequence of transformations {Tl’ 'I‘Z---). These transformations
are induced using Lie perturbative methods, which are computationally
much more efficient than the mixed-variable generating fumcticn method

traditionally employed. 10
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The transformation S5 from (u,pu) to (OO,JO) is a finite trans-
formation, i.e., nonperturbative in character, and so is induced using a
generating function S(q,P) of the mixed variable type. Our "near-slab"
Hamiltonian H is formally the same as the slab Hamiltonian of Part I
[ compare Eq. (II-5) to Eq. (I-4})]. The slab problem is one dimensional,
and so can be solved exactly, for arbitrary n, in temms of quadratures
involving the potential V, which is in general anharmonic. Explicit
evaluation of these quadratures is difficult, and will invoive an expan-
sion in n,

Analogously, exploiting the formal similarity of the near-slab
to the real-slab H, we choose the generating function S for the near
slab problem in the same manner which has been used to solve the slab
problem,11 ie., S§= fadu' p,(@'). As for the slab problem, this S in-
duces a transformation to action angle variables which is valid for arbi-
trary n. And as for the slab problem, obtaining explicit expressions
from the formal ones involves an expansion in n, difficult to achieve
using standard methods.

The standard approach to solving the one dimensional problem by
action angle variables possesses two principal difficulties. One of these,
alluded to just above, is the evaluation of integrals of the form
[axI l-ax?-bx>-cx? s+ ]1/2, needed to calculate S, and the action J as a
function of the energy E = H. The second major difficulty is solving the
mixed-variable coordinate transformations and performing the functional

inversion of J(H) to obtain H in terms of the new variables.



-34-

Here again Lie methods zre of great use. The ome dimensional
problem, soluble as just described using generating function S, may be
more easily solved using Lie techniques. On> first makes a trivial
finite canonical transformation RO to action angle variables (e°, j°),
in terms of which the Hamiltonian h® would be 6° independent only for a
harmonic potential V. The remainder of the problem is perturbative in
character, and so may be readily solved using Lie methods, inducing a
sequence R = {Rl, RZ' ««»} of perturbative transformations, which re-
move the angle dependence of the Hamiltonian to successively higher
orders in n, fully analogous to the sequence of transformations
T= (Tl, Tz, «++} used in stage two of the transformation process. The
result is an angle independent Hamiltonian h(j), expressed as an expan-
sion in n, and the coordinate transformation, with the original and
final variables already in unmixed form. The difficulties of the stan-
dard solution procedure just described are thereby completely circum-
vented.

In trying to generalize this approach in a straightforward way
to the near-slab problem, one finds that the initial transformation R/
to action-angle variable used for the slab problem is no longer canonical.
The way around this difficulty is the following. We know that the mixed
variable generating function S = fada'pa properly induces a canonical
transformation from (u,pa) to (0°,J9); the problem was explicitly cal-
culating S. We also note that S has precisely the form as that for a
one-dimensional problem, where the old coordinate B and new momentum

Pb0 associated with the second degree of freedom are treated simply as
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constant parameters. We can solve this one-dimensional problem using
Lie methods, as previously described, circumventing the usual difficul-
ties encountered in solving by calculating S, wusing the coordinate
transformation R' (a,p,) * (6,j)(so R' = ReR ) in S = fe(azle'(da/de')*
P, [a(8')], is a simple matter. For a truly one-dimensional problem,
calculation of S after transformation R' is obtained is superfluous.
In the near-slab problem, however, we need S to be able to go on to
stage two; it insures that the new variables o® =0, J°= j, and the others
of the set §°, are canonically conjugate.

To summarize the procedure then: from the original Hamiltonian
H, developed in Sec. II.C, we set up a one degree of freedom problem,
involving a simply related Hamiltonian h defined on the restricted, one-
degree-of-freedom phase space. This 1-D problem is treated in Sec. II.F.
The Lie methods needed for the treatment are developed in Sec. II.E.

From the transformation R' obtained in solving the 1-D problem,
in Sec. I1.G we explicitly calculate the generating function S, which
was given formal definition in Sec. II.D. S enables us to transform
from H(z) to H°(z°); this is achieved in Sec. II.H. H°(z°) emerges as
an expansion in both n (from the R procedure) and e (from the fact that
H° is not completely independent of 00), analogous to Eq. (1I-1).
Finally, given H°, in Sec. II.1 we apply lie-induced transformations

{Tn } (n=1, 2, «+¢), obtaining the guiding center Hamiltonian K.
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11.C. Coordinate System, Initial Hamiltonian

We consider an axisymmetric magnetic geometry, independent
of toroidal angle ¢. We choose orthogonal particle coordinates qu =
(a, B, ¢), with conjugate momenta pu = (pu’ Pg> p¢). Coordinates a
and B8 describe the particle variable, constant along poloidal field
lines (specifically, we shall take a to be the poloidal flux enclosed
by a poloidal field line), and B measuring the position along the
poloidai field lines. The coordinate system is illustrated in Fig. 10.

The o and B used here are not the Euler potentials used in
Refs. 6 and 7. Use of the Euler potentials, allows one to pick an AB
which depends only on a. However this choice in general makes the q"
nonorthogonal (Va e« VB # 0). We sacrifice the nice properties of the
Euler potentials in favor of the orthogonaiity property. The metric
tensor gw( a, ef) = Zq" -qu is then diagonal, with diagonal elements
g® = [val?, ¢® = |v8[%, and g% = [96]% = R"2(q, €B). The "near-slab"
nature of the problem is expressed by having all quantities in the
theory (e.g., gw and Hamiltonian H) depend on eB8, instead of simply 8.

Defining e" = vq", e, =dx/o q", we have

3A dA
B=(¥xpA)= (81g2g3)1/2 {-e-l (—;— - -——%) + cyclic permutations}, (11-2)
9q 9q

where A Z e =+ A,

|

Equation (II-2) is valid for a general orthogonal coordinate
system. Specializing to our present choice of coordinates, we know that

B*z B = gl- B = 0. Our hypothesis that the Au are independent of ¢,



-37-

and in particular our choice that a be the poloidal flux enclosed by a
poloidal flux line, allows the choice of gauge

Au = [o, AB(a, €BR), al, (I1-3)
with magnetic field
Bz e - B (gg%e)Y? (o, -3A, /% = -1, 3A,/30). (11-4)

An important feature of Eq. (II-3) is that Aa= 0. This causes the Hamil-
tonian to be of the same form as the slab Hamiltonian used in part 1
[Eq. (I-4)). Setting m=c=1, we have

H(a, p,i €8, Pgs Py) = % (p - eA) g (p-eh), + 2t
(11-5)

1 o 2
7 g (C!, EB)PQ + V(GIEBsPB’ P¢)’

where
y -1]8 _ 2 ¢ 2
V(u,eB,pB,p¢) =548 (u,cB)[pﬁ eAB(a,cB)] + g (u,eB)[p¢-e0.1
(i1-6)

+

e ¢ (a,eB)

is the effective potential for the oscillation of the particle in a.
The first form given for H in Eq. (II-5) is valid for a coordinate system
q“ of arbitrary metric; the second form is restricted to our specific
choice.

The independence of H from ¢ implies p¢= constant. If we let
€=0, then Py would alsc be a constant, and our Hamiltonian would be pre-
cisely of the slab type used in Part I. In this case, the potential well

V(o) has a constant position, with well bottom o, parametrically dependent
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on the constants p¢ and Pg- The particle gyromotion then corresponds
to the high frequency oscillation in this constant well. For e = 0,
Pg is no longer exactly conserved. Driven by the 0(c) dependence of
pB = - 3H/38 on B8, Pg has an 0(e) jitter at the gyrofrequency. In addi-
tion, the slow variation of H with B as a particle moves along a field
line produces a corresponding variation of pg on the bounce period time
scale. If the particle is trapped, oscillating in g and ¢, Pg will also
experience a periodic variation on this time scale. This in turn pro-
duces an oscillation of the well V(a) and, in particular, of the well
bottom ays occurring once every bounce period. This is the explanation
of the banana orbits of trapped particles in axisymmetric geometries,
expressed in the canonical terminology we are using. Taking the o sur-
face at which $ = 0 as the ''banana center" Gy We find from Hamilton's
equation for ¢ that o, = p¢/e. The guiding center position o, =
ao(sn, pB, p¢) oscillates about Qs with the slow variation of p8 and ¢£.
The jitter of Py and ef at the gyrofrequency induce a jitter of
V and the metric coefficient g®. This modifies the particle gyromotion,
as well as giving rise to particle drifts.

In the following sections, we shall see the specific mathematics

of these processes.

11.D. Generating Function S; Formmal Description

In this section we describe stage one of the transformation pro-
cess outlined in Sec. II.B, in the formal framework mentioned there, which

is nonperturbative in n. That is, we shall write down the mixed variable
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generating function S, which transforms to action angle variables (OO,JO),
in terms of a certain integral. This integral is difficult to perform
directly, if V is anharmonic or ga depends on a.

The angular momentum Py = P¢ is exactly conserved, and retains
its value through all the transformations to be performed. We thereiore
drop it from explicit notation. We denote by A E(Al,lz) the pair of
variables describing motion along the field line. Before transformation
S is applied, these are the ''0ld" variables 20 = (eB, ps) and after S
they are the corresponding ''mew' pair AN = (eb, Pb) (where both b and

P, may have a superscript j, denoting which of the sequence of tranfor-

b
mations T, was last applied). We shall also have need for the 'mixed"

pair AM

-«

(8, Pb), in writing down S.
S is then obtained in the following mammer. The energy E of

the particle is given by

1 2
E = H(a,py A7) = 7 €0 +V (). (11-7)
We solve this for N
a v1/2
b, @ BN = LE-VE/g @), (11-8)

and define the functional form of the action J° by
P @A)z @t dap @, E ). (11.9)

We then invert this, JO(E, A) -~ E(Jo,x), and finally define S by

S (a0, J% WM z8p°%+s, (11-10)

o
s (0% 5 W) =g [dar ptar, BCO, A, M) (11-11)
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Note that it is E(J°, 2°) and not EW°, ") which is the particles true
energy. These two are different by a term of O(e), and so in the slab
limit € + 0 this choice for S becomes the usual choice used11 to solve
the one dimensional particle motion problem.

The transformation equations follow from S(g, P) via the usual

\ escrlption,10
p = 35/3g, Q= 3S/aP. (11-12)
0f particular interest are
o M, M o M M a 1/2
T = 35/3=plo,E(J, 1),X ]={2lE(J y A )-V(e|x) /g (a, sB)} ,
(11-13)
p = 25/28=P,° + €3 5,/3(eB) = P° + ebpy(a, J°, M, (11-14)
ar.d
B =b° -25/0P,° = b0+ 68 (o, P, M. (11-1%)

Using Eq. (II-13) in (11-5), we obtain a non-canonical form H' for
the Hamiltonian which we shall need in getting an explicit expression for

H° (cf. Sec. 1I-H):

Hio, py 1% =3 g%(@,e8)p, % + V@n®) =B -viaiMy + va [29),

an ! thus

HO b ps 2% =H (2,3°,00,M 2 E0°, M ev@n®)- v M. (11-16)
One then uses Eqs. (II-14) and (II-15) in H' to remove the vari-

ab es A% in favor of the new onec AN, getting in addition terms au 66,

4n, which are higher order in €. Since &8 and 6p8 are themselves func-

tions of the mixed pair AM, this process must be applied iteratively, to
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as high order in ¢ as desired. The result is H°[Z° z (®°,J°;£b°.,Pb°)],
expressed as an expansion in €. In Sec. 11.4 we carry out this proce-

dure in detail.

IT.E. Lie Methods; Preparation for Explicit Calculation

Now that stage one of the transformatinn process has been de-
scribed in terms of the formal definiticn c. S [Eqs. (1I-10) and (II-11)],
we are ready to begin obtaining more explicit results. In order to do
this, we will make use of two variants of Lie methods, the type used
being appropriate to the particular form of the Hamiltonian being trea%*ed.
In stage one, the appropriate variant is essentially the nommal form type
used by Dragt and Finn.9 Stage two requires a second variant, which we
call the "near-slab' type. The philosophy underlying the two is, how-
ever, just the same, and many of the important equations dictating their
use are formally identical.

In this section we present our formulation of both types of Lie
methods. We first describe the Dragt-Finn variety, and then more briefly
describe the near-slab type, pointing out the most important differences

between the two.

II.E.1. Dragt-Finn Lie Method

We assume a Hamiltonian h', expressed as a power series expan-
sion in its cancaical variables z'. The phase point z'= 0 is a fixed
point of thc system. The "distance” of phase point 2' away from this

fixed point, expressed in terms of some suitable metric, is proportional
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th order, term in this multivariable

to the parameter n, and so the m
expansion for h' is proportional to n,

Because z' = 0 is a fixed point, hl' = dh'/az’ 2120 = 0. The
zero-order term in h', ho' £ h'(2'=0), will turn out to be of the order
of the parallel kinetic energy at the particle guiding center, and so
for a typical particle is of the same size as the perpendicular kinetic
cnergy at the guiding center, which is on the order of the second order
term in the expansion. To indicate that these two terms are of compar-
able size, w express, this second order term without an accompanying n,
hyt 2zt 2! (% azh‘/a_z‘ 3z') , even though evidently h,' ~ (3')2,

':0
while h ' ~ [5‘)0. We thus write the expansion of h' as

h'(z') =h' + ] 2 h,' (2, (11-17)
m=2
where it is uncerstood that n is only present in the actual expression
for h' implicity, i.e., it is a formal device which we use to concisely
describe our ordering.

The term ho' is independent of the dynamical variables in the
restricted space, and so could normally be thrown away. In the present
application, however, ho' is dependent upon the variables XA, which are
frozen in the one-dimensional problem of stage one, but which are dynam-
ical variables for the full problem, and so we retain ho', though it has
no effect on the 1-D problem.

The second order term h,’ describes a set of N simple harmonic

oscillators. (N is the number of degrees of freedom in the phase space.
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In Sec. II.F, we shall be taking N = 1.) Discarding all }Hn' for m > 2
yields the unperturbed problem, exactly soluble, and expressible, if
desired, in terms of action variables j_o. The conjugate angle variables

g" enter only in the m > 2 terms of the full problem. The Hamiltonian

becomes

h'(z") = h°[z%=(8%,3%))

h + h2°(i°)+m:f n’"‘zh;( OF (11-18)
where ho = ho', hzo = _go-j_o, and go is the set of frequencies of the N
unperturbed oscillators.

The objective of the perturbative technique is to apply canonical
transformationc {Rl’ RZ’ R3,---} to transform away the dependence of the
Hamiltonian on angles 8 to successively higher orders. Transformation

R transforms from hn-l(in-l) to hn(gn), removing the dependence of

Hamiltonian on 6 up to O(nn):

M@ = K@+ § T, @ (11-19)
m=n+l
n n

K'@) = h o+ mzo " h ().

For any phase function G(z'), we define the corresponding Lie
opet :tor E} by
6= {6, ), (11-20)
where , } denotes Poisson brackets. The key to Lie perturbative

methods lies in the fact that the operator
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I%sexpésl+é+%—vz+--- (11-21)

induces a canonical transformation.

We therefore take the Rn to be of the form

- n
Rn zexp (n Gn+2). (11-22)

The generator n sz is a polynomial in z' of order (n+Z), nn Gn+2
~ (z‘)mz (just as for o hn+2)’ and so the operator " Gn+2 ~(7z')n.
The specific form of the generators will be determined shortly.

One can showg, for any two phase functions fl amd f,, that the

2)
operator I% satisfies RG(f1f2)= (RGfl)(Rsz), and RG[f1+f2)= (RGfl]+ (Rsz).

Therefore, writing any phase function g as a power series expansion in

the phase variables z, RG has the additional property ch(EJ = g[RCi}. We
shall use this in Eq. (1I-24).
The coordinate transformations are given by
n_,-1np-1 _ n n-1
Z= Rn _{_1 = exp(-n Gn+2) 2. (71-23)

If we have any phase function fo(io) which we wish to express in terms

of gn, ie., f° (_2_.n) = fo(_z_o), then

2" = O® R ;B2 = R R _o-Rp) £202). (I1-24)

In particular, we want to take £ = ho, and choose the Gn's to eliminate
the 8 - dependence of nt.
We carry out this procedure explicitly to second order, i.e. we

~btain R;» RZ’ or G,, G,, and thereby kl, kZ.

3! 4’
Expanding the exponential in (1I-22), for n = 1 we have
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- <, 1 %2 2
nl (2) =R1h°(£) = (I+nGg* 5 né Gy * eee )(hoo* h2° +nh3° +n },4°+ eee)
_10 0,~3 0 2, 0 o,1732 o0,,.... -
—k+nm3+G£5)+r1md+Gs+7G§2)+ . (11-25)
Henceforth we drop the superscript "0" on the hmo. G3 is determined
by requiring that the temm h31 = hy + éshz in Eq. (I1I-25) be indepen-
dent of 8, and that the generator Gg have no secular terms. From the
definition (II-20 of a Lie operator, éShZ = - ﬁZGS’ and from the same
definition, -ﬁz is just the time derivative (d/dt)0 along the unper-
turbed trajectory in phase space. The above definition of h31 thus be-
comes a differential equation for G3:
NP O i
(d/dt)0 G3 = -hZG3 = h3 h3, (I1-26)
with solution
- rlo 1 -t 1
Gz=-hy" (hyg -h3)_f dt(h;" - hy). (I1-27)
The nonsecularity condition on 63 requires that h31 be chosen to be the

average HS along the unperturbed trajectory of h3:

1.
hy" = hs.

(11-28)
This choice of h,' is independent of 8, as required.
One proceeds analogously to second order. We have h1==k1 +

n2h41 4+ eeeo vhere, from Eqs. (1I-21), (1I-25), (II-26) and (II-28)

1 _
Kl =10+ nh31= t, «hy) + ok,  and (11-29)
1. v 172, 1
hl=hy + Gy hy + 2G5 hy = 3 Gslhy + B, (IT 30)
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Analogous to Eq. (II-25), then, we have

2zphl= (1+ nz é4+-°°)(k1 + n2h41+---)

h™ 2 Ry

"

1, 2, 1.2
K+ nflh, 4 Gy h) 4 o (11-31)

2
4

2

+ cee = k + een,

n
=
+

3
-

We determine G4 in the same manner as G3 was determined before, requir-
ing h42 s h4] - h2 G4 to be 8-independent, and G, to be nonsecular.

Then we have

27T ™= ~ .1 i
h“ zh, -ﬁ4+-2-03(h3+53),and (11-32)
- 2 1_T 1 =
- h,Gy = h, - hy” =h,” - by (11-33)
with solution
G=-H'1(Hl-h1)=jtdt'(ﬁl-h1) (11-34)
4 2 4 477 4 4/

The generalization of these equations to arbitrary order is ob-

vious. We note that at each stage Rn leaves kn’l wnchanged, and gives

an additional term hlr:+2 £ hg;% which, added to kn'l, yields K", This

and most other important features are present in the near-slab type of

Lie method, which we now describe.

II1.E.2. Near-Slab Lie Method

At the beginning of stage two of the transformation process, we
shall be faced with a Hamiltonian HC the near-slab form

] (e, 3% b2, p%. (11-39)

o] . 2.0 o ,
@) =H, (% &% B+ 1
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This type of Hamiltonian was treated by McNamara and Whiteman,12 using
Lie methods to find a good adiabatic invariant J. Here we want to do
more; we shall develop a Lie perturbative technique to transform the
Hamiltonian HC and all its variables g°, to eliminate its ©-dependence
and thereby obtain the guiding center Hamiltonian K, in the process
finding J.

There are two important features which distinguish this near-
slab form from that of ho(go) of the preceding secticn. The first is
that, whereas n there was only present in h° implicitly, here ¢ is an
explicit small parameter, i.e., a particular small constant. In this
respect the appropriate Lie method should resemble the sort employed

3 more than that of Dragt and Finn. The second

by Deprit and Caryl
important feature, and the principal reason a different variant of Lie
methods is needed to treat this problem, is tl.. appearance of ¢ in two
places in Eq. (1I-35); accompanying the temrm Hﬂ.’ as did n in Eq. (1I-17),
and also multiplying the variable b in the arguments of each Hz' This
second € dependence, which gives H® its near-slab nature, changes the
ordering somewhat from that of Sec. II.E.1. Without this dependence,

we would take Ho to be our umperturbed Hamiltonian, giving the umper-
turbed trajectories one must integrate along in calculating the trans-
formation generators. The trajectories of H, are not of the simple
harmonic nature which those of k° = h°+ hZ were, and so these orbit in-
tegrals would be difficult to perform explicitly. We shall see shortly
that the shuffling in the ordering which this near-slab ¢ dependence

introduces is just such as to make a simple integral over gyrophase the

appropriate one.
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The procedure parallels that of the Dragt-Finn method of the
last section. We use a sequence {Tl. TZ’ TS--~} of transformations to
remove the dependence of the Hamiltonian on 0, the transformation 15
transforming B (2" 1) into H'(Z"). Analogous to Eq. (1I-19), H" is
of the fom

HY(Z" = K", b, B) + § <*H) (0, 3, b, B,  (il-36)
9=n+1

LY
Z e” (J, b, Pb),

K"(J, eb, P) +
2=0

so that H” = K~ = K, the guiding center Hamiltonian. The Tn are given

by
- n
T = expe Wn. (11-37)

ks in the Dragt-Finn technique, the generators Wh are taken to be
of the same fumctional form as the terms in the Hamiltonian they are
designed to eliminate, wn = Wn(O, J, ¢b, Pb). Paralleling Eq. (II-25),

we write

l - v 1 ZYZ aea 2 LR N ]
TlHO—(1+eW1+7e Wy +es ) (Hyt )+ €F Hyteoo)

o
"

(11-38)
“H e (HAW H) + M, + W H + 202 H )
"o 1 10 yi 11 271 "o '
It is here that the second, near-slab dependence of H on € enters,

changing the ordering. We write

-Wl Ho = Hb W, =H W1 +€ Hob Wl, (11-39)
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where the operators ﬁoe b’ both of 0(1), are defined by

v oH oH oH . aH oH
H -_.908 _ _038__"03d 5 . 0o 3 _ _0 3 (11-40)
of T 96 aJ 3J 36 al 96’ “ob~ 3eb BPb an 9eb”

Defining the zero-order gyrofrequency by Q) = BHO/BJ, we see that
- Hoe = 520 9/30 = d/dt)o, the time derivative along the simple trajectory
in which O increases linearly in time, and the other variables (J, eb,Pb)
are frozen. Since };ob enters at higher order in e than lrloe, it is these
trajectories which are appropriate to integrate along, to calculate the
h'n.

Using Eq. (II-39) in (II-38), we find that the first order part of
Hl is only part of the factor (H1 + l:JlHo) there, H11= (H1 e 1)

remainder - EHob Wl going into Hzl. Imposing the same conditions as in

Sec. II.E.1 gives the defining equations for W,; Hll = ﬁl’ and

d/de| W= - Hog Wy =H)-Hy, (11-41)

with solution
_ v — ‘= t T a9
W, = - H H -H) = [ dt (@ - Hy), (11-42)

analogous to Eqs. (II-26) and (II-27). This gives a W1 with the same
near-slab dependences as the HJL’ and so we write w1=w18 + € wlb, anal-
ogous to (II-39) and (II-40), to maintain the proper ordering in the
terms of order two and higher. Using this and Eqs. (II-39), (II-42) in

Ea. (II-38), we find

H2 = H +=2- 19(H +H) H (11-43)



-50-

-

slightly different from Eq. (II-30) for h41.

The procedure to second order is just as in Sec. II.E.1. One

obtains
uzz -1}, and (11-44)
~HogW, = Hzl -, (11-45)
with solution
Wy = -ty (08,1 = ftdt' Ll -t (11-46)

11.F.  The "Frozen X" Problem

With the methods of Sec. II.E.1 in hand, we are prepared to set
up and solve the 1-D, '"frozen X" problem sketched in Sec. II.B. We begin
with the initial Hamiltonian H(a,pa; A), and treat the longitudinal vari-
ables A as constant parameters. This leaves us with a one degree of
freedom phase space, with Hamiltonian H.

We define the particle's a-center a, as in Eq. (I-17):

0 = 3/3 V([N , (11-47)
o]

which may be solved to give a, = ao(A). We then make the simple trans-
formation (u,pa) +2' = (6a = a-—ub,pa), which is canonical in the re-

duced phase space. The new Hamiltonian h'(z') is given by

h'(z'30) = H(e,pys V=7 8% p, +Via (V) +sald
(11-48a)

_ s 1 2 0 -2 m
RN N COURRA L
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where

a 5 m
g (ao + 8o, A) = mgo g, (cxo, A) (8a)t, and (11-48b)

w0

I V. (o, 2) (6a)™ (11-48c)
m=0

i

V(g + 6a, A)

Comparing Eq. (I1-48a) with (II-17), we make the identifications

1] - | - =
ho -Vo , h1 -Vl—O,and

_ 1 2 m- 2 m
”m-zhr;l =5 8n.2 P, (8a) +Vm(6cx) , m>1,
Following the discussion in Sec. II.E.1, we trivially make the
finite transformation Ro: z' ->Z._° = (6°,j°) to action-angle variables,
canonical in the reduced space, given by

sa =a(e°, i°1), p=p (8%,i°10), (11-49)

where the phase functions a and p are defined as

[}

a(6,j1%) = @, 2sine = 7 (1) %sins,

cosh = p (A)jl/zcose.

1/2J.1/2

p(6,j|2) = (22/g)

Here QOZ = Zgo Vz. The frequency Qo is the n + o gyrofrequency, in-
cluding effects due to finite (v]I /QCLS], which exist even in the zero

eB/mc, the unsheared gyrofrequency, and we

gyroradius limit. (Here QC
recall that L, is the shear scale length.) Using (II-49} in (II-48), we
find the Hamiltonian h°(z°):

-2 2 m-2

cos“0sin m/2‘

(o) R L .
h°(z) = (Vo+903]+m23[7gm_2p an 6+V_ 3 sin"olj (I1-50)

Comparing this with Eq. (1I-18), we find (dropping the superscript O on
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the hmo, as before)

hO ) = Vo, hZ(E;A) z on (I1-51)
_ .32 . .
nhs(z;l) £ 0 J"/' {(gl/goJ cos?8 sind + (vs/vz) sm361
(11-52)
= a7 j¥% (¢, sin3 + ¢ sin9l /4
2 _o4=2.2 2, .2 . 4
n h4(3;>\) = 9,3 [(gz/go) cos“Bsin“o+ (V4/V2)sm 0}
(I1-53)

=2.2
- 23%5°1d, cos46 + d, cos2e - d ]/8.

2
Here <n (in hs) and dm (in h4) are the coefficients accompanying sinmé
or cosmf and in particular

cg = (8y/8, - V3/Vy), cp = (8)/8, + IV3/V,),

4

(8,/8, = Vy/V,y)s dy = AV, /V,, ) = (gy/8, + 3 V,/V,).
The parameters o dm, a, Qo’ 8y and Vm are all functions of A, and the
dependence of the hm on z = (8,j) is explicitly displayed.

We now apply the general formulae obtained in Sec. II.E.1. From
Eqs. (11-28) and (I11-52), we see that

h,” =h;=0. (11-54)

Using this in (1I-27) yields

-1 .8
nG3=-§ZO fde'nhs

(11-55)

I J3/2 [CS(COSSB)/IZ + Cl(COSB)/‘u .
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From Egs. (11-55), (I1I-53) and (1I-30), we then find

2.1 _ 2 17
n h4 =n (h4 + 7»03 h3)

=-90§2j2{(d4+c3c1/4)cos46+(d24cscl)c0526 4d0-\4,%)(c52+c12)]}/8.

(11-56)
From this and (II-32), we read off nzhazz
2002 2T _ o 2.2, 2 2 i
n'h,? = ofn,t = 235 1 - () et ¢ P (11-57)
Equations (11-56), (iI-57) and (11-34) give us G4:
6
2 -1 24 1 1
n“G, =9, [d8' n"(hy - hy)
. ¥
= azj“ [(d4+ c3c1/4)(sin46)/32 + (d2+c3c1)(sin26)/16]. (1I-58)

This is to as high order as we shall explicitly carry the calcu-
lation, though clearly the extension to arbitrarily high order is straight-
forward. To this order h”(j;3) = k% (§;2) = h_+h +nh +n’h,%, which we can
read off from Eqs. (II-51), (II-54) and (I1I-57). In addition, because
h” is just the energy for the 1-D particle motion problem specified by
parameter A, and j = jw is the action, these are to be identified with
E(Jo, A) and J° respectively, which resulted from solving this I-D prob-

lem using the traditional mixed-variable generating function prescription,

as discussed in Sec. II.D, Therefore

£, = h%(,0) = K2(3,0) = ( + hy) + nh)?
(11-59)

W, +23) + 2525 1d- (/8 (gt + ;M8



-54-

and

j= g™ =40, (11-60)

We observe that the Lie method of sclution has completely circumvented
the difficulties of cumbersome integrals and functional inversions en-
countered in the traditional solution procedurc, as discussed in Sec.
I1.B.

Note that knowledge of G4 was not necessary for writing out the
form of kz; the stipulation that h42 = ;;T in Eq. (I1-32) completed our
knowledge of kz, and only then is G4 determined. Howcver if we desire

the interpretation of the variables g? appearing in k2, we need the
transformation R2, and so Gy

In the next section we shall calculate the generating function S,
which requires use of the coordinate transformations just obtained. To
the order we are working, we will only need the transformation equations
for Sa and p, to first order, i.e., we will need only GS' From Egs.

(I1-23) and (11-49),

su = a-a ()= a(z’|A) =R, az'|)=R;a(z|A) = (1 + nGya@lh), (II-61)
and similarly -

Py = PEIN) = (1+nGYP M. (11-62)

Denoting by y any of the variables éa, Py 88, 6pB, we may write

y as an expansion in n,

y=1 nmym. (11-63)
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Using Eq. (II-55) in (I1-61) and (1I-62), we explicitly write

out the first two terms in this n-expansion of éa, P,:

ba, = alz]n), Pyo = P(DIA), (11-64)
néa, = nGsa(EiA)aEzj (cq*c_ cos26)/4 (11-65)
npyy E néBp(EIA) = P ajc, sine/2=jc sin26  (11-66)

where

caE (cl“‘ c3)/2= (g]/go'f V3/V2), and cpE (Cl - C3)/4 = V3/V2.

IT.G. Generating Function; Explicit Form

In the present section, we calculate the generating fumction S,
and the associated functions &8, 6p8, defined in Egs. (II-14) and (II-17).
These will be necessary to obtain Hamiltonian H® from H', as described in
Sec. 1I.D. We want to obtain H° explicitly to O(EZ, EMN, nz) which will
necessitate finding 68, 6ps up to one order further than the n + o simple
harmonic limit, i.e., we will need up to ny,, in the terminology of Eq.
(I1.63). For this, we need S to one order higher than i;s simple har-
monic value, and this in turn requires 6o and p, W to first order as well.

We calculate S1 using the coordinate transformations obtained in

the last section:

o 0
s, =/ da'p (e)=] de"(asa/aet)p, (e',3h.  (11-67)
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This integral over 6 has integrand

(dsc/deip, (8,31 = (35 Zcoser 537 ¢ sin26) G/ “cose + 35 7 jc_sin26)
o a |2 (11-68)

+ higher order,

and so we compute S1 by a trivial integration:
S (8,j|>\M)= j(e*1 sing)- 1Ejj/zc (cos8+cos36/3) +higher order,
1 Z 7 s
(I1-69)
where < =t cp = (gl/g0 + 2V3/V2).

From Eas. (11-14), (11-15), we have 6p,= as /)1, 68 = 3s,/n)

M

where A = (J\lM J\ZM) z (cB,PbO), and so we are interested in the deriv-
’

ative asl/ax vwhere a, j and the other )‘i are to be held constant.

1,2?
We want to express these derivatives in terms of the form Sl(e,j [2) we

now have for Sllcf. Eq. (II-70)]. We have

351/3A1) = (BSI/SB)J. ,A(ae/axl)a’j ,J\2+ (asl/axl)e,j ’Az'

O.,j,lz
From (11-67)
(asl/ae)j’A = (d tSoz/dE))pOL @,3|2).

We have 8a @,j|)), which we can in principal invert to obtain

6 (6aza-a, j[A), whence

(36/81))

=-(Bao/3A1)A2 (ae/aea)j’x + (39/“1)&:,5

u’j )AZ
=. -1
=-[ (300/3)\1))‘2 + (36a/d)g 5 ’Az] (380/20%; -

Putting these pieces together, we find, finally,
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(asl/enl)m’i’A =-pu(9,jl)\)l(auo/a)\l))\ + (aau/axl)e’j,“
e 2 2 (11-70)

+ (asl/akl)e,j,x,’
There are three terms in (IT-70), the two in the square brackets,

and a third term (asl/axl)e From Eq. (IT-69), this last tem is

iy

given by

(3S. /3% -Yoca )70, 532 (cose + cos36/3) .
1 2 [ 1

Ue,i,0,
From the ordering scheme outlined in Appendix B, this term is down from
the first by nz, and so we neglect it completely, to the order we are
working. Similarly the second temm is down by a factor n from the first,
and so contributes to 6p81. Analogous equations to those above hold for

351/322. Using the n expansion of P, in (I1I-70) gives

8B =p ~1/2cose (50 /31,), & =..ﬁ'jl/2cose(aa /3x;), (11-71)
o PJ ol 27+ “Pgo o' T71 7

n6é) = dj sin26, nopgy = - & J sin2e, (11-72)
where dp = Cp(Bao/axz) + 3(4n 5)/3A2, and

(M}

db cp(aao/axl) + 3(%n EJ/BAZ.
Here A is understood to be evaluated at AM. The dependence of the GBm,
Gpem on 6 and j appears explicitly, as will be necessary in finding the
explicit dependence of H° on these variables. In the next section, we

proceed to do this.
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11.H. Calculation of H°

We have now completed the work of stage one of the transforma-
tion procedure, and are rcady to proceed to stage two. Once we have
obtained an explicit expression for H° (the task of this section),
stage two is a simplc matter, using the Lie method of Sec. II.E.Z.

As described following Eq. (11-16), H® is obtained by using &¢
and (Sp8 in the mixed-variable form H' of the Hamiltonian, to eliminate
the old variables in favor of the new. This iterative procedure is in
principle cxecutable to arbitrary order in both ¢ and n, yielding H°
as a double expansion analogous to (II-1). Forhigherorder, howcver, the
expansion rapidly becomes complicated. This is the price to be paid for
using a mixed-variable generating function; the transformation equations
must subsequently be unmixed. Because the transformation is finite,

Lie methods are not useful, and we have been forced to pay this price.

We carry out the expansion to O(EZ,ET],T]Z). The first iteration

of the expansion of Eq. (I1-16) yields

y M i
H = EQ) + vep0) - vl

e

(I1-73)

+

+

1 % [(e8)2(3/3¢b) 25(x“)+(5p8)Z(a/apb)ZV(a”l %)]+ higher order.

We have suppressed some of the arguments here for notational sim-

plicity, and the notation aM denotes that the transformation S gives us

/',
a in terms of the mixed variables, a=ao(>\M)+ Ga(e,jMM)E aM, so that we

N

must expand this function about A" in the next iteration.
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The 0(c°) ter in (11-73), EQN) = k% n’h,% 0(n%), is already
in terms of the new variables and so we identify

o B} 2 2,2

Hoo =k, nHol =0, n HOZ = h4 (11-74
From Eq. (II-6), we have
Vi) = arapy) viaM) = gPa, M1 P-eA (a1,
(11-75)

(2% 70,2y Ve = g, ).

N

In the O(CZ) term, we may replace )\M by A", 68 by 680, GpB by

\

.., and a by 00" = ao(xN) in g®. The 0(e) tem in (I11-73) gives rise

to a nunber of terms, contributing to HIO’ Hll’ and HZO' One must expand

&g, (5pﬁ, and V! in both € and n:
oMo N N N .
eV ) = 6B°(A )+ céso(a/aeb) GBO (A} +n 6810\ ) + higher order (h.o.)}
My N . N N
6pg, () = 0P, (X )+ 5680(8/8tb)6p800 )+ népsl(k ) + h.o.,

M, A
v M = ve €88, [3/3cb + (3a /2eb)3/3a,] V'+ Ga 3/da V'+ h.o.,
N

where V' on the right hand side is evaluated at a ",\". Combining the
various contributions yields
H. = 68 (3k3cb) + 6P, V' (@ NNy (11-76)
10 i Bo 0
1 N,.N [}
nHll = WSBI(BkO/aCb)* n(SpBlV (uo A7) + (SpBoGao(a/aao)V (I1-77)

7 16682 (370e0)2x° + (6pg )% 88(ag )]

+ 88 [(3k®/acb) (3/3eb) 68 + V' (3/3¢b)apg, ] (11-78)

+

GpBO 680 [(3/3eb) + (Baolaeb) (B/Bao)]V' .
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. )

All terms here are evaluated at the new variables Z. The ex-

plicit dependence of all quantities here on (6, j) = (OO, .)O] are known
N s 0

from results already obtained. The dependences on X = (¢b, Pb ) are

determined by the magnetic geometry in the particle's vicinity.

I1.1. Calculation of K from H°

In this section we complete the transformation process, perform-
ing the transformations Tn of stage two, using the formalism developed
in Sec. II.E.2, to obtain the finite ¢, finite n, guiding center Hamil-
tonian K.

We proceed explicitly to 0(52), i.e., we shall calculate KZO'
As noted in Sec. II.F in the context of the frozen -\ problem, to obtain
the second-order term, cZKZ, of K, we only need to calculate the gener-

ator ¢ W., and not ezwz. In addition, just as each KZ is an expansion

1’
0. 5, % L
y = ! 1 3 4 3
“l mZO nm Won Because we are seeking K20 but neglecting nKZi’ it will

the generators WZ are also expressed as n expansions,

only be necessary to calculate wlO'

To begin with, from Eqs. (1I-35), (I1I-36), (II-74), and (1I-60),

we have the O(Eo) term of Ho,

K@) 2 1 @Y = o) =10+ nth,’
(11-79)
22

v, M+ 2T+ 0, 30%d - (3/8) (e 4 D)1 /8.

For ¢ + 0, we have K = H* = K° = E, and (II-79) is the full guiding center
Hamiltonian, to O(nz).
At O(e), we begin by using the expressions obtained for Gao, cSal,

GBO, 661, cSpBO, cSp‘31 [Eqs. (I1I-64), (11-65), (II-71), (I1I-72) in expres-
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sions (I1-76) and (I11-77), and rewrite HlO and Hll’ explicitly displaying
their dependences on 0 and J:
. 3/2 1/2 , )
Hig (CIS‘J + CllJ ) cosl (11-80)
2 .
nHyp = (C24J + Cypd) sin20. (11-81)

Here Cnm decignates the coefficient of the term in Hl in cosmd or sinm”

+
-

n/
and J° . In particular

C13 =D [aao/an)(aﬂo/acb),

Cip =P [(5a /P) (¥ /3eb) - (B /aeb)V'],
Cpy = 4 (32,/3cD), and

Cyz = 4,(3V,/3eb) - 4 V'~ (30 /3P ) (3V /3a ).

Following Sec. II.E.2, we can now read off Kl()' Kn:

K., =H

10 < Hyp =0, nKpy = nHy, = 0. (11-82)

In addition, from Eq. (11-74) or (II-79), we have
= 10 - - 2, 2y o 2 2 )
KOO =k, nK01' nH01 0, n Koz n H02 n h4 . (11-83)

The only term remaining to be found, to the order we are working, is KZO'

To O(e, en,n), we see that K = Ko

€,n + 0 guiding center usually used, but with slightly different defini-

o=V ! QC_.J, formally the same as the

tions of the variables, in agreement with the findings of Refs. 7 and 8.
This difference in meaning is dealt with in Sec. II.J.
We now proceed to calculate KZO‘ Using Eq. (II-80) in (I1-42),

we find the O(no) part, W ,, of W; to be



o -] . S 3/2 1/2, .. i
Wpp = 8,70 Jdot Hyg = T (€374 e € 07 %) sino, (11-8a)

where we have used that aHo/aJ = aHoo/BJ + O(nz) =t O(nz). From

(I1-43) we see that we will need H20 and 1/2 W for Hzé. From Eqgs.

106 o
(11-84) and (11-80) we calculate the latter of these, finding, after a bit

of algebra,

% Wa0p Hyp 2 % (3| /26) (aH) o /2T) - (W, o/aJ) (3H,1/30))

(11-85)

-1
- (490) (C11 + C13J)(C11 +3 C13J).

From Eq. (I1-78) we rewrite HZO’ explicitly displaying its G, J

dependences:

Hyy = 20,0 D4J2) cos?0, (11-86)

b, = 35 Jou/m)20/0em Wy + Goa faet)” o eb]

+

(30,,/P, ) 2 (aV,/3¢b) (3/3¢b) 2n [p (2 /3P, )}

- (30,/P,) (30,/3eb)IV’ (/o) (5 (aa, /acb) + (&/debIV'1 ],

=
"

o =3P (/oY {%(a/asb)zfzo + (89,/3¢b) (3/3eb) el P (3a,/3P, )} }
where (d/deb) = (3/3eb) + (da /2eb) (30 ).
From Eq. (11-86) we see that

Ry = (0, J + D, J%). (11-87)

| 'I'helfinal term in Eq. (I1-43), -H W, = W Hy, gives a contribu-
tion to HZO of
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wlOb HOO = (awlo/acb)(auoo/apb)- (BWIO/BPb)(aHOO/Bcb).

From Eqs. (1I-74) and (11-84), one sees that this term is proportional

v

. . C o 2
to sin®, and so its contribution thbHOO to kZO HZO , 1s zero. From

Eqs. (11-43), (I1-44), (II-85) and (I1-87), therefore, we obtain KZO:

K0 = Hyp = Hyg

it

(D2 J + DAJZ) - QO-I(C11+ CISJ)(C11+ 3C13J)/4. (11-88)

Assembling the various contributions from Eqs. (11-82), (II-83),
and (II-88), then, we write out the guiding center Hamiltonian K, valid
to O(ez,cn, nz):

2

K=K +nik,+ K+ ho.
s (V_o+aJd) + 0323%0d-3/8)(c. + .0 /8 (11-89)
0 (o} (o} (o} 3 1
2 -1, 2 -1 .2,,02
e Hegple) Bra e @00l 03 ¢ 0 307 e 2k,

The term Ky, is the guiding center Hamiltonian, valid to 0O(e,en,n).
It is formally the same as the lowest order Hamiltonian usually used. As
already mentioned in Sec. II.F, however, the gyrofrequency 2 is more
general than its Ls-l + 0 limit. We shall evaluate this more general
form of fi, more explicitly in Sec. 1I.K.

This lowest order term in K yields the expressions commonly used
for the particle drifts, including the drift in o, which produces orbits
with finite banana widfh, as described in Sec. II.C. The higher order
terms nzKoz and EZKZO give corrections to these drifts., (We note that the

part of this slow shift of ao(k)which is due to a change (with B)of the



-64-

contribution e¢ to V corresponds physically to a particle drift in the
direction of E, due to the particle seeing a time-varying E-field, 1.e.,
to a polarization drift.)

The term nzkoz gives the lowest order nonzero corrections to K
from the anharmonicity of the potential well V, or from the o dependence
of g“. It is thus a simple finite gyroradius (finite n) correction,
present even in the slab limit e + 0, in which the paramet:r A is truly
frozen.

The tem cz

K, comes from the fact that » is not frozen, but has

a jitter at the gyrofrequency. The contribution ezaKZO/aJ of this term

to the gyrofrequency 2 is the mathematical expression of the modification
of Q due to the jitter in the potential well V(a), described qualitatively
at the end of Sec. 11.C. The contribution of the term EZKZO to the par-
ticle drifts in b, Pb [ and so in ao(x)], is analogous to the pondermotive
force F_ for a particle jittering in an electric field eE(x,t} (E~1).

Fp arises from a nonzero time-averaged acceleration at second order in e.
Solving the force equation X = eE (x,t) iteratively, one finds a first
order jitter in x(t) by freezing x at x(o) on the right hand side:

i(l) = eE(x(o),t). Integrating this to obtain x(l)(t) = x( o) . séx(l)

the time average of the next iteration gives Fp:

@ . eE (x4 cdx(I).t) = sE(x(O) t) + e2oxt) BE(X(b) t)/ax.

Analogously, one may calculate the frozen -A gyroorbit a(o)(t)(for which
n is arbitrary, but ¢ is effectively set equal to zero), and from this

calculate the first order jitter 568(1). eép (1) in 8 and Pg from

X,
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Hamilton's equations for g and ;38, e.g., é(l) = (B/BPB)H(u(o) ,pa(o);
cE(O) ,ps(o)). Solving for EGB(I)(t) and taking the time average of the
next iteration again gives a nonzero contribution of order 52.

The present canonical form for K could be readily employed mumer-
ically to find guiding center orbits. Specifying the drift surface o
near which the guiding center trajectory is to move determines P¢, as
explained at the end of Sec. 11.C. Purther specifying the initial guid-
ing center position [uo(to),b(to)} then fixes the value of Pb(to),
through solving ao(to) = ao[eb(to), Pb(to)’Pct»]' Finally, specifying the
value of the action, Hamilton's equations may be integrated in a straight-
forward manner. The trajectory in terms of the physical variables (cxo,b)
may then be easily computed from the canonical variables (b, P,, P¢)
using uo(cb, Pb’ P¢). This is the only additional step required by the
canonical formulation beyond those needed in numerically applying the
non-canonical formulation employed by Northrop and Rcme;8 while their
heuristically determined expression for P ) in terms of the physical guid-
ing center variables is found not to be conserved, the time invariance
of P, in this canonical formulation is automatic.

¢

II1.J. Generalized Adiabatic Invariant

In the previous section we obtained the guiding center Hamiltonian
K, to O(s:z,en,nz), expressed in terms of the gyroaction J. Since it is
the constancy of J which makes K useful, reducing the number of nontrivial
degrees of freedom by one, it is important to be able to express J in

terms of more directly physical variables. This expression is the
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generalization of the expression J = (mvl 2/ZQC) = (mc/e)v usually used,
to the finite €, finite n regime, and allowing for shear in the magnetic
field.

We shall find J valid to O(E,nz), ignoring temms of order en,
ez, and higher. As for the calculation of K, the procedure to higher
order is the same, but grows rapidly more complicated.

We assume knowledge of the coordinate system gp(gc_) = [aq“/3£ [2,
of the potentials A and ¢ which give the magnetic and electric fields,
and of the particle position x and velocity v = x at any instant t that
we want to compute J. Given the physical specification x,v of the par-
ticle, the values of the variables z E(q“, p\)) in terms of which our
initial Hamiltonian H are directly determined, through q”@g) , and
P, =(g\))-1 é\)+ eA\). We therefore want to express J in temms of z.

We begin by writing out the particle energy E = H(z) in terms
of J. From Eq. (I1-89), to the order we are working, E is given by

2

E=K=Koo+n](02+h.o.
- o 72 .
= Vo + QOJ + QZJ + h.o., (11-90)
vhere V, 9, and e,z 3 [d-(3/8)(c + c,2)/8
o’ Yo’ 2" % (o] 3 <
are functions of )\N 5 (eb,Pb). To the order we are working, Z = Zl, and

s¢ in particular we take eb =eb1, Pb = Pbl, and we want to express J in
terms of A° = (eB,pB). We thus need to compute the differences between

these parameters:

P

b 'pB = (Pb' Pbo) + (Pbo-pB) == e[w].OP'bo'.. GPBO] + h‘o’

=- e[, /5eB - (d0,/5B)p ] *+ 0 €%,en).
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Using Eq. (11-84), and the relation JY% sind = sa/a + 0(e,n} [where
o = « -aO(AO)], this gives

Py - Pg= E{l 1, (3/3€B) (C13/9.) + (2/3eB) (C;/2)) (6a/a)
(11-91)

+ (8&0/358)1%1} + O(ez,en).

Here J_(E,2) 2E /2 = [E- V002 0) is the 0(e?,7® v .ue of the adiabatic

invariant, somewhat generalized over the expression m\'LZ/Z . to allow for
finite (v”/QCLS) or (VE/QCLB) effects which enter, ev 1 in the zero nlimit
(c.f. Sec. II.K). El is the kinetic energy in the - direction which the
particle would have at its guiding center positic. a,(A), if A were
frozen at its instantaneous value. '

Similarly, for the R coordinate we get

- 2 _ 2
e(b-B) =-e6B * 0(e",en) =- e (3a/3p p, * 0(e",en). (I1-92)
Now we invert Eq. (II-90):

3=J6 N =5 /a,- 9F %2’ +ho.
(I1-93)

N 2
ToEs A7) - (2,0 ) J,° + h.o.

The term in Q, is already O(nz), and so can be evaluated at A=2°. The
J
term J_(E,\") we expand to 0(c) in A" - A%, using Egs. (11-91) and (II-92).

This gives, finally,

J

i

JE,2%) + e(b- 8) (31°/5:8) + (P, - pg) (3],/3p) + h.o.
ToEA0) - (@903 7

e{pa[ (d0/0eB) (87, /3pg ) - (30, /3pg) (8] /3eB)] (11-94)
(6/ )13, (2 2e8) (€ /9) + (3/368) (Cy1/90)1 }

+ 0%, en, n%).

+

+
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All parameters here are evaluated at A= 2° and ao(Ao], i.e., at the true
particle position. The term in 92 is the lowest order finite-n correction
which is nonzero. It is of order nz. The term in € enters tc compensate
for the jitter in JO(E,AO) coming from its dependence on Ao, which has a
corresponding O(c) jitter.

The ) dependence of J here enters both explicitly, and through
the function ao(x). Until now we have been assuming a, is a known func-

tion. We can more explicitly express s defining
- - 2
fa = a - uo(l) = 6&0 + néal +n 6&2 * ves,
and solving for the successive Gam by expanding the a-center condition
(11-47) about a:

0 =V. (a2 ) = Vy(a, A) - éa(3/3a)V; (a,2) +%(GQ)2WBQ)ZVI te
(11-95)

Vi@, A) - 260V, (0 M)+ 3(6a)” Vg (@) - +ee.

Substituting the n expansion of 6o into (II-95) and collecting like

powers in n yields

oy = (V/2Vy), nda; = (3"3/2\72)(6“0)2’
(11-96)

2.
n 6&2

[23V,/V) 7 - (@y/v,)] (60 )3,

and so forth. The Vh here are evaulated at a,A. Inserting (II-96) into
a, = o- Ba(a,ko), expression (11-94) for J is expressed purely in terms
of quantities defined at the particle position. To more explicitly eval-
uate J, one must assume specific forms for the metric coefficients gu and
the potentials A and ¢. In the following section, we assume specific

simple forms for these, namely forms appropriate to the slab geometry of
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Parts I and III, and apply the results of Part 11, to prepare for Part

I1I1.

II.K. Application: S5lab Geometry with Shear

The stability work of Part III begins with the conductivity kernel
of a slab plasma, with arbitrary inhomogeneity in the inhomogeneity direc-
tion x. This kernel requires a knowledge of the particle orbits and drift
frequencies in such a wagnetic geometry. In preparation for Part IIl, in
this sectiion we apply the results thus far obtained in the present por-
tion of this work, to a slab geometry, allowing for shear and variation
in the magnetic field strength (p/LB # 0). As part of this application,
we shall be able to specialize the ;esults of Sec. I1.J, obtaining a
more explicit expression for the gyroactiorn in the presence of strong
perpendicular magnetic inhomogeneity, and, in particular, in the presence
of magnetic shear.

The appropriate Hamiltonian is that of Part 1 [Eq. (I1-4)], which
is in terms of Cartesian coordinates, for which g”v 1s the identity matrix
guv = ¢"Y. This is not the same as the ¢ + o limit of the Hamiltonian of
Part II, for which the results of this part were developed. (In the limit
€ + 0, Hin Eq. (II-5) is the Hamiltonian of a particle in a system with
cylindrical symmetry.) However it is one of the advantages of the canon-
ical formulation we are using that formulae in different geometries tend
to look the same. Everything developed in the present part of this work

is also valid for the Cartesian slab geometries of Parts I and III.
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The adoption of a slab geometry, i.c., taking only the e terms
in the expressions obtained thus far, is an extreme limit of the theory,
but a limit with relevance to the Tormmac zheath, where one may well have

2

n >>e.

I1.K.1 Specialization to Slab Geometry

Going back to the notation of Part I, we have the sole inhomogeneity
direction x, corresponding to the coordinate a of Part II, the y direction
corresponding to £, and the z direction ¢t rresponding to¢. The expansion coeffi-
cientsgm arc now all zero, except for go=l. We consider a given particle,with
guiding center XO(E), and go intothe Cartesian wordinate systemmtural to the
magnetic ficld at XO, cvaluating the x~dependent system R’ul, {)Z(x),géx)] of Partlat
XO. We recall the definitions of this right handed triad: l;ls ;, I;Z =

bz(X0]5b3 x by, by = bg(X) = B(X,), the magnetic field direction at X .

The corresponding coordiates we denote by (xl, Xys xs).

We expand the potentials A = (o, Ay, Az) and ¢ about x= XO:

A (8x, X)) = A(¥) - AX)) = 21 (5x)n(a/axo)nAo/nI
n= (11-99)

[n;fo (GXJ“H(B/BXOJ" B,/ (n+1)!] X X

1t

8¢ (8x, Xo) o) - ¢(X0)
(11-100)

- 3 o™ /)" E /e,
n=0

~ ~

where AOE é(xo), EOEE(XOJ’ EOEE(XOJ. Defining XOEE-e_O = Ve b2+V03b3,
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we express the effective potential V of Eq. (I-5) as

+ ¢ &

VO_[P) + 1 e?|eAl® - e 6A-y
o'~ 2 T=

V(x|P) Avy

(11-101)

T m
T Vpltyr D™

Using (11-99) and (11-100), we can read off the Vm s. Proceeding up to

m = 4, we find

- 2142

Vo:\’(X I[P 7&() +e¢o,
\1 z -C(l’oxljo)'x - eEO = - e(v02 o + E ) =0
v, =3 [e?B? - ey x (3B /oKX )x - e(E /X )],

1 2 2 2. (11-102)
V;=5e B (aB /ax ) - (e/31)[v (3 2 /axo )- X + 3 Eo/axo 1,
\'4 H [ (3 /BX )/3' + (BB /BX) /8]

(%) [y, x (3° B /aX )ex + 9°E /o ).
Solving the second of Eqs. (II-102) for N gives
= - cE / = (11-103)

Vo2 Vg

where we have reinstated the c. To 0(n) this velocity, v 02 = x (X ), is
the same as the guiding center drift )'(2 in the b2 direction, which is
therefore the usual Ex B drift Ve in this small n limit.

For convenience we define

b,(x) = J[2ib,(X)*b5 ()] 2 3[ey -1 exp - i0_(x),
: . (11-104)

and B(x) = |B(X)| = B exp OB(x).

- . _ ~1 _ R
Here B is a constant, and KB’S(X) z LB,S (x) = dOB,S/dx' Using these

definitions and « = Kp = i Kgy We have
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B(x) = B(x)(b, +b_) = B(xJ(b,* c.c.), (11-105)
aB/ax = B(x) (« b + Cc.Cc.) = B(x)(bsx #bz S) (11-106)
If we in addition neglect all derivatives of KB’S(X), we have in general
(3/3x B = B(x) (X" b, + c.c.]. (11-107)

Using Egs. (I1-100), (II-103) in the third of expressions (11-102)
gives

ICZB 2

<7
I

- e(vOZKB - VOSKS) BO - e(BLolaXo)] (11-108)

VA

Z[e B + exBE exg 03 0~ e[a£ IBX ",

and therefore (restoring the m and ¢},

2 R .
= QC + KS\OSQC + (KE - kB) "E:zc' (11-109)

D
1
o
ga
(o]
)
0~
'

n

where kg = d &n Eo/dx.

We see that the gyrofrequency @ is different from its homogeneous -
B wvalue Qc’ even in the zero gyroradius (n + 0) limit, for finite
(KSVOS/QC) or (KB'KE)VE/QC, as mentioned previously. For substantial
KgVo3o the particle experiences a restoring force ~- VoSBZ(x) in the x
direction, in addition to the v283 force which gives the usual Q. part of
QO. Since BZ ~ BO(Gx/LS) ~ &x, this additional force senses finite shear,
even in the n + 0 limit. Similarly, for substantial Sy the particle
senses a restoring force ~ VZGB (x) = vEB (6x/LB) in addition to the
force giving QC. Again, this force is linear in éx, and so renormalizes

Qo.
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. . . 14 15
The shifts in QO due to finite ((S VoS/Qc) and (xEyE/QC)
have been noted by other workers. We can rewrite the last temrm in Eq.

(11-109) as (x = nc(avE/ax). This form arose in Ref. 15 for the

E¥BVE

special case B = 0.

11.K.2. Particle Motion
In preparation for Part ]II, we solve the particle motion prob-

lem to 0(n). Since ¢ = 0, the pseudomotion problem of Sec. II.F is the

full problem, i.e., K{(J,X) = E(J,A} = hm(J,A), in the terminology of

Eq. (11-59). To 0(e°,n1), then, we have
K{J,\) = KOO(J,X) = Vo + QOJ. (11-110)

The x motion has already been solved in Sec. II.F. Replacing
¢a by &x, Eqs. (I1-64), (II-65) give us

6X,= X sind [11-111)

niXp = - % 2 (Vy/4V,) (3+ cos20), (11-112)

where Yo =3 Y2 4 the 0(n°) approximation to the particle gyroradius,
and @ = (QO/VZJI/Z. Explicit expressions for V, and 8 are given in
Eqs. (1I-108), (II-109). Using (II-107) in Eqs. (1I-102), we obtain a

simpler expression for V3:

Vg =3 cp(eB)? - (eB 3 [(c5ikg IV, - 2xgeg Vo]
(11-113)

2 2 2
m {KB QC /2 + [(KS “Kp )VE+2KBKS vo3]QC/3!}'
Here, and henceforth, we neglect all derivatives of E(x). In the second

line of (II-113), we have restored the m and c. Similarly, we may write
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2 2 D 3 2 3
4" (7 Kg kg )(CBOI724 - (080/4!)[(KB -3rBrsz)‘bZ-(3KB KgXg )‘b3]
(11-114)

2 2 1. )
m {7KB2-KSZ)QC - [(3KBKSZ-KBS)VE + (SKB KS-KS3)VOSJJC}/4..

Higher order Vm's can be readaly obtained, 1f desired.

Equations (11-111) and (I1-112), along with the fact that
2 = 9K/3J = Qo + O(nz), give a complete description of the x motiodn.
The X, and Xq motion then comes from a sinmple time integration of

Hamilton's equations,

~

)'cz = {P - e;_\ix(t)]} . 1;2, "‘3 = {p - eA [x(t)]} by (11-113)

Using x = X0 + éxo + néxl, and the expansion (II-99) for dA, we find
xZ(O) = X20 + dxzo + n6x21, x3(O) = X30 + n6x31, (II-116)

where the guiding center coordinates XZO’ X30 evolve linearly in time

(or 0), at rates

X

-2 _ -
0=V * ( Xy QC/4)(3 V3/V2 - KB) 2 Vg * Vg, (I11-117)

> _ 2
X30 = Vo3t Kg C% QC/4), (11-118)

and the gyromotion éx, 2.3 (0,J) about this guiding center, to 0(n), 1is
yly

given by Eqs. (I1-1i1) (II-112), and:

6x20 = X, cos@, X0 = (QC/QO)x0 (11-119)
2 .
n6x21 = Gﬂ) QC/S QOJ(S V3/V2 + KB) sin20 (I1-120)

]

2 .
n6x31 - KS(EO QC/S Qo) sin20. (1I-121)
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This completes tiie mathematical description of the particle
motion, to O(n). Several aspects of the motion should be noted. First,
already mentioned, is the dependence of the gyrofrequency on Vozt v“(XOL
for finite shear. As we shall see in Part I1I, this dizpersion in féhasa
significant effect on the ion Bernstein modes, and the instabilities as-
sociated with them. The other two 'frequencies" (i.e., time der:vatives
L= é of the canonical coordinates %) in the prohlem, iEO and iSO’ are
alsc modified by shear. In the limits of «+ 0 and negligible 'BVL/*L‘
one has Vi/V,= Ko and ibz =(\12 20, and so Eg. (I1-117) reduces to
e XZO TVE S (rB\'lz/Zﬁc), . usual BxVB drift. From Eq. (11-118} we
sce that shear alse modifies the particle parallel vciocity, a fact
noted previously in the Iiterature.lo

We also note modifications in the gyromotion about the guiding
center, induced by shear. Comparing Eqs. (I1I-111) and (II-11S,, one sees
that, even at O(no), finite shear distorts the gyroornit from a c rcular
to an elliptical shape. At 0(n), the corrections néxil (i=1,2,3) fur-
ther distort the orbit. In particular, néxsl causes the orbit to twist
in the direction of magnetic shear, turning the elliptical orbit into a
""potato-chip"” form.

The canonical framework and graphical techniques of Part I en-
aple one to understand qualitatively many of these shear-induced modifi-
cations. For example, the correction to XSO in Eq. (II-118) may be
understood from referring to Fig. 2. We recall that v262+v353= P- eA(x).
As x cscillates about Xo, A(x) oscillates on the A trajectory about
é(xo). For a particle with positive parallel velocity, such as at point

c in Fig. 2, the shear causes the trajectory A(x) to bend away from point



P as x moves in either direction from XO, thereby causing the parallel
velocity vy to have a positive addition to its value Vo3 at Xo’ Con-
versely, the curvature of A toward point b causes IXSU! to be smaller,
for particles with negative parallel velocity. In a similar way, onc
secs that the curvature VZ of the potential well V = %(P -cA)2 is en-
hanced by shear for a particle with momenta P at peint ¢, and lessened
for P at point b. This explawns the finite xg correction to I in Eg.

(11-109).

I1.K.3 Adiabatic Invariant

We now specialize the results of Sec. 11.J to the present geom-

i

etry, calculating J to 0(n). Defining v_; = pxz(Xo) m

E = 1-(v 2 + v 2 + v 2) +ed(X),and soE, = E-V_ = 1 v Z
2 Vol 02 03 o’ ? 1T o 2 ol

kinetic energy in the x direction at the guiding center. Equation (I11-94)

)

1), we have

the

the tells us that (x = «, XO = o,

J

1]

3o (Es Xg2) + 0fn)
(11-122}

- %/2 9, ) + 0.

To O(no) we may replace QO(XO) by Qo(x) and (II-122) evidently reduces
to the usual expression mviz/ZQc, valid in the limits of negligible
(KSVOB/QC) and (KBVOZ/QC). Even to O(no), however, we see that these
parameters modify J.

We note that, expressed in terms of JO(E,XO,A), the form of J
at 0(n) is the same as that for O(no). 1f we express XO as x - &x(x,A),
however, the first order form is different from the one valid at zero

order. Consistent with the ordering described in Appendix B, we have
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VoK) -V (x) - eV (x) ¢ (6x)? v, 00 - (ex)3v3(x) + 0(n9)
(11-123)

. : A N 3 2
[V, - (Ex)7V,] - (8x )7 Vg + 0(n%),
where the Vm on the second line are evaluated at x, and éxo E \'1/2 V2,
from the {first of Eqs. {I1-50).

In addition, for Qo we have

"

QO(XO) Qo(x) - 6x(9/3x) Qo(x) + 0(n%)

(I11-124)

"

0 (x) [1- (6x)) (V4/2V,] + 0(n).

Putting (I1-123) and (I1-124) into (I1-122), we obtain an expression for

J entirely in terms of the quantities E, Vo, Vl, vy, VS’ all evaluated

at x:
-1
J =, TX)IE - V(X )]
(I1-125)
= 0, LBV, (x) + (6x ) H,#306x ) V5] [1- (6x ) (Vg/V )1 7L + 0.
At O(no) , this reduces to
J=0, 7w [E -V 00+ (axo)Z V,] + 0(n)
. (11-126)
J1IpC @20 /0,00 + 00,

where we have used Vo(x) = V(x|A) =E - %— pxz,

V00 = (3/0x) V(x[A) = - B, and V,() =32 2(0. In the limit of
negligible VE/\i , f)x = vzﬂc(x) (where v, = bi(x) v is the particle veloc-
ity in the i direction of the coordinate system natural to position x),
and, using Py = Vy» Eq. (1I-126) may be written

3=dw? e vtasmyia e om, @1-127)
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where again, all quantities are evaluated at »x. We note the 'elliptical
distortion" of this form from the unsheared circular limit in which

Yl
(I1-119) of the O(no) gyroorbit.

= vl2 + vz2 appears, parallel to the distortion in Eqs. (II-111),

The higher order expression for J, Eg. (11-125), involves VS(X)’
which 1s given in Eqs. (11-102) or (II1-113). The calculation of J to
still higher orders may be analogously carried out, bringing in higher-
m\ , and correspondingly higher order derivatives of B(x).

m?

I1.L. Directions for Extension of the Formalism

In the development of the formalism of the present part of this
thesis, we have made a number of simplifying assumptions. These were
useful in developing the formal procedures, but now that the procedures
have been established, the assumptions may be weakened, and the range of
applicability of the theory may thereby be enlarged.

One assumption implicity made throughout is that resonance ef-
fects between the gyromotion and bounce motion are negligible. Thus, one
removes the dependence of H on the gyrophase © to all orders in ¢ ending
finally with a O-independent Hamiltonian K, for which no resonance effects
are possible.

To study possible resonance effects in the framework developed
here, we begin with the Hamiltonian HO(ZOJ of Sec. 1I.H, the starting
point for stage two of the transformation process. Instead of neglecting
resonance effects as done in stage two, one may instead first solve for
the unperturbed bounce motion, taking HOO(JO, ebo, Pbo) as the unperturbed

Hamiltonian. Hoo has one nontrivial degree of freedom, and so the bounce



-79-
motion may be solved for exactly. Analogous to the way in which the
one-dimensional, frozen-)> problem for the gvromotion was solved, we trans-
form from fbo, Pho) to (Obo,Jho), the action-angle variables of the bounce
motion. The Hamiltonian ¥° in terms of these variables then has a lowest
order term 3(00= Hoo which is independent of both angle variables,

'7(00 = "(OOUO, Jho). The higher order terms r_iwio are in general depen-
dent on both angle variables, and this coupling ailows for the study of
resonance effects.  From this, one obtains the resonance condition

o = n]? MRS (where T is the bounce averaged gyrofrequency), the condi-
tion for violation of the perturbative nature of the transformations
made 1n stage two. |

Another assumption we have made is that of perfect axisymmetry.
One would like to remove this assumption to study geometries for which the
toroidal symmetry is weakly broken, either due to unintentional field
imperfections, as in Tokamaks, or due to an intentional design for con-
finement, as in Elmc Bumpy Torus.

The central difficulty overcome by the formalism we have developed
here is inducing the finite canonical transformation S to action angle
variables (GJO, Jo), which have the property of lying sufficiently close
to the desired variables (0, J) (in terms of which K is expressed) that
the remaining transformation T: (Oo, Jo) + (0, J) may be achieved by
purely perturbative means. Inducing the perturbative transformations com-
prising T is a relatively simple and straightforward matter, especially
when aided by Lie techniques. In view of this, the procedure developed
here may be expected to be applicable to particle motion in any geometry
in which the procedure we have used for inducing S again gives action-

angle variables which are only perturbatively far away from the true

gyroaction J (the adiabatic invariant) and its conjugate angle ©.
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In the present context, one may consider breaking the toroidal
symmetry in either of two ways. One may allow any or all of the metric
coefficients g¥ (as well as ¢ and the components Au of the vector poten-
tial), formerly independent of ¢, to have either a small additional ¢ -
dependent part; g” = gou(a, £f) + 6g1“(u,c8, 4 ), or a slow dependence
on ¢, as well as on £; gu = gu(u,cﬁ,éﬁ). (The quantity & here is the
parameter of smallness.)

In the former case, a nonzero perturbation Aal of A, 1s perms-
sible; in the latter case it is not, since there would then be no accept-
able unperturbed Hamiltonian having the same formal similarity to a one-
dimensional particle motion problem as does H in Eq. {(11-5). In both
cases, one may follow a procedure fully analogous to that described in
Sec. 1I.D to induce the transformation S. The resultant Hamiltonian H°
will then have an O(eo,so) part independent of Oo, and Go-dependent
temms higher order in both € and 6. The remainder of the transformation
process is thus again perturbative in character, and so should be execut-
able without great difficulty. The generators of these transformations
will now be ¢ dependent. Resonance effects may also be studied as out-
lined above for the ¢-dependent case, with a more flexible resonance
condition, G = n, Q+ ny wt Mgl arising from the rew characteristic

frequency w,, describing the time required for the particle to traverse

°
one period in the toroidal perturbation.

Finally, one may relax the assumption of time-translational in-
variance, i.e., one may allow the gu and potentials ¢ and A to have a
weak time dependence, in either of the two senses just discussed in con-
nection vith breaking of rotational symmetry. In this way one may study,

for example, the effects of an electrostatic perturbation 6«'l>l-~-e-mt on
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the particle motion. The transformations would then be time dependent,

and the resonance condition would take the fomm

c=n 0+ o, * Ny w, * 0, w.
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APPENDIX B. ORDERING SCHEME OF PART Il

In this Appendix we clarifv certain aspects of the ordering
scheme we use in comparing terms we find in the expansions performed in
Part 11I.

We define the scale length EO of perpendicular inhomogeneity by

G, = min Vs, g /) = min [ 4 Vy/ia) (6 mnog foa) )L (1)

The perpendicular expansion parameter n is then given by n = éa/:?o, and

we assume that
Vm 6&/Vm_15n <1 (m=3), gmda/gm_lg n<l (m=1). (B-2)

In contrast to the ordering in (B-2), since Vo is on the order of the
particle's parallel energy at the guiding center, and v, (da)z is on the
order of its perpendicular energy, one has Vo~ Vz (6(1)2, for a typical
particle. From this ordering, and from the definitions [cf. Secs. II.F,

11.G] of the <h (including ¢y © and ¢_), all of these parameters are

p’
on the order of Eoul, and all the d_ (m = 0,2,4) are on the order of
_ -2
a ‘.

o

While the expansion coefficients Vm(uo,A) have this slow depen-
dence on as avm/‘aao~vm/&o, we note that the potential V(a|A) itself
has a stronger o dependence: 8V/3a~V,6a~V/éa = n"L v

In addition to an oy dependence, many of the parameters of the
theory (including a, itself) have a dependence on 11 £ ¢B(or eb),

A, EP 5 (or Pb). We define characteristic scale lengths Xi i=1,2) in

the variables X i by
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X, £ min [ain vz/axi)‘l, (38n go/axi)'l], (B-3)

in analogy with (Bl). We assume that the various parameters f of the
theory (e.g., f = Vm, - éa, hm) all have comparable dependences on the

A.. In ordering the various temrms arising in calculations (as in, e.g.,

)

Sec. 11.G), we shall thus assume

Bf/aao ~1f/ ay df/axi ~{/ Ai. (B-2)

we now apply this ordering scheme to a particular example, order-

ing the three terms in Eq. (I1I-70). We have
(term 2/term 1) =(36a/axi)/(3ao/aAiJ ~ (da/xl)/(ao/'»(l) 5-5)

= 6(1/.50 =1,

and

(temm 3/term 1) ~ (a jl/2 /X)) 3/ o /3)) (3-6)

. - 2
~ni/lpy, e )~ T,
where we have used j ~ Puo Sa and Sa ~ a jl/z. The> are the orderings

used in Sec. 11.G in calculatins 38 and 6p8.
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PART II1. STABILITY IN STRONGLY INHOMOGENEOUS PLASMAS

I111.A. Introduction to Part 111

The final part of this work will be concerned with the develop-
ment of a systematic framework for obtaining disperson equations for
the study of normal modes in a strongly inhomogeneous plasma. The for-
malism to be developed begins with Poisson's equation, and is thus re-
stricted in validity to electrostatic pertubations. In addition, we
assume a slab geometry, as in Part I. Generalization of the formalism
to the study of arbitrary electromagnetic perturbations should not be
difficult, and generalization to allow for more complex geometries may
also be possible. These matters are discussed further in Sec. III.E.

The formalism to be developed is aimed at characterizing the
problem of nommal modes in strongly inhomogeneous plasmas in a manner
which resembles as closely as possible the more familiar formulations of
the simpler problem of stability in weakly inhomogeneous plasmas, while
still maintaining an exact formulatica, so that when information is
finally discarded in order to achieve a mathematically tractable problem,
it can be done in a systematic and consistently ordered fashion.

We are aided in this pursuit by two mathematical tools in partic-
ular. The first is a canonical framework, as in Parts I and II. The
second is a variational formulation of the problem, which is useful both
in insuring that approximatiion schemes are applied in a consistent
manner,17 and also in lessening the work involved in obtaining dispersion

equations.ls'lg’20
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Use of the variational formulation is introduced in Sec. II11.B,
in which the formalism is developed in a very general but abstract fash-
ion, using only a single requisite property [Eq. (1I1-4)] of the conduc-
tivity kernel fs. From the variational formulation, one may follow two
routes. One can develop differential equations describing the spatial vari-
ation of the eigenmodes ¢(x), which are approximations to the infinite
order differential equation (d.e.) which describes the exact problem. Al-
ternatively, if one can make a guess at the form of the solutions of these
d.e. s, one can derive dispersion equaticns directly from the variational
principle, even in parameter regimes where truncation of the d.e. at fi-
nite order is invalid. We shall follow both of these routes. The two
approaches, solving d.e.'s or use of a variational principle, complement
each other. The d.e. approach has more direct connection to the phys-
ics, and tothe original equation we want to solve, Eq. (I1I11.3). The tnum-
cated d.e. we will be solving will be formally very similar to the
Schrédinger equation, and this formal resemblance will supply additional
insight into what sorts of solutions ¢(x) to expect. Given a good guess
at how ¢(x) looks, determined from insight derived from the d.e. approach,
the variational approach supplies a computationally more efficient means
for obtaining dispersion equations.

In Sec. III.C the abstract formalism of Sec. III.B is given
physical content, by introducing the explicit form of the conductivity
kernel fs. It is here that use of a canonical framework becomes partic-
ularly helpful. The resultant formalism is applicable to slab geometries

with arbitrary inhomogeneity in the density and magnetic field (including
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shear), and yet emerges in a form which transparently reduces in the ap-
propriate limits to the weakly inhomogeneous expressions commonly used.
Two particularly useful aspects of this should be pointed out. The
first of these is the conceptually unifying aspect of such a formalism.
Dispersion equations applicable to different particular geometries now
arise as different limits of the same dispersion equation, eliminating
the need for going through an analogous but new derivation of the dis-
persion equation for each particular geometry. The second useful aspect
is that such a formalism permits a more careful derivation of the var-
ious effects present in a giveﬁ situation. Much previous work has in-
volved ad hoc derivations or statements of the appropriate equation to
be studied, obtained by intuitive generalizations of the equations ap-
plicable to simpler situations. Most notable among these are the equa-
tions given for the study of stability of sheared plasmas. In certain
cases the present formalism serves as a more rigorous justification of
previous work, or finds limits on the validity of that work. In still
other cases, we have found effects (to our knowledge previously undis-
covered), which can be significant in certain situations (in particular
in sheared plasmas). These emerge from the canonical formulation in an
automatic and natural fashion, and the physical origin is discernable.
One example of these effects is the fact that, in a sheared magnetic
field, the diamagnetic drift frequency w,, which plays a central role
in dispersion equations for drift modes, is modified, having a dependence
on the same parameter CW'/LSQCJ which, as we saw in Part 11, also modi-

fies the gyrofrequency.
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In Sec, I1I11.D we apply the formalism to a study of the ion drift
cyclotron instability, in both unsheared and sheared magnetic fields.
Study of this instability allows some of the useful and novel aspects
of the formalism to be illustrated. Discussion of possible useful di-
rections for extension of the formalism is given in Sec. III.E.

For the present part of the thesis, we need to distinguish be-
tween the various inhomogeneity parameters designated by n in Parts I
and II. Thus we denote by N, Ngs Mg and g the ratio of ion gyro-
radius p; to the scale lengths of density (Zn), shear (Ls), magnetic
field modulus (LB), and magnetic field [LB = min (L, LB)], respectively,

and define n = max(nn,nB).

II1.B. Poisson's Equation; General Formalism

1II.B.1. Exact formulation

Restricting ourselves to electrostatic perturbations, we take

for our wave equation Poisson's equation,
Vi (x) = - 47 p(x). (111-1a)

Here ¢(x) is the perturbed electrostatic potential, and p(x) is the

perturbed charge density at point x.

We assume that p(x) is given by the sum over contributions
Py (x) of the linear response of each species s to ¢. laplace transform-

ing in time, we write this response in the frequency domain as
-4 p (X; w) = [ax! 7(-5(5,5’; w)d(x'; w) (I111-1b)

where w is the component of frequency. Using Eq. {IIi-1b) in (III-1a),
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we obtain the wave equation for ¢, exact, within the confines of linear

theory, regardless of geometry:

o w) = § fdx K (s w) 6x's w). (111-1c)
S

Specializing to a slab geometry makes the dependence of ¢ on
the homogeneity directions y and z trivial,
6(x) = ¢(x) exp i(kyy +k,2). (I11-2)
This leaves us with a one dimensional wave equation to solve,
parametrically dependent on the constants ]S" kz, just as the assumption
of slab geometry in Parts I and II in the study of particle motion re-

duced that problem to a one dimensional one, parametrically dependent on
the momenta P = (Py, PZ). Inserting (I11-2) into (III-1) yields

0= (- k5 k9000 + [ fax' R (xx' i), (TiI-3)

s
where A = (w, ]S” sz, and 3y denotes derivative with respect to X.
In Sec. III.C we will consider the explicit form of the conductivity
a

kernel Ke» derived from first principles in Appendix C. Here we need
only use a certain property of Ks to be shown there, namely that ’Ks can
be written as an in%egral over contributions K to ’KS from particles

having guiding center Xo:

K, (x, x'5 A) = [aX K (o, X,, a'3 A), (111-4)

where o = x-X,, o' = x' - xo. K, bears a more direct relation to the
expressions for susceptibilities usually used in weakly inhomogeneous

stability calculations, as we shall see.
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As noted in the Introduction to Part III, it will be computation-
ally useful to phrase the stability problem in terms of a variational

principle. For any two functions ¢{x), ¥(x), normalized so that

fdxlqm(x)lz =1= fdxltp(x)[z, we define the functional Sfy,4¢) by

S(v,8) =8, (W,¢) + ] S (0]
s (111-5)

* *
fax w00 B3+ k B, 21000+ faxfax'y” (OR, (x,x)e (x),
where gxs 3 and §x denotes an x derivative acting to the left. (The
subscript "V'' on Sv denotes "vacuum.”] S(¢,9) is closely related to the
additional energy present in the plasma in the presence of perturbation
¢, as noted in the variational formulation of Berk and Domj.nguez.17

*
Setting the variation of S with respect to y equal to zero gives back

the basic wave equation (1I1-3):
*
o = [6/8y (x3] S(¥,9). (111-6)
Here §/8f(x) denotes functional differentiation with respect to any func-

tion f(x). Though we will not be making use of it subsequently, we note

that a related equation for w*(x) is obtained by taking 85/84(x):
o=- @5 k2 kA 0+ Ty xR & xs A, (TII-7)
X v z s S
From the explicit form [Eq. (II1-48)] for Ks(x,x;w), introduced in Sec.
I11.C.1, we see that
— * — &
[Ks(x,_}g’ W] = Ks(zc_', X0 ), (111-8)
where ""*' denotes complex conjugation. Actually, this form for Ks

is valid only for w in the upper-half plane; for w in the lower-half

plane, an analytic continuation of this form must be made.
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However, for the moment we denote by KS only the form given in
(111-48), so that Eq. (III-8) holds, as does the analogous
relation for the 1-I kernel, [KS(X,X‘; w, lSn kz)]* _ Ks(x',x;
*
W, l%i’kz ). Using this in (I1I-7) and complex conjugating, one obtains
Eq. (III-3), with y(x) replacing ¢(x). Thus, o = 85/8¢(x) yields Poisson's
equation for y(x), tuking this interpretation of Ks'
Now we make use of the form (III-4). Putting this form into the
expression in Eq. (I1I-5) for the contribution S s to S and replacing Xo
by x, by the following manipulations we obtain a compact expression for

Ss:

S5 (4,0) = fdx fdo [do' w*(x+0)Ks(0,x0') ¢(x+o")
= fd&x [do fdo' lp*(x) exp(o'gx) K, (0,x,0") exp(O'_ﬁx) ¢ (%)
= fax ¢ () K (G5, x, 13) 600 (111-9)

In the third line, the infinite order differential operator Ks(igx,x,i_gx)
is understood to mean the kernel Ks, Fourier transformed in arguments
g and o';

fdo [do' ¢ 1ko K, (0,x,0") e-ik'o', (111-10)

K, G, x, k)
and with the replacements k -+ i§x, k' + i'§x.

(Using the same symbol K_ for both K (0,x,0') and its Fourier transform
presents no ambiguity, if one simply notes whether the units in the

arguments are o ~x. or k~x 1.

The formal manipulations using the dis-
placement operator exp(cax) in (11I-9) may be verified, using more stan-
dard, but far lengthier procedures, involving Fourier transforming with
only numbers (instead of operators) as arguments. Since both the oper-

ators §x and 3x in (I1I-9) point outward, neither of them acts on the
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x-dependence of Ks itself.

Given the form (I1I-9) for Ss, expression (I11-5) may be more

neatly expressed as
S(4,6) = fdx ¥ (x) K(3,, x, 13) 00, (111-11)

where  K(k,x,k') = K (k,k') + g K, (k,x,k'), and lg,(kpk')skk'+ls,2+kzz.

We now use this form of S in the variational equation, Eq.(III-6).
To take the variation 6/6w*(x) of S, we must integrate all derivatives
3* (which act on w*) by parts, turning them into derivatives -3% acting
on ¢ and on K's own x dependence, yielding S(y,¢) = fdx w’(x) K(-i%%,
X, igx) ¢(x). (We note the sign change in the left-hand derivative in

K.) Poisson's equation, Eq. (I1I-6), then reads

o= x(-i’sx, X, i’a’x) b(x). (111-12)

Without loss of generality, we could at first have allowed ¢
and ¢ to have some dominant x behavior, y(x) = wl(x) exp ikx,

¢(x) = ¢1(x) exp ikx. Equation (II1I-11) then gives

S(,6) = fax v, () Kk + 15,,%, -k + i3) ¢, ()

* (111-13)
= Jax y; ) Kk - i3 ,x, -k + i) ¢, (x),
and Poisson's equation appears as
o= K(k-i'5x, x, -k + i'5x) ¢, (). (111-14)

Equations (III-12) and (I1I-14) are exact formulations of the full
nonlocal Poisson's equation, Eq. (1II-13). The integral operator in

(I11-3) has been converted into an infinite order differential operator,
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which may be truncated at some finite order to enable analytic progress
to be made. These differential formulations could have been obtained
directly from the integral equation (111-3), without first going through
the variational formulation. We have taken the variational route for
two reasons. First, in performing the trumcation at finite order of
(11-12) or (I1I-14), one must be careful to perform the truncation in a
consistent manner, so as not to introduce terms leading to spurious
growth rates and frequency shifts, as pointed out by Berk and Domin-
guez.17 This consistr.icy is achieved through the variational principle,
performing the truncation on S in a manner which preserves the sym-
metry property (III-8) of S (i.e., we truncate at the same order in 5x
and gx), then integrating by parts and taking the variation of S, as
done above, to obtain a differential equation.

The second reason for the variational formulation is that it is
in its own right a powerful means for obtaining dispersion relations,
without actually having to solve a differential equation first. Denoting

by L, the mode localization width, if ps/L¢ > 1, the Fourier representa-

tion of 4(x) wiil have a width Ak-—ch'l > os-l, and so one expects that

the operator Ks(isg, X, igx) in (III-9) cannot validly be trnuncated at

¢

some finite order in ax about some average value of k. Proper applica-
tion of K, thus falls naturally into two regimes. When pS/L¢<1 is satis-
fied, the variational principle can be used to obtain results that could
also be gotten from solving a differential equation (d.e.), with less
labor than is required for the d.e. approach. In the regime pS/L¢>1,
truncation at finite order (in Bx) of KS becomes invalid, and the con-

tribution if Ks to Poisson's equation is truly integral in nature.
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Here, the variational formulation is especially useful in obtaining
valid approximate dispersion equations. We discuss these matters further
in Secs., III.B.2 and II.B.3.

Formnulations of Poisson's equation similar to Eq. (III-12) or
(I11-14) have been derived by other authors. Gerver, Birdsall, Langdon,

and Fuss21 derive a form
o= Dylx, k -iﬁx; A)9q (x)- (111-15)

Whereas Eq. (I1I1I-12) is exact, however, certain approximations were made
in obtaining (III-15), which break down in the regime of appreciable n.

These are manifested in the fact that the operator in (III-15) has no x

derivatives acting on the x dependence of DG itself. Essentially, DG

is what the operator K would be if the left hand I there acted only on
¢y DG(x,k-i3x) () = K(k-i3g, £, ~k+if )o; )|

Berk and Book22 derive an exact formulation, equivalent to

x=£°

(111-14), but without using property (III-4). Rewriting K(x,x') as

DB[s = x'-x, X = %(x'rx‘)] » they derive a formulation which is exact and
which, like Eq. (11I-15), has only a two argiment form. Operator methods
like those used above greatly simplify the derivation and expression of
their result. In our terminology, their formulation may be expressed

as
o =Dy (i3, + iaE/Z, E)d>(x)]x=E , (I11-16)
where DB here is the kernel DB(s ,X) just above, Fourier transformed in
the first argument, and with the replacements k + i3 + iaE/Z, X+ E.
Equation (I1I-16) is equivalent to (II1I-12), with ax acting on that of
DB' However, the use of variables s, X in DB masks the symetry in x,x'
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which X possesses. As a result, when the explicit form for the kernel
is put into the formalism, use of the three-argument kernel K(o,xé,c')
yields expressions for the weakly inhomogeneous limit and its higher
order corrections in a more direct and transparent fashion (cf. Sec.
111.C).

The formalism developed thus far is quite close to that of Berk

17 At the present stage of development, the advantage of

and Dominguez.
the present formalism lies in the use of operator techniques, which

allows for a much quicker derivation and more compact expression of
results than previous work. In the development in the following sections,
we shall find two principal additional advantages.

The first of these comes from using the variational formulation
to obtain dispersion equations directly, similar in spirit to the methods
of Refs. 18-20. As already mentioned, the variational method is a
labor-saving device in the regime p.l/L o <1where a differential equation
approach like that of Ref. 17 is valid, and more importantly, it enables
one to obtain dispersion equations valid in the fully nonlocal regime
pi/L¢ > 1, where the validity of the differential equation approach fails.

A second chief advantage lies in our use of a canonical formula-
tion. As we shall see in Sec. III1.C, the conciseness vwhich the canonical
formulation and the operator techniques already employed lend to the
formalism, permits various effects of potential significance, some to

our knowledge previously unknown, to arise automatically from the mathe-

matics.
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III.B.2. Truncation of the exact equations

To obtain an analytically tractable problem, we now begin to
apply approxima.ions to the exart equation [Eq. (I11-12) or (III-14)to
be solved. We shall expand to second order in ax that portion K < of the
operator x(iZSx + k,x, -k + igx) which is ''nearly local,' so that the
finite-order truncation is valid, obtaining the contribution 5, from K
to S. (The subscript '<" refers to the "nearly local" criterion ps/L ¢’<1.)
These nearly local coucributions to S are all but the nonlocal portion of
the ion contribution in the regime pi/L ¢’> 1. This term, discussed in more
detail in Secs. III.B.3 and II1.C., is evaluated in Appendix D.

Dropping the subscript on S_,K, (or assuming pi/L¢ <1, so that
S <« =S, K< = K), we expand K to second order, analogous to the procedure

of Ref. 17:
SW, 8) = fax v Kkx, k') ¢
+ faxuy [553,K0,x, k")~ 8y KOk, k'3, 11y 19 (111-17)
* fdxwl*[-%ifxzakz K(k,x,k')+ 53,8, ) K(k,x,k)3_
Lo P KOGk P oty

3.3
+0(8x Oy ).
(We discuss the explicit meaning of the formal expansion parameter axak,
in Sec. III.C.5.)

Integrating certain terms in (ITI-15) by parts and rearranging

Lerms, we cast it in a more convenient form:
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S = [dx vy Kk,x,-K) ¢,

+ fax “’1‘ (5, T+ r 300
(111-18)

3

* fax ‘Plt 3 %dkz K 3,_7:) 4! * 0(3x33k )

X

3
S, * S1 + S2 + O(BX e ).

| *
Here, r =T, +T,, T .2 T

1 o0 1 1 * I‘Z , where

r15 FI(R,X)E iak K(k,x,’k')I}(:k,, FI‘E i3k|K(k,X,'k')lk=k| »
(111-19)

— - 2 1] * - 2 T
FZ: FZ(k,X): axak K(k,x,-k )lk=k' ’ FZ = dxakl K(k,x,-k )Ikﬁk”
and the symiu: dk denotes total derivative with respect to k, so
dk2 K= (d/dk)2 K(k,x,-k}. Henceforth, unless explicitly denoted other-

*

wise, K will mean K(k,x,-k) (i.e., evaluated at k=k'). The temms I‘z,r'z

1’71
we may carry them along for the moment at no extra expense. The terms

L
are down from I',,I'. by 0(3x3k), and will eventually be neglected, but

*
T and T are "formal complex conjugates' of each other, in the sense
to be described in Sec. II1.C.1, and so we write I' as the sum of its

formally real and imaginary parts:
-— A *__ “
F=FR+1rI’ F:FR’ 1FI,
and similarly for I‘1 = rlR + iI‘H:and 1‘2 = I‘ZR + iI‘ZI.
We now obtain the consistently-truncated form of Poisson's
equation (assuming pi/L¢ < 1, so that S, = S), taking 5S/6w1‘(x) as

described previously. Using (I11-18) for S, one finds

o=@-B3 -C 33 ¢, (111-20)
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where A, B, and C are functions (not operators) of x and k, def1ned by
AiK-ar, Bz dlKe 20T, and C E%dkzl(. The term B will be
negligible, to the order we will work, and so (111-20) takes the form
0o=1(Q- 3% 6, (111-21)
X 1
where Q(k,x,A) = A/C. This has the form of the Helmholtz equation for
heat flow in one dimensicn, or of the time-independent Schrédinger equa-
tion, o = {[V(x) - E] + % pz}w, with (V-E) replaced by Q. We note in
addition that, even if B were not negligible, (I11-20) could still be
put into the formm of Eq. (J1I-21), inserting ¢I = f ¢2 into (11I-20),
and choosing the function f(x) so that the coefficient B' of ax¢2 van-

ishes. This yields

X
£0O=f, exp(-7 [ dx'B/C),  and
. 2. )
°0=(Q"- 3" ¢ (111-22)
where Q' = A'/C', A' = A - B(3 f/f) - c(a,%£/£), and C' = C.
We have thus succeeded in putting the truncated problem into the

familiar form of the Schrédinger equation, with no assumptions yet made

on the shape of the "well" Q(x), or on the localization of ¢. One must
remember that Q(x) is in general complex, more general than the usual

Schrédinger cquation studied in quantum mechanics.
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111.B.3. Variational method

Ke appeal to the fact that S is variational with respect to both
¢ and ¢, i.e., that it is stationary when w. and ¢ are sclutions to their
respective equations. When they are solutions to their equations, we
21so have S = 0. The variational method is thus the following. One
makes a guess at the form of the solutions ¢ and (, parametrically depen-
dent upon the set of variables y = {ul, uz.---uN}. Evaluating S(v,¢;2)
using these forms gives S{u;}). The stationarity condition on S then

corresponds to the N conditions
o= aS/aui, (i=1,2+-*N). (111-23)
As is the case when ¢,y are exact solutions, one then sets

o = 5(usx), (111-24)
which yields a dispersion equation for m(ky,kz). I1f the guess made for
¢ and ¢ is a good one, with difference between the exact solutions and
optimized trial solutions on the order of some small parameter e, the
error in the resultant dispersion relation (I1I1-24) is 0(52).

We have already adopted a first parameter, 4 z k. We now take

*

W1 = ¢1. This gives a variational formulation paralleling that used by

Ross and Mahajan,ls’19 20

and Hazeltine and Ross,”” in their variational
approach to studying drift waves. Defining K¢(x)  3,4n;, and
£ = fdx 0,%(x) £(x), for any function £, Eq. (I1I-18) may be written

(restoring the subscript <)

12,2 p 3
S¢ =K, ? -« BXPR) +(-7K¢ dk K2+ 0(3xak ). (111-25)
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We recall that for pi/L¢ <1, one has §_ = 5. In Sec. III.C, we shall
see that the contribution K_(x,x') to K(x,x') consists of two parts, a
purely local part, the “adiabatic term" RsA = 6(5,5')Ai'2(x), and a non-
local part IsB' In the regime pi/ch >1,KiA may still be combined with
the "nearly local" contributions to S, but RiB must be treated differ-
ently. In Appendix D, we evaluate the contribution S.p of iiB to S, in
the regime pi/L¢ >1, using a straight line orbit approximation for the
ion orbits in the region of mode localization. In this regime, we refer

to S., as S_, and so we have

iB >’
S=S *+Sp=S +S, .,  (o;/L>1),
and from before, (111-26)

S=S., S,=0 (o3/L, <1j.

In both regimes, S< has the form of (II1I-25).

Before further specifying the parameters M, We can apply Eq.
(111-23) for My =My = k. In Sec. 1II.C.2 we will see that, to the order
we are working both K< and FR in S, are even functions of k, and in
Appendix D, we will find that S is independent of k, assuming that

1

k<L¢ .

so the variational condition for k is

Therefore S is an even function of k, in both regimes, and

o = 25/ak = 2k 3S(k%)/ak%, (111-27)

satisfied by k = 0. We shall choose this solution henceforth.
Each of the variational equations (III-23) we will use has a
counterpart in the differential equation approach as used, for example,

by Gerver et al.21 These authors expand Eq. (III-15) to second order
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in both 6x = X=X and 8k = iax, and to first order in 6w = wow s where

the values of Xy k are determined from the conditions

0 =3 DG(xo,k;A), o= axODG(xo,k;A), (111-28)
and Wy is determined from the local dispersion relation

0= DG[xo, k;Ao z (wo, ky,kz)]. (111-29)
The first of Eqs. (1I11-28) corresponds to our Eq. (II1-27), and gives
the same result, k = 0. Equation (I11-29) corresponds to taking a lowest-
order approximation to our Eq. (III-24)}. The higher order contributions
to the dispersion relation S = 0 held in S< in Eq. (I1I-25) correspond
to the shift §w in frequency found in sclving the Weber equation which
arises in the differential equation approach of Ref. 21. We refer to
these contributions to the dispersion relation as Kie. (the subscript
"d.e." denoting "differential equation').

Now we further specify the form of the trial solutions. We ex-

pect solutions localized at some (real) point Xy = My, with half width

L¢ = la]-l/z, given by the parameter a = M3 in general complex. Defin-
ing 6x = x-x,, & = o /2 6x, we choose ¢; to be given by the eigenstates
of the Weber equation

(-352 + 52)¢1 = £¢,. (111-30)

This has solutions ¢1n (n=0,1,2,++) given by

2
6, ®) = N_(@ H@®e" (111-31)

where the H are the Hermite polynomials, and Nep 15 chosen so that

1=/ dx|¢1n(;)lz. The ¢y aTE solutions of (III-30) with eigen-
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value f = fn £ (2n+l). The solutions may be localized either by a poten-
tial well in the real part QR of Q(x) in (III-21), or by the effect of
the imaginary part QI' physically corresponding to a Landau resonance
effect, in the manner first elucidated by Pearlstein and Berkz3 in
studying the so-called universal instability.

We define the moments Mm of the Gaussian by

m 2
M@= [ dyy e?, (111-32)

so that
M @) = (/)2 M@0, M (@)= (1) M _,(a)/2a. (I11-33)

The Hermite polynomials may be defined by

2 2
H(0) = e (3" et (111-34)
- -£212
In particular, HO(E) = 1, so that normalizing $10 = Nxo e yields
N =M 2@ = @ml/, (111-35a)
Using (I11-34), one can show that?* in general
N (@) (a0 V2, (111-35b)
xn
Expanding K<(x) about x = X,
K=] (0", K (x)/mt, (111-36)
m=0 0
we evaluate (K) in (I1I-25), for $17%10°
(Ky=M 1M K(x) +M a, 2K /20 + s
< (o} o <o 2 X, < ’
(I111-37)

=K (x) + (4a)7? 3x02’(< + 0yt 1eh.

Here LQ Elaxzn Q|'1 is the scale length of the potential Q localizing
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the mode. An expansion analogous to (I11-37) may be done for the other
terms in (ITI-25) but, to the order we are working (namely, keeping only
up to second derivatives on K ),we may keep only the zero order parts of
these. In addition, it will be convenient (and consistent with our
ordering) to approximate K_ in thesc higher order terms by Lo the differ-
ence K - K, being of higher order. We shall choose K, to be all con-
tributions to K except that from K;p which, though important for deter-
mining the growth rate of the instability to be studied, is nevertheless

small:

Ko =K - KiB = KV + Ke + KiA' (111-38)

A more explicit form for Ko will be given in Sec. I1II.D.1. In the regime

pi/L¢ <1, where K_ = K = KO + KiB’ one therefore has

- - ~1 2
(K= (Ko> + KiB = K0+ KiB + (4a) on Ko (I11-39a)

and

(-3, TIpd=- axorR = g (-1axoak Keg * €.c.), (I11-39b)

where we have used (III-17), and the facts that Kv is independent of x
and that KsA ~ AS'Z(x) is independent of k (as already mentioned), so
that only the terms KsB in X contribute to -axrR. For pi/L¢ >1,K =K

- KiB = Ko, and therefore

~ -1.2
{ K<) = K0> = Ko + (40} axo K> (111-40a)
and
¢ -BXPR)z - on I‘R = (~i3xo Bk KeB + c.c.). (I11-40b)

In Sec. III.C.4 we will see that the electron contribution to I‘R is

down from that of the ions by a factor ~ (Qi/me). Therefore, we may
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retain only the ion term in (I1I-39b), and totally neglect the term in

(I11-40b).
With these approximations, using (I1I-26) in (III-24}, the dis-
persion relation assumes the following forms in the small and large

-0,/L, regimes:
hd

0 S:Ko + SiB + Kn.P.. + Kd.e.’ pi/L¢ <1, {I11-41a)
and

0

[

S=KO + siB + "_Le_ : pi/L¢ > 1. (I111-41b)

For pi/L4> <1, Sip =<KiB) = K;g- We evaluate S p for pi/an >1 in
Appendix D, and find that it has a form quite similar to its form in the
regime pi/L¢ < 1. This is discussed further in Sec. III.C. The term
Kn Q.E( -axr}{ ':—iaxoakKiB + c.c. is the lowest order correction due to
the nonlocal (n.%.) nature of the conductivity kernel. We see that
, . ) . .
SiB(oi’ch <1) + Kn.P.. in Eq. (III1-41la) is replaced by Si_B(pi/L¢J > 1) in
(I11-41b). Finally, K3 e.» whose explicit form will be given shortly,
is the contribution arising from solving a differential equation in x,
instead of just a local dispersion equation [viz. K(x) = 0]. All quanti-
ties in Eqs. (III-41) are evaluated at Xy For the Gaussian form of
¢ (x), and the quadratic approximation of Ko {x) we have made expanding
about x = X5 K d.e corresponds to the ground state energy coming from
solving the Schrodinger equation for a simple harmonic oscillator (SHO);
: . 1, -1, 2 2 : .
¥ = -
d.e. 1s then given by Kd.e. Z(a axo Ko + a.dk Ko). Since the differ
ential equation to be solved here is of the same form as the Schrddinger
equation, we may use our knowledge of the nature of the solutions of that

equation to generalize Eq. (III-41) to be valid both for the higher n
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Y'excited state" solutions °1n’ and for anharmonic corrections to the
"potential" Ko (x}. For the quadratic potential, we generalize the

expression for l(d e. tO

Kie. ™ Kd(.ne). : (fn/4)(u-lax ZKOMkZKOJ, (111-42)
o

wvhere we recall fn £ 2n + 1. Letting anhammonic corrections enter will
thift the eigenvalues from their harmonic well values, which we may ac-
count for by allowing the coefficients fn to shift from their harmonic
values 2n + 1, as the anharmonicity is turned on.

We now write out the variational equations for W= Xy and usz a.
The term S,

iB
over harmonic number £ of terms proportional to (w- w*i) (w- P.Q)-l.

in both pi/L‘b regimes will turn out to be equal to a sum

This temm is essential for obtaining the growth rates for the modes we
shall be studying, but it is nevertheless small in comparison to the
other temms in S. We can therefore neglect it in the xj and o variational
equations. For the X, equation, Kd.e. and Kn.z. are also higher order
contraibutions, leaving only Ko in expressions (III-41) for S:

0= 85/3)(0 = axo Ko + h.o. (111-43)

Equation (I1I-43) is the variational counterpart of the second of condi-
tions (II1-28). 1t localizes the mode at an extremm of Ko, just as
solving the differential equation (III-21) localizes the mode at an ex-
tremm of Q(x). The difference between these localization criteria of
the variatiional and differential equation approaches is negligible, to
tne order we are working.

Our final variational equation gives us a:



o = 35/ ={f /4) (-a %, %o T % K) (111-44)
and
1.2, ,1,2,.1/2 )
o= G o K/ KT (111-45)
This gives
el a2y 1. 2, 1172 )
Kg.e.” fnlz &7 K 3 KT (111-46)

In Sec. IIl.d.1 we will find that d](2 Ko > 0. Whether a, and Kd.,e.’ are
real or imaginary thus depends on whether the mode is localized at a
minimm or maximum of Ko (or, approximately, of Q).

In order for the localized mode assumption to be reasonable, the
potential Q must be of sufficient width and magnitude that (L¢/LQ) < 1.

Using L 2 =fn u'], and for the purposes of estimation assuming a well in

¢
QR which is quadratic from a maximum depth Qd =z !Q(xo)l up to Q = 0, so

that L 2 :Qd/(% 3 2Q), we obtain the criterion for localization
Q X,
2 x>~ -
1> (L¢/LQ) = lxd.e./xd[, (111-47)

where K d~Ko is the corresponding depth of the well in Ko.
To apply this abstract formalism, one must look at the specific

form of the function K. We proceed to do this in the following sectiom.

III.C. Conductivity K; Explicit Form

In this section we insert the physics into the abstract formal-
ism of Sec. III.B, by using the explicit form for the conductivity ker-
nel in a plasma, expressed in a canonical framework. The work of Parts
I and IT will prove useful to us here, in providing a description of the

particle orbits, in choosing an appropriate distribution function, and
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in understanding the physical origin of certain effects, which auto-
matically arise from the mathematics of the cainonical formulation. Most
notable among these are a generalized evpression for the diamagnetic
drift frequency in the presence of shear, and ion resonance effects which
may occur for appreciable shear, which previous ad hoc derivations have

missed.

II1.C.1, Explicit expression for Kg

In Appendix C we derive general expressions for the conductivity
kernel Ks in a three dimensional plasma, in a canonical formulation. As

there, we denote by ] the three canonical momenta whose invariance makes

3]

8 (1) = 3H/3l of the corresponding coordi-

the time rate of change Q(I)
nates B constant in time. For the slab geometry, we take I = I,PV,PZ)
£ (J,P), where J is the generalized gyroaction discussed in P .t II. The
conjugate coordinates are 6 = (0, Y, Z), with time derivatives Q = (%,

7, 2). In Appendix C, we find that

KS(Z)E'; w) = KSA(E’E') + KSB(E’E' ,LUJ, (III'483)
where
K ,x.x'") = ls'z(x) §(x-x'J, (111-48b)
and
3 meS/BH-_%'st/8_I_ *
KSB(E,E';LU) = (4m) (27m) g fdlp.&(ill) EY p£ (x’ LI.)'

(I1I-48c)
Here, f s is the equilibrium distribution function (denoted f os in Appen-

dix Q), ¢ = (2,2y,2z), and the other symbols are defined in Appendix C.
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First we deal with the nonlocal part, KSB' Specializing to a
slab geometry, we Fourier transform out the y,z,y', and z' dependences

in KsB‘ This involves the corresponding transforms of Py {x) and

o, (x'). Writing 1 (2) = R + ér, where R = (X, Y, 2) is the guiding
c;nter position and ér = (8x, 6y,82) describes the gyromotion about R,

one finds

by (Xkyok;) = €8 (L+k )60k k)T (0.k K, D), (111-49)

where o = x - X, and

ol
-1 ¢2 - .

7,0k, 1D = (2m) 1 jo" 408 (x-X-6x)¢ *° exp[-i(k 8y (6,1)+k 62(0,D].

Using Eqs. (I1I11-48¢), (11I1-49), and (I1I-1b), we find the one dimensional

analog of (III-1b), for the contribution psB(§) to Pg x): -dm psB(x;).)

= fdx' KSB(X,X'; 1), where

_ o wof /3H-1-3f /3] P
Ko (x,x" 51)= (4m) (27) Y Jar R Jg(o,ls,,kzll)JE(o',ky,kzl_l_).

R=-
(I1I-50)

We assume that we have chosen our distribution fumction fs in temms of
the canonical variables well, so that the self consistent equilibrium
potentials, determined by the formalism of Part I, are precisely the
desired reference potentials, and sc Xo= io(g)’ v35 v°35v| (Xo)=;|(g). As
in Part I, we shall take fs= fs(H,g), dependent on J only through H.
Therefore -2-3£ /3l = - £-3f /3P = k+af /9P, where k = y k, + Z k,.
Changing from integration variables I to (H,P), then, we have

d®1 = o 4y = X, dvgd 071, (111-51)

where 1 = a(Py, Pz)/a(xo,vs), as introduced in Sec. I.C.Z. Putting
(II1-51) into (I11-50), comparison with Eq. (I1I-4) allows us to read
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off KSB:

KSB(O,XO,O , A) =

:nafs/8H+£-Bf /P

o+ &.:(’Z

gn%e’ I dvsdHQ-ll

f=-c0

~ ~
1
Jl(o,kykZ)JL (o 'lSr’kz)°
(111-52)
A central quantity of the abstract formalism of Sec. 1II.B is K<(k,xo,-k').
We therefore Fourier transform (I.i-52) with respect to both ¢ and o'.

We use

Ty (oK, k, 1)

ko
fdo e cho'ky’kzl-l—)

@ '1f2“do “120145 6 (0-6x)exp[ -1 (ko+k 6V +k_62)]
m) ], doe [do 6 (o-6x)exp I(OIS" S

1 2m i . A A R
() 1 !0 doe 199 ¢ k GI(O)’ (kz]oukyy +k,z)  (111-53)
in Eq. (III-52), obtaining the important formula

Kep(k, X ,-k's 2) =

. (111-54)

wdf /3H¥K-3f /3P
R X

F@n @ .

g’ e? ) Hdv:,)dHn'1 1

Because it is purely local, the contribution SsA of the "adiaba-
tic tem" KsA to S is easier to calculate. Using (III-48b) in the first

line of Eq. (1iI-9}, one finds
S @,0) = Jax v 00 2.2 (x) 00 (111-55)

Comparing, this with the third line of (III-9), we read off KSA:

2

Kk, x, -K) = K, (x) = xs' x). (111-56)
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As already noted, these forms for KSA and SsA are valid and
useful for any value of cs/L¢, while K p in (III-45) is only of use in
the ''nearly local" regime ps/L¢ <1. In Appendix D we calculate a form
for SsB which is valid for the regime °s/L¢ >1, starting from KsB(o,Xo,
c') as given in Eq. (111-52). We thus obtain expressions for S and dis-
persion equations valid in both regimes, and can then smoothly connect
the behavior of S in these two regions to obtain a picture of mode sta-

bility valid for all QS/L¢.

IIT.C.2. On the Structure of Ks; Discussion

In the present section we discuss certain important features of
the Kemel l(S [given by Egs. (I11-54), (11I-56)] which is a central
object in the abstract formalism of Sec. II1.B. We note that
KS(R’XO,-k') has the same structure as the usual expression for the
susceptibility %g of a weakly inhomogeneous plasma in a uniform magnetic
field; indeed, in that limint KS reduces to just EZXS- It is much more
general, however, in two basic respects. The first is that all the
quantities (e.g. I, Q(I) ,32) appearing in l(s have a meaning generalized
from their wniform B limits to arbitrary magnetic inhomogeneity. The
second is that k # k', so that l(s contains more information than Xg -
This is reasonable, since Ks describes the full nonlocal conductivity
properties of the plasma, while Xg is a quantity derived under a local
(n + o) approximation. It arises from the present formalism [cf. Eq.

-+

(III-14)] by letting the operators Bx in K act only on the x dependence

of ¢1 and not of K itself. This corresponds to setting k = k'.
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The factor Ji (kl ps) {(J; is the Bessel function of the first
kind), appearing in the uniform B expressions for the conductivity, has
heen repiaced in Eq. (III-54) by the factor 31(5@7;(5';1;. This is
more general than Ji in both of the ways just mentioned. We recover
JQ by letting 6r(®) go to its simple harmonic, small gyroradius [nB -+ 0)
limit. We use the Bessel identity B

Ji(”) - (211)-1!(2)'"(1@&-19,Oelusino= il(z_”)-lféﬂdOe-lEG‘e-luCOS!'J, (111-57)

and Egs. (I1-111), (1I-119) of Part II for ér, to obtain the ng > © limit

of 7£ . These equations tell us that, in the coordinate system

[b1 = x, b, = byx 1)1, b3 = B(XO)] natural to the magnetic geometry at
x = XO, the g * © limit of the gyromotion is given by

5r(0) = [6x,(0), 6x,,(6), 0],

where éx ©) = Yosin_o is the excursion in the x = x - Bl direction,
6)(20(0) OcosO is the excursion in the X, = x- l’;z direction, and the
excursion in the x; = x b3 direction is zero. The oscillation ampli-
tudes JTO and )?20 are related by JTZO = Yo (2./9,), where Q_ = eB_/mc is
the usual cyclotron frequency at XO, and Qo is the ng > O limit of the
gyrofrequency which, we recall from Sec. II.K.1, is got in general
equal to QC.
From these results of Part II, we write

k-ér(e) = kéx ©) + kzdxzo(o) Y cos(@ 0] ), (III-SSa)

where k = k » b1 and k, = ke b2' (Similarly, we define k, = k+b )

From this follow the definitions of Hgo GO:

22 . 2 -
Mo = R+ KRS, IR = = using,, kX, = u,coso .  (I11-58b)
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Using (I111-58a) and (I11-57) in (111-53), we obtain, finally,

tnm Jkin) = i) %e M g o). (i11-59)
nB"O

For ¢r(Q) describing anharmonic gyromotion, we can still obtain
explicit expressions for the 32. Proceeding only up to O(nB) as in
Sec. I11.K.2, we can write

keér(o) = uocos(O-Oo) *+ Bjcos Z(O-Ol), where u]/uo ~ O(HE)-

Using the Bessel identity

exp(ivsing) = [ e'*% (), or exp(-incos0) = § (-0)%eC @), a1r-60)
g 2
one finds }E is given by
< 2 1800 ¢ _2im(0,-0
J i) = iyt 00 et O)y g ). (111-61)

n
One could, if desired, proceed similarly to arbitrary order in the g
expansion of ér (©).

In general, one may define JE by

J,&ID JQ(E(L)e'm“, (111-62)

where Ok is chosen to make 12(570) real and positive. Then ek+g%, and
JE-'J2 in the ng* © limit. The J2 retain certain of the useful properties

of their simple harmonic limits, the JE' For example, using Parseval's

theorem and the definition (III-53) of 32, one finds the relation

P o
1= e KOO L T 03w - . (111-63)
2 2

For k # k', there is a phase factor exp iz(ek,—ek) present in

expression (I1I-54), absent in the weakly inhomogeneous limit (k = k')
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usually used. For substantial g, this factor can give a significant
correction to the dispersion relation, contributing to the term -axrR
in Eq. (111-25) or (111-41) {cf. Sec. 111.D.2). This correction has
been found previously by other workers.l7' 27

For k = k', one sees from Eq. (I1I1-54) that KsB is a "formally
rcal’” quantity, i.g. if we replaced the resonance denbminator (w+ 29)
(which gives KsB a real and imaginary part) by a real function of the
momenta I, KsB itself would be real. Similarly, one may speak of func-
tions which are "formally imaginary" or "formally complex conjugates,"
as in the discussion of T and T* in Sec. I11.B.2. For example, from
(I111-54) one sees that KSE(k,Xo,-k') = K;B(k‘,xo,-k), where the "'
denotes the formal complex conjugate.

The entire k dependence of KSB(k,Xo,-k) is contained in the factor
Jﬁ(g). For anharmonic orbits, this factor, and so Ks,are not in general
even in k, as is the ng o limit Ji(uo). However, these anharmonic
corrections, of order ;é, are negligible in our ordering scheme, as will
be discussed in Sec. II;.C.S.

We shall break K into a lowest order part Kh, plus a tem Ko.m.
which is of higher order, and may be neglected, consistent with our
ordering (cf. Sec. III1.C.5). The subscript 'h' in K, indicates that in
evaluating K, we use the small gyroradius, harmonic limits of the
particle motion, and therefore the JQ limit of the JE' The subscript
“o.m." in Ko.m. refers to all the various anhammonic orbit modification
effects which enter expression (11I-54) for KsB’ when s = 1 £ ion species.

Thus Ko.m./Kh ~ ng. The term kept, Kh(k,Xo,-k'), is an integral over
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the factor éjl(ok'ek')Jz(uo)Jﬂ(ué), where u! = u_(k'). Therefore,
Kh(k,xo,-k) is even in k, as is diKh. From Eqs. (111-19), we see that
the remaining temm, -BXPR = -BXP]R in Eq. (I11-25), has a k dependence
given by

21 I T7T : "
T 27 (T*T)) = 503 -1, OKK,x,-K") [y 4

?

(1/2) (-2 e KOy 0000 W g

12
R(BkOk)JL(UO). (I11-64)

From Eqs. (III-59), the factor

9,0y = 3,0, = 3, arc tan (ki&/uo)

= Koy Gl 0 + 057! (111-65)
is even in k, as is Ji(uo). Thus each of the terms in expression
(I11-25) for S¢ is even in k, to the order we are working, as assumed in
Eq. (11I-27) in obtaining the condition k = 0. For k = 0, Eq. (III-65)

reduces to

.= L -1 P
= X, /v, = (@, /80K, . (111-66)

II1.C.3. Specializing Ksp: Choice of Distribution fg

We proceed further with expression (I11-54} for KsB’ by choosing a
particular form for the distribution fuention fs, so that the integrals
over momenta appearing in K p can be performed. We are guided in this
choice by the work of Part I. As in Sec. III.C.1, we assume we have

adjusted the variable parameters in fs [such as W (Xo), the average

|'s
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parallel velocity at Xo of particles of species s having guiding center
Xo]' so that the self-consistent and reference variables are the same.
Then the physical and quasiphysical regions of the (H,P) space are also
the same, and so the value of fs outside this region is irrelevant.

We begin by specifying fs quite generally, and then progressively
specialize it to get more spcific results. We modify the form of fs
from that of Part I to account for the parallel drift velocity Yis (Xo)
(just defined in more precise terms) of the distribution, and for the
perpendicular drift Voo = Vg- As in Part I, we want to express fS in
terms of fumctions of the invariants which have a readily discernable
physical meaning. One of these is Xo, already incorporated into the
formalism. The second is the parallel velocity u of a particle at Xo,
relative to the average parallel velocity Wis of the particles of that
species with guiding center XO, u(p) = Viu g Finally, we need a func-
tion of the invariants describing the perpendicular kinetic energy (again,
at the guiding center). From Sec. II.K.3, we recall that the perpendi-
cular kinetic energy at Xo is %{vgl + ng) = %{vgl+ vé). Going into the
frame drifting with perpendicular velocity Voz = Vg leaves only the
kinetic energy in the 61 £ X direction, h' = %—vgl {which is what cne
means by perpendicular kinetic energy when writing, for example,

u = myf/ZB, as we saw in Secs. I1.J and II1.K.3). We shall thus express

1 2 1.2

. _ Ty i 12
fs in terms of Xo’ u, and h' or H' = h' + Zu” = H esﬁ(xo) 3 W

EV3T2Ne
We now perform manipulations on the factor wdfg/3H + i- oP appearing
in (I11-45), and will then work on the denominator w+ Q. Expressing

fs in terms of H' instead of H, we have
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2f /3P)y = of /3P),
+ afs/aH- {@xo/a}:)[eSEo‘u(awu/aXo)-vE(avE/aXO)]-w” (avs/a_}g)}, (111-67)

where E0 =z E(Xo) z - a¢/ax0, as in Part II.

We shall take fs as a sum over terms fsj’ as in Sec. I.C.3.
Eq. (111-67) then also holds for each o¢ the fsj' Using (1I1I-67), we
find that

uafsj/aH)£+5 -afsj/BE)H=-Ysj (w' -m‘sj)fsj + [k3-k2(3w”/axo)]stj/au,

(I11-68)
where kj E bJ k (j = 2, 3), and where we have the generalized fomms
of familiar symbols:

w' T ow -kzu.E -k3w“, (111-69)
up = (a)(o/apz)[-eSE0 + u(aw”/a)(o) +VE(B\'E/3XO)] (111-70)
agy = Kyl (axo/apz)?;, (X /aP,) = ‘;2' (3X,/3P) , (I111-71)
kg5 © (a/axo)znfsj, ?SJ. = -(a/aH')znfsj, (111-72)

and used fs = fs (H',u,XO) in computing afS/BB)H,. We note that Wag s
'cfj’ and Vsj are not functions of Xo, u, and h. Taking the H' dependence
of fsj to be exp(-yjH')(i.e., assuming a local Maxwellian form, with

uniform temperature), we have = Yj = constant. The variation of

sj
f (,P) with respect to P,, i.e., b, - (3f,/3P), is daminated by the
variation of the density n(Xo)[cf. Eq. (II1-83)], and thus ncfj =K =
(a/axo)zn n(xo). In the limits of no shear and BVE/BX0 +0, BXO/BPZ -

(m Qc)'l, and so
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2
u v v = -ch/Bo, and Wags kz”n vsj /QC

2
v
factor (axo/apz) becomes strongly Vg - dependent [cf Eq. (111-85)}, in

E Ysj-l)' the usual diamagnetic drift frequency. Witk shear, the

fact becoming singular as (1 + KSVB/QC) goes to zero. Accordingly, the
expressions for Up and Wug; are modified by finite KSVB/QC, just as
found in Sec. II.K for the gyrofrequency Q. In particular, for values
of P where the function XO(E) approaches the point of double-valuedness
(as for point a in Fig. 2}, a)(o/aP2 becomes infinite, as do U w‘sj'
and Qo_l. The approach of & to zero is a real one, arising as the sep-
tum creating the two wells in Fig. 3 appears, as ]vsl is increased from
zero, so that even a particle with ng = pi/LB'=0 can make very large
excursions in x, in this very flat-b;ttomed ;éll. In this unstable sit-
uation, even a very slight perturbation dEZ ~k2¢ can cuase large changes
in Xo; hence the large contributions to the response kZ“E’ w‘sj"kz in
(111-68) and (1I1-69). The response cannot really become infinite, of
course; as these terms go to infinity, the linearization approximation
upon which the conductivity kernel was derived breaks down.

We turn now to expressing the resonant denominator w+£-8 in
terms of the new variables (u,h'). We rewrite Egs. (1I-117) and (11-118)

as

)‘(20 = vp +vg (Wh'), 5‘30 =w tu, (111-73)

where Vp» the generalization of the B x VB drift, may be read off from
Eq. (1I-117). We also expand the gyro-frequency Q (which, we recall, is

vs-dependent) about its value at the drift frame velocity bsz-rb3 W
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From Eq. (11-109), wec have:

, 2
£z=ﬁc[1 + (BVE/BXOJ/QC+ KSVS/QC]I/ + O(jgz)

(111-74)

—

= QO *5 (QC/QO) (Ksu) = ‘Qo + 80
where we redefine Q, slightly from its meaning in Part II, by

1/2

Qo 2 Qu=0):= Qc[l + (GVE/BXO)/QC ML /Qc] Using (III-73),

(111-74), we then have

wtleQ

w'" -lf% - (k2 vp + k3Ll+ 269},
(111-75)

vo_ - '
w mo (kZVB + k3 u),

where «" Z w - ksz - ksw” is the wave frequency as seen from the drift
frame, and ks' =z k3 + R(QC/QOJKS/Z. We see that the dispersion in Q
i.e., its dependence upon u) has introduced a term which makes

&k, = k3' - k3 # 0. Since this temm is proportional to %, even for weak

3
shear, 6k3 may be substantial, for sizeable 2. This can have signifi-

cant effects on growth rates of instabilities such as the ion drift cy-
clotron instability (to be studied in Sec. III.D), where the assumption

k3 =~ 0 is usually made.

Using the results obtained thus far in this section, we may

write Eq. (I1I-54), valid for arbitrary functions fsjﬂ{', u, XO), as

Ksp = % KsjB> Ksjp = Ksjp1 * Xsjmz

(111-76)

Fp1.p2°

ool o2 e T
K5 (B1,82) KoXr k) =81 € % fdufdh’ |@ IIJQ.(E)JQ k")

where the factors FBl,BZ are given by
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- -1
Fp1 = gy @ - wegdigy we2-@ o,
(I1I1-77)
Fpy = [kg - Ky (3wy/3X)] (3£ /20) (w s1e7L,

and (w + £-Q) is given by (III-75).
Now we further specialize the form of fs. Following (I-21) and
(I-26), we take
2,, . ,
‘ 1 2 -1 -y u /2 _ -yh' _ -Ry_h
fs(H = h' *5u, u,Xo)=ns|m le s (goe s . g,e s ).
(111-80)

The normalization, analogous to (I-23), is taken as
o -] =] _1
n (X)) = 2nf dh'[ dul@ Tf,. (111-81)
o) -
Putting (III-70) into (III-71) gives

1= i) @, - /M), (11-82)

as in (I-27).

By taking 0 < El‘ Eo’ one may consider a loss cone type distri-
bution, with loss cone partially filled @l< Eo), if desired. In the
application to be made in Sec. III.D, we shall take §1 = 0, a drifting
Maxwellian distribution. We assume El = (1 henceforth, and so may drop
the j subscript on fsj=o = fs. Equation (II1I-80) then reduces to

£ H,X) =n_loI" g e-YSH', (111-83)
s ) s 0
where g = (v,/20)*/%. since £, (H',X) is not explicitly u-dependent,
FBZ in (I1I1-77) and KsBZ in (I1I1I-76) vanish, so that KsB = KsBl‘ In the
following section, we use our choice (I1I-83) for fs in expressions
(111-76) and (I11I-77) to explicitly evaluate the integrals prescribed
there.
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I11.C.4. Kcg for the Drifting Maxwellian

In this section we use the specialized form (III-83) for fs to
obtain a more explicit expression for the contribution KsB(k,x,-k') to
the conductivity. From (III-76) and (1II1-77),

Kep (kX , k") = 322§ (2 fdufdn' E e-Ysuz/2 e-Ysh'
s ¢ 0

-i2(0) -0y 1)
x e

(I11-84)
3,093, (k') (' -0y ) (-2 -k vp-kyu) L.
Orbit modification effects enter here in several places, all of whic_h we
lump into the temrm Ko.m‘ There is the O(nB) correction to .TRE Jl e-mek
from its hammonic limit, as already discus;ed. There is also the u de-
pendence of Up and Wags in addition to that for Q, already expressed in
Eq. (I11-74). From Eqs. (11I-70), (11I-71), we see that both these are
proportional to (BXO/BPZ) E(BXO/ ag)-f;z, From Part I, we know that along
the pseudotrajectory ATX), (3X,/3P,) = (mQC)'l. Off this trajectory
(VB*O), (BXO/BPZ) is shifted from this value by the local radius of

curvature P = eB/»<s of ésc in the P plane:

(3%, /3P,) = (mszc)‘1 1+ v3/1>)'1 - (mc)‘1(1m5v3/nc)'1. (111-85)

As in (III-74), we may thus expand Ups Wag about Vg =W, the first order
corrections being O(Ksu/szc) ~0(nB) down from the zero order terms. In
the case of Q, this O(nB) correc:ion appears in KsB multiplied by har-
monic number £, and so ;e retain it in Kh The corrections to KsB due
to this dispersion in Up, wag are only O(nB), and so are put into Ko.m.'
Each of these O(nB) erms comprising Ko_m.-can be explicitly evaluated,

if desired. These terms are of higher order than we require, as already
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mentioned, however, and so shall not be explicitly displayed here. Also
lumped into the neglected K, m contribution is the term from ksz in
(111-84). Finally, we neglect the terms in a%l/axo and avE/aX0 in

(I11-70), so that up may be written

U (V) = V(1 + «vs/2) (111-86)
We denote by Up, Wag the zero-order (v3==w“) values of these
quantities. From Eqs. (I1I-58b) we note that @ = arcsin (kio/uo) is
independent of the action J, and hence of h', and for k/k2 <<1, of u.

We may thus approximate (II1I1-84) by its contribution to Kh:

2 '
YU /2 -ysh

2. (0 -0 y) _
k 7k 2n [dufdh' g _ e e

KsB(k,Xo,-k') = -x;'g e
x T ()0, () (= wa ) (W20 - k3u)"1 (111-87)
2o ~i8(0,-8))

=1 [1-W(zg )] (2, /2,01, (. Jexpl—5 (g

9.

= - = 't - = = -1/2
1 Z e, B Fw- 20, zﬂs..Qz/Ikgvsl, veEYg T,
2_ 2

ulzul00 = w/m)? 6+ k2@ /0%, ) = u k), 1 is the mod-

Here Q

ified Bessel function of index £, and

W(z)

- 2
@m) V2 ax e 2 x-0)71 = 1422(2), (111-88)

for z = 3+ i z, in the upper half plane, where

I
172 (%4 X272, -1

2(z) = (2m) [ &xe (x-2) (111-89)

is the plasma dispersion function. In obtaining (I11I-87) we have made

use of the Bessel identity28

© 2
faxx e* /2 Je@x)J (@'x) = 1,(qq’) exp -%{q2+q‘2)], (111-50)
)
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. ~2_ .2 _ L2
and of tl.e fact that X vol/ZV2 = (vol/uo) , so that

2 _—-2.,2 2 2 2 2 2
boo = XKk, S22 ) = vy /) Ik ek e )% e

From (I11-87), the contribution of KsB to K = K(k,Xo-k) 1s

' : Y . ,
Kyp(koX oK) = - A E“'“ns)ml”‘z)"zs’ (111-92)

" . . 2 . . ,
where Mg = Ay(by), by 2w % A ) = 1, (0) e, and Wy Wz, ).

For Kn.i,’ we also need the contributior. of species s to Fl = iakK(k,Xo,

—k')]k=k,. Since L in Eq. (I1I-56) is k- independent, this contribu-

tion is given by

: ¢ . - = -2 _w 5 '
13khsBa"Xo’ k')lkzk' As %(1 “RS)GE/QZJ[ZBROR)AES+(1/2)(akbs)hzs]’
(I11-93)
where Aés =z aAR(bS)/abs. The term in (zakok) yields 'R and the cne
in (akbs) gives rll' In the frequency regime we shall be considering,
we have u)<29i < < Qe, and so Qz,szﬂi for thz ions, and 92-29e for the
electrons. Therefore the electron contribution to Tl is down from the
ion contribution by a factor < (Qi/RQe). The electron contribution is
thus completely negligible, reflecting the fact that the small electron
gyroradius causes the electron contribution to the conductivity to be

almost truly local. Since in addition KSA does not contribute to Kn .7

nor does the vacuum term KV (being x independent), one has the form
Kn.R. == ax[iakKiB(k’x!-k') |k=k1 + C-C-],

already stated in Sec. III.B.3. Using

ml/szz = -91_/90 + (w"/szo) (91/92) (111-%4)
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and the Bessel identity

a

1= 3 A, (), (111-95)

fx-co

we find

= -2 -
Knog.® %07 (@0 1 0-H3) (00 /250051
(111-96)
= - -2 -2 (1] -
3, Ay (38 11 (2,72 +2,7(3,6,) (w Qo)g(l W) (/9,00 1,
where the species label s=i on Q4 QZ' w", and 2, is implicit, and
- 1. g \ . .
11 =1 E wii Af,i' In the 1imit of no shear ('& +0), we will consider
modes in which k3' = k3 =0, Wii=W(z=°°) = 0, for all 2, and thus Il= 1.
In Fig. 11 we sketch the behavior of the real and imaginary parts, WR
and ¥y, of W(z). These functions are substantial in the region |z} |,
going rapidly to zero for larger |z |. We write w" = (2+A%) ;> with
. . = " _ l 1 4
A% some substantial fraction of one. Thus Zgeg E (w Q'Qoi)/lk3+29. KS)\i]
= (448~ E')/[(‘k3+ %—l'ns)pi]. Again assuming k3°i<<l’ we sketch the ¢’
dependence of this in Fig. 12. We see that it is only for &' in the vi-

cinity of £ that |z ~1, and so it is only a few temms of the sum in

vil
I, that contribute. Thus, even in the presence of shear, we expect |11|
to be same number < 1. We also note that Kn.z.’ and hence rlR’ have both
real and imaginary parts, reflecting the distinction between truly real
and formally real.

We have now evaluated the terms called for by the dispersion re-
i1~tion, Eq. (III-41). Before going on to an application, we can now use
the explicit expressions just obtained to make more precise the various

assumptions oi; ordering we have made up to this point. We proceed to do

this is in the fcllowing section.
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II1.C.5. Some Estimates and Ordering

In the development thus far, we have made a number of assumptions
on the relative sizes of the various terms under consideration. In the
application of the formalism in Sec. III.D, we shall make a number of
additional ordering assumptions. Now that we have derived explicit ex-
pressions for the quantities called for by the abstract formalism of Sec.
II1.B, we are in a position to considcr more precisely what these approx-
imations imply.

There are a number of small parameters which enter into the theory.
To begin with, there are the parameters Ngs Ngs Mps etc., defined in the
Introduction to Part I1I, and usasd frequentlyﬁthroughout each part of
this thesis. As has been noted, in Sec. III.D we shall be considering
mode frequencies u-mi, with ¢ a moderately large nmumber, perhaps in the
range 5 <& <20, for which an analysis using separate Bernstein harmonics
is preferable to one involving the straight line orbit approximation.
Thus 2! is another small parameter.

In the trumncation procedure of Sec. III.B.2, we neglected terms
with derivatives of X < of higher than second order, first in k, and later
in x. From the structure of l(SB in Eqs. (III-54), (111-825, or (III-87),
we see that ak acts on two places in l(sB: on the factor e , and on
the factor Jg(“o)‘]g,(“é) or Az(usu;). (Here, % satisfies mszu, hence
5<% £20 for the ions, as noted above, and £=0 for the electrons.)

Using Egs. (I1I-65) or (III-66), one has that -

iQGk

igo -
Ke@m)e K, (111-97)

-ig0. -
n Kk n
e T (ye) e
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and recalling that bs = usz = (klps)z, one finds

2n+l

ey s S (111-98)

2 AP,

In view of these scalings, the action of ak on the former factor dom-
inates the latter, for the ions, by the hammonic number 2. Also, by
Eq. (111-27), (k/kz) is equal to (or very nearly equal to) zero. Thus,

we have

F]I/FIR‘*(Bkln bs)/(lakOk) ~ (k/kzi) << 1. (111-99)

For K(k,x,-k), the factor in Ok is not present, and so ak acts purely on

the bs dependence. Thus

K~ k,°K, (111-100)

Now we can discuss the condition for convergence of the infinite
order operator K of Eq. (III-13) or (II1-14), and the validity of trunca-
tion at finite order. In Sec. III.B, these conditions were abstractly
symbolized by the condition 9,3 <1. Making the straightforwafd replace-

ments Bk + 2/k2, BX + L, , we arrive at the convergence condition

¢’
1> axak ~ (2/k2L¢) = e¢2. (I131-101)

For the electrons, where &~ 0, this condition is easily satisfied,

even for very small L The truncation at second order for the electrons

o
is thus a very good approximation, reflecting the highly local nature
(small koeJ of the electron response. We therefore henceforth consider
(I11-101) only in connection with the ions. For the ions, this condition

can be rather stringent. The ratio of the parameter e¢2 to pi/L¢
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(which was the parameter for determining whether the nearly local or
fully integral fomm of SiB should be employed) is given by

e®2/(oi/L®) = (P./kzpi). In Eq. (I111-104), we shall find that (Q/kzoi)

~ < 1. Thus Eq. (I11I-101) is a samewhat more stringent condition
than pi/Lqp < 1 for loss of validity of the nearly-local form of Si_B'

At the end of this section [see Eq. I1I-116)], we discuss why condition
(ITI-101) is probably more stringent than necessary, and may be replaced
by c¢1< 1. This criterion is of stringency comparable to pi/L¢ < 1.
Thus, when the validity of the nearly-local approximation for SiB breaks
down, the regime where Di/ch >1 is entered. In this regime, dispersion
equation (II1I-41b) becomes valid.

Applying the same sort of scaling argument as used to obtain

(111-101), and using (II1-45) for L:pz = |a|, we reexpress condition
(111-47) for mode localization:
1> L /)Y =Ly L. (111-102)
%" Q 2Q

This condition is met whenever (III-101) is.

We can estimate the size of kz, for the application of Sec. III-D,

using the fact that we shall be considering modes in a frequency regime

where
w~ QQiz Wey = k2 Ky Py Vi (I11-103)
This gives
SIS | )
kzpi= R.Ln/pi zan, T>2 (111-164)

and so (1II-93) gives a condition on I.Q:

- GNP e

nQEpi/LQ<2nn*.' e
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Before we can compare the relative sizes of the various temms
in dispercion equations (111-41), we must estimate the size of LQ‘ With-
out shear, LQ is given by the scale length Lp~ Ln of the plasma param-

S |

eters. As Kg = Ls is increased from zero, however, a new scale length

Loe, defined by

Lo © [axlﬂn z

~L (& -
o _Ls ‘U/kzve) << LS (I11-106)

ool
moves rapidly in from infinity, becaming the dominant (shorter) scale

length of the potential Q. Thus,
LQ = min (L, L) (111-107

f = = -
The changeover from LQ Ln to LQ Loe occurs when

Ks/Kn z Ln/Ls ~ w/kzve =Ny (vi,/ve) <<, (I111-108)
where we have used Eqs. (111-103) and (III-104) in the second approxima-
tion. For Te:Ti, and n, = %, this gives Ks/Kn =~ (1/200) at changeover.
Thus, essentially because vi/ve << 1, shear effects become strong long
before the naive guess Ks/Kn ~1 one might make.

We now compare the relative sizes of the terms appearing in the
dispersion relation, using the scalings discussed in this section. We
find

Ki.e. /X~ £, 0k, LQ)-I’ Kn o /K~ (/KL
Ko.m./K”‘B » K~ K~ K.

(111-109)

n
We note that Kn.f!..
of as L&l, as does Kd.e.' This reflects the fact, noted in Sec. III.C.4,. .o ®.

L L4
P PP G B -t et B re B s e ce- " e

v -emme =« *tfat %tile electron contribution to Tig is down from the ion contribution

scales as the reciprocal of L P = min(Ln, LB) instead

by (me/mil). The action of 3, in K oo =T brings in (through Loe)
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a factor (mi/me)l/2 which partially compensates, but still leaves the
ion contribution dominant. The dependence of Kn g, on L;I is thus much

weaker than that of Kd e.”
From Eqs. (I111-109) and (I11I1-104), we have that KO n /l(d e

A

-1 i A . o ,
n§ kz LQ aQ/L?Z)R% . For both the regime LQ = Ln and LQ = Loe’ using
this condition and expression (II1I1-108) gives

Koom. Kie. S ViV <<1, (111-110)

justifying our assumption that Ko.m. may be neglected in (1II-41), re-
placing K there by Kh'

In Fig. 13 we display the scaling of these various ratios
(P’S(/Kh) (x =h, d.e., n.2., o.m.) with KS/Kn. We employ the parameters
Ep?. z R/ksz EpIE l/ksz, and n, as calibrations on the ordinate axis
(not drawn to scale). We note the elbow in (Kd.e./Kh) due to the transi-

tion from LQ = Ln to LQ = Loe’ occurring at KS/Kn ~(w/k2ve), and see that

Ko n /Kd e, << 1, as shown just above algebraically. Using L¢: a_l/z
~ Q(kZLQ)-l/z and (III-104), we express (III-101) as
-1/2 _ 1/2 .
1> 20<2LQ) _(Qqan) . (I11-111)

This convergence condition is violated at K‘S/KnZ (vi/ve) (!Ln,n).1 =~

(Lo /L) an )™, indicated by line a in Fig. 13. To the right of line b,
the less stringent condition (II1-116) or (III-117) breaks down, and the
criterion pi/L¢ < 1 fails at some point in the vicinity of this line. To
the right of this line, use of the form siB valid for pi/L¢ > 1 becomes

appropriate.
e e . s ™

©e ®ecee e~ by tHe pbint of View of tie “idns, the appearance of the local-

ized mode in the nearly local (pi/l‘cb < 1 and fully integral (pi/L¢ >1)
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regimes is quite different. However, we now show that the dispersion
equations for these two different regimes are, nevertheless, quite sim-

ilar. Using the large argument limit of Al’
A, (b) (2nb)"1/2 (I11-112)
£ ) ’ *

and putting this into Eq. (D29), one has

172 2 2712
My (gfly <1) = (21b)) = (k5 . I1-u3)

On the other hand, taking the n=0 value of (D30),

(o8

Mg (g/Ly > 1) = S I TR s IR ¢ ¢S S $E)

If we write o = ¢ kx2> , some average value of the wavevector in the
X = b1 direction, we see that (1I1-113) is the same as (111-114), up to

a factor of 111/2.

Thus, up to this factor, the contribution of sj_B to
dispersion equations (I11-41a) and (III-41b) is the same. Moreover, from
Fig. 13 we see that Kn,g, has become small ccmpared to Kd.e.in the regime
where ps/Lq.J > 1 becomes valid, and so may be neglected in (III-4la).
Equations (III-4la) and (III-41b) are then almost identical, though apply-
ing to quite different regimes. This similarity in form is corroborated
by the numerical findings of Ref. 21. These authors perform a stability
analysis for a plasma with strong density inhomogeneity using two methods,
oiie (which they call the "local method") employing truncation of the exact
kernel at second order, just as we do here, and the other (termed the
"nonlocal method') solving Poisson's equation in k space, taking account
of the coupling of wavsm.m?e_rg, Lapsed by n. Applying these.metheds nu-® < & &~ -

. B so "nTei:iEa.ll'y,' éh'ese authors find the results of their local method to be in

good agreement with the nonlocal method into the regime (kzL A > 1) where
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the latter method is strictly valid, but the former is not.

The authors of Ref. 21 postulate a much more easily satisi.cd
convergence condition than (111-101), namely 1 > ch, where CQEE R/kqu.
(Harmonic number % does not enter into their considerations because, as
noted in Sec. I11.B.1, they make the approximation k=k' from the begin-

-iQ(Ok~Ok,) )
ning, and so set e =1.) Estimating the sizes of the n=0,1,2

termms in Eq. (I11-18), we find

n=0 term ) ~ K, (n=1 term)~1i3_.3, K~ €., K
x'k Qe ™ (I11-115)

= N~y =242, 2 W 2020 2
(n=2 terms) LQ dkK ch K, and 3y ak K ng K.

We thus see that, by manipulating terms as done in obtaining (III-18) from

(I11-17), we can change the parameter ¢ 3 of (III-101) to either €

¢ ¢1
. . m .n- . . n
(by collecting terms in 3k ak,’“ to yield a term in dk ), or to CQS?. (by
integrating derivatives ax on ¢, by parts so that they act only on K).
If we thus postulate that the nth order terms of S scale as Equ Eg;m
(m=0, 1, »++ n), where %JL = R/kZLq, condition (I1I-101) should be re-

placed by
1> Eg1? er. (111-116)
Using this weaker condition, we obtain the convergence boundary

1egy =y ngr OF K/ = (Lo /L) ";_12 , (I11-117)

instead of that given by Eq. (III-111).
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IT1.D. Application: Ion Drift Cyclotron Instability

In this Section we apply the formalism thus far developed, study-
ing the ion drift c;clotron (1DC) instability,28 in both unsheared and
sheared magnetic geometries. This instability is closely related to the
drift cyclotron loss cone (DCLC) 5;5tability,21’27 but finds its free
energy source only in the density gradient, as opposed to the DCLC, where
a loss cone ion distribution is the primary free energy source. The ap-
plication displays some (but not all) of the useful features of the for-
malism. In Sec. III.D.,1, we characterize the different shear regimes,
into which the scaling of the various terms entering into dispersion
equations (I1I-41) divides the problem. The subsequent sections consider

each of these regimes in turm.

111.D.1. Overview

In the application of this section, we use dispersion equation
(1I1-41a) in the regime where pi/Lqb > 1. However, in light of the dis-
cussion in Sec. III.C.5, the form of the dispersion equation in these
two regimes is almost the same, as are the expressions for mode growth
rates. The analysis divides itself naturally into three regimes, as a

function of shear strength:

a) ''Weak Shear" (K /K < Loe/Ls’ i.e. LQ::L )J: In this regime, the

shear scale length L is too long to s1gn1f1cant1y affect the M Of, o aoom- ™

.‘-..".._.,’..- AP

et ®t " fhe potentlal Qx). Modes are then localized in a potential well, of
width on the order of Ln' Then Ky e and a are real quantitizs. From

Fig. 13 or Eq. (1II-109), we see that in this range Kd(2=0)< < Kn . and
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SO Kd e becomes appreciable only for the higher-n modes {2n~%). Equa-

tion (111-41a) is the appropriate dispersion equation.

b) "Intermediate Shear” [Loe/L5< KS/Kn< (LOC/LS)(E/nnz)l: In this range,

the density and shear scale lengths Ln and Loc determining LQ are compar-
able. Shear causes the real part QR of the potential Q to have a hum at
the point where k;=0, surrounded by two wells at |z  |~1(cf. Fig. 17b).
Awav from this hump, the mode is strongly Landau damped by electrons, and
so the mode is localized in the Berk-Pearlstein fas.hion.z3 (This will be
described in more detail at the end of this section.)} Correspondingly,
Kd.e. and a are imaginary. Kd.c'("Fo) is now comparable to Kn.SL’ and so
botk should be retained in dispersion equation (III-41a), for pi/]‘¢< 1.
As the shear is increased still further in this regime, L.~ Loe becomes
small enough that the range pi/L¢> 1is entered. Then Eq. (111-41b) is the

appropriate dispersion equation, the nonlocal corrections entering through

SiB'

c} !'Strong Shear' [o<s/o<n > (Loe/LS) (Q/nnz)]: Here Loe has become so
small that Q(x) cannot localize modes, even in the Berk-Pearlstein manner.
(The terms "weak', ''intermediate', and "strong' here refer to the effect
on the problem of L < < L. Thus Ls/Ln is said to be 'small" when the
effect of shear on Q(x) dominates that of Ln.) In the following sections,
we shall discuss each of these regimes in turn.

Before proceeding to consider the IDC instability in these spe-
cific paramete> regimes, we develop some more general expressions which
are of use for more than one regime of KS/Kn. The IDC instability arises
from the interaction of a drift mode, the "ion-shielded electron convec-

tion" (ISEC) wave, and the ion Bernstein harmonics. We are thus in a
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frequency regime m~£{2i << Qe, and so keep only the ¢£=0 tem in the
electron contribution KeB' From Eqs. (III-11), (III-56), (III-92), and

(I11-96), we write
K+ Ko™ K * Ky,
W

ket e W (111-118)
el e oe u)e oe

1

-2 e il
* {Iz - I3 g Pos W‘) a- wﬂi)} .

2
2

factors I2 =1 - (.cpakok) (Ql/Qoi)Il, and I, =1- (ncpakok) (ui"/Qoi). We

Here, lc_z = k2 + k4 k32, and we have summed KiB and Kn 2.0 vielding the
have made the replacement 9, Ko here, where ‘o is the inverse plasma scale
length (for the ions). In the weak shear regime, and well into the inter-
mediate shear regime, Kp =Ky Even into the strong shear regime, where
Kg is only becoming comparable to K,» one still has Kp" K Noting that

-1
L. -~ ~
wi' Wy TRy and 3 O k2 , we see that

w. '~ w." ~ . Q.
i i it Y4 i

I, ~1 ~1-¢€

2~ 1 e I3 oL’

For u.\i" not near IZ.Qoi, one may neglect the K]._B contribution (the
term Zz) in (I1I-118), which is the origin of the ion Bernstein harmonics
(m~moi). The remaining expression is our choice for K, in the regime

pi/L o < 1, whose form is dominantly responsible for determining the mode

localization:

_ 2 - -
kK, =K+ LA, z, A 2 [1- A0 (1 weg/ung') (L-W )] (111-119)

For the regime pi/L 6 >1 where we have no contribution Kn 2. Ko is given
by (II1I-119), replacing 12 there by unity. In (III-119) we have used

(I11-86), noting that |we' - we"l = | k, (g~ vg) [~ (k,vg) (Kspe)l<<|k2VE|.



Setting the (formally) real part of this to zero gives the dispersion

relation for the ISEC mode:

-1
oe gRe)] ?
(I11-120)

] = - - \ = 2 -
“Isec T “IsEC T K2VE KW T "Wrelloe Bpelifie) T Tyt (1-A,

= 2 2 = = = - !
where 1 = e /Ai = Te/Ti’ and Bpe © Rege = Re(l “oe)' In the usual

limit in which this dispersion relation is derived, sp1+0, k3 + 0, and

wiSEC > wigpes SO that 8, 1, I2 +1, and Eq. (1II-120) reads

= 2 -1
isEc = T Wre foel (KAG)T + T+ bl
(I11-121)
-1
[k, 0%+ 0,2+ 117,

= 7 W hoe

2 2
where we have used (1 Aoe)_ be ~ k2 Pg *

We consider wygp. as a function of k,= |k|. From Eqs. (III-71)

and (I11-121), we have that ugp. = k, [kzz(xez+ o) + 117%, and thus

2

ISEC

. . 2 2 .
c has a maximum value “’?gEC’ occurring at kz (Ae * 0, J= 1. This

UJISE
gives a maximum harmonic number, zmx, for which the IDC instability can

occur.

-1/2

_omax 4,1 1/2 2, 2 ]
Tmax = WISEC/q = 7WnP) (3 AT (A% w7, (111-122)

where w,, x) = [41me (x)ez/mell/ 2 is the electron plasma frequency for a
plasma with density given by the guiding center density n, (x). As the
density gradient Kn weakens, g’max decreases, until finally Rma.x drops
below umity, and the IDC instability disappears altogether.
; 1,2 e
For calculating Kd. e’ we need to compute 5 dk Ko' The derivative

d.k acts only on 52 and Aoe = 1-be in (III-119), giving

38K =1+ (w 210, 0 (et wi/o g, (111-123)
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- 2 .
where w,' = kZKnVi /nci’ SO w,e/w,‘ = - 1, Since from (I1I-120),

1,2 X o
me' NwiSEC ~ w,, we see from (I11-123) that Re(7 d.k Ko) is a positive
quantity, a fact quoted in Sec. III.B.3.

Now using (III-123) and (I11-119) in (11I-46), we obtain an

explicit expression for Kd.e.:

1/2
- 1 2 1 2
Kie. =5l (4 K) 3 on K1
1. 2 2 2 /2
2 - T & ] r
- fn{[1+(wezmog)ﬂ”w*'/m')ge]’Z_BXO[IZ)“I ”‘e U'Aoege(hw*/m Y ’
ari-124)
where w' = w'c'. (In the present shear regime, u'= me'= wi' = m-kzve.)
Taking go and w' real, we have just seen that % deKO is real and
1, 2

positive. The temm Zaono will also be positive if the mode is localized
at a minimum of Ko(x), and negative if localized at a maximum. Thus the
product of these terms, Kd.e.z’ and their ratio, az, will be positive or
negative according as the mode is localized at a well bottom or a hill top
of Ko, respectively. Moreover from Eq. (I11-41), Kd.e. = (% deKo) o, SO
that (Kd.e./a) will be positive. In the case of weak shear, we will find
that the mode is localized at a well bottom. For the assumed form of the
eigenmodes, ¢~exp(-ocx2/2), we see that o must be real and positive to be-
have suitably as |x| + », and accordingly so must Ky g - For stronger
shear, the modes will be localized at a hill top. The appropriate bound-

nz
ary conditions in this case are outgoing wave solutions;”for which a,and
-.A‘-—n..o‘.o»o.A‘ P AR L
-

5o Ky o » have’ hegativeé fnhginary parts (a = iap, ap < 0).
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I11.D.2. IDC Instability with Negligible Shear

In this section we begin our study of the IDC instability in
the simply case in which it was originally studied,30 a uniform magnetic
field (nB + 0), with density gradient only. We shall retain the correc-
tion Kn.;.’ however, making the results valid for larger n, than in the
work of Ref. 30. Study of this simple configuration will serve to
clarify the nature of the instability, in preparation for the more com-

plicated problem of a sheared field, in addition to showing the effect

of Kn g, on the instability.
For k3=# 0, electron Landau damping enters (I1I-118) [through
W = I (W_)] to stabilize the mode. To maximize the growth rate, one

Ioe ™ "'m* oe
therefore sets k3 = 0 in the dispersion equation. Thus Wgs + W(=) =0

(cf. Fig. 11), and g =1 - wli + 1. For future use, we retain 8o and

8lin the dispersion equation, remembering that in this unsheared casc

these factors equal unity.

Using Eq. (iII-118) in this unsheared limit, Eq. (II1I-41a)

becomes

]
2..-2 -2 1 ! )
KO [1Roge (1t )]y ™ [Tp-Tg LAy 8y 1#Kg o, (111°125)

+ 0, this is the stan;

s o e

] t_ - = -
where We —uﬁ'—w'- W ksz. .F?f 52: }3 +1, Kd.e..

dard dispersfon®edidtion of Ref. 30 for the IDC instability. It is to
be evaluated at x = Xy where X, is found from application of (III-43).
We solve Eq. (III-125) for the IDC growth rate y. We first write

it in a slightly different form:
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2 2
0= [k A+ 1L (1-h 8 * A, Kyp) = Thog wals!

(I11-126)

1
N

} —
-1 Ag ————
3 7 212 w Rﬂci

where we define w, = Wy and note that in this regime, w, = w,'.
Designating the thre. tems in (III-126) by A' = A + ) *K; . , B, and C,
in Fig. 14 we graphically visualizc the dispersion equation to be solved.
In each frequency in.erval &'< w'/fzci < 2' + 1 except for the one con-
taining w, (2 < w,/ i < £+1), term C runs from -« to =, and so an
intersection of B#C vith -A' in Fig. 14, hence a real root of .g. (III-
126),1is guaranteed i . each of these intervals 2'. The IDC instability

h interval, if B+C does not extend far

can thus arise only in the gt
enough down (for w' -~eal) to reach -A'.
From this gr:phical representation of the origin of the instab-

ility, we see that r taining only the two terms % and 2+1 in factor C
accurately represents the dispersion relation in the frequency interval
where the instability arises. This two term approximation is graphically
displayed in Fig. 15 . Previous work on the IDC instability has solved
the IDC dispersion equation both rn.nnerically27 and analytically.30’31’32

In contrast to the two-term approximation we shall use here, the previous

analytic solutions r. tained only a single term of factor C, illustrated

in Fig. 15b. The radically different behavior of this one-term approx-
wee s eimstion e C grognd ihe ot frequency Jnteryal yjelds an expression for' e,

v which, as we shall see, scales quite differently with Iz, IS’ 8o» -gl

and K d.e. than the y from the two term approximation. In the unsheared,

small n, limit of Re*. 30 the first four of these hecome unity, Kd e is



-

-137-

neglected, and this improper scaling is irrelevant. In the present
work, however, we are interested in the corrections arising from these
factors, and so the to-term approximation becomes essential.

Using the two-term approximation to C, we see that C has two

zeroes, one at w' = w,, and the other at

wE Ny By woay ¥ Age18aa19g) /(B ¥ Ao t1Byag) =Wy e (111-127)
where wy F mci' The final near equality follows from (II1I-104), and
the large argument limit (III-112) on th-~ A}L' We define R as the value

of w' at which C is a minimum; this occurs roughly midway between w, and

0~ % (0, +@). (I111-128)

We need the derivatives

-2 -2
3, C-= -TIS[AEgQ(m*_wﬂ,J (w'-wl) + A£+1g2+1(w*'w2+1J (w'-w£+1J 1, (1II-129)

2 <3 -3 '
BwC = ZTIS[AlgSL(w*_wl) (w'-wl) +A2+lgﬂ+1(wﬂ+1~w*) (wl'*l-w') 1, (III-130)
’ 2
awB = Thoege wefw' ", (I11-131}
3 2B =2t g wfu> (111-132)
W oe®e ¥ *

Now we solve (III-126), expanding in éw = w'-0. At w'= {, we have

3 C=0, and
w

----- 28y Bt s TR O e u B s -1 R T R PPl A
3y B/3,C~ (A o8, ©g )/({Algl wl/z')-(s T BIE ) < <1, (111-133)

so that we may neglect asz. The ISEC mode satisfies
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0= (A~ B)'“ISEC, (ITI-134)

so the full dispersion equation (I11-126) may be written

= 1, 2,2 2 -
= (6w + @uygp) 13 B+ 3(6w)3 C+ C+ 2 Ky o (1:1-135)

where all coefficients are evaluated at . This is a quadratic equation

in dw with solution

N 2
fw T w'-0 = (amB/am C)

2 11/2

(IT1-136)

I+

2..2 =
{o,/0% -20@- ugriaprcntly o 10f

Instability arises when the expression under the radical is negative. The

s 2 2 = 2
destabilizing terms are -2 xde/aw C and -2(Q -wISEC)awB/aw C. For

instability, we must have

(ﬁ-wISEC) v g K /a B>—a B2, 2 . C/3 B. (111-137)

We maximize the growth rate y by letting w,=w, so that C(®) =0. From
Eqs. (II1-130), (III-31),we estimate the size of the other stabilizing

2.2
tem, (awBlam C)", from

1 2 -2 -2
V) awB/aw C= (“"Aoege Yo )/8 ISAEgE wl/Z)

(111-138)
= (322 ) (A eBe/ 1M o8l we € < Q.
Neglecting this term as well gives us a maximized growth rate:
2 .= . - 3 2 2
Y = 20 Q “’ISEC/QJ awB/aw C + er Kd.e./aw (o
(1I1-139)

2

2
= @ /1AL 1) [1- uygpe/ ) Mgl + by Ky o -
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In Appendix E we use an analogous procedure for the one term
approximation to the dispersiion equation, obtaining Bq. (ES5) for ym)z(,
which feglecting Kd’e..) has a formm quite similar to (III-139), but with
a factor (13]&82//‘09%)’ instead of the factor (Aoege/813/\lg222) of
(I11-139). Using (I1I1-112), and writing bi= 22, the ratio of these two
factors is (8132A2gp‘zﬂz/g:2,’\oez) =~ 8/2n =1, where we have taken the
lamits I, 8, g, * 1. As mentioned previously, therefore, though the
scaling of Yinx with these factors is very different for the two approx-
imations, in the limit that they are usually taken, the two expressions
for the growth rate are approximately the same.

For the negligible shear regime, g, = & = 1. From (I11-139),
we sece that yz is affected by 13, and also implicity by 12, which changes
wigEe 38 in (III-120). These effects are readily seen graphically. In-
Creasing IZ increases term A' in Eq. (III-126), thereby depressing the
line -A' in Figs. 14 or 15a. This in turn increases the gap between
(-A') and the minimum in (B+C), enhancing YZ, as well as decreasing
YIGEC [and so increasing (l-wISEC/ ©)]. Increasing 13 increases the cur-
vature awZCI§ , and thereby is stabilizing, allowing the same gap in (B+C)-
(-A) to be bridged by yzamzc, for smaller YZ.

We must nc - consider the dependence of the quantities 12,13 on
the physical parameters. Without loss of generality, we may restrict
ourselves to positive kZ’ relying on the very general symmetry prop-
erty?>*20 of X_ in B (111-48), that iflp(x)d satisfies Eq. (I11-1), so does
[¢*(x),-u*, i.e. under the mapping (k,w)~(-k,-w®), the physics is unchanged. In
addition, we maywithout lossofgenerahty 'ta']{é'kr'f 0. ‘Taking & <0 will'merely -

cause the drift mode (w ~w,) to interact with a Bernstein harmonic
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w~ - mi, instead of w~ mi. This change leaves Epl = !;Kn/kz unchanged.

From the definitions following (I1I11-118) of 12,13, we see that
1-1,~ Q) = w'-w,. At Y=y, we have w'~ T = w,, and so 0~ 0. The
effect of 12 on Y. is therefore negligible. Also, we have
13 ~1- Rxn/kz =1- Epl' Since R,Kn, and kz are all positive, in-
Creasing Kn decreases 13 which, from the foregoing discussion, enhances
Y, mxz over the value one would expect if the nonlocal correction Kn.l.
were neglected, especially for larger %£. The validity of expression
(111-139) and the concomitant scaling, mez ~ 13.1 z (l'epz)-l’ are
limited, however, by the convergence condition (III-116}, and by the
validity of the truncation at second order in éw used to obtain Eq.
(111-135).

Just as for 12, the effect of increasing Kd.e. in Figs. 14 or
15a is to further depress the line (-A') thereby enhancing YZ, as is
algebraically corroborated by Eq. (I1I-139). We shall see shortly that
the eigemmodes are localized at a minimum of Ko. Accordingly, as ex-
plained in Sec. III1.D.1, K e. is real and positive for this shear regime.
Thus, for fixed 2, the higher -n modes (which have larger Kg:% = fnl(éc.’g_)
should be more unstable. This enhancement may be understood in the fol-
lowing manner.33 The factor Kd. c. arises in the dispersion equation as
an average of kx2 (x) over the extent of the mode, and so many be grouped
with the vacuum term kz2 which also appears there. Neglecting the expli-
cit factor Ky . in (I11-139), we have that v, 2~ 2~uZ~kf =k, 2o (k3 .
Thus higher - n modes, having larger (13(2) , should have larger YZ. From

Fig. 15b, we note that use of the one term approximation would indicate
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that these higher n modes are more stable than those with lower n, just
the opposite behavior from that just described.

This increasing instability with mode number n has limits, however.
The first of these is the mode localization condition, Egq. (I11-47),which
gives a maximum value n .y to the mode index n. Aswillbe shown shortly
(cf. Fig.16b), Ko(x)has awell of depth Kd= Kd= r){z, where 1 is some fraction

0=<r <1, whose exact value depends upon the particular density profile. As n

(n) _ ¢ glo

increases from zero, Kd e nfd e

increases, and so does the mode growth

rate. Finally, as N K(gn()? takes on the maximum value for which (I111-47)
)

is not violated,i.e. K(n) ~ K,= rAi “. 'This determines N From Eq.

I11-139), the contribution of thist (me/Qi)2 is about (r/BIj\RgE%- (2r/8).

The second restriction on this analysis is that, if (ymx/Qi) be-
comes greater than unity, the approximation of separate harmonics we havc
been using becomes invalid,zl’4 and one should perform the sum over 2 to
obtain a valid dispersion equation, i.e., one should employ a straight
line orbit ajproximation for the ions. This approximation is considered
in connection with the IDC instability by Zelenyi.32 Here we shall employ
only the separate harmonic approximation, our principal interest being to
illustrate new effects brought out by the present formalism, rather than
exhaustively studying this instability. Applying this separate-harmonic

limitation
1> ¢y /07 (111-140)
to the effect on (me/ﬂi)z from Kd.e. alone, we find the restriction
1>2r/8 (I1I-141)

for the validity of the present analysis.
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If (III-141) is satisfied, we may imagine decreasing n from
some appreciable valuec, and observing the instability of the modes for
some fixed valuc of £. As the well width (»Ln) is increased, keeping
its depth about constant, Yox for a mode with a given n decreases, but
higher n modes arise, with the highest n mode roughly satisfying

. (n . -2 . . .
K )~ Iy Accordingly, we expect the maximum growth rate from all

doe.
modes of a given 2 to decrease only slowly, due solely to the effect on
Eq. (11I-139) of increasing 13. This slow stabilization of the £-modes
continues until K, becomes so small that Qmax of Eq. (11I1-122) drops be-
low 2. At this point, all modes with harmonic number ¢ become stable.

We now proceed to apply the variational condition (III-43), to

determine the position x, at which the mode is loculized, and accordingly
where (I1I-139) is to be evaluated. Taking 8o = 1» Eq. (III-119) be-

comes

2 -2, 2
Ko =k + Izki +Ae [l-Aoe(1+ Tw,/w')]. (111-142)

Noting that A;Z we~ n(x) K (X) Zn'(x) 23N, we see that the factor

A; Tw,/w' reaches a maximum where n'(x) does. At this point w,/w'>1.
From this information, in Fig. 16a we sketch the factor Ae-z we/w', as
well as xi'z = xe'z, versus x. Using this with Eq. (III-142), in Fig. 16b
we sketch Ko(x). We see that Ko has a single minimm X=X» occurring a
bit on the low density side of the point X where n' is maximun, in agree-
ment with the numerical findings of Ref. 21. The maximum in Ko(x) tc the
low density side of X, is unsuitable for Berk-Pearlstein type mode local-

ization, since in this shear regime B, =8 © 1, for all x.
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111.D.3. IDC Instability with Moderate Shear

Now we are ready to consider the problem of the IDC instability
in the regime of intermediate shear, where the scale lengths Ln’ Loe’
which enter into Ko(x) and Q(x), may be comparable. For n, < 1 (which
is a valid assumption even for strongly inhomogenecus plasmas such as the
Tormac sheath), it is in this regime that the transition from pi/L¢ <1
to pi/L¢ > 1 occurs. However, as discussed in Sec. 1I1.C.5, the change
in the actual form of the dispersion equation in making this transition
is quite minor, so that the analysis in either range is essentially the
same. For definiteness, we shall consider the regime pi/L¢ > 1, so that
En. (111-41b) is the appropriate dispersion equation.

We can put the dispersion equation into a form very similar to
Eqs. (II1-125) or (11I1-126) (which applied to the negligible shear regime),
by some generaliz:d definitions of the symbols used there. We define
w,' as kﬂznviz/ﬂ‘, as before, and generalize the shearless definitinn of

We also write w, = wy.

i
W 1o = o= - -
w' as follows: w' = wy 5w ksz kg i

S
e
*kylug; - VE) * kg &y, and wy = 800, + kg AWy, where Avy Wy - W,

the difference in parallel drifts, which produces the shear. The disper-

sion equation (II1I-41b) then appears as

0 =K, +S;g+Kye
ik e i oA g @+t o))
= e oe”e *
. (111-143)
-2 W' =Wy
PN e )] K

where A . is given by Eq. (D30) for t e regime pi/L¢ > 1.

21
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We consider the size of B and the effects on the dispersion
equation caused by it. Using Ampere's law, we estimate the size of K¢

oT H -
nS Kspl

K= (4nne/B)(mv“/c), or n =8 (mv“/vi), (I11-144)

where R = 87 p/B2 is the usual plasma 2. For the stronger-shear portion

of this intermediate-shear range, [e.g., from the point (Ks/Kn)=(Loe/LSQni)
where the strong convergence condition (III-111) breaks down, to the point
(Ks/Kn) = (&L

using the values n,~ .2, 2~10, T~ 1las in Sec. III.C.5, (KS/Kn) lies in

Oe/Ls nnz) where localization condition (II1I-102) is violated],

the range .01 to 1. Therefore ng = (KS/Kn)nn may take on values from about
.002 to .2. Strictly speaking, because it is based on Poisson's equation
instead of the full Maxwell equations, the present formalisn is valid only
for low B plasmas. Taking B~ .01, using (III-144) tells us that(Aw”/vi)
falls in the range .2 to 20.

In addition to the temm ks Aw” in the definition of w,. finite

W, i €nters w, through the tems w,; and k,{ug; - vp). Using Eq. (III-86)

for Ug; and the analogous equation for Weys 1.€0,

1

= 0 (Vg = W) T 0 (Vgm0 A+ kg 3/25) (I1I-145)

Wy -
* A

i
-1
)

wy (1 + Kgw ./a .

i %ci ?

one finds

Wa 3wyt kZ (uEi- E)+ k3 Aw" ~w,'- (w*'+k2VE) (Kg""i/ﬂci) +k3Aw”. (I1I-146)
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Assuming Wi~ Aw”, we see that w, may experinece a fractional shift from
its shearless limit u,' of (sz”i/Qci)“(Aw“/vi) ngx B(Aw"/vi)z which,
with the parameter values just estimated, falls in the range 4x 10-4 to 4.
The shift in w, away from the value w,' used in previous analyses of in-
stabilities involving this diamagnetic drift frequency may therefore be
quite significant.

As noted in Sec. II1.D.2, for finite ks(x), electron Landay damp-
ing will set in, lccalizing the mode. We therefore expect the mode am-
plitude (and source o~ free energy) to be greatest at that point X, where
kS(xz) = 0. In contrast to the unsheared case, we are thus at liberty
chanige the point of mode localization, by varying ky or kz'

The localization of the mode is determined by Ko, which, from
(I11-119), is given by (recalling 12 + 1 for pi/L¢ > 1)

K = Ko+ A %42 [1-A_g (1+71w!/w)], (II1-147)
o - b1 e oefe
the same as Eq. (11I1-142}, but with the factor 8e =1- Wbe now x - depen-
dent. Taking X, as our origin (x2==0), in the neighborhood of x = X,
we have z_ "= m/|k3(x)ve|:;L e/|x|. Using Fig. 11, therefore, in Fig. 17a

oe
[y
we draw -ge(x). Since WI(z) ~e* /2

»at X =X, = 0 (-gle) and all its
derivatives are zero, giving it a flat bottomed appearance.
For x/Loe <<1, 8o 1, and Ko goes to its unsheared value,
. . 2., -2
sketched in Fig. 16b. For x/Loe >>1, g, > 0, and K5+K +Ae (12+T). In
the region x/Loe'~1, the variation of Lre gives the real part Kﬁo of Ko

a double-well form. This is sketched in Fig. 17b, for Loe a bit shorter

than Ln’ and for x = Xy taken to the higher-density side of the point X;
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where n' = 0, Also drawn (dashed curve) is the form of K0 for the un-
sheared case, from Fig. 16b.

For weaker shear, the position of the double wells about x = X,
caused by 8e will move out toward |x|==, the resultant shape of Koo
moving toward its shearless value in the region of the well induced by
n', where a free energy source is available. Thus, for Loe greater than
Ln’ but comparable to it, we may still have a potential well (BXZKRO >0
at x = x, instead of the hump (BXZKRO < () shown in Fig. 17b. In the
following, we shall assume Loe < Ln, so that the situation is as in Fig.
17b. The analysis for the weaker shear case is, however, similar, con-
necting the shearless regime of Sec. II1.D.2 to the shear-dominated one.

The variational condition (II1I-43) for X, allows X, to be at any
extremun of ](o. However modes centered at any X, besides Xo= Xy will be
strongly damped, and so we consider only this local maximm. In addition,
in seeking the most unstable case, we choose ]S” kz so that x = X, falls
at the bottom of the well we foumd in the shearless regime.

As discussed at the end of Sec. III.D.1, mcdes localized at a
maximm of l(o will have Berk-Pearlstein type localization, with a and
Ky o. being (formally)imaginary and negative (a = -i|a]). Using the asymp-
totic value W(z) 3w 2 2, and our assumption that the curvature of K, at

X, is dominated by the factor 8o» We find

1.2, _-2,-2,-2 )
3 axoxo_ LS A% (1 + Tw, ' f0h), (111-148)

and (I1I1-124) becomes

K

1. 1/2
o= -t AT {[1*(“’e2/90e23 (lﬂw*'/w')]Aoe(1+Tw*‘/w')} . (111-149)
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Evaluating the dispersion equation (III-143) at Xy = X, we again

have 8 = 1. Analogous to (1II-126), we rewrite (II1I-143) as

[EA)%+ T+ (-ng) + A 7Ky o 10 TA 8 ' /'

o
(]

w'-w, . .
-1 E Ay B (“—':“’_1) (11i-150)

A' +B + (C, A = A+>\e2K

d.e.’

This has essentially the same form as Eq. (II1I-126), and the same
method of solution may be employed. There are certain differences worthy
of note, however.

To begin with, while Kd.e. was real for the shearless regime,
here it is imaginary, and the corresponding effect of Kie. O the growth
rate will be quite different.

Secondly, while g = 1 for both the moderate shear and the un-
sheared cases, gy is not equal to one, due to the dependence of Q, on vy
or u. We have g, =1 - W(z);), where z, = Qz/lk v, l = w'-wy, and
ky' = kg + .QKS/Z = QKS/Z. As described in the discussion following Eq.

(I1I-96) and illustrated in Fig. 12, for w' near the kth Bernstein har-
monic {w' - w, = M,Qoi, 0 < g < 1), the Itth harmonic amd nearby harmonics
%' may have [zl,l <1, and so g, is appreciably different from unity, with
both real and imaginary parts. For the £ and 241 terms kept in the two-
term approx:matlon, one has 23 ZAE/R,n and ~£+1_2(A2 1)/(2+1)n If
we let AL~ —-2-, this gives 204 :'zﬂﬁl,i:(ms) . Therefore we shall take

8g41 = 8, in the following analysis.
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In addition, although expressions (D29) and (D3D) for A,, are

21
quite similar, they are not entirely identical. Even if one writes

a = (kxz) and sets n = 0, as done in Sec. III.C.5 to achieve a formal
resemblance, Ali(pi/L¢ > 1) is still down from ARi(pi/L¢ < 1) by a factor
of 11/2. Also, o is now an imaginary number, and so will affect the mode
growth rate differently, in the stronger-shear end of the moderate-shear
regime, where a*—kzz. And lastly, the higher -n values of Ali are equal
to (—1)n Cn times the n=0value, Azi(n=0). For n odd, cn=0, and therefore
SiB = 0, and the IDC instability vanishes. We shall therefore henceforth

consider only even-n perturbations, for which Ali(n) = AL (0).

Zi(
Finally, the effects of the finite parallel currents w

“n
s present
with finite shear make themselves known in (I1I1-150), through the gener-
alized meanings of w,, Wy and Qio' Each of these effects may be seen
either graphically from Fig. 14, or algebraically, in Eq. (I11-136) or
(II1-139), which, with suitable reinterpretation, are valid for the mod-
erate shear regime, as well as for the negligible-shear case for which
they were derived.

For fixed w,', Eq. (III-146) tells us that as Wiy is increased,

1

w, decreases, while Qoi :'Qc(l +t5 sz“./ﬂc) increases. Thus the point

i
w' = w, at which term C in (III-150) or Fig. 14 passes through zero shifts
toward lower values, while the spacing Qoi between consecutive poles of
C increases. Terms A and B are wnaffected. Thus the values of § and k.e
at which maximum growth occurs will also be shifted.

The situation is different if instead the shear is induced by
increasing Wie? taking Wi equal zero. In this case w,~w,"', Qoi = Qci

and, aside from the difference induced by Ky e.? the dispersion equation
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is the same as in the unsheared case.

Now we solve (I1I-150) for the growth rate, using the two-term
approximation, as in Sec. II1I.D.2. We again define Qas the point atwhich
awc = 0. Using the facts that 8,7 85410 and that AQ: A2+1 [cf. Egs.

(I11-114) or (II1I-113)], we find from (II1-129) the relation

-wﬂ"‘l)z/( 8 -wl)z = (AQ+1 gQ+1/AQgQ) (wg'.,.l'm*)/(w*'wﬁ) (IfI-151)

P
o

(w2+1 - w*)/(‘ﬂt - mg‘)-

1

Thus & again lies on the real w' axis, between wy and Wy ® - vthing
now fellows as in Sec. III.D.2. In particular, Eqs. (II1I-134) thr-ugh
(I1I-136) are again valid. The growth rate is again maximized by th:
expression on the right hand side of (III-139), but nov this expression

is no longer real, due to Kd e.? O in Az, and B+ Instead, one must write

2

Ymx = Re {(EZ/SI#‘#%EZ)[(1‘“’ISEC/§)Aoege * 12 Ke.]

1/2
} (111-152)

From Fig. 11, one sees that as :Ri:r (ins)-l'moves in from infinity,

Epg = Re g first increases from one, and then decreases to values below
one in the (strong shear) regime where 2o < 1, while gy = Img2 is
negative, becoming largest around 205 = 1. Combining this with the facts
that Kﬁ.e.::—ilkﬁ/ej’ ax-ila , and the dependence of hg; in (D30) on n

and o, we schematically represent (I1I-152) as

(m) -1/2 (m=0) 12 (0=0)

Y =c, Y = ()" y ,

mx mx Tx (111-153)
(n=0) 1/2 ) 1/2

=<
"



where Bp - ig; T g, = gpy - ilglzl, R corresponds to the term with

(1- mISEC/SIJ, and I corresponds to the term in Ki e, From this we

see that the effect of nonzero a, Kd e

a shift in the real part wR' of w'. The effect of increase (decrease)

» and g1 is principally to cause

in 8 from unity is stabilizing (destabilizing), and the higher n (n even)
modes again have larger growth rates than the n=0 mode. The limits on
this increase of Yix with n, due to an upper limit noox of n, and due to
the breakdown of the validity of the present twu-term analysis at
me/Qi-1, are the same as discussed in Sec. III.D.2.

The effect of shear on the IDC instability in the intermediate
shear regime is thus the following. The distance L¢ over which a given
mode is localized narrows, as L;i dominates Ln' However, there is now
a spread in the positions x  at which a given eigenmode may be localized.
An eigenmode is localized at the point X, where k3 = 0, and its growth
rate, being proportional to the free energy source [~n'(x) = dn/dxj, is
greatest near the position where n' is greatest. Taking a superposition
of the unstable modes localized near the most unstable position, one ob-
tains a pe;turbation which is broader in x, which twists with the magnetic
field, but which has a spread in frequency and growth rate. This is the
""quasimode' picture, introduced by Roberts and Taylor35 in connection
with MD resistive instabilities.

For a given 2, the larger n modes (n even) have larger growth
rates than the n=0 mode, as found in tae negligible shear regime. The
growth rate of the n=0 mode is not radically reduced by shear in this

regime. It maybe somewhat enhanced, in fact, for 244 becoming small
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enough that &g < 1 (which, we recall, can occur due to the dependence of

Q.onuzv ). Finally, the values of Q and k, at which the max-

01 3 'wui
imum growth appears is modified by the fact that Qoi* Qci’ for appreciable
h'“i.

To obtain a criterion for shear stabilization, therefore, we must

proceed to stronger shear. This is done in the following section.

111.D.4. Instability with Strong Shear

In this section we consider what happens when shear becomes so
strong that localization cendition (III-47) is violated, even for the

n=0 mode. In this regime, we find from Eq. (I11-147) the well depth

~ 02278 =ata + ), and from (111-149), [Ky  |~L Pt

oe e
1/2 _, -1,,-2, -~21/2_
- Loe [Ae * Pe )

Ky

{1+ wee/ﬁer] Loél[min(xe, oe)]'l. Condition

(I111-47) then gives the localization criterion

1> (Ae/Loe) max (1, Ae/pe). (11I-154)

when (I11-154) is violated, the final (n=() mode can no longer be local-
ized by Ko’ so that no modes satisfying appropriate boundary conditions
exist. The IDC mode is then stabilized. For typical parameters of con-
finement devices, Ae/pe‘~1, and so (III-154) gives the stabilization

criterion

1~ xe/Loe' (III-155)

Combining the results of this and the preceding section, for a
given 2, as shear is increased from zero, the maximum IDC growth rate is
relatively insensitive to the shear, until the regime satisfying Eq.

(I1I-155) is approached, at which point the instability disappears.
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This behavior, as well as stabilization criterion (I11I1-155), is in

qualitative agreementc with the results of Zelenvi.sz

I11.E. Further Comments on the Formalism

The application of Sec. III.D made use of -ome, but not all, of
the novel features of the stability formalism. One principal restric-
tion on the formalism as developed here is that it is based on Poisson’s
equation, and thercforc electromagnetic correcticns which one expects
for perturbations in higher 8 plasmas are not taken into account. Many
of the interesting features of the formalism (e.g., the Vg dependences
of Qoi’ Ug» and w,) become significant only for substantial shear, and
for larger shear one needs larger B, for realistic plasmas.

The formalism should be readily generalized to allow for arbi-
trary electromagnetic perturbations, replacing Poisson's equation (III-1)

with the full Maxwell equations

VX[V xE@]- (we)? B = (niw/c?)j= 2] 'K 6x",w) E(x').
(I111-156)

The structure of the tensor conductivity,ﬁ; is analogous to that of the

scalar conductivity f we have used, with the DR'S which appear in ex-

pressions (II1-48) for K replaced by 12 's, where j(x |Z2)=ev (Z) x

§[x- r (2)), analogous to the definition of phase function p(_lZ)

This analogous structure insures thatl(,s can be written in a form paral-

lel to Eq. (I1II-4), and given this crucial property, the formalism

developed here follows.



Thus, though the specific results which the present formalism
yields cannot be taken too seriously for higher-g plasmas (such as
Tommac), the novel effects of appreciable shear indicated by the
formalism will also arise in the electromagnetic formalism, and should
be taken into account in any careful treatment of the stability of
sheared plasmas.

In the present work, the variational formulation was used to
obtain dispersion equations in the regime pi/L# < 1, and in the re-
gime Di/L¢ > 1, where the mode equation is intrinsically integral in

nature H. Berk has suggested33

that in fact perhaps SiB can be eval-
uated in closed form for arbitrary Di/L¢’ using the Gaussian form

¢., ~expl- %—a[éx)z] for the trial function. If such an evaluation

10
proved possible, the smooth interpolation done here between the small
and large - pi/L¢ regimes could be checked, and additional insights
might be gained on the treatment of such fully nonlocal problems.
Another possibly useful direction for generalization of the
formalism is to relax the assumption of a slab geometry, considering,
for example, the near slab geometry of Part II, or perhaps even breaking
the toroidal symmetry as well. Provided one can find a complete set of
particle invariants I, expressions (III-48) for Kg, upon which much of
the formalism is founded, remain valid. For example, for the near slab
case, the slab invariants I = (J, Py’ Pz) used here are replaced by
I=(J, Jb’ P¢), where the canonical angula. momentum P¢ specifies the

o surface o lying at the banana center, and the bounce action Jb char-

acterizes the area enclosed by the banana. In addition, expressions
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(I11-13) and (I11-14), which are the abstract expression of the formal-
ism for the one degree of freedom (slab) case, are readily generalized
formally to the two or three degree of freedom case, merely by replacing
the scalars k, x, and ax appearing there by vectors. To give physical
content to these formal expressions, however, one must be able to write
Eqs. {I1I-48) for these geometries in a form analogous to Eq. (III-4).
This entails, basically, being able to associate some average position
X, with any given value of the momenta 1. The attainment of a physically
meaningful generalization of this sort, and applications to modes in
which inhomogeneity parallel to the magnetic field plays an essential

role, are problems for future study.
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APPENDIX C: DERIVATION OF THE CONDUCTIVITY KERNEL

In this Appendix we derive an expression for the conductivity
Kernel KS defined by Eq. (I1I-1.b), in a canonical framework. The
expression derived is quite similar to those obtained in Refs. 25 and
26, but has a form which is more useful for our purposes. We perform
the derivation in a bra-ket notation, similar to that of Lewis and
Symon,36 which allows for a very concise expression of the results.

As in Sec. III.C.1, we consider a three-dimensional plasma,
with unperturbed Hamiltonian Ho(l)[denoted by H(I) in the main text),
where 1 are three canonical momenta, constant in time, with conjugate
coordinates 9. For any phase functions F(2),G(2)[Z = (6,1)], we denote

by ?, G the corresponding Lie operators as in Part II,
E;FE{G,F}=-{F,G}5-1'=G. 1)

Then the Vlasov equation reads (species label suppressed)
(G,-HWf=0, (€2)

and writing H = Ho + Hl, f= fo + fl’ the linearized Vlasov equation is

v

(3, - Hy) £ = H £ = - f H. (c3)

Henceforth we shall for notational convenience employ bra-ket
notation. with states defined over the phase space, spanned by the ortho-

(Z|f). Then Eq.

n

normal basis |2) = [, I ). Thus, for example, f(2)

(C3) becomes

@, - Ho)|f1> = - fo|H1> . (o))
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Solving this for !fl y,
PPN (- -
[f,0 = - (s, - H) " f[H), (C5)
and therefore the perturbed charge density os(g;t) duc to species s 1s
given by
D) = : - -1 ¢
ps(ia t) = { P (XJ l (at HO) fOS[Hl) ’ (CGJ
or in the frequency domain

v

pg (i) = 0] (i + H )™ £ IRy - )

Here the state [p()_c) > is the contribution to charge density of a particlce

at a given phase point Z:

1]

efdp'slp'-p @] S[x - r (2)) (C8a)
¢ Zle fdp'| x, p", i.e.
e [dp'|x, p". (C8b)

CZlp(x)) = es[x - r(2)]

[p(x) )

We consider electrostatic perturbations,
(Z[Hp) = ed[r(D)] = [fdx' <Z]p(x)) o(x"). (€9
Putting this into (C7) and comparing with Eq. (III-1b) yields
—_— . v _1 v
K (x,x"5w) = - dm (p(x) ] (iu+ HJ) fOS]p(x’)). {c10)

To put (C10) into a more explicit form, we introduce another

orthonormal basis |2, I):

<z 02, Iy =Ne ~ 8@ -1). (C11)
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The normmalization constant N is detemmined by the requirement of ortho-

nommality, 6(Z; - Z,) = ¢_le Z,), tobe
N = (2m) Y2, (€12)

The basis {2, 1) is chosen because these states are the eigen-

states of the Liouville operator ;io. One has

Hoig, 1) =iz-aH /a1)2, D = ig0l2, 1), (C14)

We shall assume that fo is a function of both Ho and 1, in general. Then
since H0 = HO (1), one has

fo - (afo/aHo) Ho * foI' foI

- (3f /31) 3/38 . (C15)

The [2, I) are also eigenstates of f'o and E-OI:

€712, 1) = ig-af /3l|%, 1) (C16)

Also, one has that

v

. MENS!
(iu + Ho) f

A | e y
o (iw + HO) [BfO/BHO(lw + Ho) 1w3fo/3Ho + foI]

f

of /H + (iw + )T (- iwd/aH + £, ). €17)

In less formal temms, in (C17) we have written the factor (afo/BHo) }vio
in ;—o as the sum of a total time derivative (afo/aHo) (iw + I:{o) and a
remainder, so that the integration along unperturbed trajectories in-
duced by (iw + ﬁo)'l becomes trivial. This technique has been used

32,35

previously by other authors, in a less formal, non-canonical frame-

work.



Inserting the identity dyadic 1 = }|%, 1:¢ %, 1| between

o

(iw + l:ic’)-1 i:o and both (p (x)}and s (x'D in (C10), and using

Eqs. (C14), (C16) and (C17), onc obtains the decomposition:

Es (x,X'; w) = KSA (x,x') + RSB (x,x"; w). (C18a)

The "adiabatic term" -Ks;‘ is purely local, and w-independent,

coming from the part 3f /oH_ of (iw + Ho)-l o

K, (x') = 4 ;o(_)g)lafo /a}{o o) =3, 2@ ekxx"), (C18b)

where x (x) =T, (x)/4nng (x)e » ng(x) = fdZélx-r ()] £, and

1w = -ng’ Yx)fdz s[x-r (@)1 afos/aHOS. The remamder, FsB’ is
given by

K pl,x's w) = -4n <o(5)%(im+ﬁos)'l(-iwafos/aﬁo; £ pPlex'y

wafy /oM - 2-3f /3L
m ] fdl @ ——2 >— -5, Ip(x' )
Q A .

(C18c)

Defining o, x[D by

P &ID = M7 Gl = @n7P fdo e 8 pxp)

(€19)

2m7> Jae e es(x- 1 (@),
. we write (C18c) in the more standard form
. wd £ /M -2-3f /oI

Rp@x's )= (men® ] fdl o, xD ——3—2
5 2 2 w+ 29

Py ' D).
(C20)
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Dropping the explicit dependence of f_on H_, the adiabatic temm 'KS A

and the temm in afo/aHo of (C20) vanish, and one vbtains a form paral-
leling that of Refs. 25 and 26. In our work, it is more convenient to
instead drop the explicit dependence on one of the canonical momenta 11

(the gyroaction J). The term afo/al in (C20) then has only two compo-

nents.
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APPENDIX D: EVALUATION OF SSB IN TTHERLGI}ﬂipS/L” > 1

We herc chtain an approximate expression for the contribution

SsB of YsB or Ks to S, valid in the regime where the mode localization

length L

B
» is small compared to the gyroradius g of a typical particle
of species s. We take for our distribution function the drifting Mux-
wellian form (I11-83) used in the applications of Sec. III.D, though

this particular form is inessential to the cvaluation method we usc.

From the discussion in Sec. 1II.B, SsB is given by
Sep(¥s) = fdx [fdo [do'y*(x+a)K p(2,x,5') ¢(x+a'), (D1)

analogous to Eq. (III-9). Wec use expression (I11-83) for fs in Eq.
(I11-52) for KSB' Performing the sume manipulations as done in

Sec. III.C.3 and 1JI.C.4 to evaluate KSB (k,x,-k'), and setting

$(x) = ¢1(x) eikx, yx) = wl(x) eikx, with wl*(x) = ¢l(x) as in Secs.

III.B.1 and IIL.B.3, we have

Sep = Jdx K (W, x, 9), 2)
where
2 1
-2 © @ -y u/2 -yh
KSB(lP’x’¢) = -AS (X) Z 2m fdu }'dh' goe e
') -o 0 3)

x

3,00 3,76) (' -u, ) (w20 K, vk w)
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The only difference between the quantity KsB(u"x’M here and the expres-
sion for KSB(k,x,-k') in Eq. (111-834), is in the replacement of }E(E)

defined by

—
-
N
|
—
"

Jde Jg(s,ky,kzil) ¢*{x = X * o)
(D4)

1 2n -
(2m) © [ dte e
o

17>

(G

i

) or 1r @),

where we recall that E =y ky ‘2z k_. The difference between J~Q (k) and
z X

_T, (#), then, comes just in replacing a plane wave form elb( by the form

c = e @) 102 oV (xex )], with 6, (8) = ¢y (£) = N_H (&)e’f’z/2

YA 1ol o’’’ RS in*> xnn ’

as specified in Eq. (I11-31). Putting this form for ¢ into (D4) and

using rx(€=J = Xo + &x (%), we have

- -1kX _; 2m <120 -k+6r(0) .
Jp(w = e O(Zn) 1 [ doe e ¢1*[a 1/2(6)((6)-00)],

? (5)
where ¢ = x_ - X, the distance between the point x_ of mode localization
o o] 0 o -iKX

and the guiding center X, of any given particle. The factor e © in

1kX
(D5) is unimportant, cancelling a corresponding factor e © in Jy*(q))

in (B3).

The integration [du over parallel velocity in (D3) is unchanged
from that done in Sec. III.C.4 to evaluate KsB (k,x,-k'). The integration
fdh' over perpendicular velocity done there used a factor YS/ZTT from

= (v,/2m/? to yield the integral

' Ysh' 2 -
2m(y /2m) fdh' e T (mg) = 4, () (D6)
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in expression (I11-92) for KSB(k,x,-k) , in the approximation of har-

monic gyromotion. Our result for KsB here wiill thus be the same as

that expression, but with the Jk in (D6) replaced by 32(¢). It is

therefore convenient to extend the definition of Azs from its value
-bg .

Ip,s(b) e for the regime ps/L¢ > 1, namely

-y .h' .
Mys(0g3 pg/Ly >1) = v fdn' e A OIRALCOR @7)

x -X.)

(We note the dependence of this quantity on % o o

To evaluate Bl(q;), we refer to Fig. 18. Assuming hammonic gyro-

motion in this regime also, with

5T (9) = byéx () + by éxyy (©)
(D8)

1t

6xo(e) xosmo, GXZO © = X530 coso, Xy = xo(Qc/Qo),

as in Sec. III.C.2, we see that the particle trajectory passes through
the region of wave localization at two places (O~ Oi) for 00/;0 <1,
and not at all, for oo/i0 > 1. For particles having oo/§o< 1, we
approximate the true trajectory in the region of wave localization by

straight line orbits. From Fig. 18, one has that
sino, = c:o/x0 ®9)

and so, calling the particle velocities at 0, in the b1 and 62 directions

Vigr Vou using (D8) gives Vig = 7 ViaVe, TV, V5, with

-0 T cine = - o= to (=2 _ . 2,1/2 (D10)
vy = - R X, sin0, = -0, v, = QX cosO, QOGEO 05 )7 -
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The integration over 0 in (D5) breaks into two parts, which we
denote by JR: : JE = Z 323. For each of these, we replace 0- 9, by
Qot, and extend the limits of integration to * « for both, permissible
since the Gaussian factor in ¢1n introduces a cutoff in the integration.

Using (D5), we then obtain

o _ 2
ikX 120, -ik,dx, ® -kt -At7/2
=e’ e te 2 Z@mN_fite e H %y, o

+

Iy
where x = RQO + kzv2 + kv1+, A= avi, and 6x2: = dxzo (@:). The exponen-
tial factors outside the integral, which for sherthand we refer to =z ¢ _,

will cancel against the factor in JE' The integral itself is simply t.ae

4 atls2, 2
Fourier transform from t-space to x-space of the function e Hn(" t).
For n = 0 we have just the Fourier transform of a Gaussian,

> ikt _-Até)2 172 -4/ ©12)
[ ate e = (2n/A) ¢ e y -

Given the (n-l)th solution ¢1(n-1) of the Weber equation (III-2Z ;, it is
easily verified that %10 is given by
b @ = @V o) 6, @) ®13)
1n £ 1(n-1)
(In fact, this is where expressions (III-34) and (III-3Sb) come from.)

Letting the "raising operator" (Zn)'l/z(-ag + £) act on tt Fourier

representation of ¢1n(£) = (21r)-1 {dq ein ¢ln(q), one f ads that

-1/2

bpp@ =i @7 (a4 a) 0y gy @ (@14)

Therefore

bp @ = 1" @0V @ oy @), ®15)
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i.e., the Fourier transform of the eigenfunctions of the Weber equation
are again eigenfinctions of the Weber equation, a result to be expected,
because of the symmetry of that equation with respect to £ and -BE.
Applying this to Eq. (D11), one has

K _qz/l
Jpe =€, @/2m)N_H (@) e /5, (D16)

1/2

where g = « A'MZ, and N = i"(2n/m) /2 N

o
To evaluate (D7), we need 32 W) 7; (¢). Each 32 here is a sum

Z 7 g+ OVer contributions from the crossings at 0,. We are here inter-

ested in the ion contribution S.p for the ion drift cyclotron modes.

For these modes, one has kzpi >>1. Therefore, in moving from 6, to O_,

the particle phase factor e, will be highly sensitive to any sorts of

perturbations present, e.g., from other modes, from orbit medification

due to magnetic inhomogeneities, etc. We thus assume that, in averaging

over all the particles in the distribution, that contributions from cross-

~ o~k

terms JR"JN are negligible, i.e., we assume that

J w3, @=13, @I, ®. ®17)

1+~

Using (D16), we then find

~ e . N 2.2
3, @) T, @) = 27,00, (0) = 2 [9,/2m) Ny Ko@) e 3/
1 2 ®18)

2 2,2 -q
No B @e ™,

n,2
= (-1)7 2" (mavy))
where 2z KZ/A = (8. + k,v, + kv 2 (av Z)-1
q = = (9, +kvy kv )" evy,) .
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We assume the orderings

ps'lk <<L¢'1§al/2 <Ky, (D19)

1/

of which only the assumption X < < a 2 has not yet already been dis-

cussed. With this assur—tion, we neglect the tem kv1+ in qz, making

K_,, and SSB independent cf k. This assumption was used in the variational

sB
equation (II11-27), which lead to the result that k = 0, consistent with

k <« al/Z.

From (D10), the particle velocity Vol in the b1 direction at the
guiding center is given by Vo1 =9 5?0, and the perpendicular energy of

2

gyration h' is given by h' = % Vo1 * Thus from (D10), we have

2

1.2 _ .01
h = 7 \1+ =h ‘2 (QO 00) . (DZO)
Using this and (D18) in (D7) yields
n -YS(QOGO)Z/Z e - 2 2 2 -qz
hyo (0) = (1) e [ ante /m (N, "/2m) (9, vg/e) Hy"(@e ™
(@z1)
where n = ysh, and using Eqs. (D10) and the above approximations,
2@y /20)2 - ko @ /2 nt=ny ®22)
4 =0 Y 270 Y'¢'o no=Ng/n

If we let n(and so V1 4) 80 to zero, corresponding to the particle tra-
jectory which has 00/5('0 = 1 (so that the particle moves straight along
the crest of the Gaussian), the factor e "/n in (D21) becomes infinite,
but this factor is more than compensated for by the term e'qz = e-nc./n,

which arises from the rapid phase oscillations a particle traveling
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directly along the Gaussian crest sees, due to the factor (Rno+k2vz).
The term e 4 thus provides a cutoff at q ~ 1 in the n-integration
in (D21}, and so we replace the factor e"‘O/n there with a step fimction,
equal to unity for n > Ny and zero for n < o

If we consider for the moment the n = 0 case, the n - integral
in (D21) is fw dn e "/n
29

m

Ei(-n_o), where Ei is the exponential integral

No
function. For Ny’ 0, this fimction falls off monotonically. For no>1,

" in the integrand,

the falloff is dcminated by the exponential factor e’
Ei (-no) ~e o, Aas n, * 0, Ei has a logarithmic singularity. This
limit corresponds to the situation (9.520 + kzvz) + 0, for which the
straight line orbit approximation we have made yields an artificial res-
onance effect. In this limit, we expect that the curvature of the par-
ticle orbits, as well as the other orbit modification effects, will act
to make the n-integration be well behaved as n, * 0. Combining these
expectations for the large and small U behaviors of the n-integration,

we approximate that integral by e ™0, for all o For n = 0, then,

Eq. (D21) becomes

2
¥ (0,0 7/2 Mo

Ny (o 3n=0)= e (ng/m (QOZYS /o). m23)

For larger n, the factor H nZ (q) displaces a larger fraction o‘f"
the integrand excluding e"qz in (D21) toward larger q values, or smaller
n values, so that a smaller and smaller proportion is left in the region
where the cutoff factor e_qz is substantial. We thus approximate Plllth)

-g2
in the region of substantial e 1 (small q) by its g = 0 value,
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2 0, n odd
Hn @=0) = {(n . n even, (D24)
We thus see that for larger n, Mls(n” falls off rather rapidly from
the value AQS(O). Defining c, T lhgs(n)/ﬁis(O)[, then, we have ¢ = 1,
¢, 0 for nodd, andc =~ (n)"! for n even, and so from (D21), (23),
and (I111-30a)
R s a
Ais (co., ) = (-1) Cnﬂls(co' n=20)
D25)

2
v (Q o )°/2 -n
= ('UnCn e S 00 e O(YSQOZ/ZW3/2al/2).

To evaluate SsB’ it remains to put expression (DZ5) for Aﬂs into
Eq. (I11-92) for KsB' and then perform the x (or oo) integration indicated
by (D2). Assuming for simplicity that since ”p z pi/Lp < 1, we may neglect
the spatial variation of all terms in KiB but that of Azi’ we may readily
evaluate the integration in SsB for the ion species. Again only for sim-
plicity, we first neglect £ in comparison with k2°o in (D22), in view of

Eq. (I1I-104). This gives

Mo = %Ys(ﬂooo)2 (ky 219 )’ ", (z6)

and so from (D25), defining psz = (VS/QO)Z

1]
<
O

1 2 2, 2
o © =y O [1+(k,2./2 ) ]o
Ay (1) =/ do, Ay, (0_in) = (-1)“%(\(5902/2113/%1/2} do e Z2's%o 2%c"*0’ 1%

- = (D27)
= (-l)nCn 2-1/211-1[”52 * “‘z"s)z (Qcmo)zl-llz'
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This expression simply replaces the factor Afl z Ii(bi)e’bl appearing

in the form for SiB valid in the small - pi/L¢ regiume, 1i.e.,

where
ey (o1 / L®< 1)

Aii (01/L¢ >1)

Y e v e
siB A E (1 hh)(“]/.zz)r.h, (D28)
=1 (. e bi and (D29
I3 i ’ ‘
-1/2
_ -1/2 - 2 2, 2 .
z ('1)"cn2 /2, l[aps + (ke ) (2 /20)°) . 30)
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APPENDIX E: ONE TERM APPROXIMATION TO THE IDC GROWTH RATE

Here we derive an expression for the IDC growth rate, using the
usual approximation made in analytic analyses of the IDC instability,
in which we keep only the lth tern in factor C in Eq. (111-126). As
shown in Figs. 15a, 15b, we here redefine & from the definition used

in the two temm analysis of Sec. 111.D.2 by

0=au(B+C)] (E1)

Q
This gives

@ ~u)® = B (ph, g, /0, Bp) (wa-w) w, T (E2)

As in Sec. 111.D.2Z, we expand the dispersion equation (III-126) in
éw = u' - Q, again neglecting awZB in view of (III-133). Using (III-134)
as in Sec. 111.D.Z, and neglecting the term in Ky e for simplicity, we

obtain the quadratic equation
0 =@ -ty 3B+ 26w’ 3%CeC E3)
- ISEC) "w 2 w ’

with solution

@)’ = -2[@- wigpc) 3B * C]/awzc. (E4)

In contrast to the two term approximation, a glance at Fig. 15b
shows that here awz C < 0, and so here the term C/aw2 C is destabilizing.
Assuming that wicp. > G , we neglect the tem in (- wigpc) in (E4) and

use (E2) to obtain the desired result:
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2 2 . ' 2 ' . -1
Ymx = 2 C/Bw C = (w ’Luz) (w -w.)(w.'ug_) [

W

'::“

(ES)
= -52 ( 3 P.EP./A ge) (1 - 5/‘44‘-)-

Using the fact that here 0 = w and that ., is what we call & (at

ISEC?
maximm growth) in the two term approximation, we see that the factor

(1 - 2/ w,.) here corresponds to the factor (1 - "’ISEC/ 72) of Eq. (111-139).
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SYMBOL TABLES FOR PARTS 1, 11, AND 111

The following tables provide an explanation of the symbols used,
ci indicate where in the text the svmbol is defined or introduced. A
separate section is given for each of Parts 1, 1I, and 171 of the text.
Syvmbels whose use is restricted to the immediate vicinity of the place
thev are defined are not included.

In Table A of each part is given a list of general noatational
conventions uscd throughout that part. Table B is a listing, in alpha-
betical order (Latin alphabet farst, then Greek alphabet), of the sym-
bols uscd in that part, followed by the svmbol's meaning or where to
find 1t. The symbol is given, followed by & hyphen, followed by infor-
mation giving the symbol's meaning. Here, if the defining equation
referenced occurs in the same part as that to which the symbols tablc
refers, the part number is not given. For example, in the table for
Part 111,

A, - (83)
means symbol A2 is defined in Eq. (1I1-83). The notations "b(83)' and
"f(83)" indicate that the definition is made in the text in the immedi-
ate vicinity before (b) or following (f) Eq. (I1I-83).

When a symbol has more than one important equation indicating
its meaning, a multiple notation may be given, e.g. for the symbol KS

of part 111,
Ks - 1(8),(45)i,
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both Eqs. (I11-8) and (111-45) are useful in iumderstanding its meaning.
In certain cases, where context should make the meaning clear, the same
symbol has been used for different quantities. In these few cases, the
symbol itself is repeated in Table B.

Finally, somc of the symbols with rclated meanings fall into
"notational groups' of similar symbols, for examplc the various contri-
butions to the Hamiltenians in Part 11, To aid the reader in remember-
ing the significance of and differences among thesc related quantitics,
in Table C of Parts 1] and I1], a description is given of the more

important notational groups of thosec parts.

PART 1

Table 1.A) Conventions

Notation Mcaning Examples

tilde physical spe;ifi;ation ) ?5’ io’ E
of the quantity in question

superscript ''sc” “self consistent" AFC, §5C

componerits 1 = 1,2,3 81. "V AZ’ P3, V]

of a vector V

Table I1.B) Symbols for Part I

A - [vector potential, b(1)], E-§I.A., A-§1.C.1, beginning, z—ﬁl.C.l,
beginning

AC-51.C.1, beginning, A;-(19)

B= |B|, B-Imagnetic field, (1)], B-§I.C.1, beginning, B°“-51.C.1,
beginning

b

1+ G =1,2,3,)-b(19)

e - charge of particle of species s



F5 - (30}

£ - {S1.A, 51.C.21, £, - [§1.A, §1.C.2)

H-{(41, (species label suppressed}}, H'-§1.C.3, beginning,
H'-$1.C.3, begimning, H_, -f(23)

h - [ (7}, (species label suppressed)}, hl':-f(d)

J - {21

J - gyroaction

LB,R,S,n - §1.A, beginning

n(XO) - | gulding center density (species label suppressed), (23)]

P (Py,sz - b(4), Pz-(A-]), PS-(JQ).

P = (Pypyp,) - D)

R - (26)

T - temperature (subscripts suppressed)

U - [§1.A, (14)]

V - (5)(species label suppressed)

-
'

[51.A, (19)], v - [§1.A,(20)], v, - §1.C.2, beginning

v, - §1.C.2, beginning, vl,z-(Zﬂ)

w, - lparallel drift velocity, 8I.C.5,end )
X, - [81.A,(17)], X - §1.C.2, beginning

x - 8I.A, beginning

Y - guiding center y coordinate

y - §1.A

Z - guiding center z coordinate, Z - £(22)



2 - §1.A

Y - inverse temperature (subscripts suppressed)

n - 51.A, beginning

© - gyrophase

n- (2),nxx-(3) (species label suppressed)
¢

- gyrofrequency, f(21)

PART 11

Table I1.A) Conventions

Sub- and superscripts

L

overbar

inverted carot

Table I1.B) Symbols for Part 11
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- electrostatic potential, o - §7.C.3, beginning

Meaning

order in e expansion

order in n expansion

nunber of perturbative
transformations applied

time average over
wnperturbed trajectory

Lie operator

G, W

A - [vector potential, (2),(3)}, Ab - [vector potential, (2),(3)],

éo - £(100)

a - £(49), a - £(49)

B - [magnetic field,(41)], B" - [magnetic field,(4)], B, - £(200)

~ ~

by - b(99), b, - (104)

o - £(81)
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€3 " £(53), ¢y ~F(66), cy-£(69)
D, 4 - (86)
dy 5.4~ £653)

E - [particle energy,(71)), Elx)-[electric {field], Ei-f(gl), Eo-f(IOO)

4
)
G

- b(2), e’-b(2)

g”” - Imetric tensor,§11.CJ, g, (48b), g"(u = a,8,0)-b(2)

H - (see also Table 11.C for all symbols H,h):

H - [particle Hamiltonian,(5)], H'-(16), H°{ §11.B,§I1.H, (35)] ,H"- (36},
Hyy- (390, H o~ (39)

h - EI1.B,h'-[ §11.E.1, beginning, (48a)], h°-[ §1I.B,(50)], h"-(19)

J - gvroaction, J%-£(1), J_-£(91)

j - §11.B, j°-81i.B

K - (see also Table I1.C for all symbols K,k}:

K - [guiding center Hanmiltonian, (89)], K, -(1), K- (36)

K" - (19)

Ly - magnetic modulus shear length, Lg = min(Ls,LB), Ls-shear scale

length, L "-§II.A, beginning

Pb - Table 11.C, P¢-I§I].D, beginning, Table 1I.C], Pg -[ §11.B, Table

11.C)

Py - £(1), p, (v = a,B,¢)-SI1.C
" = a,8,6)-571.C
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R - [§11.B,(22)], Rh-[ﬁll.B,(ZZ)], Ro-§II.B, R'-§II1.B

S - [§11.B,10]

T - {(1), T -SI1.B

V- (6), V'-(75), V_-(48c)

- (117), vp-(103), v,-£(126), v . (i = 2,3)-£(100), vy, -b(122)
- £(100)

W, - b(79), W -£(37), K -(37), Ky -b(34), ﬁle-b(43)

X, - b(99), X,,-(117), XSO-(IIB)

x - £(1), xj—b(99), ib-f(IIZ), §50(119)

Yo - (63)

Z - (see table II.C for all symbols Z,z)

a - [£(1),511.C], ab-['banana center," §11.C,end], uo-[§II.C,end(47],
- n
uo-(Bl), uo-f(75)

B - [8I1.B,§11.C]
Gxo - (111), le-(112), 6x20-(119), 6x21-(120), 6x31~(121), GpB-(ld),

6pg; - (72), 8a-[(47),(49)], Ba,-(64), 8ay-(65), 6B-(15), 8B -(71)

88, - (72)
€ - §II.A, beginning
n - §II.A, beginning

© - gyrophase, 0°-£(1)
§I1.B, 6°-811.B

(s}
1



S

ka3

- (104}, 3N S-f(lOd], KE—(IOQ]

>
[}]

= (A;,%,)-511.D,begimning, ¥,-.B3), AOM"-511.D beginning

y - magnetic moment

p - [particle gyroradius, §1i.A)

$ - f{electrostatic poténtial,(ﬁ)]

¢ - [toroidal angle, §11.C]

Q - profrequency, Qo-lf(40),f(49)], 92~(90)

wip” bounce frequency

Table I11.C) Notational Groups

1) Hamiltonians: In general, symbols H denote Hamiltonians (or parts
of Hamiltonians) for the full (2-D) particle motion problem; symbols h
demote those for the frozen -2 (1-D) problém. Superscript n denotes
the Hamiltonian after n perturbative transformations. K" and K" denote
the angle-independent part of H" and hn, respectively, and so the guid-
ing center Hamiltonian K, being fully angle-independent, satisfies
K=H =K.

Each h" is expressible as an expansion in n [cf Eq. (19)], withm
denoting the power of n:

o
n n m.n
R'=h +}] n h .
° meo m+2
Each H' is expressible as an expansion in both n and €, with indices

m and &, Tespectively:

W] 4 7 AP
EZo eHy E§m= en

(o]
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The original particle Hamiltonian, expressed in terms of the cur-
vilincar coordinates (a,£,¢) and their conjupate moment a, is denoted
by H. The symhol H' denotes a uscful non-canonical expression [Eg. (16
for the Hamiltonian, and h' denotes the Hamiltonian for the frozen-:
problem, before transformation to action-angle variables [Eq. (17)].
2)  Lie Generators: The Lie generators for the frozen-) transformations
Rn arc denoted Gn; those for the transformations Tn of stage two arc

operators are denoted Gn and W_.
i

(4]

denoted Wn. The corresponding Li
3)  Phase variables: The variables for the restricted (1-D} phase

space of the frozen-) problem are denoted by the general symbol z, with

a superscript matching that of the corresponding Handltonian, i.e. h'(:'),
n,.n

h"(z7). Analogously, the variables for the full phase space are denoted

by When occurring without superscript, Z denotes either the variables

fra

of the full problem in general (so that any H may be considered as a
function of 2}, or the specific phase variables of the guiding center

Hamiltonian K = H. These variables are

1

Z= (0,J;b,R),
where we have suppressed the variables of the trivial toroidal degree
of freedom, the (constant) canonical angular momentum P¢ = p¢ , and its
conjugate toroidal coordinate, as done through most of the text. When
occurring with superscript, i.e. ZP, Z denotes the phase space variables
of H".

By the symbol 2z, we refer either to the phase variables of the
frozen-A problem, described above, or to the variables (a.B,¢,pa,pB.p¢)

in terms of which the original Hamiltonian H is expressed.
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Table 111-A} Conventions

Sunscripts Mcaning
s species S
S5 contribution from part f

of distribution f

. harmonic number
i, 1 (formally) real and imaginary
parts

Takle 111.B) Syvmbols for Part 111

A (20), A-f(1206), A'-f(126)
E - (20), B-f(l26)
C - (205, C-1(126)

Dg - (35, Dg-b(16)

dk - [total derivative w.r.t. k,(16)]
E, - (67), e-£(48)

Fpp,p2 - (77

£ - (42), f,-(48), fsj-b(68)

8,1 * (82), g, ,"b(125) . gp - (120)
H - b(48), H'-b(68), h'-b(68), Hn(i)-(34)
I - b(48), 1I-(51), Il~(96), I2 3-(118), I,-(87)

J - b(48), . ,-SII1.C.2, J,-(62), 3£~(49)
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K- (1), Ky (47), Ky o -[£029),(42),(46)], K"} -142), K -b(ea),

K, g.-(41), K, -b(64), K-[(10),(54),(56)], K- (48a), Ky - [£(25),
(48)]1 KSA— (56)! KSB-[(SZ)’(54)]’ KSJ-(76)’ KO- [f(37)v(119)]

k- (10), K'-(10), k- (59, k-£(50), K, -(2), K, 5-[(582),(68)], kg ~(75)

LB,§,n,S - [end of SIII.A], Lp-f(lOQ), LQ-(37), L¢-b(30), Loe-(106)

L= (2,8,,8) - (48), & -(122)

Yy
Lh - (32)

m, - mass of particle of species s

N(e) - (31)
- [mode index, £(41)], n(Xo)-f(72), ns(Xo)-(Bl), n'-£(142)

=

P= (Py,PZ)-b(Z), P2,3-f(69)

Q - (21), Qyb(47), Qg ;(31), Q'-(22)

R - (82), R-b(49)

r - b(140), 81-b(49)

S (5), S;p7(26), S - (5), S.-[b(17),(26)], S,-(26)

s - species label

T_- temperature of species s

u - b(67), ug-[(70),(86)]

Vg - [(73),(11-117)], vE-f(72), vs-themal velocity of species s,
v, ;T [thermal velocity of component j of species s,f(72)],

~

vgy - [b(67),811.K.3}, vy,- [b(67),511.K3], vs-[b(51),§11.K.3]
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Wi(z)- (88), WRS-(QZ), WR,I'f(Qé)
W C [b(67),81.C.6, (species label implicit)}
Xy = (8), X,0-(73), Rgp-(73)

X - 1, i’-(l)’ x-(2), x'-(3), xo-(zs)v fo-[(SS),f(II-IIZ)], xl'f(142))

xz-b(147), iéov[(SB),(II-119)]

Y - b(48)
Z - b(48), Z(z)-(89), Z-(48)

ZRS—(87)
a - [b(31),(45)], ay = Ima

B - (144)
I - (18), Ty (~£(19), Ty ,-(19), Iyp-[£(29),(64)], Tpq-£(19)

Y - growth rate, Yj-f(72). Yo (139)5 v~ (80), ?Sj-UZ)

AL - £(96), Aw"-b(143)

ax,k - partial derivative w.r.t x or k, 3x z ax, gx-partial derivative
w.r.t x acting to the left, §/6f(x)-functional derivative w.r.t.
function £(x), §x,-[£(57),(I1-111)], 6x,0-[£(57), (11-130)],
6y-b(49), 62-b(49)

Qe b(ile), epl-f(IIO), £¢2-(101)

n - SIII.A, nB'E'n.S-§III.A, ng- (105)

© - [gyrophase,b(48)], ek-(62), Oo-(SSb)

8 - b(48)
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Kg,B,n,5 - STII-A, Kgy-(72), K -£(118), ko -b(25)

Al = (92), Ali'[(ng)l(DSO)]’ Agsr(gz) ’App'D]

n

Py (w,ky,kz), xs-[Debye Iength of species s, (C18)]

= Cupeeay ) - b(23), uy-(586), ul-b(64), - (87)

p(x) - (1), p;-[ion gyroradius,SIII.A], p,(x|1)-(48)

c - (4), ¢'-(4)

T - (120)

o) - [(1),5111.A], ¢(x)-(2), ¢;-(13)

Xg - susceptibility of species s

v(x) - (5),94-(13)

2 - [gyrofrequency,b(48)], 2-b(48), 2.-(59), 2" (59), &) ,-(87),
G- [b(128), (151)]

w- (1), w‘-(69),w'E(ng-[124,b(143)], w'-(75), w-(127), w*Ew*i-(126),

w;-(123), w*s-(84), w*sj-(69), we-[electron plasma frequency, (122],

wrgpc-(120), wlce--(120), w,-b(143)

[Note: Species label s has been suppressed in the freguencies @, Qc’
L2

A
Qs 91’2, w, w.)

Table II1.C) Notational Groups

1) Scale lengths L, reciprocal scale lengths k, and inhomogeneity
parameters of expansion € and n:
Ly z scale length of any quantity y(x), e.g. Lp = plasma scale

length, LB = scale length for variation of magnetic field.
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K_=L

€yg = E/kzLy, nyspi/Ly
2} Contributions K to the dispersion equation:

Subscripts denote origin or function of term:
V - vacuum, s - contribution of species s, sj - contribution from portion
f s of distribution fs, d - well depth of K(x), for localizing modes,
d.e. - contribution due to solving a differential equation, h - contri-
bution from assuming small gyroradius (harmonic) particle orbits, n.% -
nonlocal contribution, o.m. - corrections due to anharmonic orbit modifi-

cation effects, 0 - zero-order approximation to K, for determining mode

localization, < - nearly local portion of K.
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FIGURE CAPTIONS

Reference pseudotrajectory _fk:(x) modeling the Tormac sheath
region, and the corresponding magnetic field E(x), for four
values of x.

I1lustration of the graphical method introduced in Sec. I.C.1.
For three particular values of x on the self-consistent pseudo-
trajectory isc(x) {labeled 1, 2, and 3) are drawn lines of
constant guiding-center position X, in the P-plane, which lie
in the direction of the magnetic field B at those points. The
parallel velocity v, at X is the distance from the pseudotra-
jectory to any point P considered, as shown for the point
labeled "¢ on line 2.

Sketch of the form of the effective potential V(x/P) in which
a particle with canonical momentum P moves, for points P like
point "a" of Fig. 2, which lies on two lines of constant guiding-
center, correponding to the two minima in V(x). Depending on

the value of the energy H, the particle may be confined to one

of the two wells, or it may pass through both wells, in the

Fig. 4.

course of an oscillation.

Pseudotrajectory A(x) for the simple example of magnetic field
B(x) with constant modulus and shear scale length. For this
example B is parallel to A, as are the lines of constant guiding-

center xo(g) , here drawn for the particular value X0=x2.
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The P or A plane of the (H,P) space over which distribution

fé is defined, showing the reference and self-consistent

pseudotrajectories E:and 5§C, a single constant guiding-center
line, and a number of sample points éj’ corresponding to the
integration boundaries in Fig. 5b.

Slice of the (H,P) space corresponding to the Xb=constant line
in Fig. S5a, showing the H-integration boundaries for points

éj of Fig. 5a. The curve labeled "0", corresponding to point

§0=§§C(Xo) on the self-consistent pseudotrajectory, marks the
boundary of the '"physical region." The curve labeled ",
corresponding to 51=E(xo), marks the boundary of the "quasi-
physical region" (cf. Sec. I1.C.2).

Sketch of contours of constant f(H,P), along an Xo=constant
slice of the (H,P) plane, for the loss-cone distribution
function of Sec. I.C.3. Outside the quasiphysical region, f

is taken equal to zero.

Numerical results of W. M. Sharp, applying the methods of Part I:
(a) Reference and self-consistent pseudotrajectories Z_and

é?c modeling the Tormac sheath. The proximity of ﬁ?c to z
indicates that the goal of resemblance of the self-consistent
and the reference magnetic fields has been achieved.

(b) Magnetic field gf;By + ng and its modulus |B| as functions
of x (in units of the ion gyroradius pi)‘

(c) Electrostatic potential &(x). The large values for large
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x/pi reflect a deficiency of the particular model used for
fe (cf. Sec. I1.C.6).

(d-f) Contours of constant ion distribution fi’ at points
in the Tormac interior (d), sheath center (e), and sheath
exterior (f), for the model of Sec. I.C.6. The resemblance
of the physically prescribed reference distributions (left
side) and the self-consistent distributions (right side)
reflects the achievement of the goal of Part I.

Sketches of fumctions arising in the evaluation of the pseu-
dopotential U(A) in Appendix A.

Coordinate syvstem (gz, gs) natural to a particular point
E(i;) on the reference pseudotrajectsry, used in Appendix A
to evaluate pseudopotential U(A).

Axisymmetric coordinate system (a,B,¢) adopted in Part II
(cf. Sec. I1.C).

Real and imaginary parts of the plasma dispersion functicn
W(z) = (Zn)’l/2 [dxx éxz/z(x-z)'l, for z on the real axis.
Sketch of the argument Zgeg of the dispersion fumction
W(zl,i), as a function of harmonic number &', showing that
for nonzero shear, a few values of &' may have 214 suffi-
ciently small that W(zz.i) is appreciable (cf. Secs. III.C.4,
I11.D.3).

Sketch of the scaling with shear (Ks/Kn) of the various con-
tributions to the dispersion equation (cf. Sec. III.C.5).

To the right of line a the stringent convergence condition



Fig. 14.

Figs. 15.

Fig. 16a.

Fig. 16b.

Fig. 17a.
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(I11-101) is violated. To the right of line b the less
stringent convergence condition (II17-116) is violated. When
the convergence condition is satisfied (violated), the former
(latter) of Eqs. (III-41) is the appropriate dispersion equa-
tion. To the right of line c, mode localization condition
(I11-102) is violated.

Graphical depiction of the dispersion equation for the IDC
instability, studied in Sec. III.D. Instability arises when
the sum of terms B and C does not extend down to the w'-inde-
pendent line -A, in the interval containing w,.

Sketches of the two-term (a) and one-term (b) approximations
to the full IDC dispersion equation, which is illustrated in
Fig. 14. The two-term approximation accurately represents
the full equation in the interval containing w,, in which
instability can occur, while the one-term approximation, used
in previous analytic studies of the IDC instability, does not.

2 versus X, important in

Sketch of the factors A;Zw*/w' and Ai
determining the form of the function Ko(x) in Fig. 16b.
Sketch of the function Ko(x) (for the negligible-shear regime
of Sec. III.D.2), which acts as a potential well, at whose
bottom unstable eigenmodes are localized.

Sketch of the real and imaginary parts of the factor

-8, = W(zoe)-l, important in determining the position and

width of unstable eigenmodes in the appreciable-shear regimes

(Secs. III.D.3, II1.D.4).
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Fig. 17b. Sketch of the real part KRO(x) of the function Ko(x), for
shear length Lg large enough that Loe = Ls(w/kzve) is some-
what shorter than density scale-length Ln (Sec. III.D.3).
Unstable eigenmodes are localized at the local maximum near
point X, where k3(x2)=0, in Berk-Pearlstein fashion. Away
from this point, the mode is strongiy damPed through KIO by
electron Landau damping.

Fig. 18. Depiction of the gyroorbit of a particle passing through a
region of mode localization, in the regime in which the
particle gyroradius 95236 is much greater than the mode
localization widtn L¢=a‘l/2. In this regime, one may approx-

imate the particle trajectory in the mode localization region

by a straight line (cf. Appendix D).
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