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The integrals E,. satisfy a recurrence relation 

h = i + «i-l (6) 
J 

In order to evaluate the desired integrals, it is sufficient to evaluate one of 
them separately. Application of the recurrence relation now allows evaluation 
of all desired E.'s, and thus all necessary u 's. l J p m 

Consider a system in which essentially all impact parameters contribute 
to the deep inelastic process. la order to leave out events in which the kinetic 
energy in incompletely damped. It is assumed that 1^ = 0 and i"|2 = 0.9, thus allow
ing 20% of the cross section for incompletely damped (QE) events. Three very 
striking features, shown in Fig. 1, emerge: 1) The mean angular momentum <n> 
decreases as a function of 6. 2) The raiio p = a/< ri > exceeds the 2SL+1 value for 
nearly all asymmetries. 3) The skewness > changes sign as a function of asymmetry. 

In order to compare with experiment, •• 
it is necessary to correlate B with Z. i 
From previous work in fitting data from 
620 MeV 8 6Kr + 1 9 7 A u , the following 

21 2 = 6.6 xlO e 
sec. To calcu-

= 0.0 = 0.9 

parameters are used: y. 
sec" 1, Tn = 4.0 x i o - 2 1 

late the Y"" r a v multiplicity, M (Z), we 
assume rigid rotation. Then one has 

V Z ) A \iax = f ( Z ) < r 1 ( e ) > ' w h e r e f < Z > i s 

the fraction of the angular momentum tied 
up in the fragment spins. The curve of 
asterisks in Fig. 1 is a plot of this 
quantity. As can be seen, the multipli
cities are approximately constant as a 
function of Z, in agreement with the data. 
Large values of a are predicted, in excess 
of those expected from a 2A+1 distribution. 

It is interesting to note that angular momentum fractionation is expected 
even when statistical equilibrium is attained along the mass asymmetry coordinate 
either directly as the end-product of diffusion, or through population from 
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compound nucleus. The reason for this can easily be seen. The potential along 
the mass asymmetry coordinate has a minimum at symmetry with the second derivative 
increasing with angular momentum. At equilibrium, the high angular momentum mass 
distributions are more sharply peaked about symmetry than the low angular momentum 
mass distributions. It follows that, after summation over all partial Jl-wa/es, 
the angular momentum decreases with increasing asymmetry. 

For two touching liquid drop spheres arising from compound nucleus fission, 
the first moment of the angular momentum is 

Hyyljy = % (exp RE™ X / T - l ) " 1 [ 1 - V T / « E ™ X F( V ^ / T )] exp <RErax/T 

where T is the temperature; <R = -0.547 + 1.296 y 2; y = %(A 2-A.)/A is the 
asymmetrv uarameter; E is the rotational of the equivalent sphere at the. 

R 
maximum angular momentum; F(x) is the Dawson's integral, ?nd i. is the average 
of tl)2 entrance channel angular momentum distribution. The second moment of the 
angular momentum is 

l2(y)/l2 = 2(exp flE^/T-l)"1 [(1 -T/flE^exp «E* X/T + T/(RE™X ] . 

From the above equations one sees that a slight angular momentum fractionation, 
concentrating high angular momenta close to symmetry is displayed at low tempera
tures, while at high temperatures the fractionation disappears as expected. 

In the above discussion fission was competing with neutron emission. Such 
a competition sharply limits fission to the highest I waves and this prevents a 
strong angular momentum fractionation. If, as in deep inelastic processes, the 
equilibrium is immediately attained along the mass asymmetry coordinate without 
competition from neutron decay, the angular momentum fractionation is dramatically 
enhanced. Experimental study of the angular momentum fractionation in symmetric 
mass distributions may help to decide whether or not compound nucleus formation 
is involved. 

Statistical Coupling Between Orbital and Intrinsic Angular Momenta 
In the spirit of simplicity let us assume that we can assimilate tha exit 

channel configuration to that of two touching, equal, rigid spheres with all the 
associated rotational degrees of freedom. First, let us consider the equilibrium 
between intrinsic rotation of the fragments and their orbital rotation, assuming 
that the relevant angular momenta are all parallel to each other. If the total 
angular momentum is I and the orbital momentum is i , the energy, for an 
arbitrary partition between orbital and intrinsic angular momentum is: 

E(«,) = X,2/2yr2 + 2(I-X,)2/(4 *1CT) = X.2/2yr2 + % (I-A) 2/^ . 



-4-

The first term is the orbital and the second the intrinsic rotational energy, 
^7~ being the moment of inertia of one of the two equal spheres. The average 
orbital angular momentum I is given by: I = Iyr 2/(pr 2 + 2j") = ^ I . The 
second moment I2 is given by: I1 = T/(l/yr2 +1/2J") + I 2/[4J° 2 (1/ur2 +1/2C/")2]. 

The standard deviation is a 2 = 2vTur2T/(yr2 + 2J~) = ^ J"l. 

Thermal Fluctuation of the Angular Momentum Projection on the Disintegration Axis 
Above, we have assumed that the two touching iragments are aligned with 

their common axis perpendicular to the total angular momentum. because of the 
thermal fluctuations, this condition can be relaxed. Assuming now that the two 
fragments are rigidly attached one to the other, the energy is given by 
E = (I2-K2)/2JT + K2/2>7[| -= I 2 / 2 ^ + K 2/2^T f f , where ^ = 2? + ur 2; 

v̂ H = lO" ; C/~ f = ̂ n " +<y'L ; K is the projection of the angular momentum 
I on the two fragment axes. We obtain K' = <-?"ff T = ^ J'T. The total frag-

2 2 ^/ / 2 2 ment spin is given by I = K + -"i9 (I -K ). The average spin, on the other hand, _ _ sp 
is to order K 2/l 2, I 2 = J< I + -̂  J/'T/1. Furthermore, the fluctuation sp 
0 = 1 - I = 0 up to order K /I can be neglected in most cases, sp sp sp y 

Twisting and Bending Modes Excited in a Zero Angular Momentum System 
These three degrees of freedom are degenerate in our two-equal sphere 

model. A splitting of the degeneracy could easily occur in the case of fragment 
deformation. If we call R the angular momentum of each fragment, we obtain 
R 2 = ̂ 2 (J7"T and a 2 = 0.227î 7"T. Furthermore, for each fragment the resulting R 
angular momentum is randomly oriented. It is worth pointing out again that 
this angular momentum can exist even when the total angular momentum is zero 
because of the pairwise cancellation mentioned above. 
Coupling of Twisting and Bending Modes to Rigid Rotation 

We want to generalize the previous calculation to the case of non-zero 
total angular momentum. Let us assume that each fragment has an aligned angular 
momentum component, I„, arising from rigid rotation, and a random component, R, 
due to the bending and twisting modes. The overall rotational energy is 

E = | (I 2 + R 2 + RIRcos9) + (I 2 + R 2 - 2RIRcos9)|/2:7 = (I 2 + R2)/JT . 

The average total angular momentumsof the fragments is: 

1 = 2 L + >i ? / L = 2I D +^T/I„ = Vi I + 7JT-/I = ^ 1 ( 1 + 4^(J7-T/I). 

Similarly the average square angular momentum to order R2/!^, yields K 
I 2 = 4I 2 + / V R 2 . Again, to order R 2/I 2 we have a 2 = R 2 = 3/i £Tl. 
Of greatest importance is the fact that a sizeable "tilt" of the angular momentum 
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of each fragment about the direction of the total angular momentum is introduced: 
tan8 = v R 2 /I_. This depolarization is of great importance for the proper R 
interpretation of the aut-of-plane angular distribution of gamma rays emitted by 
the fragments, and for the out-of-plane angular distribution of the sequential 

3) 
fission fragments. 
A Simple Application to a Typical Heavy-Ion Reaction 

The reaction we want to consider is 600 MeV Kr + Au. If we allow the 
system to evolve to the configuration of two touching spheres (r = 1.22), we 
have ^7"T = 110 fi or V ^ T = 10-11 fi. 

Let us now consider the statistical fluctuations between orbital and 
intrinsic angular momentum. The total fragment spin for the average total 
angular momentum is I 54.0 ti, a = C% O'T)'2 = 12.5 ft. The fluctuation sp ' sp 7 

of the separation axis about the normal to the angular momentum yields the 
following results: K 2 = ' */$ <T1. = 308 ft, \/W = 17. 55 ft , I =54.0 + 2.62 ft. b S . J sp 
The out-of-plane angle is 6 = 5.3°. For the twisting and bending modes, one 
obtains R 2 = % C7T = 165 ft, V R ^ = 12.85 ft. When the twisting and bending 
modes are coupled to rigid rotation, we obtain (average) 1^ = ^ I + 7J7"T/I = 

sp 
54.0 + 4.07, a = 12.85ft. This produces an angular momentum depolarization 
of 6 * 25.5°, where we see that this effect greatly dominates over the fluctuation 
of the separation axis. 

Summarizing, the spin fluctuations amount to o 2 , = 165 + 157 = 322, or ° total 
cr = 18 ft. If we assume a triangular distribution for the angular moment, total ° . 2 2 we obtain for the spin of both fragments an entrance channel a = 357 ft . e.c. 
By combining all the fluctuations we have a 2 = 690 ft or a = 26.3 ft. 
In conclusion, without applying for angular momentum fractionation, we obtain 
for the overall fragment spin, I . = 60 ±26 ft. It appears that the combination 
of these fluctuations with that shown in Fig. 1 gives rise to an overall fluctu
ation larger than 50%, comfortably larger than that arising from the 2£+l angular 
momentum distribution and in satisfactory agreement with experiment. 
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