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ABSTRACT

The effects of the angular range of data taking in reconstructions in
p1anar'positron camefas'using the deconvolution method andvthe matrix method,
respectively, are investigated. It is-dend that in the absence of any a
priori information there are undetermined cdmponents fn the reconstruction
if the point response functioh of the positron camera does not satisfy certain
~criteria. However, most of the undetermined components are recovered %n
the case in which the transverse spacing of the object is discrete, and all
of them are recovered if the fact that the object extent is finite is uti-
lized. It is concluded that the fWo reconstruction methods are mathematically
equivalent. The results obtained can bé applied to other transmission and

emission imaging devices.
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3-D Object Reconstruction in Emission and Transmission

Tomography with Limited Angular Input

K.C. Tam, V. Perez-Mendez and B. Macdonald

I. Introduction

In radiology and nuclear medicine imaging, information on an object is
ﬁsua]]y inferred from the radiation transmitted through or emitted from the
- object. Such methods of imaging medica] disorders, known as transmission and
emissioﬁ imaging, respectively, usually involve collecting the radiation events
while viewing the object in a continqous range of angle or series of discrete
angles, and then reconstructing'the object diStributidn from the data. Object
distribution can be two—dimensidhaT, such as in ringlpositron cameras [1] and
X-ray scanning (paraT]é] beam or fan beam geometry) [2,3], as shown in Figure
1, or three-dimensional as in planar positron cémeras f4] and pinhole imaging
[5], as shown in Figure 2. Simi]ar techniques have also been employed in other
non-medical iméging situations, such as é]ectron microscopy, radioastronomy,
etc. In this paper we investigate the relationship between the angular range
of the inpﬁt data and the possibility of reconstructing the object distribution
comp]ete]y. Practical ways of implementing such ideas numerically are also
given. In the following discussion We shall study the typical problem of
imaging in planar positron cameras. The.resu]ts‘obtained can be_épplied to

other problems after simple modifications, as shown in Section IV.

II1. Basic Equation and Methods 6f Solving

We shall take the 1ine joining the centers of the two detectors of the
planar positron camera as the z-axis. Due to the symmetry of the x and y axes,
we shall write out only the x-axis explicitly and suppress the y-axis in most

of the mathematical treatment and figures in order to facilitate presentation.



As shown in previous papers [6,7], the data in a positron camera consist
of straight lines defined by the annihilation gamma pairs, with the position
of'the radioactive nuclide which has just undergone the B*zdecay lying some-
where along the straight line. If the number of fhese straight lines becomes
1arge,‘they will form a scalar field ¢(r) in space. If the response at r due

to a point source at r' is ¢,(r,r'), then we can write

o(r) = [o(r" odr,r')d3r - ' (1)

where o(r') is the radioisotope distribution giving rise to the annihi]aﬁion
gamma pairs. Equation (1) is the basic integral equation relating the data
to the object distribution. |

Eduation (1), as it stands, is not easy to deal with in general. However,

if. the kernel is space invariant, ie.

o(r) = jp(ﬁ’)¢o(£-i')d3r' — (2)

solving for p(r) becomes much easier, as various methods of solving integral
equations with kernels of such form have been developed [8]. Various ways of
constructing the function ¢, and making it space invariént have been given in
previous papers [6,7]. |

To solve Equation (2), one approach is to Fourier trénsform the equation
to frequency space. As shown in [8], the transformed equation is diagonal,

so the integral equation reduces to an a1gebraic equation,

o(k) = o5 (k)R(K) — (3a)
where

9o(k) = [oo(r)exp(2mik-r)d3r

o(k) = [o(r)exp(2nik-r)ddr

R(k) = [e(r)exp(2nik-r)d3r



The solution is given by

p(r) = [R(K)exp(2nik-r)d?k ——— i ' (3b)
where.
'-if Cifep(k) £ 0
R(K) = | (3¢c)

undetermined if o,(k) = 0
(since here Equation (3a) becomes 0 = 0)

If we Fourier transform Equation (2) only in the x dimension, we get the

equation

Y (kx»2) =‘I:Yo(kxsz*Z')P(k#,Z‘)dZ' - —— (4a)
where

¥ olkysz) = IZ§O(X,Z)exp(2nikxx)dx

etc.

and the solution is given by

plx,2) = [7, plkxsz)exp(-2mikyx)dky _ (4b)

Equationé (3) and (4) represent two methods of solving foroe(r). The
former solves for the unknown R(k*,kz) in frequency space and then inverse
transforms in the ky and k, dihensions back to confiqguration spaceg.whereas
the latter tackles the‘probTem in the ky and z space followed by inverse
transformatfon in the Ky dimensfon. Thereafter in the paper we shall refer
to these methbds as the deéonvo]qtion method_[6,7], and the matrix method

(91, respéctive]y.



III. The 0ptica1 Transfer Function and the Undetermined Frequency Components

In'order_to reconstruct the object uniquely using the deconvolution method.
from Equatibn (3c), all the frequency components of the»optical transfer func-
tion ¢,(k) must be non-zero. For the matrix méthod, thé corresponding require-
ment is that the integral operator in (4a) does not have zero as eigenvalues
[10]. Neither of these two conditions holds when the rangés of integration
involved cover all space and there is some plane passing through the origin
of_the point response function and that plane contains only one non-zero point.
To show this, we first calculate the optical transfer function @0(5).‘ Due to

the property of the positron camera event to be shown later. (Equation (5)), we

make the following coordinate transformation

r(x,z) > r(e,z)

where g tan'l(—§0

zZ = 2

As mentioned in [6,7], thergenera] point response function at (x,z) is
defined as the number of straight lines, emitted from the point source, passing
through a line segmént of unit length at (x,z) oriented perpendicular to the
z-axis weighted by a factor F(a) depending on the angle the 1ine§ make with
the z-axis. F(p) is positive inside the cone and zero outside; the case of
F(s) = 1 inside the cone corresponds to the conventional tomograms obtained
from.back-projecting the events. For z # 0, consider a line segment dk pointing

along the x-axis centered at (g,z) relative to the point source (Fig. 3a)

. ] - . 1
s,(0,2) = F(e) —2041€ Subtend:d by dx at origin 1

- F(e) cos?p

m |z]

) |
Thus ¢,(6,2)|z| = F(e)cos®e | (5)

-m




Equation (5) shows that ¢,(6,z)|z] is a function of o only. This expression

is valid also at z = 0. The optica1:transfer function is

0o (Kyskz) = I:dz I:dx¢o(x,z)exp(2ni(kxx + kzz)) (6)

Performing this integral (Appehdix A) we get

Uz) 1% gg)de if k=0
o ~60
0o (kysky) = - |
;T"I"%;l- F(e-\ )COSZGQ if kX #0
where tane; = :FZ—
X

Figure 3b shows schematically the shape of the two-dimensional optical
transfer function. Threeadimehsiona1 point response functions and optical
transfer functions are treated iﬁ Apbendix B, and the result (B.3) for the
pyramidal ¢d!ﬁ) is f]]ustrated in Figuré 4, Figures 3b and 4b show that
there are regions in frequency space where ¢,(k) is zero, and thus R(k) cannot
be recovered by the deconvolution method from Equation (3). Also note that |
Equafions (A.2) and (B.Z) show that the ¢, of those pointbresponse functions
satisfying Equations (5) and (B.1), respectively, are non-negative.

However, if the point response function in Figure 4a is rotated around
the x-axis, a cylindrically-shaped point response function will be generated.
Making use of the linearity of the Fourier transformation and the non-negativity
of ¢,, the corresponding optica]vtransfer function can be obtained by rotating
the function in Figure 4b around the ky-axis. The resulting anction in
non-zero everywhere in the frequency space.

This examb]e illustrates the following general principle:

"the necessary and sufficient condition for the optical transfer
function in a positron camera to be non-zero everywhere is that

every plane passing through the origin (the location of the point
emitter) of the point response function contains at least a line

of non-zero values." ~ — (7)



The proof is given in Appendix C.

| | In the case of the matrix methbd;,we claim that the integral eperator
(4a) does have zero as its eignevalue for every.va1ue of ky if condition (7)

is not satisfied. First we show that {exp(-2nik,z)}is the set of eigenfunctions

of the integral operater. Setting p(ky,z) = eXp(-Znikzz), the integral becomes

’!m?o(kx,z-z')exp(-ankzz')dZ'
= exp(-2mikyz) oo(ky ky) S - ,

Thus {exp(-27ik,z)}is the set of eigenfunctions for the integral operater
with eigenﬁa]ues o (ky,k,). However, we have aircady shown that ¢, has zero
componenti if some cross-section of ¢, threughv the origin contains one non-
zero point only. vSTnce_the eigehfunctions form a eomp]ete set, the general

S

solution of the intecral equation (4a) is
P(kysz) = [TClky,k,)exp(-2nikzz)dkz
where the coefficients C(kx,kz) are given‘by

f P(kys2z)exp(2nik,z)dz ek ky)

C(kx,k ) = ®: (kx,kz) - Qo(kx’kz)

4 if q>0(k)(akz) # 0

undetermined, if 8,(kyskz) =0

The solution p(x,z) in conf1gurat1on space is obtained by inverse transforming
P(kx,z) in the ky dimension, and it can be seen that the result is 1dent1ca1
to that obtained by the deconvolution method, as axnected.

It follows that p(x,z) eannot be determined uniguely using either the
deconvolution method or matrix method represented by Equations (3) and (4),
‘respectively, when the péint response function does not satisfy (7)_and no

4

further information is available.



IV. Use of A Prfori Informatiohf_
Cn this section we discuss the effect of some of the a priofi constraints
on the undeterhined components of R(k).

In_a11 physically interesting situations we will be dealing withva
.‘bounded, finite object in which the appropriafe density p(g) is to be deter-
minedf Furthermore, due.to the ]1mitation in resolution of the measuring
‘ device and the fact that computation is usually done in a digital computer,
this object distribution will be analyzed on-a grid of points with finite
spacings Ax, Az. In order to understana the effect of each constraint separ-
ately, we will consider the following cases:

Finite Spacing

The vanishing of @O(kx,kz) outside the cone in Figure 3b is due to the
delta function property of the integral in (A.1), which in turn arises from
the 1nfinitesima1 reso]utionbin‘the z dfmension of the point response function.
 If the assumption is made that the distributfon of p(x,z) in the z dimension
is discrete, moét of the zero components of @O(g) will become non-zero through
sampling, and hence the corresponding components of R(k) will be recovered.
The detailed analysis is done in Appendix D. The results show that the number
of undetermined frequency compoﬁents_of R(g) is greatly reduced if Az # 0.
Accordingly, the number of eignefunctions with zero as eigénvalue in the matrix
method is also reduced.‘ |

Finite Extent of Object

By makjng use of the fact that the extent of the object is finite, all
of the undetermined coefficjenté in the solution can be removed. This is a
consequence of.two theorems: (1) the Fourier transform of a finite object is
an entire function, and (2) an entire function can be contihued throughout the
' Who1e comp]ex plane from a knoW]edge of the function on any finite confinuous
'1jnebsegment tli]. “We consider.the'effects of the finiteness of the object

in two steps.



(a) Finiteness in z dimension (z; < z < z,)

The Fourier transform R(ky,kz) of o(r) is entire in k,. So, for any
kg, # 0, the function R(ky, »k;) éah be calculated for all values of k;, from
a know1¢dgé of the'funct{on dh the line segment‘ké € (—kxltaneé,kxltaneo)
(Figure 5). This cannot be done at kX1'= 0., where the line segment degenerates
into a point. |

This process of ana]ytfc continuation in k;, can be carried out for any
non-zero angle o,. The-11miting case is when ¢, = 0, where for every Ky
the‘1ine segment k, e (-kxltaneo,kxltaneo) degenerates into.a point. For
the general case 6, # 0, the only information that cannot be recovered is
R(0,k,) with'kZ # 0. Since p(0,z) and R(0,k,) are a Fourier transforh paif,

and
p(O,Z) = Imp(X,Z)dX

represént the'total's1ice density.on the z-plane, the undeterminacy of R(O,kz)
where k, # 0 means that fhe total s1i¢e density on each z-plane cannot be

determined uniquely. However, the total object density is known, Since
R(0,0) = jjp(x,z)dxdt

is known.

As for the matfix method, the integral operétor (4a) in this case
becomes positive definite when the range of {htegration'in z is finite. This
can be seen as follows. | |

@olkysz-2') = £:°£%§l-exp(2nikxtane(z-z'))de

For any function f(z) piece-wise continuous and spatially bounded in z; < z

< Zy,



| fzidz'f:zdz95(kx’zf?')f(Z)szlj

fZ'dz'j:?dz£g°de£%91 exp(Zwikxtane(i-zf»f(z)f(i')

B /vy 2 . | | | | |

Since F(8) > 0 for all -6 < 6 < 6, the[vaniShing of expression (8) would

require that

'I(kxtahe) =jzz_‘e_xp(Znikxtanez)f(z)dz = 0 
. } 2 .

for all -lkxtaneol < kytand < |kytans |

Now the_intégra] I(kytano) is an entire function [12]. If it is zero within
the interval [-kxtaneo;kxtaneo],-it muét be zero everywhere. Thus. f(z) must

be zero eVérywhere, Tﬂis angment proves that the integral operator

- z . - 1 ] (]
g(z) = fzfyo(kx,z-z )f(z')dz
is positive definite, and by [10], the eigenfunctions associated with it form
a complete set in the class of functions square integrab]e in (z,,z,), and

thus unique solutions exist for the integral operator.

This argumeht breaks down if kytane,: = 0. Therefore, there is no unique

~ solution for p(ky,z) if ky = 0 or 8, 0. For the general case 6, > 0, the
.only missing'information is p(0,z). As in the case of the deconvo]utibn‘method,
this implies that the total s]ice-density on each z-plane cannot be determined.
The tota1 objéct density, howe?éf, can still be determined. This can be seen

as follows:

90(0,2) = [“o5(x,2)dx

8
=-I6¢0(e,z)|z|sec29de

_%.Ig Flodge (from Equation (5))

-9 -



= Als)  (say)

Substituting into (4a) with kg = O we get

9(0,2) = [*A(05)p(0,2" ez’

A(8o)[Tdx'[*dz o (x",2")

-

[Pdx* [P dz'p(x",2")

Hence, total object density i
IR v \

(b) Finifeness in both x and z dimensions: (x; < X < X,, 2} < Z < Z,)

In this case, R(kx,kz) is entirevin both k, and k,, so for the decon-
volution method, R(k4,k,) can be‘continuéd throughout the k-space from a
know]edge of the function within the cone defined by any two intersecfing
line segments. |

| Again, the procedure cannot be used when 6, = 0, since then the only
région in which R(k) is known is the k, = 0 Tine.

The above analysis shows that all the information of any density dis-
tribution of finite extent is cohtained in its Fourier components within any
open cone in frequency space with its apex at the origin. This result is in
agreement with the féct that such a distribution is uniquely determined by
any infinite set of projections [13,14]. _

‘For the matrix method, the fact that p(ky,z) is entire in k, for all
z, <z < z2 can be employed to fill up the undetermined compdnents at ky = 0
on each z?p1ape from values at k, # 0 on the same z-plane.

If 8, = 0, the components at k, # 0 (k, # 0) are not known themselves,

not to mention the continuation to'k_x = 0.

- 10 -



In tkansmissioh imagfng'using parallel beams of x-rays and some other
applications mentioned in Section I, the measuredvdata are in the form of
projéctions P(r,e) of the object at certain angles 6. By the projection
theorem [15], the one-dimensional Fourier transform of P(r,6) in r gives the
componénts of the two-dimensional Fourier transform of p(x,z) on a line at angle
(6 + m/2). If the projections are taken in a Timited range of angle, we will
get the Fourier components of p(x,z) within a cone,‘giving rise to the situa-
tion shown in Figure 5. The process of analytic continuation given above

can therefore be applied to obfainvthe rest of the Fourier components of

p(x,2).

V. Results

Wé have tested the results deve]oped in the pnrevious sections by performing
studies on a computer-generated phantom,' As the computations had to be ddne
on digital éomputers, all the méthematica] quantities were digitized on a lat-
tice with cell size ax, Ay, Az, the choice of which is govérned by the spatial
resolution of the imagfhg devicé and the available core memory capacity of |
the computer. In digitizing we have restricted ourse}ves to frequency compo-

nents below the maximum frequencies given by

ky(max) = ?%I , etc.

The components at frequencies aboVe this va]de are very small in magnitude
as a consequence of the finite resolution, and will be placed equal to zero
for computational pukposes. Thé constraint that the density distribution is
non-negative Was also utilized in the reconstruction.

| We first tested the effect of the size of the camera angle on the computer-
Qenerated phantom shown in Fig. 6, which is a spherical'sku]] with a tumor
located off-center inside. The skull is of inner radius 9 cm and thickness

2 cm, while the'tumor has radius 1.5 cm. The concentration ratio is

- 11 -



tumor :Skﬁ11 : background = 10:5:1

We performed the reconstruction using the déconvo]ution method in three
positron camera configurations with three different point response functions.
The first point response function subtends a viewing angie (the solid angle
of the detection cone in Fig. 4a) of 6ne-third of 4r along the z-axis; the
second one subtends two-thirds of 4n, one-third along the‘z-axis and the other
‘third along the y-axis; and the last one has complete 4r viewing angle. They
correspond to camera configurations having one, two, and three pairs of detec-
tors, reSpective1y; wifh the axes joining each pair perpendicular to each
other. The last cOnfiguration, though not Very realistic practically, was
included -for making comparisons; because its point response function obviously
contains no zero Fourier components. * According fo condition (7) in Section III,
the first point response. function contains zero Fourier components, whereas
thé second one does not. The phantomxgenerated.a.tota] numbef of 1.2 million
events in each_case.v_ReconstrUCtiohs were done on a 43 x 48 x 48 lattice,
with cell size equal to 1 cm x 1 cm x.lzcm.v Each event was weighed by F(8) =
cos~3e in constructing ¢(r). |

In the presence of noise, Equation (3c) is modified to

R(k) = —Salkl — — — (9)
00(k) + YLLK | |

by the smoothing algorithm developed in [6].

Besides suppressing the noise in the high frequency range, Equation (9)
also has the effect of'setting the values of R(k) to zero in the region of
frequency space where 6,(k) = 0. This propefty can be expected from the

_ smoothness constraint imposed upon the solution, since in the absence of any

- 12 -



information on the amplitude vector R(k) of the sinusoidal wave at frequency
k, setting R(k) to zero gives a solution p(r) with minimum fluctuation. This
R(k), however, is clearly not the correct solution, since it is not an analytic
function.as it is discontinuous at the‘edge of the allowed cone (see Fig. 4b).
Figs. 7, 8 and 9 show thevfeconstructibns obtained, and Table I shows the
optimum value of ¢ in each of the configurations, where ¢ is.a measure of the

deVigtion of the reconstruction from the object, given by

o ='“Vé-§ K (reconstruction(i,j,k) - phantom(i,j,k)P

It can be seen that the reconstruction from deconvolution using the .
four-sided camera point response function'fs essentially identical to that
using thé point response funétion with 4n viewing angle, showing clearly that
the Fourier componénts of the four-sided camera point response function are also
non-zero everywhere. On the other hand; the two-sided camera point response
function gives a reconstruction considerably worse than that of the other
two, as can be exbeﬁted from the presencevofvzero components in its Fourier
transform.

Next we investigated the effect of the finite extent of the object in
extending the spectrum R(E) beyond the allowed coné for .the first camera
configuration (two detectors: 1/3 x 4n viewing_angle). The iterative scheme
shown in Fig. 10 was employed to this end. The spectrum R(0)(k) obtained €rom
deconvo]dtion was Fourier-transformed to the object space. There the values
outside the known extent of the object were set to zéro, and then inverse-
trahsformed to the fréquencyAspace, giving R(l?(g). The components of R(l)(k)

inside the'allowed cone were reset to the original va]ges given by R(O)(g),‘

and the cycle repeated, yielding R(n)(g) after n iterations.

- 13 -



wé note that this iterative scheme has been used by Gerchberg [16] and
Papoulis [17] to improve the resolution of one-dimensional signals in band-
Timited systéms. The convérgence of the scheme in one dimension has been
proved by both of these authors. The proof given in Gerchberg's paper made
use of the property that a real analytic function in one-dimensional spéce
either vanishes everywhere or only has isolated zeros. This proof can be
generalized to higher dimensions by using the more general property that real
analytic functions on n-dimensional space cannot vanish on an infinite set
of n-1 dimensional planes through the origin without vanishing identically.

Fig. 11 shows the reconstructioh'in the first camera configukation aftér
15 iterations, and Fig. 12 shows the values of o as a function of the number
of iterations. It can be seen that the scheme converges at about 15 iterations,
and the value of o is reduced to a level much closer to, though still higher
than, that obtained usina the point response function with 4ﬂ viewing angle,
there being a factor of three in the reduction of the difference in o. " The
residud] difference is attributed to the propagation of errors in 1tera%1ng,
from such sources as statistical fluctuation, and aliasing and leakage in

performing digital Fourier transform [ 18].

VI. Conclusion

We have shown that, in principle, one can reconstruct the object cdmp1ete1y
no matter how small the solid angle the imaging device subtends, provided one
makes use of a priori information. .However, thernoise ih fhe datévaSes a
practical 1limit to the quality of the reconstruction. The errors in the re-
construction due to noise propagation become seriods in the case when the solid
angle of the imaging device becomes too small. Qur computer simulations have
shown that imaging with solid ahg]e 4 steradian%providéé adequate reconstruc-
tions. Imaging with solid angles of this size occurs in épp1ications in other

fields such as electron microscopy.

- 14 -



(W]

A detailed comparison of the relative costs and tradeoffs between the

imaging sojid angle and thevcomputational and statistical errors will be

covered in a forthcoming paper.
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Table I

Reconstructions Using the Deconvolution Method

Number of detectors in 9 ‘ 4' v 6
_the positron camera

Optimum o ' ~1.000 0.712 0.704

- 16 -




Appendix A
oy (Ky s kz)

o0

f dzfmdx.¢d(x,z) exp(2ni(kyxtk,z))

-0

24

[: dzL:de 0,(8,2) exp(2niz(kytanetk,))|z|sec

) ) (° . .
[7%de Fie | dz exp(2niz(kytanetkz))
_eo P =0 :

Now

' J;exp(Zniz(kxtane+kz))dz= G(kxtane+kz)

therefore 6 _ »
oo (kyskz) = je°.5%91 §(kytane+ ky)de
“6, v

N 6o - )
_§£Kzlf F(o)de i ky=0

m -eo

F(G‘)éOS 04
_"Ikxl

where tanej=- k

if ky#0

- 17 -
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Aggehdix B

In three—dimension,,equatioh (5) takes the’ form

,‘ 2 S ' .
oo(s52)|z|™ = K(=/z) | | (B.1)
where s=(x,y), and the angular function H is positive inside the data cone and .

zero outside. Defining t = 877, w = (ky,k5), and performing the Fourier trans-

formation, we get

% (Wokz) =f dz [f d%s 6,(s,2) exp(Zﬁi(ﬁ-gkzz))

= [ H() s(wettkz)d’t

The vector t = (t;,t,) can be chosen so t, ies along w, giving w-t+k,=|w|t1+k,.
Then we get

slkz) [IH@R)A%  ifw=0 |
SR | (8.2)

Qo(ﬂskZ) =

/ H('kz/lﬁj’t27dtz if w# o0

~ In the particular case where ¢ is in the form of a square pyramid;ie.
9o(x>y,2) # 0 whenever 0 < |x| < |ztano,|

and 0 < |y| < |ztane,]|

| A

application of (B.2) shows that

<I>o(kx’kyakz) > 0 if kx| + Iky_l. >\|kz‘/taneo when |ky|, [ky| >0

or |kel + |kyl > |kzl/tang, when . [ky|30 or |ky|=0 |
(B.3)

= 0 otherwise



Appendix C

In this appendix we prove the statement (7), namely, the necessary and
sufficient condition for an obtical.transfer function to be non-zero everywhere
is that every p]éne'passingvthrough the origin of fhe corresponding point
response function contains at least a line of non-zero values.

Necessity |

If there is a plane A through the origin of ¢, on which only the origin
is non-zero, then we take the normal to A at the origin to be the z-axis.
Equation (B.2) shows that &, is zero on the k,-axis except at the origin.
Sufficiency | |

Given a point response functibn satisfying.condition (7), we want to
show_that'the value of o, at‘any arbitray point P in the frequency space is
~non-zero. First rotate the coordinate system in frequency space so that P
Ties on the ky~axis. The,plane'x = 0 of ¢, contains at least one line with non-
zero values. Take any such 1ihe to be the z-axis. Then decompose ¢, into two

parts in the following manner:

0 ifz=0
0§ x,y,2) =¢ |
o,(x,y,2) if z#0
| ‘ oo(xsy,2z) if 2 =0
82Xx,y,2) ={
0 ifz#0

Clearly ¢o = ¢g”+ ¢g§. Since ¢Q) satisfies (B.1), equation (B.2) shows that

@él)>.0, because H(;) >0 at t =0. Now it remains to show that @éa is non-

negative at P. ¢f) can be written as

(2)

¢, (5,0, 2) = _Fle) s(z)

, _ S
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Where we haVe made the'coordinate»transformation rix,y) + r(s,8). Transforming

‘ k(kx,k ) to po1ar coord1nate k(w,a), and- tak1ng ‘the Four1er transform of ¢(22

we get

(?) Eifl_fifl exp(2ﬂ1(sw cos(e- a)+kzz))sdsdedz

(W’“’ z) = fff

__F(T/2)
2n|w|

which is clearly non-negative.

- 20 -



Appendix D .

Let us represent the object p(r) by

Az §p(x,nAz) §(z-naz)

n==s

In this case the point response function ¢O(x,z) can be sampled

~in the z dimensian . in a corresponding manner

&o(x,z) > AZ §¢O(x,z) §(z-naz)

n=woo

Substituting the sampled ¢,(x,z) into Equation (6) yields
8 F v . |
8o (K, 1kz) =£6°—§T-e-l sz ( Lexp(2uinaz(kytanotk,)))do

From [19]

v ; . 1Y : n.
yexp(2minaz(kytane+k,)) = -XE-Zﬁ(kxtane+kz- _K?)

ne-0

n=-®
Thus o
o (ky.k,) = 1 % FCo) §(kytangs+k,- —=)d
a 1 2
= - ) F(em) cos“op

Tlky] meM

where M is the set of integers m such that

) m
kytanbp+kz-—55 = 0 - for some -6,< 6 < 6

_ o,
Since F(8) cos & > 0 for al1 0 < |o] < 6,, it is enough toshow

- 21 -



the set M non-empty for ¢o(kx,kz) to be non-zero. For freduency
components thside the cone, ie., lk;| < |kyx|tane,, we have

kytaneyp + k, = 0 where tanep = léf— (set op =0 1f ky = 0)

thus m = 0 ¢ M,-and therefore_@o(kg,kz)‘is non-zero,
~ For frequency components outside the cone,ie.,
lkz| > J|kx|tane,, it can be shown that
o,(kyskz) # 0 if |ky| > 1/(2taneqaz)
othérwise ¢,(ky,kz) is zero at a fraction of points on the

line ky =constant, and this fraction is given by

1 - 2tane azlky| .
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"~ -Figure Captions

1. Two-dimensional imaging devices.
2. Three-dimensional imaging devices.

3. A two-dimensional point response function ¢,(r) and its optical
transfer function &o(k).

4. A pyramidal three-dimensional point response function ¢,(r) and
its optical transfer function o,(k).

5. Analytic continuation of R(kx,kz) in k, dimension.

6. A computer-generated phantom simulating a brain tumor. The skull
is 2 cm thick and has an inner radius of 9 cm. The tumor has a
radius of 1.5 cm. The concentration is 5:1 for the skull and
10 : 1 for the tumor. Each picture element is 1 x 1 cm?2. The planes
are 1 cm apart in the z-direction.

7. Reconstructions from deconvolution using a po1nt response function
with viewing angle one-third of 4n along the z-axis. Each event
is weighed by cos~36 in constructing ¢. The value of vy is 1.15 x 10-7,

8. Reconstruct1ons from deconvolution using a point response function
‘with viewing angle one-third of 4n a1ong the z-axis and one-third
of 4r along the y-axis. Each event is we1ghed by cos~36 in con-
struct1ng ¢. The value of y is 1.54 x 107

9. Reconstructions from deconvo]ut1on using a po1nt response function
with complete 4n viewing angle. Each event is we1ghed by cos~36
in constructing ¢. The value of y is 3.85 x 10-7

10. Iterative scheme to extend the spectrum R(k) beyond the decon-

volution region.

11. Reconstructions in Figure 7 after 15 iterations using the scheme
- shown in Figure 10

12. The values of the mean square dev1at1on of the reconstruct1ons as
a function of the number of iterations.
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