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ABSTRACT

A one-dimensiona1, steady state fluid model is developed to de-
scribe the boundary layer between plasma and magnetic field that occurs
in the Tormac sheath. Similar systems which may be treatable by the
same model are Tokamaks with divertors and reversed field mirrors.

The model includes transport across the magnetic field as well as
mirror losses along the field, the latter being represented as
"annihilation" terms in the one-dimensional equations. The model equa-
tions are derived from the two-dimensional, time dependent hierarchy of
equations generated by taking velocity moments of the kinetic equation
including collisions. In order to obtain the annihilation equations,
several approximations are made: pi/As is assumed small in order to
truncate the infinite hierarchy of fluid equations (pi = the ion gyro
radius, As = the sheath scale length); As/rP is assumed small to allow
the slab approximation (rP = the plasma minor radius); ro/Anp 15
assumed small to allow expansion about the collisionless state (AmfP =
the mean free path) the sheath is assumed to "eat in" steadily, i.e.,
a balance between particle loss and inward resistive diffusion of open
field lines is formed so that there exists a reference frame in which

the sheath appears approximately stationary.



maﬁibhséa set£0f%nonélanarfordinany differential

the'sheathﬁ "from he: equat1ons by a change of

‘reference frane' Th second Spat1a1 d1mens1on y, the poloidal coord1-

nate, is manifested so]ely in the ann1h11at1on terms which arise from
the outward flow of loss-cone scattered particles.

. The annih1lat1on equat1ons are 1ntegrated numer1ca11y for a vari-

ety of s1ivations polo1da1 field reversed and non-reversed sheaths,
tlass1ca1 and anoma]ous coll1510na11ty, 1nc1ud1ng or excluding electron-
wall 1nteract1ons The 1ntegrat1on yields profiles for dens1ty, pres-
sure, flow veloc1ty, magnet1c and electric fields as well as the "eat1ng
in" rate of the sheath and the floating electrostatic potential.

Two bas1c types of solutwn are found. The first solution has
_parameters T /T |sheath v 1/10, ed/Ty[sheath ~ 3. " The sheath width
:A ¥ CF and the "eat1ng in" velocity U T (v, ii = the ion-ion 90°
_ scatter1ng rate) This type of solution exists for all of the variants
of the mode1 ment1oned above and confivms the basic Tormac scaling
wh1ch pred1cts a conf1nement time of:

,,,,, "p

T - X e T,
“Tormac - P, T4

Then econd solution has parameters Te/T4 Isheath v T, e/Tg v l,

This solut10n ex1sts

In th1s case ohm1c heat-

he po1owda1 f1e1d reversed sheath

The hot electrons cannot be e1ectros atically
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confined and are lost rapidly. The ions become e]ectrostatica11y de-
trapped by the potential until the ions are lost at a rate comparable

to the electrons. If this situation were to prevail in Tormac, the
confinement time would be degradéd until the device lost its confine-
ment advantage over a classical mirror. This solution, however, is
sensitive to the detai1ed structure of the ion-annihilation rate as well
“as other features of the model and is eliminated for.many of the vari-
ants described above, e.g. by the addition of a source of cold electrons

from the walls.
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INTRODUCTION

The Tormac device]’z

is a high beta toroidal cusp (see Fig. 1)
that is "stuffed" with a Tokamak style helical magnetic field. The
cusp magnetic field supports most of the plasma pregsure, providing an
absolute minfmum |B| magnetic well that ensures gross plasma stability.
The internal rotationally transformed magnetic field constréins parti-
cles to move on closed drift surfaces, increaﬁing fhe confinement time
over that of an ordinary, unstuffed cusp where particles stream freely
out the open field lines to the walls.

The transition region'from the nearly uniform plasma and closed
flux surfaces of the interior to the open flux surfaces of the vacuum
is called the sheath. An additional advantage of the stuffed cusp over
the unstuffed cusp is that particie motion in the sheath may be adiaba--
tic, i.e., particles are better mirror contained on the oben flux sur-
faces (some mirror containment occurs even for an unstuffed toroidally
symmetric cusp due to conservation of toroidal canonical momehtum).3 '

The confinement time for Tormac is determined by the loss of
particles along open field iines. In the absence of instabilities,
classical Coulomb collisions cause velocity space scattering of the
mirror contained particles into the loss regions, at which point they
exit in one transit time Tep = rP/Vth (rP = poloidal plasma radius, .
Vi, = thermal speed). The sheath is emptied of particles in a time
Tsheath = Tii® the ion-ion collision time.

If the interior plasma and the sheath p]ésma “decouple" (an
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assumption to be examined later), a simple estimate of the overall con-

finement time for the device may be made:3
r r
T =“—P—T- X =T
Tormac — As sheath — As ii
A_ = sheath thickness = the width of the region where
$ plasma and open field lines
coexist.

Assuming no external sources of plasma exist, the nearly uniform
interior provides a reservoir of particles to refill the sheath N times
where N is the ratio of internal plasma volume to sheath volume
(N = rP/AS). To obtain access to the internal plasma particles, the
sheath slowly "eats in" due to an inward resistfve diffusion of the
cusp magnetic field. A

The confinement time for an ordinary “unstuffed" cusp is given by
the total number of particles in the cusp divided by the flux of

particles through the "hole":4’5

T = =T
cusp nvthAhol-e tr Ahole

Taking the ratio of

cusp to Tormac® assuming As £ Ahole’ yields

T T
CUSP =~ T <1 for high temperature plasmas

Tormac  Tii
The comparatively long confinement time imakes Tormac interesting

as a fusion reactor concept. The most crucial parameter constraint on

6

any fusion reactor concept is that the Lawson criterion” be satisfied:

014 for D-T reactions

n = density in cc~
Tg = energy confinement time in seconds

vn'rE'é'I
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For Tormac, assuming Tp v Tparticle? the Lawson criterion becomes

,
- PYao 1414
Ty (Es") > 10

Q j i i ] . N oTes 9§
Tha c¢lassical mirror machjne for which Tpart1c]e T v T4y 1S

known to marginally satisfy the Lawson criterion for some range of
parameters (Ti v 100 KeV, Te ~ 10 KeY, B 1).]3 Tormac, which operates
in a similar regime, constitutes an improvement over 2 classical mirror
machine by the géometrica] factor rP/AS. If As is on the order of an

ion gyro radius as has been predicted,7’8

then rP/AS = rp/p; = 100 for
fusion reactor parameters and the Lawson criterion is easily satisfied.

The above estimate of the Tormac confinement time depends on the
crucial assumption that the sheath and the internal plasma must
decouple, i.e., particles from the interior must nnt circulate in and
out of the sheath.

If the internal stuffing field is purely toroidal, VB and curvature
drifts will cause particles to drift across the interior ir a direction
normal to both ﬁtor and R, the unit vector along the major radius. The
characteristic drift time is

TDriftE‘\:‘_Pp_'

th ¥i
The decoupling of the sheath and interior requires Trormac < TDrift
T4 ;P“ ver—R
S tHi
If A, = py, then
R

Ti4 < Tp Ttr
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For fusion reacfor parameters.11-i/1tr =4 104 whereas R/fP > 3, so
that the inequality is violated. The confinement time for a Tormac in
the long mean free‘path regime, stuffed with a purely toroidal field is
thus reduced to that of a classical mirror: the interior particles
sample th¢‘sheath énd are lost in a collision time rather than provid-
ing a reservoir of isotropic plasma isolated from the mirror-like sheath.

- Two possibilities exist for closing particle orbits within the in-
terior. A radiai elactric field may be produced to cause poloidal EXB
convection.” The combination of EXB flow and the VB and curvature
drifts can result in particle trajectories that are confined within the
interior region. Recent calculations have shown, however, that poloidal
rotation fn a toroida] configuration is heavily damped by parallel vis-
cosity, excluding the possibility of a driven bulk r'ct:at:ion.]0 Flow
could be driven in a narrow layer near the sheath, but it is unclear
‘without fyrther stqdy that such a flow would close particle trajectories
sufficiently to jmprove confinement.

In addition, flows in non-circular configurations such as Tormac
are subject to a parametric instability that resonantly couples the
rotation to A]fvénuwves.]]

To see this.examine an infinitesimal tube of toroidal flux follow-
ing a circulaf%ng trajectory. The tube behaves as an Alfvén wave
" pscillator subjgéféd toba periodic variation in the oscillator frequency
due to the non-uniformity of the tube's environment. The equation for

the ?ertﬁrbed flow velocity is: 1!
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dt tul lul = magnitude of equilibrium flow

d _ o

A

k = toroidal wave vector = g%ﬂ

w = perturbed flow velocity

: 1 vl 2 L
As an explicit example, take v aﬂrotcosQTQrot)wh1ch yieids
lul  dt

the Mathieu equation:

2
rot

2 :
dw 2,2
'-'—2+(kVA‘(XQ

" COS(ZQPOtT))w =0

o = a constant of order unity for a highly non-circular cross-

section. @ - 2n/(rotation period).

ro
This equation is well known to yield bands of instability. For
Tormac, kVp v Vp/R (R = major radius), Dot Eﬁl! ~ Vini typically.
2,2 2

Since the plasma B is of order 1 in Tormac, V, Vipi SO KVg voa o
resulting in an instability with a typical growth time;

Tinst #o_t_ i

The instability transforms rotafionaI energy to wave energy on
this time scale.

The large energy drains due to viscous damping and Alfven wave
excitation mgke rotation an undesirable method fof confining particle
trajectoriés.

The second and currently more favored possibility is to induce a

toroidal electric field within the interior, driving toroidal currents
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that give a heljcal twist to the stuffing magnetic field. Particles
then move on nested toroidal drift surfaces as in the Tokamak device,
providing thé'desired decoupling from the sheath.

The toroidal currents which provide the twist (or rotational
transform) ére‘MHD'kink unstable if the toroidal current is too large,
as is well known from Tokamak theory and exper‘iments.]2 MHD theory

places an upper bound on the current given by

Brrp ' q = safety factor
q=go ¥ B, = poloidal field
P BT = toroidal field ;

For Tokamaks, this condition 1imits the plasma B that is achiev-
able since the poloidal field must support the plasma pressure, i.e.,

B poloidal = 1.

€= rP/R

For Tormac most of the pressure gradient is supported on the cusp
magnetic ffeld so that B can be of order unity while the internal field
satisfies q > 1. A high B is desirable in a fusion reactor for econom-
ical reasons: high g8 devices require less investment in magnetic field
energy for a given amount of plasma energy.

Thus Tormac is a hybrid of three long-standing fusion reactor
concepts: the cusp; the magnetic mirror; and the Tokamak, combining
many of the advantages of each. The adiabatic motion of particles
allows for mirror confinement of sheath particles and hence a loss rate
drastically reduced below that of a pure cusp. The Tokamak type rota-
tional transform decouples the sheath from the interior, prov1ding a

reservoir of quiescent 1sotrop1c plasma isolated from open field lines.
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The essential element of the Tormac scheme is the existence of a
relatively narrow sheath. If the sheath width approaches the plasma
radius, the confinement time approaches that of an ordinary mirror
machine and the concept loses its advantage. If the sheath width is
narrow (As = Zpi) and the sheath particles are classically mirror con-
tained (an assumption which will be examined below), then Tormac is
superior to any single one of the-reactor schemes from which it is
hybridized.

The theoretical and experimental understanding of the sheath is
somewhat meager (see Chapter I) and many possibilities exist that could
degrade the scaling of Tormac. Mirror machines are plagued by insta-
bilities (the DCLC, Lower Hybrid'Drift modes, etc.) related to steep
density gradients and the inherent loss-cone ion distribution functions.
The fluctuating fields of the waves can cause anomalously high scatter-
ing of partic]gs into the loss-cone. The sheath possesses both the
steep gradients and loss-cone distribution functions that generate
these modes, although the instabilities may be 1imited by finite B and
shear effects.

It is found in Tokamaks and magnetic pinches that currents induced
at the edge of the plasma drive streaming instabilities that allow
anomalously fast current penetration. In Tormac, anomalous resistance
could allow the sheath to broaden until the sheath width approaches
the plasma radius. As pointed out earlier, Tormac scaling theh ap-
proaches that of a:mirror machine.

It is not.clear that a steadily "eating in" sheath is a solution
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of the time dependent equations, even in the presence of only classical
collisions. For a steadily eating in sheath it is necessary to balance
the magnetic diffusion of open field lines into the interior and the
particle loss to the walls. If a balance is not achieved, then the

sheath varies in time on a time scale shorter than t the

Tormac? ie.,
sheath might steepen on a time scale = 1.. until it is so narrow that

ii
an instability sets in and generates anomalous transport.

Another complication is the existence of a poloidal field reversed
(or neutral) layer near the sheath. From Fig. 1 it is apparent that
the internal poloidal field and the cusp poloidal field must oppose at
either the inner (small major radius) or outer (large major radius)
edge of Tormac. The neutral layer must eat in (i.e., field lines must
be reconnected) at the same rate as the sheath eats in.

It is the gim of this thesis to partially resolve some of these
problems through a relatively simple and heuristic model of the Tormac
sheath cailed the annihilation model (suggested by A. Bouzer-).]4 The
model treats the sheath as a one-dimensional slab and uses fluid equa-
tions with "annihilation" terms. The-annihilation terms represent the
flow of mater, momentum and energy along the open field lines to the
walls due to loss-cone scattering. The effects of classical collisions
are included {pitch angle scattering, electron-ion drag, etc.) and
anomalous effects can be accounted for in a rough way through multi-
plying the classical terms by phenomenological coefficients.

The starting point for deriving the model equations is the three-

dimehs{onal,ginfihite hierarchy of moment equations obtained from the




kinetic equation including collisions. The coupied set consisting of
the infinite set of moment equations for ions and electrons and Maxwell's
equations provides-an exact description of the system.

To reduce the infinite set of partial differential equations to
ihe finite set of one-dimensional annihilation equations requires a
variety of approximations and assumptions.

The first, and least justifiable approximation is the expansion in
gyro-radius/sca]é length used to truncate the moment equations. The
typical Tormac scale lengths in directions other than the direction
across the sheath are many gyro radii, validating the expansion for
these direétidns. In the direction across the sheath, structure on the
order of the gyro radius (or less) is found.

A rough estimate of the sheath scale length can be obtained from
two of the dominant processes in the sheath. Magnetic field diffusion

is responsible for the eating in of open field lines:

2 2
dB _n 3°B_ dB n 2
at " ¥ BXZ dt 41TAS
(AB2 = change in 82 across the sheath)

= convective derivative

o
ﬂ-|°'

Mirror losses of particles and energy can be described roughly by:

dnT '
—_— - & V.. i i £3
at nTvLoss Yoss = Vii for classical mirror confinement

If the sheath is to eat in on slow, collisional time scales and
the profiles are assumed to change even more slowly on a time scale

" TTormac (arsteadily eating in sheath is astablished so 3/3t = 0 in
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the reference frame of the sheath), then pressure balance and the quasi-

steady condition may be combined to yield:

(% * u-)(nT + 8%/8n) = - (nT + B%/8n) = 0 >

2
n_ [6B
"V0ss ™ JaY: (Sn )
TA S

Since ABZ/Sn = nT, again from pressure balance:

n o n
Moss ¥ 7 * A =z

411As loss

For classical resistivity and v = the jon-ion 90° scattering

loss
rate, the sheath scale length becomes

@
s ﬂ; To B
Me 1
= pi/7 for g =1, M; = T700° Te = T;

For a sheath to be this narrow, the ions must be electrostatically
confined across the magnetic field rather than magnetically. The
fluid equations obtained from the small gyro radius truncaticn are
invalid in this limit, although it is expected that some of the results
rem#in qualitatively valid. The errors introduced when pi/As >1 are
in the ijon pressure tensor: g # P]_;l + P"L", and in the ion annihila-
tion terms. The annihilation terms, representing mirror losses, are
taken to be'functions of local parameters only (density, temperature,

etc.) which'Shonld be replaced by appropriate averages when g is the
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same as the ion orbit size.

The scaling re]ation'As = vyn/4mv mey predict sheath widths

loss-
greater than the gyro radius for a variety of circumstances. If the
electrons are cool (Te/Ti = 1/10) as in a classical mirror, then

by = py because of the strong temperature dependence in the resistivity
and scattering rate. The sheath may alsc be broadened by anomalous
effects, i.e., turbulence due to instabilities.

. The narrower the sheath, the larger the current density and the
more prone it is to current and gradient driven instabilities (i.e.,
the Buneman instability or Lower Hybrid Drift). Experimental evidence
indicates that sheaths narrower than wpy are unstable and therefore
anomalously broaden until As =p;. This effect may be modeled in a
simple fashion by altering the resistivity by a factor “anom/“class’

which yields

_ : :
b, S p; forg=1, T /7. =1, 2000 V—‘-
so e Nclass Me

Further approximations and assumptions are the following:

Vv

Toroidal Symmetry. It is assumed that deviations from toroidal

symmetry have negligible effect on the system, allowing the reduction
to a two-dimensional spatial problem.

A narrow sheath. If the sheath width is small compared to the

other poloidal scale lengths (= rP), then it is only necessary to
consider a small, slab-like region near the sheath (see fig. 3). The
slow variation-along the sheath can be treated easily, yielding equa-

tions with dn]y one significant spatial variable: the distance acioss
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the sheath.

A steadily "eating in" sheath. If the sheath is assumed toc eat in

at a constant (or slowly varying) rate, then the time variation may be
removed by changing to a reference frame where the sheath appears sta-
tionary. The existence of a steadily eating in sheath is not obvious;
one of the goals of this theory is to discover the regions of parameter
space fer which solutions do or do not exist.

Krook cellisions. The collision terms for the ions are modeled by

simple Kr'ook]5 type relaxation terms, except in the annihilation flow
where the Fokker-Planck nature of the collisions is taken roughly into
account. The sheath ions are far from thermal equitibrium which rules
out the usual Chapman-Enskog expansion for the collisional transport.
The ion collision terms are chosen so as to conserve matter, momentum
and energy and to give results for the transport coefficients which
reduce in the appropriate limit to those obtained rigorously in the near
thermal equilibrium case. The electrons are assumed close to thermal
equilibrium so the usual transport equations are used.]6

Small Collisionality. Collisions are introduced in a perturbative

manner, expanding about collisionless (Vlasov) equilibria. The expan-
sion pzrameter is ¢ = rP/> where A = VthiTloss® T]os; = particle loss
time. Typically Toss ™ 4nA§/n and Te < Tloss < Tii- When collisions
are included, constraints on}the collisionless quantities are. found that
remove some of the indeterminacy of the collisionless equations. This
is analagous.to the MHD theory of Tokamaks where the introduction of a
small amount of particle diffusion selects a unique solution from the

infinite set of Grad-Shafranov equi1ibr{a.]7
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Combining the various assumptions and approximations resulis in a
coupled set of non-}inear drdinary differential equations. The equa-
tions resembie the usual one-dimensional fluid equations except for the
addition of annihilation terms representing mirror losses. Solutions
are obtained numerically because of the complexity of the equations,
yielding profiles for the density, pressure, magnetic field, flow
velocity and electrostatic potential.

The signifiéant-results of the model may be summarized as follows:

1. The basic scaling o, ~ ¢ﬁ7ZEGT;;; is verified in all solutions
obtained. ‘

2. The poloidal field reversed and non-poloidal field reversed
sheaths yield qualitatively distinct solutions: the density and
pressure on the field reversed side fall sharply to zero across the
sheath whereas they fall off gradually on the non-reversed side.

The difference stems from the fact that the E x B/B2 velocity
across the sheath changes sign for the field reversed sheath while re-
maining of one sign for the non-reversed sheath. In the reference frame
where the sheath is stationary, an induced toroidal electric field
causes E x B convection from the (effectively infinite) reservoir of
uniform plasma into the sheath. E, . is uniform since V x E = 0 but
gpol changes sign across the field reversed sheath, causing Etor X §pol
to change sign. On the low density side of the sheath, particles are

then convected toward the sheath. In the time independent state the

particles on the low density side have been either swept into the sheath
or annihilated, so the density drops sharply to zero rather than tailing

of f.
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The EXB velocity never changes sign for the non-reversed sheath
(B o] > 0) so that particles are convected from the sheath into the low
density region and slowly annihilated as they move. The non-reversed
profiles are therefore more gradual.

3. The solution obtained for the non-reversed sheath are similar

in some respects to theoretical predictions of mirror palr'ameters:]3

e
Te sheath ~ 5 Te,Ti sheath

~ 1710

The electrons rapidly cool once they are convected onto open field
lines because of the large heat flow to the walls: electrons that
scatter over the confining electrostatic barrier carry energy e¢ + Te
to the walls. The high potential barrier reduces the electron loss
rate to the order of the ion loss rate (any solution must have roughly

comparable ion and electron loss rates to satisfy quasineutrality)

—ee/T
Ve® & n Vi

Consistent with the relatively cool electrons and low loss rates,
the sheath width and eating in velocity are given by:

g = 2p; U= vy

(v 8gVy0ss)

4. The solutions for the field reversed case differ from the non-
reversed case not only in the way described in (2) but also in that two
dréstically different types of solution exist.

One of the solutions is similar to the non-reversed solution
discussed 1"":"“7(‘23")"':':T'e,._rilsheath <1, ed/To|sheath > 1» Ssheatn ™ Py
un pivi; The-important physical processes are the same as described

AR(3)
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The second type of solution has the features: e¢/Te ~v T,
Y]

Te/Ti sheath ~ 1.

The classical sheath width becomes 0.1 Py If anomalous resistance
is added until As =pis the resulting eating in rate is

u, = 3091“1

An eating in rate of this magnitude demolishes the usual Tormac
scaling, reducing the confinement time to on the order of the mirror
time, Ti4e

The second solution arises because of an effect not usually impor-
tant for classical mirror.machines: significant ohmic heating of the
electrons occurs due to the large current densities associated with the
rapid change of the magnetic field across the sheath. The ohmic heat-
ing may be greater than the mirror losses of electron energy, resulting
in Te/Ti nT.

The electrons may not be electrostatically confined (e¢/Te > 1) in
the Timit Te/Ti ~ 1 because e¢/Ti would also be large implying no con-
finement of ions. For this solution, the eiectron and ion loss rates

are made comparable by adjusting the potential so that:

P_Q,\,Q_Q.\,]
Te Ti

The electron loss rate is not reduced much below Vos the electron
90° scattering rate. The ion losses are enhanced by the potential until:

veffi(¢) N Vg veffi(¢) = the effective ion collision rate

= %
- Tﬁ:%%ff?)

5 (see Chapter III)
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The increased ion joss rate when e¢/(R - ])Tli is significant is
related to the small angle nature of Coulomb collisions. It is anala-
gous to the effective collision rate encountered in Tokamak theowy]7
where velocity space scattering through a small angie allows detrapping
of particles. The velocity space structure of the distribution func-
tion becomes narrow, so that scattering through an angie < 20° (or an
energy < Tli) moves particles into the loss regions.

Because nf the large ion loss rates, however, the second type of
solution becomes sensitive to thevdetailed structure of the ion loss
term. The solution disappears whe. the singular behavior is replaced
by a more gradual dependence on e¢/(R - ])Tli'

In the ensuing chapters, the derivation and solutions of the anni-
hilation i .1 equations are provided in detail. While many elements of
the model are heuristic, it is expected that most of the important
physical effects are included and that the annihilation model provides

at least quaTitative insights into the Tormac sheath.
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CHAPTER 1

In this chapter, the present theoretical understanding of the
sheath is reviewed. Theoretical investigations of the sheath have
fallen into five categories; the study of particle motion in cusped
magnetic fields; self-consistent Vlasov equilibrium theories; high
frequency, short wavelength stability theories; magnetohydrodynamic or
fluid models that include transport effects; and most recently, time
dependent, hyb-** £1:id-nortics cimulations. The wus approaches
are complementary, sacrificing some elements of realism (e.g., self
consistency in the particle orbit theory) to give a tractable problem
and different insights into the sheath.

1. Particle motion in Tormac was first studied by Levine and co-

workers in_1972.3 The fundamental result they obtained was that con-
servation of toroidal canonical momentum, P¢, in a toroidally symmetric
system causes some particles to be trapped even when their motion is
non-adiabatic. Their model assumed a sharp transition of the magnetic
field at the vacuum-plasma interface.

When guiding center drifts carry particles across the transition
Jayer of a non-symmetric cusp, adiabatic invariance of the magnetic
moment is assumed to be violated. The lack of adiabatic invariance
leads to random ﬁotion and particle loss in a characteristic time:
Ttransit * Thole/"P

Thole (= pi) = the effective "hole" size for the cusp.

for a synmetric cusp, they showed that non-adiabaticity does not

imbly randomness because of P¢ conservatinn, and some particles remain
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trapped iﬁ the magnetic well.’ The traﬁbed particles are lost due to
reldtively slow effects such as collisions and low level turbulence so
that Levire et. al. estimated the confinement time of a symmetric cusp
to be:

Teusp = Tii

If a “stuffing” field in the azimuthal direction is added, isolat-
ing the interior from the sheath, they predicted:

Trormac = Tii P/

18 extended the previous work by numeri-

In'1973 Boo;er and_Leyine
cally integrating particle orbits for a stuffed line cusp. The transi-
tion between the interior and exterior was taken to be of a thickness on
the order of an ion orbit size. They arrived at the following conclu-
sions: 1) Particles are indeed trapped. They conjectured that a gen-
eralized adiabatic invariant I = dPldxl exists even for a narrow sheath,
improving confinement over the non-adiabatic case. 2) The particles
- move in banana shaped orbits analagous to those found in Tokamaks al-
though much narrower.

m, vth

] > Pi total for Tokamaks
po

8panana = p1 polo1da1
= 05 total for Tormac

3)'The qualitative natdre of the'ofbits is independent of the sharpness

of the B’profile 4) The fraction of veloc1ty space in the loss region

is a funct1on of the m1rror rat1o and the stuffing magnetic field.

;:'1 5 the dependence on the stuffing field was

*lfound to be;weak. i
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Additional analytic work on particle orbits in the sheath has been

19 He has established a generalized Hamiltonian

done by H. Mynick.
guiding center theory, valid even for narrow sheaths Ag < py- This work
provides a derivation of the previous conjecture of Boozer and Levine:
the generalizéd édiabatic invariant, i, follows naturally from the
theory as a canonical action variable.

2. The Vlasov theory of the sheath is of interest because, for
fusion reactor pa;aﬁeters, the sheath is only weakly collisional
Vi <94 vilip). The bulk of the work done to date has been for the
slab case, valid when the sheath width is much smaller than the minor
cross section and the radius of curvature of the field lines. The slab

approximation neglects the finite'excursions of drift orbits, away from

flux surfaces which is not so serious for Tormac since:

B4rift = Spanana = Pi

The earliest work on the self-consistent Vlasov sheath was done by
Grad in 196120 for a boundary layer between unmagnetized plasma and a
vacuum magnetic field. Grad solved for the "narrowest" sheath assuming

j = Mg The numerically calculated sheath

E = 0, B unidirectionai, and m
profile has a scale length ~ 591‘

~ In 1976, P. Channel1?! developed an analytic method for finding
classes of sheared sheath equilibria, again for the case in which there
is nd,electric field. Channell assumed a distribution function of the

form:
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-BH
f(H, PyPy) = e g(Py,P,)

2 2 2
P, LP,, - efy(x)) . (P, - eAz(x))

H=om Zm 7
A = Ay(x)§ +Az(x)2Z = the vector potential

.y.z are coordinates lying in the plane of the sheath

x is the coordinate across the sheath

A Hamiltonian framework was developed in which Ay,Az,PAy = dAy/ox,

PAZ £ 9Az/dx are treated as canonical variables (t = x in Hamilton's

equations). The Hamiltonian that determines the variation of Ay(x),

Az(x) is given by:

P2

pl
4L+ 3L+ V(ay.h2)

The potent1a1 V is defined as:

V(Ay,Az) = Ens(Ay,Az)Ts = gTsfdagg'BH(R’Ay’ Az)g(Py,Pz)

This form exploits the fact that the particle Hamiltonian, H, is a

function of position through the vector potential only.

equations for the fields become:

oP 2
- _ _ 9°A
3y~ FPay = -ééz“a—le

Hamilton's

These are statements of

pressure balance and

aH aPAz BZAz Ampere's law.

_ The method of solution is to choose a physically reasonabie

V(Ay,Az) (typically one for which it's possible to solve Hamilton's

equations) then invert the equation relating V and gs(Py,Pz) to obtain

gs(Py,Pz) explicitly. Channell analytically obtained several sheath-

“Tike equi]ibria for both sheared and unsheared cases.

The
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~ characteristic scale was shown to be Ag = py, narrower than Grad's
"narrowest" sheath since the p]asma:is magnetized and Mo # M.
Channel1's method has recently been generalized by Mynick, Sharp

and Kaufman22

to allow for arbitrary f(H,Py,PZ) and non-zero electric
field. In the generalized version:

Vehanne11 (AV»AZ) = V(Ay,Az,0) = £ Prax (AV+42.0)

| 3 P
= E! d°p 5 fo(H(R,Ay,Az,0),Py,Pz)

Choosing loss-cone distribution functions to model mirroring
effects, Mynick et.al. integrated the field Hamiltonian equations
numerically to obtain sheath solutions. The electric field was set
equal to zero for the numerical work so that the sheath widths obtained
are on the order of p,.

3. The stability of the sheath has been studied by Davidson,
Gladd and othefs.zs'24 The regime studied encompasses high frequency,
ww¢§;§;: short wavelength, 1/p§ < Kf B4 ]/pg, instabilities. In this
class are the Lower-Hybrid-Drift, Drift-Cyclotron-Loss-Cone, and
Convective-Loss-Cone modes. The goal of the research has been to extend
the analysis of these modes to the steep gradients, strong magnetic
shear ana high B regime of the Tormac sheath.

WKB methods are applied since the mode structura (k, 4 I/pg) is
much smaller than the sheath width. The dispersion relations obtained
show that finite 8 and magnetic shear effects tend to stabilize these
modes. ' |

The Lower-Hyb}id-Drift mode, which is thought to cause anomalous

resistivity in theta pinch devices, is completely stabilized for
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To =Ty, pi/ly = 1, as long as 8 > 3/4 (this ignores the stabilizing
influence of;shear). If thg effects of shear are considered and finite
g effects are- ignored, Gladd et.al. find complete stabilization in a
sheared field if LN/Ls ¥ 0.5 for 0 < pi/LN < 5, (LN,s is the density,
shear scale length).

The finite B and magnetic shear stabilization criteria are rela-
tively easy to meet for Tormac since typically g =1 and LN/Ls =1, In
the outer sheath the local B becomes less than 3/4 and perhaps Ly/Ls <
0.5, but the density gradient and flow velocity which drive the insta-
bility may also be small so that one might expect the instability to be
severely curtailed. '

The Drift-Cyclotron-Loss-Cone mode (DCLC) is driven by the density
gradient and the loss-cone distribution of the ions, and is thought to
be a source of anomalously high particle scattering in mirror machines.
Gladd, et.al. show that magnetic shear reduces the growth rate but does
not completely stabilize the mode. To completely stabilize the DCLC
mode, it may be necessary to introduce a stream of low temperature plas-
ma as is done in mirror machines. The effect of finite B is not yet
known for the strong gradient case, although it has been shown to be
stabilizing in the weak gradient case.

The Convective-Loss-Cone mede is generaliy found to be less impor-
tant than the DCLC mode for Tovmac parameters.

The lower frequency, w < ﬂi' and 10ngér wavelength, kl N p;],
regimes have not been studied in depth due to their greater complexity.

In these limits, the detailed characteristics of the ion orbits are
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needed, as well as the equilibrium profiles since the mode structure is
of the same order as the sheath width. A stability formalism has been
developed by H. M,\m'ick]9 to treat non-local corrections to the WKB
analysis as well as allowing for complex ion orbits, although explicit
applications to the Tormac sheath have yet to be made.

4.. Another class of sheath theories are the MHD or fluid theories
(the model developed in this thesis is included in this class). In
these theories, explicit account has been taken of collisional processes
such as scattering into the loss cone and electron-ion drag.

25 constructed a flow-out model of the Tokamak

In 1976, A. Boozer
divertor, a system similar to the Tormac sheath. Particles in a diver-
tor are lost by streaming to the walls as opposed to the mirroring that
occurs in Tormac. A crucial result of his analysis is that the losses
are non-ambipolar, i.e., the electron and ion loss rates are not equal
on a given field line. The unequal local loss rates can result in
strong electric fields across the divertor. The electric fields are not
so strong as to violate quasi néutra]ity s0, assuming equal sources of
jons and electrons, the integrated (total) losses of each species must
be equal. In Boozer's model T, = 0 and Te # 0 are assumed and the
perpindicular scale length is roughly pi(Te) (the ion gyro-radius cal-
culated at the;e1ectron temperature).

Recgnt]y M. Hostrom26 has constructed an annihilation model of the
Tormac sheath similar to the one considered in this thesis. The basic
approach for both models is to use one-dimensional fluid equations with

“annihi]ation”ftgrms to account for mirror losses (suggested by
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‘A. Boozer): The annihiiation terms are necessarily drastic simplifica-
tions of the true Fokker-PTank losses. The terms chosen by Mostrom and
myself differ in some respects.

In the present model the equations are derived from two-dimensional
fluid equations, which yield various relationships between the annihi-
lation fluxes of matter, womentum and energy. These are exploited to
remove some of the arbitrariness in Mostrom's model. In addition, the
present modei allows for the dependence of jon annihilation on the
e]ectrostafic potential and includes the effect of cold electrons recy-
cling from thé walls.

In both models, the fluid equations are truncated via an expansion
in pi/As' Mostrom assumes a scalar pressure and uses the near thermal
equi?ibrium transport equations derived by Braginskii. In the present
version the ion pressure is aliowed to be anisotropic to mode)l mirror
effects and the transport equations are generalized, although in a some-
what ad hoc fashion. |

The mode? treated in this thesis includes effects of ion poloidal
flows which are excluded from Mostrom's model. The jon poloidal flow
velocity is found to be a function of the pressure anisotropy, so that

it is consistent to set u = 0 for the scalar pressure case but it is

. pol
necessary to allow upo] # 0 in the anisotropic model.

Mostromftréats the case §p01 -+ 0 in the interior whereas the pre-

sent version examines equilibria with arbitrary values of Bpol in the
interior. '

Finally, ‘explicit numerical solutions are obtained in this thesis
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as .opposed to.the asymptotic and order of magnitude results obtained
by Mostrom. He found sheath equilibria with two scale lengths: the
electron gyro radius and the ion gyro radius. On the first open field
lines encountered as plasma mdQes out from the central region, a sub-
stantial fraction of the electrons are lost at a rate Vee? yielding a
scale length ﬁiﬂﬁﬁﬁ;}; (see the introductfon):

Jn/ﬁwee =p

e the electron gryo radius

The electrostatic potential rises rapidly, across the sheath cool-
ing the electrons and reducing the electron loss rate by the factor

-e¢/Te .
e until vlosse “Vii. The resistivity at the low electron tem-

perature is large and the scale length vﬁ7EEGT;;; is of the order of the
jon gyro radius.

The model presented in this thesis yields two different types of
solution as discussed in the introduction. One of the solutions is
similar to Mostrom's except that the plasma floats at a high enough
value of the electrostatic potential that the electron loss rate is
always considerably less than Vee and the short scale length is greater
than the electron gyro radius. The second solution is quite different
because of the possibility of enhancing ion losses at large vaiues of
the electrostatic potential. The electrons remain hot for the second

solution, Te N Ti’ and the ion loss rate is increased until:

v ay
Toss  ©

As in Mostrom's model the characteristic scale becomes Pgs although

the sheath is assumed to anomalously broaden until As =05,
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"'5. The ‘Fifth theoretical approach mentioned at the beginning of
the chapter 1S the construction of a hybrid fluid-particle computer code.

"to model the time dependent 'state. Investigations into the formation
and structure of the sheath with such a code are being carried out
chrrent1y by M.‘Vélla.27 The model treats electrons as a resistive
fluid and numerically integrates ion orbits to self-consistently deter-
mine currents, mggnetic and electric fields.

Some resqlf#;have been obtained concerning the start up of Tormac,
showing the %ﬁiﬁia] osci]lations and compression as the magnetic field
rises. Numerical instabilities have, to date, precluded studies of the

approach to dynamic equi]ibrium and the formation of a narrow sheath. .
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} CHAPTER 11
In this chapter, the basic framework of the annihilation model is
derived starting froﬁ a kinetic description. The model is completed in
Chapter III with the choice of explicit annihilation fluxes.
The dynamic Tormac is adequately described by the coupled set of
integro-differential equations consisting of the kinetic equation in-

cluding collisions and Maxwell's equations:

of .
+ ¥ I + e (E+ !5x§)~V!f = Cs(f)

Ts
3t
11.2 UxB = 4nJ = 4nfe/dSvF v
= - ss —S—
e 3
I1.3 vt= ﬁnpc = 4n§esfd vfo

I1.4 VXE = - 3B/at

11.5 v.'B=0

where fs(E)!,t) is the particle distribution function, normalized
such that n(x,t) = avf,, and C,(f) is the collision tem, i.e.,
Fokker-Planck or Lenard-Balescu, etc.

Equation II.1 can be replaced by an infinite hierarchy of moment
equations,dependent,pn]y on x,t rather than x,v,t. The moment equations
are generated by operating on I1.1 with

SV L n=0,1,2.....0

The first four ‘equations generated are

1.6 30+ vy =0
du’
1.7 nmgz + V:P-en(E + uxB) =

1L E A Pu v el - a4 g
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d ~
I1.9 Q Q ‘u + é [g_] -——[PV_] -Sz[gxb]+g3

Species labels have been supressed. The definitions are the stan-

dard ones:

ns fd?!f us= fd3!f1/n P= mfd3!f(1:g)(!rg)

g = md’y (y-u)(v-u) (v-w)f

R = mrd® (v-u)(v-u)(y-u) (y-u)f
d _ - _ e|B
wrmruy ozl

The bracket [ ]s means the summation over all cyclic permutations
of the tensor indices, i.e.,
(09 9u3%) 54 = Q4 5ran U * Qi 5o U5 * Uy o ¥
= = 'ijk ijnoxy Tk kin 9x, °J Jkn 3xpy 1
The collision terms are defined as

= fd31 (v-u)"c(f)

The C obeythe well known conservation laws for collisions: 16
co =0 conservation of particles
Gy =0 conservation of momentum
I1.10
Z( + G _5) =0 conservation of energy

where the summation is over species (labeled By s).

To obtain a useful set of equations the h1erarchy must be trun-

cated, explicit ce}';s

initial conditions formulated.

ion terms must be fourd, and appropriate boundary/

The truncation to a finite set of equations is accomplished via
an expansion in jon gyro rad1us/scale ‘Tength. As mentioned in the

introduction, sheath scale lengths can be £ P; which would 1nval1date
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the expansion although some results would be expected to remain:quali-
tatively correct. In those cases where the classical scale length is
smaller than p;, anomalous resistance will be added until Ag ¥ p; on the
(experimentally verified) basis that sheaths with Ag < p; are unstable
and turbulently broaden until As = pi.7’8
The small gyro radius expansion of the moment equations has been
carried out by A._MéMahon28 for the case gn =0. A simple extension of

the lowest order -equations with Cn # 0 results in the following set:

an -
ILN 3+ Vnu=0

du
11.12 nm A P - en(E + uxB) = C.I

dP q C,:1
d,f+.'.>(\7u+ I Vu) -BY- '{B =221
I11.13 5 .66
:
1 9y . 1b-vB +
Zg t P32 - 1 ) = v (qib) - g2 T T2

B=pl +mbb . I =1-65
The only non-zero components of the zeroth order heat fiux are
qﬁ, 4} representing the flows of perpendicular and parallel energy
along the magnetic field. The indeterminacy of qj, qH is similar to the
situation in the collisionless case: there is a large dearee of arbi-
trariness in the lowest order distribution function f(yl.wl,x,t).

16,17

In the usual tranéport theories, the lowest order distribution

function is Maxwellian, i.e., the system is close to thermal equilibrium
' [ ' ;
so that q,, q §re determined:
11.14 o =g =0,

In the Tomihc sheath jons are mirror contained; the distribution
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function possesses a loss-cone and is -far from equilibrium so that I1.14
is inapplicable. In Chapter III, plausible heat fluxes q“, qﬁ are
determined in- conjunction with the outgoing flux of particles colii-
sionally scattered into the loss~-cone.

The next ingredients needed are explicit collision terms gp. In
the theory of collisional transport for plasmas near thermal equilibrium,
. the collisional fluxes may be derived by Chapman-Enskog methods which
utilize an expanéfon of the distribution function about a Maxwelh’an.]6
As mentioned, the ions iﬁ the sheath are far from thermal equilibrium so
that the expansion about a Maxwellian is invalid. On the other hand,
the electrons in the sheafh are at least partially electrostatically
confined and the relaxation time of the distribution function, Te» is
(usually) less than the sheath time scale so that the distribution func-
tion is fairly close to Maxwellian. The Chapman-Enskog transport co-
efficients are therefore used for the electrons, with the exception of
the parallel heat flow which is discussed in Chapter III.

The electron collision terms are

a) Coe = 0
b) C,_=enn-J - .7V, T
=le == e
‘resistive thermal
drag force

m
1115 ¢) FTr(Cy) = -2 28 vy(Py =(2/38, + P /3))

1 .

+2/3 n:dd - 2/3-%1-\7"Te

= electron-ion energy transfer + ohmic heating
+ work done by thermal force
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ThegcohserVation laws .for coliisions determine two of the ion

collision terms:

a) Cij =0

I1.16 .
) Gi= e
To dotermine the remaining term, gzi, the simple model of colli-

15

sions developed by Bhatnagar, Gross and Krook ~ is used:

1IL17 c(f) = '-}S:vs(v)(fs-fms)

s = species label; Vg = relaxation rate; fm = Tocal maxwellian

This yields:

(& - —52)
IL.76c i = - vpi\Bi - =3/ - VpelEi-Pel)

Vpi» Vpe appropriate averages of ve(v)
The first term in C,; can be used in the near thermal equilibrium

1imit to derive viscous stress terms very similar to the viscous stress

found in Chapman-Enskog' theory if the identificacion
I11.18 Vpi = Vi the 90° scattering rate for ion-ion collisions

is made. The second term in Lo, reduces exactly to the electron-ion

relaxation rate found in Chapmen-Enskog theory if

I1.19

m.
=2 ﬁg Vo3 Vo T 90° scattering rate for electrons
S |

Ype

With explicit choices for the quantities 4:, qﬁ, the set of

equations consi;tjpggof-ll,lT, 12, 13 for -both ions and electrdns} the
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explicit collision terms I11.15; 16 and Maxwell's equations form a
complete set, i.e., as many equations as unknowns exist. The relevant

" Maxwell's equations are II.2, 4, 5. The fourth Maxwell equation,
V-E = 41rpc = 4n-§: eng, is replaced by the quasi-neutral approxima-

tion, Ng =Ny.
The equations form a set of partial differential equations for the
quantities:

Ny Ugs Ug,

Prye ﬁli’ Pe (RLe =P, is assumed), E, B

To form a mathematﬁcally viell posed problem, initial values must be
chosen for all quantitfeS'operated on by 3/3t. In addition, appropriate
spatial boundary conditions must be chosen, i.e., Exﬁwall = 0 near
conducting walls, etc.

In gehera],‘finding appfopriate boundary conditions is a difficult
problem. For partial differential equations the choice of boundary
conditions is governed by the characteristics of the equations. The

characteristic curves, or more generally, characteristic surfaces for a

system of partial differential equations:

: . i
1120 L.(u) = a'9*V(x,u) 2+ vI(x,u)
j\= == BXV

=0
ul = dependent variables i = 1,k
X, =:independent variables v = 1,n

are determined by the equation

.21 4(x) = 0
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whera ¢ is a solution to.

11.22 det(a”"’ 3—34’—) =0

X

, : v

The characteristics represent curves along which information pro-
pagates in the space (x1, cer xn). If k real characteristics exist, the
equations are called hyperbolic; if no real characteristics exist, the

29 indicates that appro-

equations are called elliptic. General theory
priate boundary Eonditions may be found for either elliptic or hyperbolic
equations, guaranteeing existence and uniqueness of solutions in many
cases (as in the Dirich]et and Von Neuhann boundary value problems

found in electromagnetics).

The equations of interest, II.2, 4, 5, 11, 12, 13, are of mixed
type: both real and complex characteristics exist (at least for the
case 3/3t = 0; which is the situation considered in ensuing sections).
There is 1itt1é general mathematical theory of mixed type equations as
far as choosing appropriate boundary conditions and determining the
existence and uniqueness of solutions, so each case must be considered
separately.

The choice of boundary conditions will be postponed until further
reduction of the equations has been performed. In particular, the
réduction to a.slab model and the elimination of the time dependence

will leéd to a natural choice of boundary conditions.

In this section additional approximations are employed to simplify

the set of equations describing the sheath. The first is the slab
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approximation As[rP < 1, which is reasonable since As/rP =1/100 for
- fusion reactor‘parameters; The second is weak collisionality, or

<1, (144 = min{tg,T;, 410.%/n}) which is valid

rp/A = TplthiTeorr- coll

sjn;e‘rpjxﬁzaiq?4ﬁfon,quion reactor parameters. Finally, a steadily

"eating-in" §b¢afhﬁyill;be assumed, which allows a transformation to a
reference frgméA§here,the sheath is stétionary (a/at » Q). This
assumption wi]]wpe;validated after the fact by explicitly demonstrating
that stationary solutions exist.

As/rP <1 is dssumed‘soathat in the neighborhood of the sheath
(l§ygoi v As3 X = a pbint in the sheath) the field 1lire curvature
is negligible and the on]y'gradients of significance are those across
the sheath. The system may then be represented by a one dimensional
slab (seé Fig.. 2) to lowest order in § = As/rP.

A locally Euclidian set of coordinates may be introduced:

x = distance across the sheath

distance in the poloidal direction

Y
Zz = distance in the toroidal direction

A1l quantities are independent of z, the toroidal (symmetry) direction.
Consider first: the collisionless case, by which it is meant that

the characteristic time scale under consideration satisfies:

1.2t €1y = minfry, T, T,eg = 47A.2/n)

coll res
If the characteristic time scale also satisfies

L2 t> by = rpluyy

then a:colli

-991@;5 equilibrium state may be found, i.e.,




-35-

af

5 < v-Vf in the Viasov eqn.

1 Vti
-» o £ 2=
t rP

The collisionless quantities are functions of x dnly:

n(x)s u(x) = uy(x)§ + v (x)2

PL(x), Py (x), Pelc)
11.25 |
B(x) = B,(x)y + B,(x)2

E = - 3¢5(x)/3x X

The electric field is taken to be in the x direction, E = E X,

only. From I1.4
I1.26 E=-Vp=- a¢0/8x X

For the collisionless case, the flow velocity in the x direction,
u,» is assumed to vanish.

When collisional effects are included, two changes occur: a slow
time variation on the scale Tcol1 is introduced; and a weak y (poloidal
coordinate) dependence appears due to the loss of particles along open
field 1ines. Geometrical effects also introduce a weak y dependence,
as discussed below.

When particles on open field lines scatter across the loss_boundary
in velocity sp&ce. they exit moving approximately. paralilel to a flux
surface..-The- particles scattered at each point along the flux surface

accmulate as, they strqam to the walls, producing a flow ‘pattern as
depicted :in. Fig.vl?

';The resulting flow_velocity has the properfy
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du au
1
11.27 _ﬂ.fo (_.Zf 0)

If ¢ is defined as the collisionality parameter

r
- P : 2
11.28 € 5 — T = min{t_,T;, 4TA_“/n},
V¢iTeoll > “coll e’ i’ S

then the collisionless equilibrium quantities are aitered in the

following fashion

n(x,et,ey)  u = eu,(x,et,ey)X
*uy(x,et,zy)§

+ uz(x,et,ey)i

P (x,et,ey), Py (x,et,ey), Po(x,et,ey)

11.29 B = ng(x,Ey,et)ﬁ + By(x,gt,q)y

+ Bz(x,et,ey)i

3 ~ N
E=- 75? (x,ey,et)x - € %%-(Xaey,st)y
+ekE2

The field line curvature effects also produce a y dependence so
that n(x,et,ey.gx) could be written (6 = As/rp). It is assumed that
the portion of the sheath studied is near the midplane (z = 0 in Fig. 2)
so that the curvature effects are quadratic: n(x.et,ey.szy) and there-
fore fgﬁbrgbfé:to lowest order in 5.

1f' the ‘plasia confined in Tormac is to persist for a long period,
Ttofﬁ;g E"fiéw(fpfﬁé),'(rp”i the radius of curvature of the field lines

andzfﬁé*hiésﬁiémfﬁdr%ﬁadids are taken to be of the same order) then
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the basic structure of the sheath shBuld not vary on time scales shorter

than t This requirement motivates the search for a steadily

tormac”
“eating-in" sheath, i.e., a sheath where quantities depend on X,t in

the fashion:

11.30 f(x,t) = f(x-uo(st)t, st)

where:
T
.31 ¢ =88 coll
P tormac

Combining the prescription defined in II1.30 with the expressions
11.29 yields:
n(x-cug(st)t, eét,ey)

u-= sux(x-euo(st)t, est,ey)R

11.32( + uy(x-euo(at)t. €6t ey)y

+ uz(x-euo(dt)t, est,ey)z

Keeping only lowest order in e, § results in

x-euo(dt)t > X-euyt
11.33 in 11.32

€St + 0
~ If a change of reference frame is made tc a frame moving at
velocity v = eyoﬁ; then the time dependence completely disappears,

yielding
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n=nlx)+e a" (x)- (y- -¥g)

u = eu ()R + (uy(x) + —j¥'(x)(Y-¥0))?

auz
+ (uy(x) + e 5= (x)(y-yg)2

S )y L + MUIORES T (x)(y-yo8b

= [P (x) + € =

o

ape
Pe(x) + & 53 (x)(y-yg)

11.3¢ { Pe
eB, (x)R + (B (x) + e (x)(y-y0)9

joo
n

+ (B,(x) + e (X)(y-yo)z

2
[— S JORER - (x)(y-yo)]ﬁ

E_
- e (05 4 €E2
€ 3y (x)y + EEzz
In 11.34 fhe y-dependence has been expanded explicitly to first

a point in the slab):

order 'in-e(yo
= of 02

flx,ey) = flx,xp) + ely-yg) 5y (x.¥g) + O(E)

In the reference frame moving at velocity Ugs the sheath appears

statiohary for times Trormac »ts3 Teoll®
From the viewpoint of the slab model, the sheath is maintained by

a uniform magnet1zed plasma extending to x + -» that is convecting
An electric field

slewly at velocity uoﬁ toward the sheath
e E-B = 0; ExB/B2 = uOR is preseht in the semi-infinite plasma and

(In the lab frame E = 0 in the

is responsible for the convection
In the sheath frame E arises from the Gallilean transformation

interior.
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rules for the electric and magnetic field).

Once plasma is convected into the region of open field lines,’a
flow of matteg momentum and energy develops along the open flux surfaces.
The plasma in'a moving flux tube is ultimately depleted by the "annihil-
ation" so that n -0, B » Evacuum as x + =,

The 3/3y{ ) terms in 11.34 represent annihilation effects and may
be conveniently reiéted to boundary conditions at the ends of the slab
(y = Yo & L/2 for-a slab 1ength L). By virtue of the weak y-dependence,

5f N f(.V0+L/2)'f(.V0'L/2)

11.35 3f = ,
W ly=y, L

so that knowing f at the ends of the slab determines 3f/3ylyg- In this
manner, certain of the 3/3y{ ) terms will be related to the known mirror
loss rates, i.e., the accumulated flux of matter, etc. at the edge of
the slab is known from the local mirror losses in the slab, yielding
3/3y(flux) from I1.35. In chapter III, explicit expressions will be

obtained in thié fashion for the fluxes of matter and energy:

2 2 R S U B WU A W O
ay (My)ys 55 (U)o 35 Qs 3y %iv 3y Ye ( 3y (que*“ue)) _

The expressions II.34 may be inserted int the equations 1I.2, 4,

5, 11, 12, 13 and expanded to first order in g, yielding:
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g) nmu

X
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Zeroth order

. .
Y= -
s = dmen (u; _-u__)

iz Yez
aBz .
"a—x— = =4men (uiy-.uey)
=92
S
Firs
u
an p
e) U 5 * M
9 anx eg 9

—a—u + nmu

X 'y

du

-
y oy

. _ 3 - = ' 3
= :en ( ax T uy Bz u, By) 0 for both ions and

electrons




aP, . oP, 8u u
1i 1i z
1) Ut Uy; oy * P11 (2 ( x )
B My, M) By Myi, o i
22 \'y 3y z 9y g2 \'y o z X
- a 1 .
- Fay it V2 h
aP u u 28 au_ .
. 2 I xi oyl _yi
3wy e Pus tuyi oyt Py (ax Yy T3 (By 3y
u_. 2B . u_ .
‘ zi X yi _21
*+ B, “ay)";Z'(By x T8 ax))
n, oy
11.36 = - gLy * Cpyib6
aP au u
E e xe , Sye
k) UoaxPe? Uye 3y T ¥3 < X ' 3y )
C.:1
. e 9
- 73 2/3'Bxay (qlle Gre)
oB au du an
o _ Y. iz ez}, "1 -
1) 3x 5y - dre (n( %y o7 )+ 7 (UizVez)
3B au Ju :
9 21 _ Wy __€
m) X 5y 4me (n (3y ay>+ (uw ey)>
one of
these is
) gy = Amen (U, -ugy)

redundant
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I1.36{p) E, = a'constant (v x E = 0)

q) B; = P L +Pybb

Note that some of the equations (I1I.36f, 1, m) have been operated
on with 3/9y, which completely eliminates the variable y from the
equations. The qﬁantities auy/ay, auz/ay . . . are functions of X only
to be determined from the various constraints inherent in I1I.36 as well
as from boundary conditions (as in 1I.35).

Some further manipulations and assumptions are needed before the
model reaches its final form. The first of these is to set le(x) =0,
i.e., assume B has no component across the sheath.

If the portion of the sheath studied is at the midplane (as dis-
cussed on p. 36), the solutions should have up-down symmetry. B]x #0
would slightly cant the field lines, destroying the symmetry so it will
be assumed to vanish. Equation 1I.360 then yields aB]y/ay = 0, as well.

The equations 11.36 constitute 17 algebraic and ordinary differen-

tial equations for the 21 quantities

n’u Pl-il P"-i’ Pe’ ¢’ By’ 829

yi? Uyer Yzis Yze»

11.37

an o duyy duye AP g OPyg 9Py 3¢ 2By,

2y* Uxi* Uxe® By oy * Y * By * oy ® 3y’ oy

o
anu,; dnu, Bqy. B9 39,

ay * 3y * 9y oy’ oy

with the annihilation fluxes specified

in terms of the 21 variables in I1.37. Four more equations are needed
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to close the set, although as further manipulations are performed some
decoupling will occur and two variables will drop out.
The two remaining equations are found from global consiraints on

the collisionless poloidal flow velocities u In a cusped con-

yi® Yye:
figuration (Fig. 2) fluid motion in the poloidal direction is inhibited
by material boundaries intersecting the open flux surfaces. To have

weak interaction with the walls, the plasma density must be small ne:r

the boundary and the collisionless flow u must have no component into

=pol
the boundary. If any poloidal flow is to exist on the open field lines
and satisfy V-ngP = (0, then it must circulate away from the walls and

hence across flux surfaces (see Fig. 3).

In appendix A the flow across flux surfaces is related to the
toroidal stress. The condition V-ngpo] = 0 then gives an approximate
formula for the poloidal flow velocity, thus determining a local
property, uy, by appiying a boundary‘condition (9p01'ﬁwa11 = 0) at the

walls. The result is:

11.38  u,_ =0 A I i T
) ye yi en 3x BZ
(approximately '
isotropic to lowest order in pi/As
_electrons)
"yi resembles z “iamagnetic flow (instead it is the sum of circu-

lating and "banana" .lows) and is first order in pi/As.*
On the closed field lines, no cusp boundary condition exists

(particles can circulate poloidally by simply remaining or a flux

*Note that the fluid equations to lowest orucr in pj/Ag involve many
first order as well as zeroth order quantities.



-44-

surface) and the poloidal flow velocities are determined by local force
balance, the y comggnent of the momentum eqn. I1.36g. _

With theiannihi]ation fluxes determined in Chapter II1I, the col-
lision terms 11,15, 15'and the poloida] flows 11.38, the set II1.36 is
closed. In order\to_numerical]y integrate the equations, they must be

cast into the form:

L3 $= HE)

where £ = dependent variables = (n, P j ﬁli cee )
f = non-linear vector valued function of £
The remainder of this chapter consists of manipulating I11.15, 16,
36, 38 ir..0 the form 11.39 for both the open and closed field line
regions.
On ¢ osed field lines there are no mirror losses so the collision-

ally induced y-derivatives vanish, 3/3y( ) = 0 (except 3¢,/3y = -Ey =

a constant). The set II.36 becomes:

aP
1. .3 - =
a) 5% - e ( X + "yiBz “ziBy) 0
P
£ -9 - =
3) x e ( T uyeBz uzeBy) 0
11.40 251
) i 4wJ = 4men (u1z ez)
aBz
i) —a-x—‘ -4'm] = -4men (U.Iy ey)

\e) a—xnu =0
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AmeuL 5 gy Yy - en (E.y - “xiBz) = -ennJ.y

y

r L 9. - = -
ML, 3% U, - en (Ez +u, By) ennd,

_II.40 E +uxB =ng
oP . ou_ . 2m
14 X1 _
"x1a_x+2P1i'aT"'3'(P )R ," (Py -P)

aP du, 2m P
_e e f
Uge 3% * 5/3 Pe ax = 2/3 nd? m. Ve <Pe-%§Pl- 7?)

aP“i 'aux,l 2m
_"xi X + P = 3-\) (PII P) . o Ve (P Pe)

i ax
Eqn.'S a,b combine to yield pressure balance:

o, 9P,
11.41 X + -3—x- - Jsz + Jsz =

' Eqn.'s e,f yield "
n(-=duy(-=) _

n{x)

I
=

11.42 u . =y

X1 Xe

Combining egn.'s 11.41, I1.40e, k, 1 gives an equation for the

‘ m
e
' (”1 & Z‘F{"E) ‘

' 3ux

density

11.43

(Pl'Pﬂ) 3 ux"]‘ +_‘ Jsz:'- Jsz



. Combining egns. 11:40g, h and 1, k gives

S s 38:" - ; .
C11.44 "m"x‘§i'9y:' 0; nmu, 5c Uy = 0=

Fot _—
b ; d

Yy

0+ 0(py/8,)

u 0+ o(p;/A )

z

Flow veloc1t1es of first order 1n f1n1te gyroradlus effects can be
important s1nce currents of order p /A can give lowest order variations
‘in the magnet1o f1e1d, i.e., diamagnetic flows are-O(pi/As) but result
in lowest orderﬁmeonetic field variations for 8 ~ 1.

-.To determfoe5the'0(p=/A5)'coﬁtributioﬁs to U ;s Uyis the next

order corrections to I 44 must be 1nc1uded These are gyroriscous terms
found from solv1ng II 8 for the off -diagonal pressure components (as

“done by A. McMahon). ‘The generalization of 1I1.44 is given by:

. i B . _ .
11.45 nmu, == uy1 8x ny 0
3 3 ov. o n

nmu, =% uz1 + T3 szi =0

P.du. (P.-P.) B
~ g .L
Py, 9+ sz1 3= (—219—1 8:1 + "19. ! uy ;‘2'--887( y))(ﬁxx)

1 1

Since nu, is a constant from 11.42, eqns. 11.45 may be integrated:

1pii2m ""'Z = (BxR)

- (ql-Pl) is dropped since (as w1li be

isotropy on closed field 11nes is
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Using 11.40h, J to eliminate the cuv_‘reﬁts J:y‘, J, results in a set

of equations ;if the form 11.39 suitab]é for numerical integfation:

m
R ((" BEWQv)(l ) - 3o nd
2Py +5Pe X
+3.8 JZB)>
%i‘gp‘:l%%‘ a0, 2-:?\) (P -Pe)
o I zfm"%v

V.
1
" noax " 3 PiP) - (R Re)

Mo
. S p 2 2@ Ve P
11.47 e _sPean,2m? M (2, _Pui
3 I 3 Uy e 3711773
?..5‘.’: - .l_ji.a_n_ or u = n(-m)uX(W)
5% 3 X n(x)
3B,
_'lf=
T 4m)
.98
Loz
.-ﬁ-— - 41TJ
8P
3 . _ J_ 1 -
X .en Qx usz .usz
B R D

= en ax -_EH USing 11.46
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CE .
SERE £ TR Z XY U8
z n
1147 - '
E -ubB
R

The boundary conditions associated with the set 11.47 are:

as x> -w B > B () B > B,(-=)
11.48 _ n-> n(-°°) Pl > P" > Pe -> P(-co)
u, > u(-=) ¢+ (=

X

The constraints JZ + 0, Jy + 0 at -o determine the electric fields

Ey» E,

m
~«<
1]

= u(-=)B,(-=)
11.49

E,

~u(-)B, (=)

Clearly g;§_+ 0 és X + =o,

The equations II1.47 are integrated in from large negative x until
the open field lines are encountered. The dividing point between closed
and open field lines will be labeled by a particular (although arbi-
trarilyAchoseh) value of the boloidal maahetic field. If thg cusp and
interior poloidal fields are antiparallel (the field reversed'sheath),
then the natural division between open and closed field lines occurs at

B . =B, =0.

pol ~ "y v
The set of equations for the open field lines analagous to 11.47

is rore compTex. The set 11.36 can be simplified by using the result
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that "yi is first ordgr is rpi/ASv and that ”_ye = 0 from II.‘38. It is

also convenient to sum the electron and ion force balance equations to

obtain the set:*

P, : P
1i e =
) e 7 enlyy By 9By =0

oP, . ou B . .
li Xi - x ) ( yi
b) ugi 5% * Puy (z(ax * 3y E% By 3y

ou m
zi 2 1
+ B, 3y )) 3y Q5 - T (P PI\) m, " (P, -P )

P, . au au 2B au ou,;
Il x zi
) Ui o * P (ax ¥ +E2Z(y W B ay>>
I T (P,-P) - 2 Je £ vy (P 5-Pg)
T3y yi _3_ ! m; ihi
11.50
aP u u
hall - xe yey- _ 2 3 Q€ + 2 42
d) uye ax+3'Pe(ax * ay) Ty Yy F3M

'3 B -
the annotation q = + q; is used

m P, .
e 2 It i
“2q; Ve <Pe'3'Pli —3—)
au
_’“ = on _ 3
e) n x Ui 3x ~ 3y ("uyi)
-au
_xe _ an 9
f) n— X uxeé‘x"?i("uye)

*T he thermal force tenns aV“T are neglected. See Appendix B for an
explanation. :
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. oP

i, el
Ty +en (uj-ug,) B, =
du 2
au_ . g N
zi _ 3y "z ox3y
oy By
2

8¢]
757 = - uxeBz nenuy1
au_ .
zi _
nmu, ;2 = en (ux_i u
5 - Ez+uxeB
z n.
ez - Wy, - 3n/ay (u, )
oy ay iz ez
ad, )
equivalent to —= y =2 84/1?"3 0

ax

see the discussion on p. 42

- 41renuy1

xe

) B

7 =

o
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a) X en Tox itz zivy

11.50 (") UYe=0

s)m:-liri%m]
yi en X '

Combining 11.50g with 11.50i results in

[P P
11.51 ay('% (P“-Pl)> 82 2 ('—'2i> =0

This can be applied to the term on the right hand side of II.50k:

B (P“-P ) 9B

B8,
- 1! %
11.52 ay 5 L2 (P,-P,) = J?_ -

Using expression II.50h in 11.52 and I1.52 in II.50k results in

v (P -P)
nmu, . é% U,y = e"(“xi'“xe) By - 41ren(ux ) B --1?——
11.53
Mﬂm-ﬂ)
= en(u -u, ) B ——-Ei-———
So:
du,, eB {u §=Uy ) 4w (P, =P, )
- xi [

Equation II1.53 shows that the Lorentz force inxBy9 drives a
toroidal (i) mass flow of ions.
The quantity auzi/ay, the toroidal annihilation flow, couples to

the other variables 3h1y through the terms in the ion equations of state
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- representing exchange of perpendicu]ar and para]]e] energy, i. e., for

~a scalar ion: pressure. au ilay decouples from the other var1ab1es.

/ay is given in I1. 50h

'au B, du Y.
zi = .2 VA e 1 9 Q
11.50h <y - B 3y B- 33y
y Y T
parallel ExB motion across

~ streaming - Field lines
To evaluate the ExB term, differentiate I1.50j

32¢1 3 3
11.55 e "xeBz - 5;-(nenuyi)

The second term on the right hand side of II.55 is usually smali:

ennu, enu
11.56 ——1 —J—lsl from 11.501
xe 2 .

The ion poloidal flow is similar to a diamagnetic flow whereas
Jz is'determined‘by electron ion drag. Most solutions (as will be seen

in Chapter IV) have the property

enu
11.57 'TL“ on open field 1ines

The second term in II.55 is therefore neglected:

2
9 ¢*| 3 (u B) = 3Uxe B 3Bz

axoy. ax xe'z T Use Bx
11.58
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Substituting I1.58 into II.50h yields

du . .B: du,. B 4menu, .
2i Sz Cyi_ "z xe an,1 3 - yi
.59 5 B Ty "B, ( N 9X'n 3y (""ye)) B, Uxe

‘Equations I1.59, 11.50e, f may be used in II.50b, c, d to obtain

the pressure equations:

2 2
a) 3P11=2P11' 1- Ue B, @_+i T -BZI‘
ax no\ T 2u, EZ' x o u i E? e
?m—ev (P, -P)
47P, u V. “m. e*'l e’
- (e B,) - g (PyRy) -~
BS Uxi Y xi Uxi
L
]
Uxi y
I1.60 2 2
b) 3PI1=1 1+2uxeBz on _Zi T _BzI.
X n U g2/ U 1T 7%
81rPII Uyo
+_2_B i&?(enuﬁBz) TG (P"1 Pl1)
Me
2 ;“—i-ve(P|| -P,) aq" 1'
B u_. U ay




e
22—V 2 2
aP P m, e nJ
e.5"edn _ _Ti 2 1 3
.60 c). X3 T Tu (Pe -3 P -3P)+ T

where I‘1-

ou (o
13 1393 -y 1
i nay (nuyg) (wte that w3y (nuy) = 3 + 0(—As>>

the annihilation fluxes

Equations 11.60a, b, c and I1.50q, s may be combined to yield

equations for an/ax and "yi:
1 3n _ 2 n 222
) o g * By enBylyy T Yt 3 ey
1 3n =
b) oy ;ax * B2 eMBUy; = Yo
2
u B
Xe "z 5
c) o, =2P 1-————>+—-P
1 1 < uxi B 3 e

11.61 < "

Q
nN

i

n
=0
/_\
)

N

c .=
% |e
o

@« [=~]
{2
1
o
PN
+

= &
X I
= |o
w | ™
nojN N
S—
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e
P Bg V4 zﬁTv
9) n 'Fx'—i IH'EZ"Pe *w (P, Pll)"' U (Pl'Pe)
m
e
1 e 2=V
g, 3g m; e
A YL 2y Y i p _2p _1lp
Wi 3 “xe 3y Uye e 3173
2 .2
_ 3NY; -8B
Uye zoy

11.61

=
N
<
LS
l
3

e
an—_Ve(P" -Pl) \)i : aq].
" ol R P e 2
xi xi
81T(P" -P,)
- .___Bz____ By

Equations II.61a, b may easily be solved for on/3x, uyi' With

these results, the open field line equations are in the form 11.39
suitable for numerical integration. The closed set is

3

(BoY1~B1Y5) nn"g
, an _ 211 7112 2 2 2
.62 a) ax " det T 3 det Vo Yyi




11.62

d)

e)

8nP,
+ 0 uxe (enB,u
B~ “xi
I
_ 1%
Ui 3y
m
‘P P zﬁg"e
—e-dedm __ i g
rax I 8x Uye
_2 My
3uxe 3y
-aux.l 2 - .l_l_,.(i_a_n_ - I‘
“BX n ax i
ke _ _ Uxe an T
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B
Y=
ax
g
e A
Tt 41renuy
du,; _eBy ux‘i-uxe)] Ay
M\ Ui B2

11.62 X en yicz ~ Yzity
det -\/det? - g__z_naz (2Y5-00yY4 )
1 : 3u, B2 ‘MY27%N
Ui = GRE™ -
yi enB, |~ %_ e,
UyeBs
5 = E, + U, eB
4 n

. det = a] 82'328]

The quantities ays Gos Bys Bos Y1s Yo are defined in II.61c-h.

Ty e S ;—% (nuys o) = the annihilation flux.

Notice that some decoupling has occurred; the quantities:

I1.63 3u,,/dy, 3n/3y, dP /3y, oP, /3y, 3P./dy ,

were not needed exp11c1t1y This allows the set II.62 to be closed
wh11e some of the quant1t1es II 63 remain indeterminate.

The equat1ons II 62 const1tute ten ordinary differential equat1ons
for the ten quantities- ' =

II 64 n Pl.l, P".Is el ux." xel B,Y’ BZI uZ'I’ ¢
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Equations 1162 apply to the region x > Xg = the.,dividing point
) between open "'and cl‘osed field lines. The boundary cond1t1ons at Xq
for the ten var1ab1es II 64 are prov1ded by matchmg the closed field
1ine solution cont1nuous1y to the open. field line solution. zSeveral

other conditions mus,.t_, be satisfied by the open field line solution:
a) n, Py Py, Pa>0as x>

o

b) nu ;> 0or (n(--w)ux(-w) -{ nr.dx = 0)
: 0
c) n, . +0or (n(-w)ux(-w) -{ nr dx = 0)
as x + © 0
d) BB
e) ¢~ ¢0

The conditions II 65a -guarantee that a vacuum region exists at
X > o, Cond1t1ons II 65b, ¢ guarantee contlmnty of particles: the
equa] fluxes of wns and electrons entering the sheath at Xg must be
completely annihilated as x » o,

Conditions: I1.65b, c imply:

11.66 _l'n° nridx = f° Ar_dx
xo | x0 '

The in egrated m1rror 1osses of wns and e]ectrons must be equa].

i :t.1ve than in an ordmary m1rror machme where the
: RES 2

~local losses must ba]ance




merr, =
mirro

in_bfdgrfi; ; _%szffﬁe”édditiOnal dégree of freedom
in tﬁevSheatﬁ:o-4¢_Qﬂgicfségﬁiﬁzﬁf?éidl1§Hé5'bfeaks the cphstré%ht'li.67.
To explj;i§1¥;“'tggratellg,62, the annihilation fluxes Ti,e’

. 31 2 L o
3y qyi, 3y qyi, 3 qyigre:neeQed. These quantities will be derived in

chapter III.




CHAPTER 111
i In th1s rhapter arguments based on m1rror josses along the open

Tf1e1d 11nes are used to determ1ne the ann1h11at|on fluxes:

l a —li = i
T, n 57 y ’ re Ny nuye particle fluxes
III.
B R iR B -
W qy, » 3y dyi ° ay qye heat fluxes

The final forﬁulas for these quantities are not exact, but result
from physically motivated approximations.

To relate the annihilation fluxes to the mirror loss rates,
examine an infinitessimally thin slab of plasma of extent -L/2 < y < L/2
that is being'conveéted across the sheath ét velocity ux(x) (see Fig. 5).

Plasma is lost from the slab at a rate:

L/2
ol _ . [on
mewts ( ) ' (atc

N= total number of particles in the slab

= local mirror loss rate

And similarly energy is lost at the rate:

' L/2
€ _ 3
nLs. $e- o <_3t nie) L dy

= mirror loss rate of energy

L)
1

energy/particle

mv2

-—12— for ion perp. energy
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mev2
= —5— for electron total energy

Implicit in the formulas I1I1.2, 3 is the assumption that the total
losses from the slab are the sum of the losses from each point, i.e.,
particles do not scatter in and out of the loss cone, which is true
when rp/xmfp £ 1.

The particle and energy losses are manifested as fluxes at the ends
of the slab:

a) nu - M

yIL/Z '.nuyl-L/z B3

I11.4

ae
+ - B
b) (q, + (eXnu )ILIZ (qy + @)nuy) ) T

The combination qy + @)nuy appears because the heat flow qy does
not include convective loss of energy (f) = fd3!§f/n, qo Id3!_ ef(v-u)).
In slab geometry the loss rates are independent of y and the fluxes

{see Chapter II, Sec. 2.2).

are linear in y to lowest order in r Anfp
3 an
L—(nu)=-f— dy
¥i+L/z yl/L/Z ay Y it
=L M
1115 1
. . _
3 ]
oy My T T Bt

In a similar fashion the heat flux follows from III.4b:
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a .
- W.((E) nuy)

My 3“( )
Ly ot
. foan, ] 54
T (-Bt(e.)c * ‘E)(at . "N
AS

The last term on the right hand side of III.6 may be dropped to
y = O(Di/As)'

To obtain explicit expressions for the annihilation fluxes,

11L.6

Towest order in pi/As since u

estimates for

(a_n
]
c at c

must be obtained. A complication arises when the sheath is vy in

oe)
at

thickness: the ion losses are not dependent on local quantities only
since an jon samples a wide range of plasma parameters in the course of
an crbit. Thi; effect will be ignored, consistent with the approxima-
tion pi/As < 1 used iﬁ truncating the hierarchy of fluid equations (see
Chapter 1I, Sec. 2.1), so the mirror losses will be determined by
local parameters only.

The mirror loss rates for e1ectrons have been calculated by

30 13

Pastukhov and R. Cohen, et a in the e1ectrostat1ca1ly confined

limit, To/e¢: € 1:




. ~63-

/' 2R e¢/ e ‘
3nve1 \ZR"T) TR{ARFZY Te/ed (z=1 assumed)

d{s3»-
b) 'aTt' ('2- nTe) c

The physical interpretation of the dominant terms in these expres-

a) an

e

I11.7
_ ) an
'(e¢+Te)(§f

sions is simple: 'only particles near the top of the potential barrier,
mv /2 N e¢, can be scattered out. of the electrostatic well (see Fig. 6),
hence the class1cal m1rror 1osses are reduced roughly by the ratio of

the velocity space density near the top of the well to the velocity
space density at mv2/2 = Te:

2 .
o
Ay T ’\’\)e e'e¢/Te

e
c mv© _
‘f(T'Te
When electrons leave the confined region, they take aiong energy:
8 {3 - | _ (parallel energy Perpendicular energyl/an
1.9 ot (? nTe c - (Scattered,perticle * Scattered particle )(at c

The parallel energy/scattered particle = e¢

The perpendieu}ar energy/scattered particle = Te/2 + Te/2 = Te

(1/2 T, for each degree of freedom)
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et a1.13 for magnetically confined particles:

{add e-e collisions
. Ggor _ 2:08nv, using Spitzer's self-
o Hog R =~ #og, R collision rate.32)

nv
an.
at

III.10
3 (3 - an
(2 "Te)c = (e¢+Te) 3|

To obtain an approximate expression valid for all e¢/Te, an inter-

polation is made between the Pastukhov and Futch formulas:

. (tanh(x(-?—:-o) )

an
a)_
ot ¢

9t| pastukhov 2

Te
II1.11 . m tan (A(e¢-1))+l
Futch 2
= (04Ty) 52
Cc

3 3nT
b) 3 7 % c

The ion temperature is generally assumed to satisfy e¢/T11 <]

in mirror machines, yielding a loss rate:

nv,
.\)_I

Bn = -
c 4log]0R

I11.12 3t

If eq:/Tl,i n 1, the potential has a strong effect on ion losses due
to the large hole formed in velocity space (see Fig. 6). In addition
to ‘increasing the volume of the loss region in velocity space, the
preﬁence of a large potential narrows the structure of the confined
region;fthereby:iﬁcfeasing the effective collision freguency, i.e.,

small angle Couiombicollisions can ‘deplete-a narrow structure at a rate
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faster than Vii» the 90° scattering rate.
To obtain a rough estimate of the effect of a large potential,
e¢/Tli ~ 1, on the ion loss rate, consider the projected distribution

function:
1113 glv,) = fdv"f(vl,v")

The distribution function g is depicted gualitatively in Fig. 7.
g=0for0<v, <vgs /ZWEIT(FT)' and the characteristic velocity
scale is av, . The maximum value of g is 9-

The moments of the distribution function do not depend strongly on
the fine scale velocity space structure, so they may be calculated

approximately from the distribution §(vl)depicted in Fig. 7:

0 O<v < Vo

i
111.14 §(VL) = 9 Vo/VL Vo<W <Vptay
0 v, > Vg Ay
Av; is chosen so that

_ ﬁvlvlfj =j-dvlv19 =n=

I11.15 n= govnAvl

The perpendicular pressure is given by:
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VA+AV
, ““’12 07" )
nT, = dvl V| =79 = mgyVq dv, v, /2

Yo
I11.16

3
_ ™Yo (2 2, M )
=== VotttV Y3~

In the regime of interest e¢/T, > 1, so Vo P2 by, . Accordingly, the

last term on the right hand side of 111.16 is dropped:

100 2 2y _ nm 2
I11.17 nT, -—f—__ (v0 AVL+V0AV1 ) = TT'(VO +v0Avl)

Coulomb collisions generate a Fokker-Planck collision operator,

which is modeled roughly by a diffusion equation:
11118 8 -12

An estimate of the collisional losses is obtained from 111.18:

| .~ L B 2
A ﬁ"i sv= VD B
c 1
0
111.19
vaDg :
= - 29 .00 __ Dn

VOD(VO) v |v " &, Avlf from III.15

" A1l that is needed is an estimate of v, . From I111.17:

2
myv mv.Av
0 _ "0
Tj, - T- _TL -»
I11.20
, /R (LT
Vg 22 et
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Using I1I1.20 in 111.19 yields:

D | "(TR%*W) 2_ 2T

ant .. = __L
II1. 21 -ach-'-‘v—z- _-l__éa:___?-’vt : =

The diffusion coefficient is related to the collision frequency via
D/vtzvm v;. The expression I11.21 does not include the loss cone
scattering contribﬁtion. since only the integrated distribution function

glv,) =fdv"f(v“ »v) ) was treated. The usual loss term may be incorpor-

ated in a simple way so that the loss rate approaches the correct limit

as e¢/T1i + 0:

an
111.22 (at

1 e
(lﬁ—og] L * TR_gL-] T-l__i)
= =Ny,

Cc ) 1 (1'E¢/(R'])Tli)2

As e¢/(R-1)T § 1, I11.2Z predicts infinite ion annihilation. In
reality, ions can leave the device no faster than the transit time so

that an upper bound on |3n/5t|.| is:

nv nv B
anj.. thii _ thil = ; .
11.22a  |& |< = = 1}- (Ltield Tine = 1ength of field line
c f]e}d P
“1ine - = rPB/By)

An estimate of the rate of energy loss for the ions follows from

the model equation I11.18




an Vl2)" nT = EI-!l—-z——g--vD 3 d
at z /. \et i)t T Z 3v W’ av 99
. e c 1 g §
0
111.23
my ®© oo
o 9 9
—Tvlnsﬁ-.- -/ mdvl Vl ‘Dﬁg—ﬁé
vo Vo 1
mv ® >
_ ™o (an 2 / 3 2
= — sz - D + mdv,g — v, D
0
2
mv
= 4—51- (%% . - 0(mD vldvlg)

2 2
) mvg |, mAv, an
2 \at c 2 2t

) from II11.19
¢

As in II1.17, the av 2 term is dropped

111.24 —a-n(mv12>= g’ an
. it 77> T\

Equation III.24 has a simple interpretation: ions remove energy

c

mv02/2 when scattered down into the potential hole.

For parallel ion energy, a simple estimate of the loss is:

B ("l _ T {on
at TC‘T ot

The determination of the annihilation fluxes is now complete;

2 <‘“"uz
I11.25 -.a—t-n -—2— ‘
[ C

: éubstituting 111.11, 22, 24, 25 into III.5,6 yields:
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__1lm
Te=-noat c
2 2
ye . (2 /M \).(Te'e \ an
ay at /) 2 3t
- 3./
"(e¢+Te'2Te)(atc
= - (e - T /2) 0T
=.1an
I = - wat c
1 e
vis (z'°910" i (ﬁ'lhli)
= 1
2
EQ
111.26 (‘ - )T >
AT
1
ngi-= - (Ji-nT T, (&
3y st 1) T L1 Bt
2
-7 /‘mvo +1){2n
1\ ot
= ___e n
Ti1 (] - Tii) (8t
, 1 ed )
.. T . [—s +
) ii 14 (;1og]0R (R-lilli
(1 - e¢/(R-1)7, ;)
I nT, T, .
3qui = - (3 M| 4 M1 fonf
oA (at 2 (atc 0
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_ Note that the fon perpendicular heat flow is negative. This
results from the fact that ions must scattér dovnward in pérﬁgndicular
energy in order to'leaye the systgm. The ions that exit the Eevice do
so with less thanzﬁhg’avérége;pgfpepdicular energy, resultingfin perpen-‘
dicular ion heafiﬁérx“ -

The electron.losses‘given in 111.26a, b must be modified if a
signiffcant ammount of electron "recycling" occurs. Hot plasma streaming
out along the field lines ultimately impacts on a wall where it cools
off and vaporizes some of the wall material. The electrons from the
resulting accumulation of cold plasma can fall back down the electro-
static potential well and re-enter the main plasma volume, i.e., they
are "recycled." A simple mpde] of this effect consists of multiplying
the electron loss rate by 5 phenomenological term:

(1 - a)

1 {3n
I11.27 Te =™~ "(Ff .

n

a = fractivn of cold electrons re-entering from the walls
(taken to be a constant for simplicity)
To estimate the effect of electron “recycling” on energy balance,

note that the hot electrons leave carrying energy:

= (e¢ + T ) g.’l
c e atc

2 (3
k13 (2' UL

Whereas the*cﬁ]q‘e]gptrons return energy from the walls: .

3 3. iy
—( n:T )
,at Z.,’ € lwalls

= - oed %% I
c .

Resulting in;f'f'
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111.28 JL (>

g T
E e) (an -
Total (%¢ ) T:a) (5f'> (1-e)

The.heat flux is:given by:

-0)

ye _ {3 3 31 (on
oy (ﬁ' zh Telc 'Z'Te (at

; (e¢ . sn_,l)

Forl1>a> 1/3;the second term in the brackets is posicive, i.e.,

it represents‘extra'eléctron cooling. For o » 1, the ratir

3
111.30 353;519— >
7" Tele

This indicates that thé energy lost/particle greatly exceeds the average
energy/particle: the cold electrons from the wall p .vide an infinite
energy sink as the fraction of "recycled" electrons approaches unity.

The development of the annihilation model is now complete. The
explicit annihjlation terms 111.26, 27, 29 may be used in the differen-
tial equations I1.62.

In Chapter IV the 1ntegrat1on of the equ.tions is performed by

start1ng from the asymptot1c solutions %+ -=, and numerically inte-

grating the equations across the sheath.
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"CHAPTER IV

In this chapten; the annihilation equations are integfated for
various values of plasma parameters and the resulting solutions are
discussed. The deve]opment of analyt1ca1 solutions is limited by the
strongly coupled, h1gh1y non-1inear nature of the equations 11.47, 62.
Analytic methods w111 be used to gain qualitative insights and to deter-
mine the asymptotic variation of the dependent variables, but numerical
techniqglies must be resorted to in order to obtain detailed solutions.

The firSt‘step‘is*to convert :1.47, 62 into dimensionlezs form,
using appropriate normalizétions for the variables. A natural set of

normalizations is the following:

1. (&)
o DX N I _yg(X)
N{ =0 L,l,e TB X1,e D.l\).l

. "
v _B_-i--i(}l-— u_. R 4 I ¢->$—Q
1B(=)| 21 /TTE B

X > x/pi

Ir——E— E vy
en(-m)»’ls'/'mi s Piv51El

T 4 ..
BIE - 4',—3""”1:11\
B

where. P; v; = 3-/—m=i T




/I .
b)
)
)

e)
Iv.2

f

hy

Where the parameters n, vis v

) -

i)

3y

(vs+v; )
i Vie 2nd
( 3u (Pl’PlI) ol T ‘]sz - ‘]sz)
e
1 5n i , ie
- noax - 3a, PuP) g s (PPl

se* Ve are redefined by:

in normalized variables




A o,
n(BZ'Y] - B]Yz)_ '3—71 n332U§i

de? u,e det

an
ax’
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X1 = _:EXI}QE - T
n ax i
Xe = - Eég.gﬂ.- T
n 9x e
=JZ
K

Iv.4

2
(2/3nay/u, B2)

2

Zuxe BZ

u 2

Xi B




|
aq_ . 9q P
1 yi 2 ve . 1e ( 2 I)
+ — + P -3 P -
Tug oy KT 17 uxe 173
.2
-%EEH.JB
u z
V.4 e Y
) (2p#)) (B 2 % p)
s) y,= -——— |T~—5T)-%—(P-P
2 Uy i BZ e 3 Uy 5 [

- 238 (p b ) + g (eR) + 8 (P -P)
ug e Buy; L Uy s
1
og,. (P, -P,)
1 yi 04
T 7 9.8y

t) det = = 418y = Qo8

Several more normalizations have been introduced:

aq 1,l,e

T 1, ,e. y

i aq,, " 3

s© b Y
Iv.5 I g = —~ e
® Y v n{=e)TeH

i

The quantities T, o y ’e/ay are given in equations II1.26, 27,

fThéﬂéqqagio'§iIV.2,'4 are almost invariant under the following




,:'__*»_7:7,-

scaling transformation:

Iv.e ¢ R

ntn Uy, U, > Jf?,(uxi,u
[

w8y ye . yir = !e)
' Te* Ty * oy +}s(vi, Vie* Ti» Te» 3y 3y

xe)

Jy, Jys Upgs Upg * /sft (Jy, J s Uyis "zi)

Ey, EZ, -+ JEf»‘Ey, FZ) X + VT/s x

The.equptions arerﬁotAinvariant under the scaling, IV.6, because
of IV.44, the equation of evolution for the toroidal ion flow velocity.
The transformation IV.6 corresponds physically to the fact that the
erosion rate is_reTated to-the length ;ca?e and loss rate via the

continuity equations, IV.4e, f.
V.7 Uy ¥ Vipssls + (Vigss v TysTe)

The erosion rate, length scale and resistivity are related by the
magnetic diffusion equation or equivalently 1V.4g, 1: ‘
B uB
. Yo 2wy
Iv.8 As ~ n - uxAs N

Combining the estimates IV.7, 8 gives

W9 up v el A

as discu;ggd,in tgg_ipgrqquctibn.~ Letting Vioss * s“]osg and n+tn in
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. which is identicalvtd‘the transformation IV.6.
The transformation fails for IV.4i because the characteristic
,scéle in IV.4i isv%bol' the ion gyroradius in the poloidal field. 1In

dimensional units, IV.4i gives rough?y:

ou_. eB eB
zi . Ty =y
Iv.10 T mec Uy v < Ay -

The toroidal flaw velocity couples to the other variables through

the equation for o> IV.4j. The term«xuzi contributes significantly

when:

9P P u,.
1 1, L 2ig

v.n en 3x ens; " c Uy

Combining IV.10, 11 yields an estimate of the minimum scale, Amin

for which Uyg plays an important role:

2
. P m.c
2 - _Pmc” 5
V.12 Bnin = 27 * Pipol
e nB.y

For sheath widths, As < Pipol® the scaling of IV.4i is of minor

importance since u_. couples to the other variables only through a small

zi
term in IV.4j. The scaling transformation, IV.6, is then appfoximately
valid, providing a useful tool for comparfng classically collisional
sheath solutions (some of which have As < Pis invalidating the theory)
to annma10051y,cqllisiona1 sheafh solutions with As v op; (n =+ tn,

Vioss * SV1pssi Sot >1). | v

One consequence of the approximate scaling law IV.6 is that if

inStabilities driVen by strong gradients in the sheath increase both
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the resistivity and particle loss rates by comparable amounts (n - tn,

Vioss * tv]oss)athen the scaled solutions have the properties:

Bsscaled = "Ht Aynscated = Bunscaled

Iv.13
= /it u

u

Uiscaled unscaled t unscaled,

i.e., the sheath erodes faster but the gradients are not relaxed. For
such a case a high level of fluctuations may be continually driven by
the sharp gradients and the "eating in" rate may greatly exceed the
classical value.

In general, in the presence of instabilities the resistivity and
loss rate scale differently (vlos;i and Viosse MY scale differently
also); n.+» tn, v+ 5sv, s # t. The most optimistic 1imit (optimistic
in terms of the Tormac confinement time) is to take n + tn, v + v <o
that the turbulence broadens the sheath enough tc quench the instabili-
ties, but does not enhance the paftic]e Toss rate.

Anomalous effects will be included in this thesis in a fashion
somewhat more sophisticated than the simple scaling IV.6. Turbulence
will be assumed to set in for ye-yil greater than some critical value,

v If the turbulence is assumed to be due to lower hybrid drift

crit’
waves, then a simple model (suggested by H. Berk) similar to that
used by N. Kra1133 is‘the following:
. 0 lye'yil < Vepit
Iv.14 a) Vg > veclass +

v

QW —— [Va=Vil > Vepi
(4] 1+VA e 1 crit
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mv
e e =
V.14 b) n~» P VE Vsl = Vepst

A is an ad hoc parameter = rate of rise of turbulent effects
where { o is an ad hoc parameter a<1

S, .

is an ad hoc parameter Verit thi

Verit
The ions are assumed to be unaffected, in the spirit of the “"optimistic"
approach discussed above.
4.2
In order to perform the numerical integration of equations IV.2, 4
knowledge of the asymptotic state x + +»= or x > -» is necessary. This

is required because the numerical solution must have a finite point

x = zL (L < «) as a starting point, otherwise:

=y
b3

V.15 20 £= (0P LR uPeee )

-t

and the solution never gets off the ground. If the asymptotic solutions
are known analytically they may be matched to the numerical solution at

X = i, providing *the boundary values for the integration scheme:

£ = Eg(x = 4L) # Elx = o)
IV.16 =7 =M =X

dg
i = fg,) # 0
dx x=L 50

Only one of the asympototic states is needed, either the large +x
solution or the large -r solution. Large -x is chosen for the following
reasons: 1) the closed field line equations are simpler, making the

asymptotic analysis easier, 2) fewer quantities must be varied to
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obta1n solutions. - , o

If the 1ntegret1on were hegun at large pos1t1ve X, the houndary
conditions II. 65 wou]d be g1ven and scme quantities (¢0, the potential
at the edge of the sheath the asymptotic temperatures, etc. ) would
be var1ed unt1l the boundary conditions at large negative x, II. 48

were met. From II.48, the quantwtwes,

B : U,
Iv.7 Bf ('_“"): n(-w)’ P_l("”)’ P"('w)- Pe('w)’ U:; (=),

must assume prescribed values. Other boundary values appearing in 11.48
are not prescribed but determined self consistently, i.e., ¢(-=), the
floating potential and ux(-m). the "eating in" rate. The magnitude of
B(-=} is determined by pressure balance. Thus, when the integration is
begun at large positive x, the six independent constraints IV.17 must be
satisfied by varying six quantities (boundary values at large positive
X, etc.). '

When the integration is begun at large -x, the boundary conditions
I1.48 are given and some quantities must be varied until I1.65 are
satisfied. - The conditions I1.65 constitute 7 independent constraints

(again ¢, and |B| do not represent additional constraints):

n, P

l,%,%+0asx+w

Iv.18 B ,
=L (+=), nu_;| =0, nu =0
.8, (+) x’l*” xel+°°

howéver;ithe'fiiﬁehfdur of them are nearly always satisfied, leaving

only three cohﬁtneﬁnts. The magnetic field constraint is usuafly




Aszl‘-’

where the.d1rect1on of the vacuum magnet1c

remainxng constra1nts are:

a) p"xi,* 0 ‘ nux(-w) =‘/”nridx
S 0
was gy oo or equivalently ‘
; b) ' n:u‘)“'e * 0 - nux(-oo) =fnredx ,
oo Xe : A
~as X -+

‘i.e., the conditions that all of the electrons and ions entering the
sheath;pé annjhii@;gd._ The quantities ux(mw)~(the “eating in" rate)
and: ¢(~x) (theff1oating potential) are varied until equations IV.19
-are sat1sf1ed

The asymptot1c equat1ons for large -x may be derived from IV.Z2,
The.equat1ons.ane Adnearized about the asymptotic values of the

dependent variables:.: ..

n= n(-m)(l-sn) P, =P (==)(146P;) Py = P, (~=)(143P,)
(=) (148Pg) g = uy (~=)(1+8u) |

—
-
o
b
"

xi
e

B(-=)(1488,) B, = B,(~=)(148B,) ¢ = o(-=)sd0

The linqgfi;gd'closeg;fie]g 1ine;equations are:

. [A .
3 (7 2 8§ 2 3
N | T(T (6, - 'GP ) - ZByw By .'723‘19;-.. '5)?682)




g3

Yolew o GBZ) _

w2

R ux(-co)

%o = Znt=y

A, = v"(-m)
1 ’uX -0

Pl(-m)
T=
b T =Sy

jon-electron energy
exchange is'neglected
Vie = 0 (Tg=Ty)

1v.22

.§P1. - 106“ + T '(BWGB,V"*- BzooGBz) ‘:



=B

N .
_ 0 A(x-xq) Ag(x=xq) Ao(x-xg)
f) GBy-—-—->‘_>‘06no(e 07 - e 0VX0T) + 4B, €701XX0

0 A(x- - -
v.22 {g) @8, = g &ng (e (x-x0) _ grolx xo)) + 8Byg e20(x-x0)

. T
h) &b =~ T6Pl - E-Gn

where:

A A\2 4
-0 6 01 6 _1071 1{10, 6
Iv.23 >‘=_2 ((]+1'IT TT'A_) V(.I+Tl_f'TT7\E) +—Jg'(TT 'ﬂ))

and the relation,

Iv.24 2o &n, = 8B, B2(-=) + 8B B"'(+«=)
. A-AO 0 yo'y *

is satisfied. Xg is an arbitrary point at large -x.
Letting Xg be the starting point for the numerical integrator

yields the boundary conditions:

a) n(xo) = n(-w)(l-sno) =1 - 8ng by.IV.l

b) P, = T(1+6P, o)
c) B = T(1+sR))
Iv.25
a) P = T(R)
e) Uy = Uy = u, (=} {1280

f) B, = B (=) (1438)




g5
g) B, =B, (~=)(1+58B,)
h) ¢ = ¢(~) + 89,

8ng is an arbitrary, small number. 8P, g 8P, s SPags 80 are
given in terms of GnO, 1, Ao, A] by equations IV.22. One of the
perturbed magnetic field quantities ((‘SBy0 or GBzo) is determined by
Iv.24. GByO/GBzo, however, remains arbitrary.

The choice of GByOISBZ0 has significant effect on the solutions
because of the exponential dependence. As X increases (as the open
tfield line region is apbroached), the effects of GByO/GBZO become
exponentially large, significantly affecting the final value of
By/Bz at x » +o, If it were desired to find solutions with a particular
direction of the magnetic field at x » +~ {as discussed earlier), the
parameter BByO/GBzo would be varied along with p(x = -«), ux(-w).

4.3

The numerical scheme‘for finding solutions consists of two parts;
an integrator and a sgarch reutine. The integrator advances the depen-
dent variables from X = -|x0| (xy is set equal to zeio since the origin
is arbitrary)'in the closed field line region to Xis the division point
between closed and bpen field lines. The boundary conditions are given

by IV.25 at x = Xq and the equations IV.2 define the function f(g):

dE _ .
.26 ge=fE) £ = (mPuPyaPaauysuy g By0B, U, 00)

At X,=,xl’ thequpcpion f is redefived by the open field Ijne
equations IV.4. An additional dependent variable is introduced,

i

/
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“zi(x), changing the dimensionality of E,f + £',f' (dimg' =10,
dim £ = 9)

& o . |
IY.27 <+ - flg') &= (“rpppn’Pe’“xi'uxe’By’Bz’uzi’M

The bouﬁdéry condition on £' at x; is determined by continuity of
£ (but not d&/dx, d2§/dx2, etc.). The boundary condition for the

additional variable, us is:

V.28 u,;(X) =0

which fo1lowsxfrdm the expansion in.pi/As. The evolution equation IV.4i

is only valid if Uyj = 0(1). In chapter II, eqn. I1.44 demands that:
Iv.28a  u,; = 0(p;/8,) = 0. + 0(py/4,)

on closed field lines. Continuity of u,;

j across the dividing point Xy

plus coﬁsistency within the pi/As expansion requires the condition IV.28.
The open field line equations, represented schematicaily by
equation 1IV.27, arebthen integrated from X to Xy = the point where
n=P =P = Pe”= 0. The equations IV.4 have a singularity at n = 0
50 the intégratioh fs terminated slightly before Xy
The terminatioﬁ'is‘made by -placing an upper bound on the number of
Sfeps ;aken by the integrator; As the n = 0 point is approached, the
step Size choéén by thé iniégrator bécomes smaller and smaller due
to the singularjty, An infinite number of steps would be required to
reach n = 0,.50 some ffnite (although large) bound is cho;en. The:

final answers g?é¢inséhsitive to the upper bound as long as it is

sufficiently Targe’ (5'1000).




ﬁ‘Thefgﬁuatfdns. réak'dgﬂn:neir;n = 0 for physical reasons as well,

due to the y 0f the quasi-neutral approximation. A simple
“model may roughkyi§§EQUnt for this effect. Examine Poisson's equation

in the normalized variables defined in 1V.1:

oo & o uj?
V.29 o = '52—:?'(“1 - ﬂe) Fevaluated at X = -»

1 1

QuasifneutraTity breaks down near n; - n_n n

i e i
wao 2 2l
.3 a—1n
ax¢ o !

Hhen_Poisson's equation is accounted for, the boundary condition

3¢ /3x = 3¢/3x v must be included. The vacuum electric

plasma vacuum
field is given by:'”

- %p-dy - % (the walls are at

Xlvac  Xu%2 wa'xz zero potential)

Exyac °

= .9
V.3 S
For infinitely distant walis (consist ;. with the approximation

Aslrpbf 1):

V.32 Exyyc = 0.

o match the ‘plasme and vacuum electric fields, an electrostatic
'sheath v Apop o in thickness and consisting mostly of ions must exist
near n = 0. Consider the average of eqn. IV.30 across the electro-

static sheath:'
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<<az¢ w12 1 bvac
= - (n;) Oz d¢
W i [
i
¢
*vac X
ST A ™ b ‘d’Y(?'&Y) dx
vac
SIS S e
20 X 2¢ \9X
vac
2 J
2w, 20
0 - L i
> n. )~ n$
9X 9_2 i Q_2
i i
This rough model has the correct limit %%— = 0. The breakdown
n=0

of quasineutrality is ther accounted for by replacing IV.4j with

?w.z

oP, 4
3 ?.Q: i i._l_.l - __1
IvV.34 o - min " I + uyBZ u, By, Q-Z-n¢
i
. 2,.2 . 5 6 .
Typically w; /Qi is a large number ~ 107, 10°. The numerical results

are insensitive to the value of wizlﬂiz as long as wiz/ﬂiz 3 ]04.

The integration of the differential equations on the interval
[xo, xz] is performed using the GH34 (Gear) differential equation solver
available from the system library of the LBL 7600. The Gear method uses
the Adams-Moulton finite difference scheme.

The next step is to vary ux(-m), ¢{-=) until the boundary condi-
tions IV.19 are satisfied. This is achieved by first constructing the

positive quantity:
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2 _[(2.,2.,2,,2 2 2
V.35 =(n 224224924 ftnu )2+ (nu ))
1 i e xi xe’ Loy

As the quantities ¢(-»), ux(-m) are varied, they alter the final

values of the dependent variables at x = x,, and hence the value of x2_

i
The function x2(¢(-w), ux(-w)) may be represented as a two dimensional

)
surface embedded in the three dimensional (x“,¢,u) pace. Solutions

satisfying the boundary conditions IV.19 have x2 = ¢ . so that the cor-

rect values of ¢(-»), ux(-w) lie at the bottom of a + 1ley on the xz

surface.

35 2

is used to find local minima in the x° surface

2

A search routine

is large. The routine p ks a random
2

discarding the minima where X
point on the ¢,u plane, samples enough values of X~ to ¢. 'culate
gradients within the surface, then proceeds down the stee.est gradient
to find the nearest local minimum.

If the value of XZ at minimum is greater than some specified value
xﬁ < 1, the point is discarded and a rew random point is chosen for
the search. This procedure is repeated until a solution, x2 < xg, is
found.
4.4

The numerical scheme outlined in sec. 4.3 has been carried out for
a variety of parameters and boundary conditions. The most striking
feature of the results is the existence of continuous bands in the ¢,u
plane for which x2 < 1. The bands exist in nearly all cases, but are
found to shrink in length as the ratio rP/Amfp increases (recall

= rP/Amfp is the expansion parameter used in Chapter II).
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The existence of a continuous band implies the existence of a
continuous family of near-solutions that approximately satisfy the
boundary conditions IV.19. This phenomenon arises because, in the
long mean free path 1imit and for the model ion-annihilation flux

used, the condition IV.19a;

;- G as x » +=

or

0o

"”xi("“’) =f nI‘idx
X

is approximately satisfied for a wide range of parameters.

The ion annihilation flux appearing in IV.19a is given approxi-

mately by (see eqn. III.26¢)
Vij Vthi

2 * r
e P
(‘ - T‘R-%H)

when vy ./rpvs; becomes large (rP/Amfp + 0), the quantity Ty/vy; may

Iv.36 Pi v min

become large when (1 - e¢/(R-1)Tli) -+ 1, i.e., the ions may be lost at
a very large rate when ep ~ Ti'

It is a feature of many solutions found that either ¢ increases or
Tli decreases across the sheath {with increasing x), so that e¢/(R-f)Tli
+ 1 at some point in the sheath. The large ion annihilation causes

X

nux(-w) -.f nry = "”xi(x) to decrease rapidly, although it can never
X
1

give "over-annihilation" because of singularities in the equations

at n, u,. = 0, forcing n, Uy g to be positive. The result is that

xi



-91-

nu (-oo) f nr, 0(5) for a wide range of parameters.

The express1on-f9r xz becomes (neglect the pressure, density terms

for simplicity)

V.37 %= (nu )2 + 0(c?)
xe
X
2
= Gu )2f0r8<1
xe|y
2
X2
The quantity nu = nu (=) _./f nT_ may be estimated from
xe|y X X e
2 1
II11.7a:
) -e0/T,
V.38 nug| () - f v, e dx
X
2 X.I
. ed(=)/T,
= ux(-w) -V € A

ﬁ}Té,Gé = appropriate averages over the sheath.

From IV.8 the sheath width is estimated:

T -eo(==)/T,

Iv.39 L 1, AU (-m) - -T__j.e

Thus XZ = 0 determines a curve in the u,¢ plarne:
2 = 2
u -ed/T Uy (=)
V.0 Fese  Cop(=)=-T, 'ln(
e" Vel
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v
€class class
If the dependence of T; on ¢(-») is neglected, IV.40 gives

and

For the classical case, are functions of Té.

(Ve = Vecrass® Me = nclass)

Iv.41a ¢(-w) Té (]nvcnc -2 1n Ux(-m))

For the anomalously collisional case (see equation IV.14)

~ A
o v & |u -u.|
€nom  anom - e

\Y

A is usually chosen to be 2.0. From IV.4L,

nanom @ Z ’

Veanom &

which yields:

2]
=

Veanom * Manom * Yx
Plugging into IV.40 gives ¢{u) for <he anomalous case:

Iv.41b ¢(-») = T;(lnv*n* - 2/3 1n u, (-=))

The quantities v*, n* represent the proportionality factors in the
above rough analysis. Inserting reasonable values for Té, In NeVes
Inn*v* into IV.41a,b yields continua very similar to those actually
obtained numerically. Figures (9,10) show the results of fitting the
functional forms IV.41a,b to the numerical results (two points on the
classical continuum are chosen to determine T;, lnncvc. One point on
the anomalous curve is chosen to determine Inn*v* and the same value

of T; is used).
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Since the existence of the continucus bands stems from the singular
nature of the ion annihilation flux, changes in that singularity alter
the length and the structure along the bands. Numerical in-estigation

of cases with different values of the parameter rP/A (recall

nfp
(rP/Amfp)'] is the upper bound of Filvi) shows that the length of the
continuous bands decreases and a well defined minimum exists as

rP/Amfp + 1, in agreement with the above arguments. For rP/Amfp <1,
the regime of interest for fusion plasmas, investigation of the struc-
ture along the bands reveals that {perhaps several) broad minima still
exist. Figure (8) shows the shift of the position of one of the minima

along the band as a function of rP/Am » indicating the sensitivity of

ip
the solution to variations in the ion annihilation. The curve in Fig.
(8) corresponds to the minimum at the smallest erosion rate for the
classical. field reversed case (for sufficiently large rP/Amfp 5 .02,
the minima at larger erosion rates cease to exist). In the nearly

collisionless limit (rP/A < 1) the minimum varies on the order of

mfp

20% as rP/ is varied over several decades. When rP/A is signifi-

Amfp mfp
cant (.2}, the upper bound on the ion annihilation flux becomes compar-
able to typical values of the flux and the erosion rate is substantially
decreased. This curve indicates that the most slowly eroding sheath
sclution is not too sensitive to the detailed structure of the ion
annihilation flux, whereas the more rapidly eroding solutions are.

As a further tast of the effects of modifying the ion annihilation

flux, a different mode! Fi is substituted into the equations. The

singularity is removed by the substitution:
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W42 1 s exp ('('R—Z%b'fl_\
e 1
(-retis)

Note that these expressions are nearly equal at small values of
e¢/(R'])T11'

The result of the substitution IV.42 is to drastically shrink the
length of the band and provide a single well defined minimum near the
slowly eroding sciution obtained for the singular case (the dashed
line in Fig. (8) shows the minimum ux(-m) for the modified, non-
singular case). In the non-singular case the rapidly eroding solutions
disappear, again indicating that they are sensitive to the details of
the jon annihilation flux.

Since the positions and existence of some minima along a band are
sensitive to the model ion annihilation flux chosen, and the model ion
annihilation flux was crudely determined (see Chapter III), the entire
continua will be presented and compared for the different variations of
the basic model.

The continua for various cases are shown in figures 9,10 (a con-
tinuum is defined by x2 < .1). The results are subdivided according
to whether they apply t poloida! field reversed or non-reversed
sheaths, since these two cases differ markedly. The non-reversed (Fig.
9) solutions will be uiscussed first.

The curve labeled "A" represents the case of classical resistivity
‘and collisions and no electron wall effects. Points on the large u,

small ¢ end of the curve correspond to solutions where the electrons
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are more rapidly lost due to lack of electrostatic confinement. The
jon losses match the electron losses by electrostatic "detrapping,”
i.e., e¢/(R-1)Tli + 1. The rapid losses result in a narrow sheath as
predicted by the scaling law &, v /ﬁf;ﬁ;;; Points near the small u,
large ¢ part of the curve correspond to soiutions where the electrons
are well confined electrostatically, their lcss rate approaching Vi
The potential causes a minimum of electrostatic detrapping of the ions
and the sheath is correspondingly broader. The continuum follows the
theoretical curve IV.41a reasonably closely except near the small ¢
portion of the curve. In this regicn, the assumption Té # Té(¢) in
équation 1V.41a breaks down as will be discussed below.

Two Tocal minima exist along the curve, the corresponding density
profilas being shown in Figs. 11, 12. In these examples, only a minute
fraction of the pressure gradient is supported on closed field lines so
that the phenomena of interest occur primarily on the open field lines.

The solutions exhibit some short scale structure near the open-

closed 4ividing point on the scale

n(T,)
—— , With T, =T, »
X e i

IV.43 5

= D.i/7

Within a distance O(A]) from the open-closed dividing point, the

electron temperature decreases until Te/Ti = 1/10 and the scale

becomes
n(Teaﬂf/10)
Iv.44 A2 = ————EE:-——-- P; e
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so that the total sheath width is Ay 5 P
The rapid decrease in the electron temperature is due to the rapid
transport of energy along the field lines. From the Pastukhov formula

for energy loss (1I1.7b}, the energy lost per particle is

~ ¢ 52T, on the first open field line

> 6Te at large X.

The electron temperature levels off once a balance between the
parallel heat flow, the ohmic heating and the electron-ion energy trans-
fer is achieved. The result is similar to the theoretical predictions
for ordinary mirror machines where Te/Ti ~ 1/10 is found.]3

The positive curvature of the density profiles in Figs. 11,12 may
be explained roughly by a simple model. Ignoring temperature variations,
the ion collision rate may be written: v = “io"(x)’ Vi = vi(x = oo},
The ion and electron flow velocities across the sheath rapidly approach

the asymptotic rate ~ gxngz, SO U,y v Uy, may be taken constant. The

xi
continuity equation then assumes the form:

ox = 3_2
IV.46 U, == -nT; = oy = N7V

This may be solved to yield:

u n.x
o~ X 1 . .0 = nnn C e .
IV.46a n = Ve X %y (x] open closed dividing point)

which is qualitatively similar to i1he positive curvature portions of

Fig. 11,12. The functional form IV.462 is less similar to Fig. 12 because
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of the effects of electrostatic detrapping of ijons in the large x
portions of the solution.

The continuum labeled "B" in Fig. 9 represents the set of solutions
obtained when the anomalous resistivity given in IV.14 is inciuded

(%ﬁt=
concerning curve "A" apply to curve "B," the only difference being

Vit A * 2, o g = 104 vi(-w)). The same comments made

that for a given ¢, the erosion rate, Uys is faster due to anomalous
resistance. The theoretical curve IV.41b is a good match to the
numerical results (note that only one parameter is adjusted to fit the
curve).

Only one minimum exists along the curve, the resulting density
profile being shown in Fig. 13. The characteristics of the solution
are similar to those of the classical solution shown in Fig. 12, except
that structure on the short scale, A1, is obliterated by anomalous
broadening. The resulting sheath is somewhat broader and “eats in"
faster than the classical sheath, although not dramatically so (about
twice as fast). The continuum and minimum are sensitive, however, to
the details of the anomalous processes, i.e., different values of
Verit A %pi-

The continuum Tabeled "C" in Fig. 9 represents the set of solutions
obtained when strong electron recycling effects occur. A source of
cold electrons is assumed to exist such that the electric field across
the sheath is completely nullified (for the modified equations, see
Appendix C). This effect tends to shrink the band where xz < 1 and

displace it slightly. Because of the shortness of the band, no attempt

is made to fit it to the theoretical model IV.41a.
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The density profile at the minimum is shbwn in Fig. 14 and is
similar to the solution in Fig. 11 discussed above. When the electric
field vanishes, the density tends to drop off asymptotically like a
Gaussian (as discussed by A. Boozer). This can be seen from a simple

model neglecting temperature variations. Toroidal force balance gives:

V.47 mn ug Z1 - 3.8

j.e., the Lorentz force (gxg)z drives a toroidal mass flow (pressure
anisotropy terms are neglected). The electrons tend toc be annihilated
first due to their greater loss rate, Sc Jx = en(uxi - "xe) voenu g

which yields:

au_. eB eB
Iv.48 —§§l = Tix'* Uyy = ——Z%EEEEE-X asymptotically
i i

Ion force balance in the absence of electric fields across the

sheath gives

ap ) uesz nx
1v.49 = enu_.B, = — Y3 asymptotically
X zivy m;
=7 o0
- Tl X

Equation IV.49 may be solved to yield

'xz/pfy o2 oMy

1v.50 nage

The field reversed sheath is more complex as seen in Fig. 10, the
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continua consisting of several disjoint curves for each case (note

that gaps between continua may be artifacts of the search routine since

the routine can show where solutions exist but cannot prove non-existence

for any region. The solutions may simply be hard to find.). The

discussion of the non-reversed sheath applies here as weli--solutions

at large 4, and small ¢ are narrower and lossier while solutions at

small u, and large ¢ tend to be broader and Tose particles at the rate

Fi ~ Fe A2
The "A" curves shown in Fig. 10 represent the case of classical

collisions and resistivity. A minimum exists on each distinct band,

the density profiles being shown in Fig. 15, 16, 17 (15 is the minimum

at the largest value of ¢, 16 the intermediate value and 17 the Towesc).
The solution in Fig. 15 is similar to the classical non-reversed

solutions in that structure exists on both the scales 5 = pi/7 and

A2 = p;. The electron temperature drops rapidly on the scale A1 S0

that:

Iv.s51 Te/Ti =1/10 .

It is a general feature of the field reversad sheaths that they
vary more abruptly than the non-reversed solutions, i.e., the curvature
of the density profiles in Figs. 15-17 is negative. The steeper
profiles are related to the fact that the gxngz convection velocity
changes sign across the sheath.

To illuminate this phenomenon it is helpful to imagine the time-
dependent state before a steadily "eating-in" sheath is established.

If the density profile for the initial state is gradual, the diamagnetic
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and frictional drifts become small at the outer edge {large +X limit)

of the sheath. The fluid flow becomes:

-EZB +E Bz

_EXB A
1V.52 ux-?--x——l?—l—

B

The plasma tends to polarize to force E-B to zero, i.e., 1if plasma is
bounded on open field lines, an electric field E" produces a charge
separation at the ecges until E" > Ag/rg E" <E . The condition

E-B = 0 requires

=-E Bé/By

Iv.53 EyBy =-EB,~ Ey

Using IV.53 in 1V.52 yields

Iv.54 u, =~ Ez/By

E, is a constant across the sheath by the condition VxE = 0
(assume the time variation of B is negligible), so the fluid flow at
large +x and large -X (ux(tw) = -Ez/By(iw)) are of opposite sign for
the field reversed sheath. Matter at the low density edge is swept
into the sheath until the profile is steep enough to balance g;g/Bz
with frictional drifts.

A simple analytical argument reproduces the negative curvature of
the density profile feund numerically. Sinc: Uyo tends to change sign,

it is small over a large fraction of the sheath. Neglecting Uyas the

equation for the poloidal field becomes (IV.4g):

B, E.  u{-=)B,(~)
Y~ 2. X 2
Iv.55 T n m
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Ignoring temperature variations, this yields

u, (=)B, (~=)
.56 B, = X—ad— (x-x))
Yy
Neglecting the ion pcloidal current nuy {usually a good approx1mat1on),

the pressurs balance equation 1V.4a gives:

. 2 2
V.67 n(T ; + Tg) * B) = By(+=)

2 /
B (-co) u 2
- 2T(-w) .
= Ei - i (7 0on) )

which closely resembles the profiles in 15, 16, 17.

The solutions in Figs. 16, 17 differ from the solution in Fig. 15
in that the electrons do not cool off, resulting in sheath widths
Ag " n/u, (Te " Ti) ~ 0.1p;. The basic assumption of the theory,
As/pi < 1, is strongly violated although the approximate <caling law
IV.6 allows scaling to a regime where AS/Di < 1 by letting n + un
{e 5 100). This represents a different method of including anomalous
effects than by the expression IV.14. Numerical investigation of such
scalings shows that IV.6 is valid as long as the resulting sheath width,
bgs is not toc many ion gyroradii.

In these solutions the ohmic heating term ng overcomes the

large parallel heat flow so that Te/Ti ~ 1. This may be seen by com-

paring the two terms in the electron heat balance equation IV.4d.

uy 28 2 T,

Ohmic heat1n$ J' Y d
1v.58 arallal heat ¢vloss nvloss’h [
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At small values of ¢(-=) (where these soluti_.is occur), the ohmic
heating overcomes the parallel heat flow. The hot electrons are lost
at a rate To v Ve and the ions are electrostatically detrapped until
Fi v Vg also. The strong dependence of the sheath electron temperature
on ¢ at small values of ¢ explains the deviation of the theoretical
curve IV.41a from the numerical results for both the field reversed and
non-reversed sheaths. (Té = Té(¢) in IV.41a at small values of ¢.)

The hot electron solutions are sensitive to the detailed structure
of the ion annihilation flux since a significant ammount of electrostatic

detrapping of the ions is required. Unless Fi ~ v is possible, these

e
solutions disappear as was illustrated earlier by varying the ion

annihilation flux.

The results of including anomalous effects via IV.14 are shcwn in
curve "B" of Fig. 10. The curve is similar in shape to the main branch
of curve "A" although shifted to larger values of u, as predicted by

eqn. IV.8.

n
‘/ anoi
1Y.59 u + f—=u
Xxanom Nclass xclass

The curve is similar to the theoretical curve IV.41b. Note that only
one minimum exists in the anomalous case as opposed to three in the
classical case. The surviving minimum corresponds to the slowest erod-
ing solution of the three classical solutions, again illustrating the
relative insensitivity of the slow solution to perturbations of the
model and the relative sensitivity of the rapid solutions to such

perturbations.
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The density profile corresponding to the minimum on curve "B" is
shown in Fig. 18. The profile is similar to that in Fig. 15 except
for the broadening of the structure on the scale length A] ~ pi/7 and
the relaxation of the abrupt decrease to zerc density.

Curve "C" shows the results of adding a large electron source to
the classical equations for the field reversed case. The continua are
similar to curve "R," the classical case without electron recycling
and fit the theoretical curve IV.41a reasonably well. Again the most-
slowly eroding solution survives this perturbation, as well as a solu-
tion at faster erosion rate.

The two minima are shown in Figs. 19, 20 (19 is the minimum at
large ¢, 20 is the minimum at small ¢). The positive curvature in
Fig. 19 is due to strong effects of the electron source. The solution
in Fig. 20 differs from the large-ercsion-rate solutions in the other
cases in thét the electrons remain cool due to the electron source and
the sheath is correspondingly broader. As for the non-reversed case,
the asymptotic density variation is approximately Gaussian in Figs.
19, 20.

The preceeding results do not represent an exhaustive study of
z11 interesting parameter regimes, but rather a study of some typical
parameters relevant to a Tormac fusion reactor (Bli(-w) = 1., R{#=) =
vacuum mirror ratio = 3., IBy/le (-=) = .2, etc.). The annihilation
model could be a useful tool for investigating a wide range of plasma

parameters.
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CONCLUSIONS

The purpose of this thesis has been to develop a simple, heuristic
model of the Turmac sheath that includes the effects of cross-field
transport as well as mirror losses along magnetic field iines. The
different variants of the model studied include the purely ciassical
case, the anomalous case with a simple model of enhanced collisions and
resistivity, and the case of a large electron source on open field
lines that shorts out strong electric fields across the sheath.

The model applies to the long mean-free-path 1imit and the results
may be compared to an experiment in this regime. Explicit predictions
of the confinement time as well as density, temperature, magnetic and
electric field profiles have been made.

The model is sufficiently general to treat any system possessing a
boundary layer between plasma on closed magnetic field 1%nes and a
region of open field lines where mirroring effects are important.
Examples other than the Tormac sheath are reversed field mirrors and
Tokamaks with divertors. It is hoped that the author, or others, may
see fit to apply the methods of this ihesis to these other systems.

The annihilation model enuations are derived from “first principies™:
the time dependent, two-dimensional fluid equations including collisional
effects {one dimension is assumed ignorable due to axial symmetry). The
infinite hierarchy of fluid equations is truncated by an expansion in
gyroradius/scale length,

Further analytical progress is made by expansions in the parameters
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As/rp’ rplkmfp along with the assumption of a steadily “eating in"
sheath. The final result is a set of ten strongly coupled, non-linear,
ordinary differential equations describing the dynamic -f plasma across
a one dimensional slab. The twc dimensional effects (f'uxes of matter,
momentum and energy along magnetic field lines) are reduced to sink
terms in the one dimensional fluid equations. The <ink terms (annihila-
tion terms) are determined by simple models of mirror losses.

The annihilation model equations are solved numerically by inte-
grating the set of ordinary differential equations.from the asymptotic
values of the dependent variables at large -x (the independent variable)
across the sheath to the point where the density vanishes. Two para-
meters (ux(-m), the eating in rate of the sheat: and ¢{-=), the plasma
floating potential) are varied until the total number of electrons and
jons annihilated on open field lines equais the flux of electrons and
ions convected into the sheath.

The numerical results may be sumnarized as follows:

1) the scale length and erosion rate of the solutions are consis-

tent with the estimates described in the introduction:

!} n__ = o dedda,l

u, v mv S v I nT vesistivily
X \{ loss s Voss
Yioss - particle loss rate

The resistivity and loss rate in these formulas are strong functions

of the solution parameters, i.e., Te/Ti’ ed/T critical velocity

e* Verit”
for the onset of anomalous effects, etc.

2) Continuous bands of near-solutions are found in the parameter



-106-

plane ux(-w), ¢(~=) rather than well defined, discrete points as would
seem to follow from the imposed boundary conditions. The continua
exist due to the singular nature of the ion mirror loss rate which
becomes iarge as e¢/(R'])T11 + 1 (R = the mirror ratio). Various
points along the continuous curves where the boundary conditions are
locally the best satisfied are identified as solutions, although some
of these solutions are sensitive to details of the ion loss rate. The
solutiens at small erosion rate, ux(-w), and large floating potential,
¢{-=), seem to be relatively stable to alterations of the model whereas
the solutiors at large erosion rate and small floating potential are
quite model dependent, i.e., variations in the type of singuiarity

in the ion loss rate may cause these solutions to disappear.

3) The solutions at small erosion rate, ux(-m), have some similar
characteristics for a wide range of different conditions: poloidal
field reversed or non-reversed sheaths, sheaths where anomalous effects
are included, and sheaths where significant amounts of cold electrons

from the walls are present. Typicai parameters for these solutions

are:

~ 110, $Q n 3

open field €lopen field
lines lines

—q-q
®

i

The scale length, Bg» and erosior rate, Uys consistent with these

parameters and the expressions in 1) above are:

ux(-m) NoPLVe

iVii b > py
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Thus the annihilation model provides a confirmation of the usual con-
finement time predicted for Tormac:
"p

DX — . e
TTormac — 05 Ti4

4) The solutions at larger erosion rate occur only for ihe field-
reversed case and disappear when the ion loss rate is non-singular.

Typical parameters are

T
e ~ ed -
ﬁ —1 T-f(]
open field

lines

To obtain sheath solutions within the range of validity of the
theory (As/pi < 1) the approximate scaling law IV.6 must be invoked,
letting n + 100n. The resulting erosion rate and sheath width are:

AS v p

i v Uy(s=) v 30p5v,

If this state prevailed, the advantags of Tormac as a fusion reac-
tor concept would be demolished, the confinement time approaching that
of a classical mirror machine.

5) The existence and characteristic behavior of the two solutions
is closely tied to electron heat balance.

Electron heat balance for the first type of solution (Te/T,i < 1)
is dominated by the mirror losses of energy parallel to field lines.
The cool electrons are confined by a high electrostatic barrier which

reduces the electron loss rate until
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Vg ™V, e e/Te Vi
Toss

For the second type of solution (Te/Ti n 1) the electron heat
balance is dominated by ohmic heating. The resulting warm electrons
are not electrostatically confined; rather the ions are electrostat-

ically removed until the integrated losses of both species are equal:

Thus, the warm electron, rapidly eroding solution depends strongly
on the singularity in the ion loss rate.

6) For both the field-reversed and non-reversed sheaths, simple
analytic models reproduce many of the qualitative features of the
solutions (see sec. IV.4).

The annihilation model represents a first attempt at describing
the transport of matter, momentum and energy across the sheath; it
contains many heuristic elements which must be improved upon if a more
thorough understanding is to be gained. Several improvements, in order
of increasing difficulty, might be the following:

a) Particles with guiding centers on closed flux surfaces also

sample the open field lines due to their finite orbit size. This

effect could be relatively easily modeled by allowing some annihil-
ation effects for the ions on the closed field lines near the
sheath.

b} Neo-classical as opposed to classical transport coefficients
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could be used to include the effects of the toroidal drifts. This
would require some thought about global drift surface averaging
and\the differences between various classes of particles (trapped
and passing particles on closed and open field lines).

c) Anomalous effects could be included in a more careful, con-
sistent fashion by incorporating a turbulent collision operator
due to various instabilities (Buneman, Lower-Hybrid-Drift).

d) The use of orbit averaged mirror losses would account for

the fact that in a narrow sheath, a particle samples a wide range
of environments in the course of its orbit. The difficulty would
be that the non-local losses alter the character of the equations,
i.e., one obtains integro-differential equations including averag-
ing integrals.

e) The large ion-crbit size fundamentally limits the usefulness
of fluid equations, so that a kinetic description is necessary for
more quantitative results., This yields a sel of partial differen-
tial-integral equations since the other phase space variab]és appear
as well as integrals to determine current and charge densities

for self-consistency.

f) The rliassical collision operator could be treated more realis-
tically via Fokker-Planck rather than Krook collision terms in a
kinetic theory. The Fokker-Plank terms introduce further differ-
ential operators and phase space integrals making this approach

forbiddingly complex.
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Appendix A
In this appendix, the collisionless paloidal flow velocity on open

field lines is determined for both ions and electrons as a function of
the pressure anisotropy.

In the closed field line region of Tormac, arbitrary fluid flows
may exist paraliel to B in the collisionless equilibrium, resulting in
arbitrary poloidal flows for the case of helical field lines (the
arbitrariness would be removed by the equations first order in colli-
sionality = the transport equations). In contrast, on open field lines
poloidal flow is inhibited by material boundaries intersecting the flux
surfaces. In order to circulate poloidally, the flow must be ortho-
gonal! to the flux surface in some region near the cusps (see Fig. 3).
Fluid flows across flux surfaces may be related to the stress tensor
and electric field, removing the arbitrariness. The condition that
the flow be divergence free, v-nu = 0, provides a connection from the
cusp region to the slab-1ike portions of the sheath, allowing a deter-
mination of the poloidal flow in terms of local slab quantities.

To see this explicitly, examine the collisiconless fluid equilibrium

equations to lowest order in pi/AS, with:
AT a) Py =P (L-bb)+Pbb

b) B =P

Be =Pl
Assume aiso that m.u,vu. is first order in (p;/a.) i.e., the
electric field drift and parallel streaming velocity are not too large

for the ions. The force balance equation is (for both species)



-111-

A2 v-P - en{E+u xB) - 0
Inverting for ug gives:

ExB V'PSXE

A3 o = U, =5 ——
s Tl g e.ns
where B = By + an 8 = toroidal unit vector; B, = poloidal B

Take B-equation A2:
A4 B-V-P = enByE

There is no term geé-Ee because of toroidal symmetry and the condition

VxE = 0 ~» Ee = 0. Take Bp-equation AZ:

A5 Bp- (VP - ecnE) = esngp-(gxg)

Combining A4, A5 allows the elimination of the electric field term,

yielding:
~ . -(vR), . B
A6 Pluxe) = 5g 2 B =gt
s P

If a triad of unit vectors ﬁ, ﬁ, 8 are introduced, nxP=4g

(i.e. n is normal to the flux surface) then A6 yields:

A7 (v:-B
u B ———m———
n es"BP

i.e., the flow across the flux surfaces is proportional to the toroidal
stress. For electrons (v-=Pe)e = 0 because of toroidal symmetry, so

AB Upe = 0
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The continuity equation then demands that the poloidal flow of

electrons must vanish:

nu = 3 3 =
VU = o w2 Bauy +op 5= Bp nup = 0
n P
A9 0
S0 (X )
- n L3
nu?e BP aB BH are metric factors

=1 for straight field lines

On open field lines the boundary condition "upe (XP = xwa11) =0
must be applied, i.e., there is no flux of electrons into the walls in

the collisionless state. Equation A9 then yields

AiC Upe = 0

This result may be summarized as follows: the fluid flow across
Jlux surfaces is diamagnetic (aVPe) and ExB. Pressure balance along B
places a constraint between E and VPe causing a cancellation of the
diamagnetic and ExB terms.* Thus, fluid fiow exists only parallel to
the flux surfaces. Continuity of the flow ard toroidal symmetry demand

u = 0 on open field lines.

pole

For the ions:

AN v-p = wp + v (B -P, )bb)
B BeR
=+gv (P" 'P.L) ET) R = major radius

Using A1l in A7 yields

*There are still ExB and diamagnetic flows within the flux surface.
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_ B e py B
Mz Uni ~ R, ‘V‘( 1P Ez}

To estimate the poloidal flow associated with this flow across
flux surfaces, ignore the metric factors, % p? Bn,p’ which gives:
(let 8 - Z and R + constant)

anu
n )
V-nu = + =>—nu_ =0
— axn axp p
A3
B
L= i ”(%E%(Pu'pi)—;\
por ' T W B/
2 B
-1 3 z
s — =% (P, -P, )
e axnaxp il EZ'

Integrating from the center of the flux surface (xp = 0} to the walls

(xp = XWaH) and applying the boundary condition "”pi(xp=xw) = 0 gives

A8 .

X, * X in the coordinates defined in Fig. 2.
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Appendix B

In this appendix, it is shown that the thermal force term in the
electron-ion drag is negligible compared to the other terms first order
in € = the co]Iisiona]fty parameter.

The thermal force is proportional to v"Te.]6 A simple argument
shows that this effect is of higher order because of the rapid equi-
libration of electron temperature parallel to B. If a flux tube is
followed in its passage across the sheath, the relaxation of the
temperature parallel to B is given roughly in the collisionless limit
by:

Bl %TT:e" ~ Vet Te = Vetn ?B! BT,Tygm Veth a_z;r&e_

Replacing d/dt by the characteristic rate of the sheath

dT T oT
e e e

B2 ——, — A, —=
dt Teoll eth 93y

which yields

aT r r
P P
B3 rp = v ———— S
P 3y VeTcoml e Vileol
As discusséd in Chapter II, collisions introduce a weak y dependence:
: oT
) o . e
rp 5?'( ) = 0(e{ )). From equation B3, p 5y is smaller than the other

terms by a factor vith/veth < 1.
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Appendix C
In this appendix, electron recycling from the walls is accounted

for in a different (more drastic) fashion than the method described in
chapter IIl. Here it will be assumed that the walls provide an arbi-
trarily large source of zero temperature electrons in just the right

quantities to short out any large electric fields across the sheath,

E, = O(T/eAs). Relatively weak electric fields E, E.y = O(T/erp) will
be assumed to persist so that the plasma may float at ¢
0(T/e) # &9

Chapter 11, the above ansatz requires

plasma ~
1% 0. HWithin the context of the ordering scheme used in

d¢0
€1 I C 0 on open field lines.

To simplify the analysis, two additional approximations will be

made for the opeint field line region:

) de 0
c2 a) == or nu . =0
dx Y1l zeroth order
[in collisions
394
b) 'sy—x_B_=0

The first approximation is verified numerically; no solutions have been
found with significant variation of Bz on open field lines. The second
approximation neglects cross-field flows in the ion annihilation flux,
i.e., jons are assumed to stream out parallel to B. This approximation
is needed only for calculating L 2 | energy exchange terms in the ion
energy equations and is found numerically to have small effect on

solutions.
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The electron particle and energy annihilation fluxes are altered

by a source, S(X),

c3 a) Pe -+ Pe -S
aq e aq e
b) —5x—-+ —51— - ¢S [Source electrons enter the plasma
Y M ) with energy e¢]

The relevant equations, 11.50, become (in normalized variables)

a) —=l+—-2+JB =0

P, ; du . au .\
1 xi i) .
b) Ui =5 * Py (2 ot e )
1
9q - V.
i i
sy -3 (PPy) - vie(P-Fe)
P, . u_ . u_ .
Il i X1 yi} -
c) Ui 3x * PH1 ( X 3 ay >
c4 -2y (P -P,) - v (P, -P)
TN iet 1™ e

3q, P \
2 ye 2 .2 2 1
'§<ay '¢S>+3“Jz “ie(Pe'B'Pl'T/
ou,, .
Xi - an
e) n ax " Yxi 3x "Pyi
au e an
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ou_. u_ .-u (F' -P )
21 _ xi “xe R
( q) ek B <__E—T——> (] - __EEZ_%>

xi
(result 11.54 1is used in C4g)
aB J
X=_Z
h) X 2
/
o . BBZ
1) a—x-O
aP, .
3 i:_
J) ax "uzigy
. E_+u_ B
\k) Jz - _Z _Xxe'y
n

To obtain equations suitable for numerical integration, i.e., in
the form I11.39, equations C4b, e, j are combined to give an expression
for an/ox:

2 1
-nu_.B 9q. . v,
an _ “zivy n yi i _
¢ ax * i < * '?'(Pl Pu)

Zﬂ Zﬂu : y

+ v (P -P) - Plri>
Equations C4g,j are combined to give an equation for the electron
pressure:

oP

e
£l I )8

= (nuy;-d, y

ce

The electron energy equation must be consistent with this pressure
variation. Inserting Cé and C4f into C4d, the energy equation, yields

a relation for the source function S(X):



c7

c8

I xe 5 e dn
s(x) = ¢ 3y T2 g("uzv"dz)gy "3 X
2
nd V.
2 "z ie 2
5218 (P - 5P -P/3)}
3 Uo Ue © 31 fl
The closed set of equations is then:
2 1
X 2P zpl”xi 3y TV
+ vie(Pl'Pe) - Pll‘i>
aP
1
b) X -nuziBy
c) ?B’L_ﬂLi’l-ﬂp, __E\.)_i_(p -P,) _Yle_(p -P.)
ax n ox U 1 3ux1- L Uy g I e
BPe
d) W = (nuzi ‘Jz)By
au,, . u
Xi xi an -
© "ol
u u,. -
xe _ Xe an
) 5= - TetS
9B J
-y =2
9) 3X 2
aB
h) =%=0
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by Mzi_ g (i) () (Py-P,)
YN Uy 287

.y 39 _
J) a_x-o

cs

where S{X) is given in C7 and ‘]z in Cdk.
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