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Abstract 

A method previously developed for constructing field theories 

of solitons is extended to non-Abelian vortex models in (2+1) 

dimensions and to both Abelian and non-Abelian models in (3+1) 

dimensions. In (2+1) dimensions, a local field theory 

is obtained, and in (3+1) dimensions, string theories with local 

interaction emerge. Various features of these models are inves-

tigated. 
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I. Introduction 

In a previous paper, (1) referred to as (1), a method for constructing 

local field theories for solitons was developed and applied to the Abelian 

Higgs model in (2+1) dimensions'and to the Georgi-Glashow model in (3+1) 

dimensions. The present paper is a continuation and extension of (1) in 

two different directions: 

a) In (2+1) dimensions, a local soliton Lagrangian is' constructed 

for a class of non-Abelian gauge theories, known to have classical soliton 

solutions. (2) These models have a sufficient number of Higgs scalars 

belonging to the adjoint representation, so that after spontaneous symmetry 

breaking, all vector mesons acquire finite masses. There has been some 

interest recently in the soliton solutions of these models, especially in 

connection with their transformation properties under the center Z(N) of 

the gauge group SU(N) and their role in charge confinement. (3) Sections 2 

and 3 are devoted to the construction of the soliton Lagrangian and to the 

discussion of some of its features. 

b) In sectioh 4, both the Abelian Higgs model of (1) and the non-

Abelian Higgs model of section 2 are extended to (3+1) dimensions, and 

the solitons of one lower dimension are shown to turn into closed strings. 

Although this result has been known for some time,(2) even in the Abelian 

case the string interaction is not the standard one, ,and in t;he non-

Abelian case, the string possesses additional internal quantum numbers 

as well. We also point out the well known problems(4) of tachyonic mass 

and unphysical dimension associated with string theories, and offer some 

speculative remedies. 

" 

• 
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Recently, a series of papers(5-7) have appeared, dealing with the 

soliton content of various gauge theories, and we would like to compare 

our approach to the same problem with theirs. These papers all treat 

field theories on a lattice, and they use standard duality transfor

mations(8) of statistical mechanics to transform the original action into 

a "dual" soliton action. Topological considerations do riot seem to play 

a direct role, since it is difficult to do topology on a lattice. In 

contrast, from the beginning, we work in the continuum, limit arid single 

out fields on non-trivial topological configuration. Also, our treat-

ment is exact at each stage, and there is no need for any approximation 

such as the Villain trick. (8) . Our method is also able to handle models 

based on non-Abelian gauge groups, such as the Georgi-Glashow model dis-

cussed in 'reference (1), whereas in the lattice approach, only abelian 

models have been considered so far. However, the Abelian analogue of 

the Georgi-Glashow model, compact Q.E.D. on a lattice, has a structure 

very similar to the non-Abelian model. (9) On the other hand, to our best 

knowledge, the lattice version of the non-Abelian Higgs model treated in 

this paper has not yet been investigated. 
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II. Solitons in Non-Abelian Higgs Model 

in (2+1) Dimensions: 

Topology of Higgs Fields 

For the ease of exposition, a model based on the gauge group SU(2) 

will be treated first, and the generalization to an a~bitrary group will 

be given at the end of the section. The model is built out of an SU(2) 

gauge bosonAo., and two Higgs.scalar isotriplets 4>0. and ljIo., where 
\..I 

a. = 1,2;3 and \..I runs from 0 to 2. The Higgs potential is so adjusted 

that the vacuum expectation values of 4>0., ljIo. and their vector product 

form a non-degenerate coordinate system in the SU(2) space, and all the 

vector mesons acquire non-vanishing masses. The Lagrangian density is 

given by 

£ = 

where, 

and 

Go. 
\..IV 

D <po. 
\..I 

I 
-4 

= 

+ 1:....).2 
2 3 

= a Ao. 
\..I v 

(4)o.ljIo._h
3

)2, 

a Ao. + o.Sy e € 
v \..I' 

= a 4>0. + e Eo. Sy AS<pY. 
\..I II 

ASAY 
II v' 

(2.1 ) 
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The indiceslJ,v,A refer to space, and a,B,y to isospin [SU(2)]. It is 

also convenient to express the field variables in matrix notation: 

¢l 1 ¢l a a A 1 aAa = "'2 T, = "'2 T lJ' lJ 

.G 
1 a 

G
a a A a A ie (A ,A),. = "'2T = lJV lJV lJ v :v lJ lJ \) 

a ¢l - ie (A ,¢l), 
lJ lJ 

where T
a are the Pauli matrices. In this notation, the gauge trans-

formations that leave (2.1) invariant are given by 

-1 -1 
¢l ~ S¢lS ,W ~ SW S 

i - - (a s) 
e lJ 

-1 S , 

(2.2) 

(2.3) 

where S is a unitary two by two matrix. The standard generating functional 

is 

Z(J) = fDA JD¢l JDW (M) 

x exp{i J d3x [.£ (x) + J(x) C(x)]} , (2.4) 

where J is the source coupled to some field or combination of fields 

denoted by C, and (06) is a suitable gauge fixing term with its proper 

measure. 
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We are interested in the contribution to the functional integral from 

unusual topological configurations of the fields ¢et and tjJet called kinks. 

The definition of a kink is as follows: The isovectors ¢et and tjJet, 

along with their vector product, in general define a unique coordinate 

system in the SU(2) space. For the time being, we assume that ¢ and tjJ 

are never parallel. At each point on a given path in space-time, one 

can define a unique group element of SU(2) by the parallel transport of 

the coordinate system established by ¢ and tjJ. If the coordinate system 

is transported around a closed path, arriving at the starting point, 

the corresponding group element must be a rotation by 21Tn around some 

axis, where n is an integer. All even n are topologically equivalent 

to the case n=O and all odd n to n=l. (10) The case n=O is trivial and 

n=l corresponds to a kink. From the foregoing discussion, it is clear 

that kinks carry a conserved multiplicative quantum number (-1), and that 

kinks and antikinks are equivalent.' When this analysis is extended to 

SU(N), it turns out that there are as many distinct kinks as the number 

of non-trivial elements of, Z( N), the center of the group, and that kinks 

carry a corresponding multiplicative quantum number.(3) 

If a closed path of non-trivial topology is shrunk to a point, 

eventually it must cross singular point(s), where a unique coordinate 

system cannot be defined. These points are defined to be the locations 

of pointlike (bare) solitons. The possibility of defining such point-

like objects is what makes a local field,thoery of solitons possible. 

A kink can pe "straightened out" by means of a sin~lar gauge trans-

formation, which maps it into a trivial configuration of the fields 

¢ and tjJ., A simple example of such a transformatioh is the following: 

" 
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S ( 2
i a a) = exp S nT, s 

" 

where S . is defined by eq. (2.3), s is the polar angle defined by 
·s x2 . 

tan(s) = -- , and n is a vector of unit magnitude in SU(2) space whose· 
xl 

direction is a smooth function of space coordinates. It is clear. that 

the singular gauge transformation defined by eq. (2.5) maps an ordinary 

configuration of fields ~ and ~ into a static kink located at the origin, 

and vice versa. Strictly speaking, singular gauge transformations are 

not gauge transformations; they carry flux and they do not leave the 

action invariant. Defining 

B 1 aBa i 
(3 S) -1 (2.6a) = -T = S 

J..I 2 J..I e J..I s s ., 

and, 

F 1 aFI = 3 B 3 B ie (B ,B ), = -T 
J..IV 2 J..IV J..I v v J..I \..I v 

one finds, using Stokes' theorem for a closed path around the origin, 

the following result: 

= (2.6b) 

= = o. 

In this special case, the kink has the time independent trajectory 

xl ,2 = 0 for a~lxO; however, it is easy to generalize eq. (2.6b) to 

an arbitrary number of trajectories of general form. Defining the dual 

vector to F by 
\..IV 



= 1 
2 

eq. (2.6b) can be generalized to 

= 21T 
e 
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(2.7a) 

In this equation, x~ = X~(T) defines the trajectory of the ~'th kink, 
~ ~ 

the T'S are internal variables parametrizing the trajectories, i~ is 

the tangent to the trajectory, and n~ is a unit vector that specifies 

the direction of the flux in the SU(2) space. This result is similar 

to eq. (2.12) of (1), except for the appearance of the isovector n~ and 

the necessity of using the non-abelian definition of the field strength 

F in eq. (2.6a). If the vector n of eq. (2.5) is constant over space, 
~v 

the problem becomes Abelian, and the commutator term in the definition 

of F can be dropped. If n depends on position, however, the non-Abelian 
~v 

definition of F is needed. 
~v 

Another important difference between the Abelian and non-Abelian 

theories is the manner in which Bianchi identities are satisfied. These 

identities follow from the definition (2. 6a): 

-CL The Bianchi identities, together with the expression for F given by 
~ 

eq. (2.7b), yield the following equations of motion for nCL: 

,I 

(2.8a) 

(2.F3b) 



-9-

where the dot implies differentiation with respect to T. In the Abelian 

case, n =±l and the second term in eq. (2.8b) is absent, and the equation 

truly becomes an identity. In the non':"Abelian case, however, (2.8b) is 

a non-trivial equation of motion governing the rate of precession of the 

isospin vector n around the external field B. 

/ 
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III. Lagrangian for Non-Abelian Solitons 

The functional integration over the fields q, and 1jJ in eq.(2.4) 

includes arbitrary number of kinks with all possible trajectories. These 

kinks can be eliminated by means of a singular transformation similar to 

the one given by (2.5), and the remaining integration over q, and 1jJ is then 

restricted to kink free configurations. The singular transformation induces 

new terms in the Lagrangian, which can be computed through eq. (2.Th). 

Letting 

q, -+ S-l q,S , 1jJ -+ 8-1 1jJS , s s s s 

A -+ S-lA S + ..L s-l( as) = S-l(A -B ) S s' (3.1a) 
lJ s lJ s e S lJ s s II lJ 

in the Lagrangian of eq~ (2.1), the following transformed Lagrangian is 

obtained: 

£' 

+.1:..-
2 

where F(l , defined by eq.(2.6a), is expressible as a swn over trajec
lJV 

U.lb) 

tories of kinks through eq. (2.Th). This new Lagrangian has to be supple-

mented by the constraints expressed byeq. 's (2.7b) and (2.8b), and the 

most convenient way of imposing these constraints is through Lagrange 

multipliers. The functional integral of (2.4) can then be rewritten as 
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an integral over the kink trajectories and over fields free of kinks. 

In the naive form of the integral over the trajectories, however, 

there is a divergence due to the reparametrization invariance of eq. (2.Th) 

under the transformations 

This is very similar to the infinity in the functional integral resulting 

from gauge invariance of the action in a gauge theory, and it can be cured 

by adding a parameter fixing term, similar to a gauge fixing term, to 

the Lagrangian. In the appendix of reference (1), the following was 

shown to be a suitable parameter fixing term: 

= 

An identical result is obtained in the continuum limit of lattice field 

theories. (6 ) 

Multiplying the constraints (2.Th), (2.8b) and the constraint that 

nO. has unit length by Lagrange mul tipliersrf, s~ and A respec:ti vely, and 
l.I" i 

adding the sum to £' + /), £ yields the following action: 



+ 

+ 

2'1r 
e 
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N 

L 
R,=l 

(3. 4a) 

In terms of this new action, the functional integral (2.4) can be written 

as follows: 

Z(J) 
CD 

= L 
N=O 

1 
N! 

where the bars over the ~ and W integrations restrict the function space 

to fields free of kinks. This condition can be implemented either by 

lining up fields ~ and W to form a fixed coordinate system by a suitable 

choice of gauge, or alternatively, expanding fields perturbatively around 

a constant configuration. 
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Our next task is to convert the summation over particle trajectories 

in eq. (3.4b) into a functional integral over a field. This problem is 

similar to the one encountered in reference (1); however, the non-Abelian 

internal symmetry group introduces additional complications. The first 

step is to suspend the integrations over A,B,H,~ and ~, as well as the 

!3urrunatibn over N. Eq. (3.4a) can then be considered to be the action of 

N relativistic particles in fixed external fields B and H. The crucial 

idea is to pass from the action formulation of particle dynamics to the 

Hamiltonian formulation in terms of quantized canonical variables. (11),(12) 

Since there is no direct interaction between the particles, it is sufficient 

to consider the single particle action given by 

The momenta conjugate to x~ and na are 

or = . 
6(X ) 

~ 

= 

These canonical variables are not all independent. 

n can be used to eliminate n 3 in favor of the other components: 

= 

(3.5a) 



-14-

We also note that the action is invariant under the transformation 

where f is an arbitrary function. By a suitable choice of f, one can set 

= o 

~~ .~ 1 2 1 
and remain with the independent canonical variables x , p , n , n • sand 

s2. The system is quantized by imposing the commutation relations(l3) 

= 
and 

l.' ~aB ( 8 = o , a, 

l.
' ~\I g , 

1,2) • 

in addition to specifying the Hamiltonian to be 

X!.~ +. sa noa 
H = p~ - Lagrangian 

= .1.... [p + 2Tr 
2 ~ e 

It is easily verified that the Hamiltonian equations of motion derived 

from (3.7a) and (3.7b) are identical to the Lagrangian equations that 

follow from (3. 5a), establishing consistency . It is also helpful to 

(3.7a) 
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rcrogni~0 that the operator 

is theSU(2) angular momentum operator, with the commutation relations 

= 

= 

1.
, aey TY E, 

1.
, aey y 
En. 

(J.8a) 

(J.Sb) 

The restriction of the variable na to the surface of the unit sphere is 

rio problem, and in fact becomes irrelevant if Ta is expressed in terms of 

angular variables. 

Finally, the passage to field theory is accomplished via the following 

set of rlues:(14) The trajectory dependent part of the action of eq. (3.4a) 

is replaced by 

where X is a complex scalar field that depends on na , and the integral is 

over all directions of na with equal weight (group invariant integration). 

The operator H is given by eq. (3.Tb), with the following indentification 

of the canonical variables: 
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x~ -+ x~, 

p~ -+ - i 0 
ox 

~ 

sa -+ i 0 Ta i aBy 8 15 (3.9b) - , - - e: n 
on a onY 

Putting eq.'s (3.4) and (3.9) together, the following action for solitons 

(kinks) is obtained: 

where, 

exp {i Jd3x [J(x)C(x) + £ (x)]), 
X 

£ (x) 
X 

= 

1
· aBy 8 k E n 

(3.10a) 

(3 .10b) 

Eq. (3.10) is the main result of this section. It has the unusual 

feature that the soliton field X depends on the unit vector na , which can 

be viewed as a continuous isospin [SU(2) J varia.ble that fixes the di reeti on 

.,' 



-17-

r)f' the nux of the soliton in the SU(2) space through eq. (2.71». 

Alternatively, the field X can be expanded into irreducible represen-

tations of SU(2) (spherical harmonics) as a function of the angles of n, 

and X can be replaced by an infinite c.omponent field labeled by eigenvalues 

# of (T)2 and T3. Since SU(2) symmetry is (spontaneously) broken, the 

multiplet is not degenerate and presumably forms an infinite tower of 

increasing mass. 

The appearance of an infinite multiplet is perhaps not so surp!ising, 

if the Abelian Higgs model treated in (1) is reconsidered. The solitons 

of that model are labeled by an integer n that specifies the number of 

flux units. In reference (1), since only the solitons with n = ±l were 

considered, only a .single complex field was needed. However, if solitons 

wit.h all possible values of n are ,taken into account, it is then necessary 

to introduce an infinite number of fields, one for each value of n. However, 

in this case, one has the option of restricting n to the values ±l, whereas 

in the non-Abelian model, Bianchi identities require an infinite component 

'soliton field. This will be shown in the next section. 

Some simple properties of X follow from particle-antiparticle symmetry 

and from invariance under Z(2), the center of SU(2). It is natural to. 

identify a soliton traveling forward in time with an anti soliton traveling 

Cl 
backward in time, with the direction of the flux vector, n , reversed. 

, This is expressed by the following relation: 
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Invariance under Z(2) means that solitons carry a conserved, multi-

plicative isoparity quantum number. This requires invariance under the 

transformation 

x -+- -X· (3.12 ) 

Sa far, our treatment has been semi-classical and problems of 

renormalization, operator ordering and possible (infinite) mass counter 

terms for the soliton field have been ignored. We hope to return to 

these problems in the near future. There is also a question of the 

existence of IxI 4 type self coupling term. No such term is present in 

the Lagrangian; however, it was pointed out in reference (6) that such 

a term may be needed in lattice theories to overcome the overcounting 

of intersecting trajectories. This question seems difficult to settle 

in a continuum theory. 

,-
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IV. Discussion and Extension of the 

Non-Abelian Soliton Lagrangian. 

The soliton Lagrangian of eq. (3 .10b) possesses several invariances. 

One such invariance is related to the non-uniqueness of the singular trans-

formation S needed to straighten out a kink. Two singular transformations s 

that differ by a regular transformation S are topologically equivalent, 

which implies invariance under 

S-+ SS . 
s s 

If S is transformed according to (4.1) in the redefinition of fields s 

(4.1 ) 

given by (3.1a) and in eq. (2.Th), the following set of. transformations 

are obtained: 

-1 . -1 
~ -+ S~S ,W -+ SWS , 

H -+ SH S-l 
~ ~ , 

A SA S-l i 
(a S) -+ 

~ ~ e ~ 

B SB s-l i (a S) -+ 
~ ~ e ~ 

x(x,n) -+ x(x,n' ), 

where, 

n' = S n S-l, n = 

-1 S , 

-1 S , 

1 
2 

ex ex Tn. (4.2) 
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The invariance of the soliton Lagrangian under these transformations 

can also be directly established. This new invariance should not be 

confUsed with the gauge invariance of the original Lagrangian given by 

(2.3). The gauge transformations of eq. (2.3) can be reexpressed in 

terms of the fields defined by eq. (3.1a) as follows: 

A UA U-l i (a u) -1 (4.3) -+ U , 
jJ jJ e jJ 

w}:lere 

U = 8.88-1 and the fields B H and x· remain unchanged. 
s s' \..I ' jJ 

In order to express these transformations in terms of .the basic fields 

that appear in the Lagrangian, it is necessary to solve for 8 in terms s 

of B through eq. (2.6a). 8ince the resulting expression is a complicated 
jJ 

non-linear and non-local function of B , we see no point in writing it out 
\..I 

explicitly. 

Another symmetry of the soliton Lagrangian is invariance under what 

we shall call the Bianchi transformations: 

(4.4) 

where Aa is an arbitrary function of the coordinates. 

Invariance under the transformations (4.2) and (4.3) ensures that 

a a . 
the. vector fields B and A are coupled to conserved currents, and that 

\..I \..I 
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the equations .of motion are therefore consistent, whereas invariance under 

(4.2) secures the consistency of the equations of motion with Bianchi 

identities. The equation of motion obtained by varying the Lagrangian 

with respect to Ha is 
II 

Fa 27Ti d [x*(a x) - x(a x*) = n 
II e II II 

+ ie BB x*(TBX) - ie BB x(TBX*)]. 
II II 

(4.5) 

Since the left hand side of this equation satisfies the Bianchi identity 

qf eq. (2.8a), so must the right hand side, and consistency demands that 

this identity should follow from the equation of motion for X: 

(a + 27Ti 
II e 

Multiplying the equation by X*na and subtracting from its complex con-

jugate, the desired Bianchi identity is easily established. 

(4.6) 

In arriving at this result, use is made of the commutativity of the 

This innocent looking relation is the reason behind the infinite component 

soliton field. In' fact, if eq. (4.7) is added to eq. 's (3.8b), a non-

compact group, whose only unitary representations are infinite dimensional, 

is obtained. One attempt at avoiding this is to replace na,s by finite 
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dimensional (and necessarily non-commuting) Hermitian matrices, Rnd let 

X belong to the finite dimensional carrier space. This approach, however, 

runs into trouble with Bianchi identities, since the non-commuting compo-

nents of nn then introduce additional terms into the equations of motion, 

which violate these identities. At a more fundamental level, the only 

way we know of avoiding an infinite component s'oli ton field is to replace 

the commutation relations between nO and SO by anticommutation relations. 

Fermi statistics then forbids the build up of arbitrarily large isospin 

by repeated applications of n and s. The canonical variables n and s must 

then be Hermitian conjugates of each other, which means that the term 

21T 
e 

(4.8) 

in the Hamiltonian (3.7) is non-Hermitian, which is disastrous. Therefore, 

an infinite component field theory seems inescapable. 

By virtue of the gauge invariances expressed by eq. 's (4.2),(4.3) 

and (4.4), it is possible (and necessary) to impose gauge conditions on 

the vector fields An Bn and Hn. A simple choice is the Landau gauge 
ll' II II 

= o. 

The transformation (4.4) has a Faddeev-Popov factor one, and (4.2) and (4.3) 

have the usual factors: 

(4.10) 

and a similar expression for ~(B). 
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Once the gauge conditions (4.9) are imposed, the bilinear (free) 

part of t.he Lagrangian (3.l0b) becomes non-singular, and it is possible 

to quantize it in the traditional manner. Unfortunately, unlike in 

the Abelian case, it does not seem possible to eliminate any of the 

a a 
auxiliary fields H~ and B~ by explicit functional integration. 

It remains to extend our results to a general group of the form 

SU(N). Only the case N=3 will be treated in detail, and larger values 

of N will be left as an exercise for the reader. In the case of SUe 3) , 

the indices a,S andy in eq.s (2.1) and· (2.2) range from 1 to 8, and the 

well-known A matrices replace the Pauli matrices. Also, the antisymmetric 

symbol £aSy gets replaced by f aSY • Instead of a single singular trans-

formation given by (2.5), there are now four distinct singular transfor-

mations: 

S(±l) exp [, 
i 

(AaI1a ) e] , = s 13 

s(±2) exp [, 
2i (), ana) a], = s /3 

where A ana = S A8 S-l, and S is a three by three uni tar~ matrix. The 

space spanned by the eight-vector na can be characterized by 

2 
(K - - ) , 

13 

(4.11) 

(4.12) 

.~. where K is an arbitrary constant. Each singular transformation corresponds 

to a distinct soliton, whose flux is given by an expression similar to (2.7b): 
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. 
x 

\.I , R, 
= (h.13a) 

where j = ±l or ±2 depending on the type of soliton. Eqs. (3.5a) through 

(3.9b) are still valid with obvious modifications, such as 

= 

It is now necessary to introduce four scalar fields Xj(x,n~), 

j = ±l, ±2, with relations between them analogous to eq. (3.11): 

= 

and the Lagrangian of eq. (3.10b) is now replaced by 

£ 
X 

= 

+ 

v(~,1jJ) 

Jdii L 
j 

1 +-2 

la~lj 

H~ F~ \.IVA 
£ . 

11 VA 

+ 21Ti H~n~ X - ie e \.I j 
2 

B~ T~ xjl , 
\.I 

where the n integration is a suitable group invariant integration over 

the manifold defined by (4.12) . The transformation properties of X 

under the Z(3) ::;ubgroup is given by 

X -+ w
j 

X j j' 

where w is a cube root of unit. 

(4 .13b) 

(IL 14 ) 

(4.15) 
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v. Gauge Theories in (3+1) Dimensions: Strings 

In this section, the results of both (1) and of section 3 will be 

extended to (3+1) dimensions, and the solitons of one lower dimension 

will become f;ltrings. The Abelian 'Higgs model, which will be treated 

first, has the following Lagrangian: 

£ = _ ~ F F~v + la ~ + ie A ~12 
4 ~v ~ ~ 

v(~) , 

where ~ is complex scalar field, 

F = a A 
~v ~ v 

v( ~) = 

a A , and' 
v ~ 

Notice that the symbols have different meanings compared to the ones 

used in the previous sections. 

The topologically non-trivial configurations of field ~ are discussed 

extensively in literature(15) and also in (1). They are most elegantly 

~v 
described in terms of an anti symmetric tensor current k : 

k~V (x), = 

where $ = ~/I~I. This tensor is invariant under non-singular gauge trans-

formations 
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f1A = l a A 
~ e ~' 

and it is also conserved: 

"I ~\) 
o~k = o. 

Another important property of k~\) is that it vanishes excep~ at the 

locations of topolgoical singularities, and so it can be written as a 

sum over surfaces traced by topological singularities, which form strings 

in (3+1) dimensions: 

(5.4) 

where n£ are integers and o£ and T£ are two internal variables that para

metrize the surface traced by the kink, and the sum extends over all surfaces. 

The conservation eq. (5.3) is automatically satisfied for closed surfaces, 

and it can also easily be shown that the integral in eq. (5.4) is invariant 

under a general parametrization 

a' = f(o,T) T' = g( a, T). 

, 
'-' 
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From now on, to avoid end point problems, only closed strings will 

be considered. 

The basic idea is again to re'move the topological singularities by 

means of a singular gauge transformation. Generalizing the result ob-

tained in (1) to (3+1) dimensions, one can show that the singular gauge 

transformation carries an amount of flux given by the following equation: 

~F = a (~A ) 
IJ\} IJ \} 

21T 
e 

a (~A ) 
\} IJ 

(5.6) 

where ~A is defined by eq. (5.2). To prove this relation, it is easiest 
IJ 

first to consider a special singular gauge ·transformation 

A 
s = -1 ntan 

and to choose cr=x1 , T=XO' reducing the problem to the simple case dis

cussed in (1). Lorentz and reparametrization invariances can then be 

used to establish the general result. Notice that the Bianchi identity 

is automatically satisfied for closed surfaces. 

After eliminating the kinks by a singular gauge transformation and 

after taking into account the extra terms induced in the action through 

eq. (5.6), the generating functional can be written as) 
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Z(J) 

where 

= 

21T --e 

Again, since the contribution of the kinks is explicitly taken into 

account, the cp integration is over configurations free of kinks. 

It is convenient to separate this Lagrangian into several terms: 

= £ + (5.9a) 

where £ is given by (5.1) and 

£ 1T 
£ 8 FlJv(x) L (5.9a) = n~ 1 e lJ Vel . .' R, 

-el ax8 i"> 

JJdt~ do 9. 
ax~ R, ~4[x - iR,(a~,11)1, au R, a;~ 



"/ 

,~ 

= 

Ci~ 
-\I aill axR, R, 

ao R, a.T R, dTR, 

8
4
[x_ X1 (°R"TR,)] 

2 
1T 

2 
e 
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ai~ ) axR,' axR,' 
all 2\1 

a0R, a0R,' aTR,' 

4 - (0
1

, !T
1

, )], 8 [x - xQ,_! 

Clearly strings interact either directly or through the exchange of the 

vector meson represented by the field A. The string-vector meson interaction 
II 

is described by £1 and the direct string-string interaction by £2. The 

two delta functions that appear in the expression for the direct interaction 

imply that this interaction takes place at the point of the intersection 

of two strings when. they cross. Finally, the last term, £3' represents 

the self-interaction of a string and it is proportional to the area of 

the surface traced by it. Unfortunately, the constant of proportionality 

is infinite, and although this infinity is expected to be renormalized to 

a finite value, we are unable to carry out such a renormalization program 
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in this paper. Instead, we provisionally replace this infinite constant 

by a finite one: 

(5.10) 

This is the standard action for the free string model, where a' is 

to be identified with the slope of the particle trajectory. The standard 

string interaction, however, takes place by the joining and splitting of 

strings. In contrast, field theoretic strings interact through the ex-

change of a vector meson and through a direct contact interaction. Inter-

(16) 
actions of this type were already proposed by Kalb and Ramond ,and 

by Nambu. (17) 

In the strong coupling limit e2~1, the string interaction, having 

coupling constant proportional to lie, becomes weak, and it should be 

possible to treat the system as a collection of weakly interacting strings. 

The standard approach is then to quantize the free action given by (5.10) 

first, and then treat the interaction perturbatively. It is well-known 

that quantized free string theory suffers from several diseases,(4) and 

we make some speculative suggestions about their possible cure. The 

first disease is the presence of a tachyon at mass m2=_2a' in the spectrum 

of the string. This need not be a serious problem if energy is bounded 

from below; it simply means that the perturbative vacuum is unstable and 

there will be transition to another stable vacuum, just as in the case of 

spontaneous symmetry breakdown. The second disease is the absence of 

,~t 
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Lorentz invariance except in 26 dimensional space-time. This difficulty 

cart be circumvented by using a covariant quantization scheme, which amounts 

to replacing eq. (5.10) by 

f 
4 -

d x £3 -+ -
1 

211"0.' 

This new action implies that the time coordinate ;CO is quantized along 

with space coordinates, introducing negative metric in the theory. 

(5.11) 

Nevertheless, states with negative metric can. in general be eliminated 

by means of Ward identities that follow from reparametrizationinvariance. (4) 

For these identities to be valid, however, the following conditions must 

hold: 

a) The lowest string state must be at m2 = - 20.'. This is the 

tachyon discussed earlier. 

b) The dimensions of space-time must be less than or equal to 26. 

Therefore, there is no necessity for the unphysical condition d = 26. 

c) Any external field that interacts with strings must have the 

same mass and coupling as one of the string states .. In the present 

case, the vector meson coupling given by £1 of eq. (5. 9b) coincides 

with the coupling of a vector state at mass zero, and so, for consistency, 

the vector meson mass must be zero. This implies h = ° in eq. (5.1) 

and no spontaneous symmetry breaking. We have therefore arrived at the 

surprising conclusion that only in the absence of spontaneous symmetry 

breaking in the original action given by (5.1), can one hope to have 

a consistent string theory. Of course, even in this case, there may 

be other hidden difficulties present. 
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Finally, we briefly describe the extension of the non-Abelian model 

of section 3 to (3+1) dimensions. The solitons of (2+1) dimensions again 

turn into strings in one higher dimension, and.now the unit vector nO defines 

the direction of flux in the SU(2) space at each point on the string. 

Eq. 's (2.7a) and (2.Th) are replaced by 

= 

= 

x 

1 
2 

27T 
e 

~ 'v' a 
E F' 
~ v~ , \I' . , 

'" ,}.J 
( 

dXn 

and the Bianchi identities require that 

dX~ 
dO 

( dX~ 
dO 

-v dX 
dT 

o 
~ + 
dO 

dX -\I ) 

dO = 0, 

which replaces replaces eq. (2.8b). In addition, the "gauge fixing" 
I 

term given by eq. (3.3) has to be replaced by (5.11). With these 

modifications, the analogue of eq. (3.4a) is 
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Jd
4

X I(x·i •.. i ) , l' , N = (5.14) 

N I -1 CX~f [(na )2 _ 1] + L ffdo£ d1£ + A£ 
£=1 2na' ch£ £ 

~; 

CX~ 
-\) aill -\) 

) 2n Ha (i ) 
ax£ £ ax.£, a 

e ll\) £ ao£ a1£ a1£ ao£ n£ 

[ -" a -ll a 

+ sa 
ax£ ani ax£ ani 

ll,£ ao £ h£ a1 £ ao£ 

Cx~ 
-\) aill -\I )]1. + e EaSy B~(i£) nY ax£ £ ax£ 

£ ao£, a1£ aT£, ao £ 

where I' is given by (3.1b). The functional integral can now be expressed 

in terms of the action of (5.14) by means of a formula similar to eq. (3.4b). 

The next step, which will not be attempted here, is the quantization 

of the string variables that appear in eq. (5.14). If it is carried out 

successfully, this would yield a new string model. 



.. 
-34-

VI. Concluding Remarks 

In the preceding sections, we have extended the construction given 

in reference (1) to non-Abelian gauge groups and to physical space-time 

dimensions. The method produces local field theories for solitons in 

(2+1) dimensions and'string theorie~ with local interaction in (3+1) 

dimensions. 

An interesting problem for future research is to investigate the 

classical solutions of these new field theories. One should then be able 

to recover the well-known soliton solutions in some approximation, and 

hopefully, some new and unexpected classical solutions may emerge. This 

approach may also shed some light on the confinement problem. On the 

other hand, severe difficulties are encountered if one tries to go beyond 

the classical equations of motion, and they are connected with the absence 

of a consistent renormalization scheme. Thi's problem remains a serious 

obstacle to further progress. 
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