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Abstract 

Most real world domains differ from the micro-worlds traditionally 
used in A.I. in that they have an incomplete factual database which 
changes over time. Understanding in these domains can be thought of 
as the generation of plausible inferences which are able to use the 
facts available, and respond to changes in them. A traditional rule 
interpreter such as Planner can be extended to construct plausible 
inferences in these domains by (A) allowing assumptions to be made in 
applying rules, resulting in simplifications of rules which can be 
used in an incomplete database; (B) monitoring the antecedents and 
consequents of a rule so that inferences can be maintained over a 
chang:i,.ng database. 

This report describes research done at the Artificial Intelligence 
Laboratory of the Massachusetts Institute of Technology. Support for 
the Laboratory's artificial intelligence research is provided in part 
by the Advanced Research Projects Agency of the Department of Defense 
under Office of Naval Research contract No. 14-75-C-0643. The author 
was with the Massachusetts Institute of Technology Artificial 
Intelligence Laboratory. He is now with the Information Methodology 
Research Project, Lawrence Berkeley Laboratory, Berkeley, CA 94720. 
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In this paper I will discuss a method of rule interpretation which 

responds to the problem of incompleteness and instability in a domain. 

I will focus the discussion around the evolution of a program for 

inferencing. The model I shall discuss is not itself a theory of 

problem solving strategy, since it does not involve a commitment to a 

particular approach such as means-end analysis [5] or procedural nets 

[8]. Rather, it is an approach to the interpretation and construction 

of rules which allows them to be used successfully in certain types of 

real world domains. 

Suppose that you were a farmer, and each week you must make 

decisions about your wheat crop based on the price you expect to get 

for it. You formulate the question to yourself: "Will the price of 

wheat rise?" Answering this question is a form of problem solving. 

It involves taking a stream of information (ranging from weekly 

reports on global demand to your own knowledge about the weather and 

state of your crop), and seeing whether the available facts can be 

organized to support the hypothesis of rising wheat prices. Most real 

world databases, such as our hypothetical farming one, share certain 

features of incompleteness and instability which make traditional 

reasoning processes break down. Such domains often are: 

A) Incomplete, because not all the information we might need in 

order to make an inference is available at a particular time. For 

instance, during the planting season, a farmer has to decide if the 

price of wheat is going to rise, when only partial information 

concerning the supply of, and demand for, wheat is available. 

B) Unstable, since the particular subset of information available 

can change fairly rapidly in the real world. For example, a farmer 
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receives daily weather reports, weekly crop surveys, daily market 

prices, and so on. 

INCOMPLETE DOMAINS 

How can a traditional reasoning program, such as Planner [9], be 

extended for use in a domain with incomplete information? Consider, 

for example, how such a program might go about making decisions 

concerning a crop of wheat, based on the problem: "Will the price of 

wheat rise?". Let's call our program Sleuth. Initially Sleuth's 

reasoning processes will resemble Planner. We formulate the problem 

as follows: 

(Thgoal (price-increase wheat» 

This goal is a hypothesis about the price of wheat. Sleuth makes 

inferences on the current set of assertions to see if the hypothesis 

can be supported. If Sleuth knows the following theorems and 

assertions, it will be able to construct a plausible chain of 

inference: 

(Thassert Supply Wheat 180,000,000 bushels) 
(Thassert Demand \fueat 170,000,000 bushels) 
(Thassert Carryover Wheat 15,000,000 bushels) 
(Thassert old-supply wheat 182,000,000 bushels) 

(Thconse Thm1 (X) (price-increase ?X) 
(Thor (Thgoal (Supply-&-demand ?X» 

(Thgoal (Speculation ?X») 

Thconse Thm2 (X S D C) (Supply-&-demand ?X) 
(Thcond «Thand (Thgoal (supply ?X ?S bushels» 

(Thgoal (demand ?X ?D bushels» 
(Thgoal (carryover ?X ?C bushels» 

(greaterp (?C) (- ?S ?D»» 

Thm1 specifies that to show a price increase for wheat, try either 

of two subgoals. The first subgoal specifies a pattern which matches 

that of Thm2. Thm2 will succeed only if the difference between supply 

and demand is less this year than last. If so, Thm1 will in turn 
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succeed. A price increase for wheat is inferred, and wheat plantings 

can be increased. (Note that we are simplifying the decision 

processes involved in farming. Sleuth has not looked at demand for 

alternate crops; whether production costs on wheat have gone up; nor 

what sort of growing season is predicted. However, our purpose is not 

to show how Planner can be used in farming, but to illustrate some 

limitations of Planner.) 

Current demand for wheat is reported weekly by the U.S.D.A., based 

on domestic reports, and satellite observations of foreign lands. 

Suppose that the next week, due to very foggy weather in central Asia, 

no satellite photos are taken. As a result, the U.S.D.A. issues no 

new demand statistics. This time, when Sleuth is asked about the 

price of wheat, the previous inferences would fail, since no assertion 

matching the pattern for (Demand Wheat ?D bushels) would be found. 

For such cases, Planner provides a strategy. If an assertion is not 

in the database, Planner will try and prove it: 

(Thconse Thm3 (X DD FD) (demand ?X) 
(Thcond «Thand (thgoa1 (domestic-demand ?DD)) 

(thgoa1 (foreign-demand ?FD))) 
(Plus ?DD ?FD)))) 

Thm3 states that to deduce demand for a commodity, find the 

foreign and domestic demand for this commodity, and add these 

together. If there are assertions for foreign and domestic demand, 

this theorem would succeed. However, since the total demand reported 

by the U.S.D.A. is based on the missing estimates of foreign demand, 

Thm3 will also fail. In this case, if there are no other methods for 

proving the missing assertion, Sleuth must give up. 

(In this and subsequent diagrams italics and a dashed line are 

used to indicate antecedents which are missing. A solid line is used 
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to connect antecedents to rules; similarly, a solid line and arrow is 

used to indicate deduced links between rules and assertions, while a 

dashed line and arrow indicates inferences which have failed.) 

Wheat Price Increase? .. 
I 
I 

tCarryover - (Supply-Demand) --r--------------------Demand Carryover Supply • : -
I 
I 
I 

Demand = Domestic + Foreign ------',-------- ............ 
Domestic Foreign 

This presents a fairly brittle mechanism for dealing with domains 

which share the properties of incompleteness. If the needed 

assertions are not in the database, and if they cannot be infered, the 

inference attempt will fail. It will fail, however, not necessarily 

because it is wrong, but because not enough information exists to make 

inferences. People are not quite so brittle reasoners, since they 

often cannot postpone decisions until more knowledge is available. 

For example, a farmer might reason that as long as the supply of wheat 

is decreasing, it will be worthwhile to plant more regardless of 

demand. (Note: I am not suggesting that this is the "best" decision; 

merely that it is a plausible decision, and represents the sort of 

flexible reasoning of which people are capable.) By being willing to 

make assumptions, a farmer is able to use a form of a rule which can 

operate on the information available. We might express this by adding 

a second clause to the Thcond of Thm2: 
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(Thconse Thm2A (X S D C) (Supply-&-demand ?X) 
(Thcond «Thand (Thgoal (supply ?X ?S bushels» 

(Thgoal (demand ?X ?D bushels» 
(Thgoal (carryover ?X ?C bushels») 

(greaterp ?C (- ?S ?D») 
(Thor (Thgoal (supply-decrease ?X» 

(Thgoal (demand-decrease ?X»») 

If the full set of assertions concerning supply, demand and 

carryover are unavailable, Thm2A now suggests either trying to prove 

that supply has decreased, or demand has increased. By creating goals 

that require only a subset of the assertions that the original theorem 

required, Thm2A starts to encode the notion of rule simplification. 

However, Thm2A does not quite capture our intuitions about 

simplifications. A rule's simplifications are simply other rules 

which under certain conditions can be used to achieve the same goal as 

the original rule. Thus, in the above example, if, a) Thm2 fails 

because of missing information, and b) we are willing to assume the 

missing information will not change the outcome, then c) we can 

specify another goal, such as calculating only an increase in demand, 

d) which does not require the missing information. If this goal is 

achieved, we can consider it a simplification of our original rule, 

and replace our original goal with this new goal. 

Thus, we consider a rule simplification to be any rule which 

achieves a particular goal, and not a specific rule. The knowledge 

concerning which goals can be used in generating particular instances 

of simplifications, and the conditional assumptions which must be made 

in order to substitute those goals for the original ones should be 

encoded in a more flexible manner than Thm2A. A rule should give 

advice about which other theorems can function in its stead as 

simplifications. We can then choose to use this advice or not, 
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depending on our strategy. There may be many alternatives to choose 

among, of different degrees of plausibility. By making the 

simplification a part of Thm2A, we lose this intuition. Given the 

conditional circumstances of the original theorem failing, and our 

willingness to make assumptions, the simplifications, for the purposes 

of making inferences, are considered equivalent to the original 

theorem although ordinarily they achieve different goals than the 

theorem they replace. 

A rule can have more than one procedural counterpart. Part of 

Planner's contribution to the notion of pattern directed invocation of 

rules was the insight that a rule has both a consequent and antecedent 

meaning. These can be expressed as two classes of theorems, 

antecedent and consequent theorems, which can be invoked by different 

patterns. We can extend this a step further by postulating that a 

rule has another bundle of procedural counterparts corresponding to 

its simplifications. 

Actually, these simplifications will simply be other rules. 

However the knowledge of when these other rules can be used as 

simplifications, and which rules can be used, must be represented. An 

intelligent rule interpreter can make use of this metaknowledge [3] to 

substitute simpler theorems for a rule which fails. The appropriate 

place to specify this metaknowledge [4] is in a separate class of 

theorems. e.g. 
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(Thconse Thm2 (X S D C) (Supply-&-demand ?X) 
(Thcond «Thand (Thgoal (supply ?X ?S bushels» 

(Thgoal (demand ?X ?D bushels» 
(Thgoal (carryover ?X ?C bushels») 

(greaterp ?C (- ?S ?D»») 

(Thassume Thm4A (X) (Supply-&-demand ?X) 
(Thgoal (supply-decrease ?X» 
(Thcaveat (Default») 

(Thassume Thm4B (X) (Supply-&-demand ?X) 
(Thgoal (demand-increase ?X» 
(Thcaveat (Thnot (Thgoal (supply-increase ?X»») 

We now introduce a new class of theorems, such as Thm4A and B, 

indicated by the label Thassume. These theorems contain information 

concerning simplifications and assumptions. A Thassumption will 

specify A) a goal; theorems satisfying this goal can function as a 

simplification; B) the assumptions involved in using that 

simplification. These are expressed as a caveat. If the assumption 

being made is that the missing antecedents can be ignored, the caveat 

will contain a Default. If there is some particular condition which 

must obtain in order to assume that the missing antecedents can be 

ignored, this will be expressed in the caveat. (An alternative 

approach is to use a generative theory of simplifications in which a 

rule can be examined and a simplification generated dynamically. The 

present solution can be thought of as the end step of such a process. 

The specification of the domain and metaknowledge necessary to achieve 

this is a complex task. However,"see Carr and Goldstein [1] for a 

model of how this metaknowledge looks in one domain.) 

In Thm4A, proving a decrease in wheat supply can function as a 

simplification of Thm2 (proving a decrease in the difference between 

supply and demand), and hence can be used to prove the goal of an 

increased price for wheat, should we choose to use a simplification. 
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(Of course, using one reduces the plausibility of the reasoning; thus, 

in the current example, simplifications are tried only after a rule 

fails. Under other constraints, our strategy might be different; for 

instance, if we wanted a "quick and dirty" answer.) Since no 

assumptions are specified in the Caveat, these can be ignored. This 

is explicitly expressed in the caveat as a default. If instead we use 

the goal of an increase in demand as a simplification, as in Thm4B, we 

must take account of the caveat that supply must not have increased 

for this simplification to be valid. 

(Thus, the rule interpreter can, in using a simplification, check 

the validity of its caveat. Such a check can in turn involve applying 

theorems and attempting proofs. The degree to which we wish to pursue 

such a validation check will depend on our strategy. Potentially, of 

course, one could expend as much energy on these proofs as on the main 

proof. Such attempts have the virtue that they make the 

simplification more p1ausab1e. However, they can be expensive to 

perform. Planner itself provides one level of control, by allowing a. 

theorem to indicate whether a proof of missing antecedents should be 

attempted, or if the theorem should simply fail.) 

When Thm2 fails, Sleuth can choose to make assumptions which will 

allow a simplification to succeed on the assertions which are 

available, by using Thm4A or B. A rule and its associated 

simplifications are related through the set of assumptions they 

embody. When a farmer decides to ignore the demand for wheat, he is 

doing so because he is willing to assume that if demand changes, it 

will not change in a direction or quantity which would invalidate his 

reasoning. By making explicit this notion of assumptions, we can 
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extend the list of options available in using a theorem to achieve a 

goal. 

Returning to our example, after Thm2 fails, simplifications will 

be considered, and Thm4A found. Thm4A first tries to satisfy the goal 

(Thgoal (Supply-decrease ?X». No assertion matching this pattern 

exists. However, a theorem, Thm5, can be used to prove this 

assertion. 

(Thconse Thm5 (X S OS) (Supply-decrease ?X) 
(Thcond «Thand (Thgoal (Supply ?X ?S bushels» 

(Thgoal (old-supply ?X ?OS bushels») 
(Thcond «greaterp ?OS ?S»»» 

The value for old-supply was one of the initial set of four 

assertions. Since current supply and old-supply are known, Thm5 will 

succeed, and support the hypothesis of higher wheat prices. 

Goal: Wheat Price Increase?---------, 
A 
I 
I 

tCarryover - (Supply- Demand)-Thassume 

tand,<~J:>sup~ j 
Goal: Demand L Supply - decrease 

~""' .......... , I 
Demand = Domestic + Foreign Old - supply 

/" .......... , 
Domestic Foreign 

This chain of inferences results in a less plausible scenario than 

one requiring no simplifications. 
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UNSTABLE DOMAINS 

The outcome of an inference attempt on some set of data in support 

of a hypothesis will be a set of assertions and rule instances, joined 

by various labeled links. This is a process trace. We will call the 

part of a process trace associated with the use of a particular 

instance of a rule its annotation. The process trace is more than a 

trace of a proof since failed rules and unsuccessful proofs are also 

recorded. As the database changes, our goals may remain relatively 

stable. Thus we would like to maintain current goals, and to prove 

failed hypotheses when changes in the database allow this. This will 

be reflected in the changing set of annotation associated with each 

hypothesis. We assume that support for an hypothesis is conditional 

on the assertions available at the time it was first considered (i.e., 

the inferences which were possible at that time). Hence this support 

must be monitored and changed as the database changes. All proofs are 

conditional on the validity of the assertions used by the rules in the 

proof. However in many deductive systems, once deductions are made 

from a set of assertions, no effort is made to insure that while the 

results of those deductions are used, the assertions still hold true. 

Generally, the user does not expect the database to change so as to 

invalidate prior inferences. 

We can extend our concept of rule interpretation by making the 

maintenance of goals a function of the interpretation of rules. We 

implement this in Sleuth by giving each active rule the autonomy to 

respond to changes in its environment. As each rule is interpreted, 

an associated Sentinel is created for that instance of the rule. The 

Sentinel gives the rule instance the knowledge of how to respond to 
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changes in its antecedents or consequents. The result is the 

maintenance of hypotheses through a method of local autonomy. 

By using Sentinels, we extend the basic idea of a rule which is 

evaluated successfully if its antecedents are satisfied at the initial 

time of evaluation. A rule instance must be continuously enabled 

while it is used in support of some hypothesis. Essentially, we wish 

any rule to be enabled as long as we maintain interest in the top 

level goal which first evoked it, although the rule itself may have 

failed. This can be extended one step further. The hypothesis (top 

level goal) may have failed. However, the goal of supporting that 

hypothesis is maintained by keeping that goal assertion in the 

database. In that case, the theorems attempted are still active. If, 

at a later time, they can succeed, they will reactivate the attempt. 

Sentinels (developed by myself and Jim Stansfield as an aid in 

instantiating frames and automating the recognition of simple 

sequences of events within a changing database, using FRL [7]) are 

associated with the application of rules, by making the use of 

Sentinels a property of the rule interpreter. A Sentinel associated 

with a rule instance will place triggers in the database which respond 

to changes in goal assertions, or antecedents. 

A triggered Sentinel can take a variety of actions. The standard 

ones are to A) erase itself; B) erase the annotation; C) reinvoke a 

goal. 

A Sentinel has sensors which report to it. A sensor has a two 

part condition. The first part, a trigger, is a demon which responds 

to changes in the pattern that triggers it. For example, in the 

following case, the trigger responds to any addition or deletion of 
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patterns involving the wheat supply. The sensor then tests the 

pattern against some criterion. For instance, this sensor is only 

interested in assertions concerning current wheat supply: 

Wheat Supply for April 

Sensor 

,_-Trigger- -------
JI 

Test: Current wheat supp/y.?--

~Sentinel 

....... erase old supply 

A Sentinel can have many sensors which report to it. The Sentinel 

is satisfied when some arbitrary logical conjunction of its sensors 

succeed. Although for the task of maintaining hypotheses more complex 

relations are not needed, a Sentinel has the capacity to evaluate 

-- -"- ---- ------

conditional relations among its sensors, and even to remove current 

sensors and place new ones as a response to these conditional 

constraints. It can also make use of the temporal dimension in 

conjunction with the logical organization of its sensors. For 

instance, an "and" relation among these sensors can be created in 

which all sensors are satisfied at the time the Sentinel is evoked, or 

the relation among the sensors can be that they were all satisfied at 

some preceeding time (and, if desired, in some specific order) but at 

the time the last sensor is satisfied, and evokes the Sentinel, the 

state of the other sensors is unknown. 

The sensors function as triggers for the sentinel, which is "data 

driven". A sentinel and its sensors are theorems which are created 
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for a specific purpose. Unlike other theorems in the database, they 

have a limited lifespan. A sentinel can choose to erase itself and 

its sensors upon completing its goal. For the current task, sentinels 

are not required when their associated rule instance is no longer 

enabled. In this case, the sentinel will erase itself. 

There are several aspects of a rule's environment we may wish 

\ 

monitored. Typically, we will want to be able to monitor a rule's 

antecedents, the goal which invoked the rule, and more powerful rules 

which could supercede a rule if they were used. Not all of these will 

always be monitored. The interpreter, at the time a rule is applied, 

will examine its environment and decide which of these should be 

monitored. 

Individual rules will succeed or fail as a function of their 

antecedents. When a successful rule's antecedents change, its 

When this.l1~pI>~ns the sentinel causes the 

goal the rule was supporting to be re-evaluated. It removes the old 

annotation, as new annotation is created for the new evaluation of the 

goal. At this point the sentinel can erase itself. (Note: A 

sentinel causes a goal to be re-evaluated. There is no constraint 

that the same rule be used again. At this point another rule may now 

be the best choice. However, in this and the following examples, it 

is assumed that there have been no other changes in the state of the 

system that would cause another rule to be selected first.) 

If a rule's goal is erased, its sentinel will also be triggered. 

In this case we do not wish to re-evaluate the goal. The sentinel 

will remove itself and erase the associated annotation. Thus the rule 

instance will no longer be active, since no trace of it will remain. 
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Now let's consider how this local association of rule instances 

with sentinels can give rise to the right global behavior. Figure 1 

represented the current state of our deductions. 

Suppose that a failed rule now is capable of succeeding, through 

its missing antecedent being asserted. For instance, the missing 

foreign demand for wheat can be asserted. 

Goal: Wheat Price Increase? ..----------. 
i.. , , 

t Carryover - (Supply - Demand) ---, Thassume 

/~ j D1a",r/~arryover SUPPlY] 

GOr Demand--Sensor ~ Supply -, decrease 

Demand = Domestic + Foreign Old - supply 

~ 
Domestic Foreign Sentinel: erase annotation 

'" /"" i.. re-assert ,goal 
... " /' : erase sentInel 

Sensor----- ___ ..J 

This will trigger the associated sentinel to erase the annotation 

for this rule instance, reassert the goal as something to be proved, 

and then to erase itself. This time the rule succeeds, resulting in a 

proof of the missing demand for wheat. This will in turn trigger the 

sentinel associated with the rule instance of Thm2 for which the 

missing demand is an antecedent: 
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Goal: Wheat Price Increase? • Sensor 

t ~ 
tcarryove~ - (Supply - Demand) ~ r----~Sentinel 
~ : erase annotation 

/ I ~ I evoke goal 
Demand Carryover Supply I ~e sent/nel 

) ~seL~-'----J Thassume 
Goal: Demand 1 Supply 1 decrease 

t I 
Demand = Domestic + Foreign Old - supply 

~ 
Domestic Foreign 

This sentinel repeats the actions of the prior sentinel. However, 

in erasing the annotation, it erases the record of the assumption 

made. This will trigger the sentinel on the rule which is a 

simplification. Since the use of a simplification is conditional on 

another rule failing, the sentinels associated with theorems used as 

simplifications monitor the annotation recording that failure, so that 

they will know when the simplification is no longer required. They 

will then respond to the erasure of this annotation by erasing the 

annotation for the simplification. 

Goal: Wheat Price Increase? ~--------....., 

t 
tcarryover - (Supply - Demand)------ Thasrmel 

Demand~SUpply Se~sor t ~ ____ J 
Goal: Demand I Supply - decrease 

t ! I 
Demand = Domestic + Foreign L Old-supply 

~ '~y 
Domestic Foreign Sensor~ Sentinel 

16 
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If Thm2 again failed due to a missing antecedent, Sleuth would 

once more try a simplification. Since the formerly missing antecedent 

for demand has now been infered, Thm2 succeeds, and results in the 

following final inference tree: 

Goal: Wheat Price Increase? 

t t Carryover - (Supply - Demand) 

Demand ~SUPPIY 
t 

Goal: Demand 

t 
Demand = Domestic + Foreign 

~ 
Domestic Foreign 

In this next example, the missing assertion for current wheat 

demand is asserted, although the rule involved (Thm2) has already 

"succeeded" by using a simplification. This will trigger the sentinel 

associated with the rule instance of Thm2: 

Goal: Wheat Price Increase? ~ Sensor 

t ! 
tcarryover - ('Supply - Demand) r--- Sentinel 
~ ~I erase annotation 
~ "'_ww~._ .. _w-""""'" 1 evoke goal 

Demand Carryover Supply 1~'f'Ose sentinel 
t '-''-,- I / I I 
1'-,+/-1- 1 
I Sensor--------..J Thassume 

GJ" Demand L Supply -lecrease 

t I 
I 

Demand = Domestic + Foreign Old - supply 

/"'-'-
Domestic Foreign 

When Thm2 is re-evaluated it succeeds without recourse to either 
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using a simplification or trying to prove the now present antecedent. 

There is no explicit mechanism responsible for removing the now 

unneeded rule instances. Instead, by erasing its annotation, Thm2 

triggers the sentinels associated with the subgoal of proving demand, 

and the simplification: 

Goal: Wheat Price Increase ? -.-------------, 

t 
tcarryover - (Supply - Demand )--- ---+Thassume 

~ ,JI//// 

Demand Carryover SUPPIy,l-;tsensor 
A r/ 
I (~ 

Goal: Demand----~Sensor--l I Supply - decrease 
I . I ! I 

I I 
Demand = Domestic + Foreign: Old -supply 

/............... l., 
Domestic Foreign " 

~ / "'~ 
Sensor Sensor,. Sentinel 

I erase annotation 
+ erase sentinel 

Sentinel~-----..J 
erase-annotation 
erase sentinel 

Both these sentinels, since the sub-goal has been removed, erase 

the annotation, and then erase themselves. This results in the 

following final state: 

Goal: Wheat Price Increase? 

t 
tCarryover - (Supply- Demand) 

Demand~SUPPIY 

Thus, unneeded rule instances will know when to remove themselves. 

Through local propagation, the representation responds to changes in 

the available database. Consequently, once a question has been 
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specified, a dynamic process is invoked which once attempted can be 

locally data-driven. These changes will reinvoke the goal of 

inferencing, which can then proceed in a goal driven fashion. 

Obsolete parts of the representation are able to remove themselves by 

noticing local changes in the environment. 

Sleuth, once given a goal, would attempt to deduce this goal 

whenever the database contains the right set of assertions. Sentinels 

set in the interpretation of rules will individually call Sleuth to 

re-evaluate particular goals. Sleuth will develop new ways of 

supporting its hypotheses in response to these local calls for 

re-evaluation. Once applied, each sentinel has the autonomy to 

respond to changes in the database. 

Local changes in the environment of a rule supporting a goal will 

always cause that goal to be re-evaluated, although the result may be 

the same. For instance, a new proof of an inferred antecedent may 

occur. 

the goal can result in the same rule being chosen, and succeeding in 

the same manner. However, changes elsewhere in the annotation might 

affect our strategy, resulting in a different rule choice. Other 

strategies differentiate among the proofs of antecedents. This 

occurs, for instance, in systems where plausability is taken into 

account. 

Sleuth does not represent a reasoning system per see It is a set 

of features for an interpreter applying a reasoning strategy to some 

domain. These features are designed to allow reasoning to proceed 

over a changing database. Perhaps the closest approach to these ideas 

has been that of Doyle [4]. Doyle has provided a mechanism for 
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recording deductive dependencies so that when facts turn out to be 

incorrect, the entire "context" of dependent facts can be removed from 

the database. His work develops the notion of dependency directed 

backtracking by making the use of contexts very explicit, just as 

Conniver [10] did with the chronological backtracking of Planner. 

Sleuth does not allow explicit manipulation of deductive dependencies, 

since the changes it is designed to respond to are those imposed on 

the domain by "outside" changes in the data, and not ones due to 

deduced inconsistencies. However, Sleuth does provide an automatic 

control structure so that the user can ignore the problems of a 

changing database, and focus on the deductions he wishes to make. 

The rule interpretation features of sentinels and simplifications 

were programmed in FRL (Frame Representation Language) [7], and not in 

Planner, which was chosen for the examples since it is a well 

__ .. __1,ll1,Q~_r:f3 t o_~d_!ilJ!Kl!9:g~_."___~! !_~ ... ~.1!.~ .. _ f _~~~_~!_~!3()~_!ll~_.\l!3e_.()!. __ ~_illlp~_ i~!:~~t_~~?S . 

and of sentinels exist in the current version, the Planner-like 

features of chronological backtracking, and pattern-directed 

invocation of rules used in the examples exist in only a rudimentary 

form in the FRL language. 

Sleuth emphasizes an inference-based approach to understanding, 

whereby links between pieces of knowledge are created through goal 

directed inferencing. This approach ignores issues which more 

knowledge based theories have focused on, such as the use of. prior 

knowledge of the domain [2], or the usefulness of powerful sets of 

semantic primitives in making plans [11]. McDonald [6] has reviewed 

these three approaches in terms of the strengths and weaknesses of 

each approach. Ultimately, a complete theory of understanding will 
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have to incorporate elements of many of these partial models. One 

aspect of su~h a complete theory will explain how our world model is 

able to respond to the .continual changes and incompleteness of actual 

situations. 
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