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ABSTRACT 
We discuss two aspects of multipion production in nuclear 

collisions: (1) the negative pion multiplicity distribution, and 
(2) the 7T-ir~ correlation function. The emphasis is on how these 
observables could be used to search for signals of collective 
phenomena in nuclear collisions. 

INTRODUCTION 

One of the prominent features of relativistic ( E ^ a^ ~ 1 GeV/ 
nucleon) nuclear collisions is multipion production. In a typical 
reaction such as Ar + PbjO,, at 1.8 GeV/nucleon, up to 14 negative 
pions (TT -) alone are observed in certain events. The topic of my 
talk is what such multipion final states can teach us about the 
dynamics in nuclear collisions. Some aspects of what single pion 
inclusive cross sections can teach us are discussed elsewhere in 
these proceedings by R. Landau.^ 

The primary motivation for colliding relativistic nuclei has 
been the expectation that through such collisions the properties of 
dense, highly excited nuclear systems can be studied. Of special 
interest has been the search for collective phenomena. Several 
theoretical studies-* have suggested in particular that pionic 
instabilities could possibly occur when nuclear matter is compressed 
to p~(2-4)Pp, p 0 = 0.17 f m " 3 , at temperatures T ~ 50 MeV. The 
elusive problem, however, has been to identify specific experimental 
signatures of such novel phenomena. 

One natural direction to search for evidence of collective 
phenomena has been multi-pion production. In this talk, I will 
review our work on two aspects of multipion production. The first 
is the nature of the 7T~ multiplicity distribution, P(n ) , and the 
second is the dynamical and geometrical information contained in the 
7T—TT— correlation function5>6 R(k k 2 ) . For a more complete review 
of other aspects of relativistic nuclear collisions see, e.g., Ref.7. 

Multiplicity Distribution (with S. K. Kauffmann) 

Our first expectation is that the nuclear dynamics in this 
energy range is governed simply by intranuclear cascading,^ i.e., 
multiple nucleon-nucleon collisions. In that case pions are 
produced mostly one at a time [via A3j(1232) decay] in separate 
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inelastic nucleon-nucleon collisions. To compute the multiplicity 
distribution in such a cascade picture, let y ±(t) denote the time-
dependent ir~ production and absorbtion rates during the nuclear 
collision. Then the pion multiplicity distribution P(n,t) can be 
shown* to be a Poisson, 

,-;-M- -<%<*» <n_(t)>n 

P(n,t) = e - \ j (1) 

with a time-dependent mean satisfying 

d 
dt <%(t)> = Y+(t) - Yjt) U / t ) ) . (2) 

If the interaction time were long enough for the nuclear system 
to come to chemical and thermal equilibrium with the pions, then 
<n7r(t)> would approach an equilibrium" value < n^ >e„ which is indepen
dent of the detailed pion production and absorbtion history, Y+(t) , 
and given by* ; 

Y»("). f VdV J 
< V e q = Y _ ( « ) ' - J ( 2 i r ) 3 ^ g ^ - / T • ( 3> 

9 In the fireball model, V and T follow from geometrical, 
kinemstical, and equilibrium considerations.* The crucial parameter 
in this model is the freezeout .nuclear density p c « 1/3 p_, below 
which no further scattering is assumed to take place. 

The results of this thermodynamic calculation for Ar + Pb30,, 
are shown in Fig. 1. While the features of the impact parameter 
averaged multiplicity distribution data-*- are, indeed well accounted 
for, we stress that this agreement does not prove that chemical or 
thermal equilibrium have been reached. The only necessary condition 
is that the final average pion multiplicities, fn^Cb)), are well 
approximated. An example of a completely different dynamical model 
that also reproduces the impact-parameter averaged multiplicity data 
is given in Ref. 10. 

What makes P(n) insensitive to dynamical assumptions about 
Y+(t) is that <nn.(b,t£>> at the final (freezeout) time, t f, can be 
the same for very many dynamical paths,Y+(t), in Eq. (2). However, 
it should be recalled that there is one major (though reasonable) 
assumption leading to Eq. (2). That assumption, which we call the 
cascade assumption, is that pion production and absorbtion involve, 
only one pion at a time. 
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Consider now what happens if the cascade assumption were relaxed. 
If there were unusual collective phenomena, then pions could possibly 
be produced also in correlated groups or clusters.. For example, 
there' may be~a rate Y+jjCt) for producing correlated groups of k- •' 
negative pions at a time. The effect of such unusual dynamics has 
been irivesitgated in Ref. A. The result is that if some Y+fc(t) # 0 
for k > 2 , then the resulting multiplicity distribution for a given 
impact parameter becomes a convoluted multiple Poisson 

n [n/p] 1 n P(n,t) « P(0,t) £ ...£\..£ 7J 
nl'° np"° nn"° k*1 V ) r-1 

(4) with combinants C(k,t) satisfying the system pf equations 

^ C ( k , t ) - Y + f e(t) - y_(t)(kC(k,t)-(k+1) C(k+l,t)) . (5) 

In the case C(l,tf) » C(k>2,t f), then Eq. (4) of course reduces 
to Eq. (1), with C(l,tf) « <nlr(tf)>. 

The signature of unusual pion production dynamics would thus be 
a non-Poisson form of the multiplicity distribution in central 
collisions. Preliminary streamer chamber data 1 1 taken in a central 
trigger mode (with high associated nucleon multiplicity) are as yet 
inconclusive as. to whether the high (% £ 10) tail of the TT~ multi
plicity distribution is Poisson or not. (He note'1 that the low 
(iijf 5 5) portion of P(i%) depends sensitively on the trigger bias.) 
Should any significant deviation be observed from Poisson behavior 
for large n^, then these deviations would reflect on the inadequacy 
of the cascade assumption and thus provide us with a hint that more 
exotic pion production mechanisms are at work in nuclear collisions. 

We also want to" call attention to .he results of Kef. 10 which 
show that even the impact parameter averaged P(n) can be sensitive 
to certain non-linear phenomena. The non-linearity studied in Ref. 
10 involved the assumption that (n^b))* [N(b)]a with a > l and N(b) 
being the number of nucleons in the interaction region for a given b. 
A simple multiple scattering model would give a "1. However, non-
linearity (a >1) could arise if pions are produced coherently. 
Analysis of the data of Fef. 1 suggests 1 0 that, in fact, a *> 1. 
A nonlinear growth of <n_(b)> as a function of N(b) seems to be 
inconsistent with those data. 

In summary, existing multiplicity distribution data can be well 
accounted for by simple multiple collision or thermal models. Thus 
far, no evidence for unusual pion dynamics is; suggested by these data. 
However, whether the form of the high n„. tail is Poisson or not still 
needs future experimental study. 
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Pion Interferometry ' (with S. K. Kauffmann and Lance W. Wilson) 
While the multiplicity distribution P(n) offers some insight into 

the dynamics of multipion production, it is clear that more detailed 
information is contained in multipion correlation data. We consider 
here specifically the TTV~ correlation function defined as 

<u > 2 d 60(Tr")/d 3k xd 3k, 
RCkj.ka) •- — o — = T — — = — , (6) 

<nir(nir-l)> * (d30(7r )/d3k1)(d3a(TT )/d'k2) 
where <n^> and (n^Cn^l)) are the first and second binomial moments of 
P(n), d3CT(ir~) and d£o"(ir~Tr~) are the single and double pion inclusive 
cross sections, and o"_ is the total negative pion cross section. 

The information that RO^.ka) is expected 1 2' 1 3 ideally to provide 
is twofold: (1) R can reveal the space-time structure of the pion 
production source, and (2) R can determine the degree of coherence 
of the pion field. The first property is the result of the well 
known1* Bose-Elnstein interference between two identical pions (the 
Hanbury-Brown and Twiss effect) also known as the Goldhaber effect. 
The second property of R has only recently been emphasized in Ref. 13. 

To understand the content of R(k 1,k 2), we derived5 the form of R 
for partially coherent fields in a simple dynamical model. The basis 
of the calculation was the approximate solution of the pion field 
equation 

(^3U + mj) <i>(x) - J(x) . (7) 
To solve Eq. (7), the pion source current operator, J(x), was first 
approximated by its expectation value, thereby decoupling the pion 
and nuclear field equations. The physical motivation for this 
approximation is again the expectation that the nuclear dynamics is 
dominated by multiple nucleon-nuclebn interactions. In effect we 
assume that the number of produced pions is small enough that pion-
nucleon rescattering would not significantly affect the source 
current J(x). This physical picture of pion production is thus 
equivalent to that of bremsstrahlung radiation.1* 

The pion final state produced by a classical source current J 
in Eq. (7) is well known^ to be a coherent state |j> given by 

|J> - e " n / 2 expCijVk J(k) a +(k)} |0> (8) 
where J(k) is the on-shell Fourier transform-' of J(x,t) and 
S>«/d 3k|j(k)| 2. 

The m-pion inclusive distribution is then given by 
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3m , 

- TT d k, ... d k, 
1 a 

< Jla+tf^) ... a +(k m) a(k m) ... a(k\) | J > 

- |j(k,)| 2 ... |J(k m)| 2 • (9) 
14 Also, the multiplicity distribution is rigorously Poisson. Thus, 

the correlation function in Eq. (6) is just 

R(k. sk 2) - . — H ~ — — ••• do) 
P^k^) P x(k 2) 

From Eqs. (9,10) we see that for a coherent pion field, R=l, and 
there are no momentum space correlations of pi cms produced via this 
bremsstrahlung mechanism. 

However, it is clear physically that no fixed form of J(x,t) can 
represent the pion source in all nuclear collisions. For example, 
the number of inelastic scatterings, N, will differ from event to 
event as will the impact parameter b. Therefore, the source current 
J a(x) must depend on some set of parameters a - {N,b,'....} that 
can vary from event to event. The observed inclusive distribution 
thus samples,an ensemble of final states |j„> . We can include such 
an ensemble average in Eq. (9) by 

V*! v - ZP<«) l y v l 2 . . . |Ja(km)i2 , (ID 

where p(a) is'the ensemble distribution of the parameters a. As a 
result of the ensemble average, it is clear that R ^ . k g ) j6 1 in 
general* ; ! •-•'•Wi 

As an example of Eq. (11), we first consider a space-time 
parametrization of the pion production dynamics in the spirit of the 
intranuclear cascade model,& In this space-time picture, pions are 
produced in N separate inelastic;nucleon-nucleon collisions at 
different space-time points i^i If J,r(x) is taken to parametrize 
the source current for an inelastic nucleon-nucleon collision at the 
origin, then the total source current can be written as 

N 
J a ( x ) * Xi V x "xi> • <12> 

i-1 
If we now assume that the "Inelastic scattering centers," x^, are 
distributed in a space-time reaction volume specified by a density 
distribution p(x), and the number of inelastic collisions, N, is 
distributed according to P_(N) , then from Eq. (11), 
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V S V " I ' g o o / * \ p b , ) ...a , ,»Hp<«j I){|j 0(k 1)| 2... |j c l(^ i i)| 2j 
N 

(13) 
with J0(k) given by the on-shell Fourier transform of Eq. (12), 
a = {N,Xi}. An impact parameter average can also be easily included 
in Eq. (13). Evaluating Eqs. (10,13), we obtain finally5 

RO^.kg) * 1 + Jl- {-~i |p(krk2, (oro)2)|2 , (14) 

in the limit when the interaction time T •* [/d"x xQp(x)] » ra^ . 
In particular, we have neglected terms of order 

o[<N>|p(q=0, q 0»V| 2] « 1 . 
This limit is satisfied in all but the most peripheral nuclear 
collisions. 

If the average number of inelastic collisions is large, then 
Eq. (14) reduces to the well known form of the correlation function 
in Ref. 12. Furthermore, we have also shown-* that in the^limit 
<N> -»•<», the multiplicity distribution for a given mode k 
becomes a Bose-Einsteih distribution with a mean <n1].(k) > -
I"l(k) ((2TT)3/V). Therefore, we are justified in calling the < N > •*• °° 
limit as the chaotic field limit. 

For chaotic pion fields, Eq. (14) shows then that R-l measures 
the space-time Fourier transform of the pion source region, p(x,t). 
Therefore, R(kj,k2) provides geometrical information about nuclear 
collisions. 

Next we consider the question of partially coherent fields. We 
suppose that in addition to pion production from separate inelastic 
nucleon-nucleon collisions, pions can also be produced coherently as 
a result of the collective action of some group of nucleons. Let 
J0(x) denote that coherent source current. The total pion source 
current is then 

„ /A, i((utt1-k«x.)\ Ja(k) - Jo(k) + V k ) E e ' ) • ( 1 5> 
Observe that the chaotic component involves random phases distributed 
according to p(xj,t^). 

Evaluating the ensemble average, the single pion inclusive 
distribution is now found to be a sum of a coherent and chaotic part, 

Px(k) = jJo(k)|2 + <N> l-yJOl2 = n o(k)+n c h(k) , (16) 

where n0(k) and ncj,(k) are the average number of pions in mpde k in 
the coherent and chaotic component respectively. From Eq. (16) we 
obtain therefore a natural definition of the degree of coherence of 
the pion field in mode k as 



-7-

' D(k) - n(k)/P.(k) (17> 
o. x 

As we now show, D(k) can be measured from R(k,k). Evaluating the 
double pion inclusive distribution, the correlation function is 
found to beS 

R(kj,k2) * l + k - D C k ^ K l - D & p ) lp(k rk 2)| 
+ 2(D(k,) (l-D(k 1»D(k 2)(l-I>(k 2))) , SRep(k rk 2) 

(18) 
In deriying Eq. (18),• we have taken < N > » 1 in the chaotic component 
but have again used the long interaction time condition, 
{lOjpfen)! 2 << 1. 

Equation (18) is our main result showing that the degree of 
coherence of the pion field can be measured mode by mode from 
R(kj,k2) via the relation 

R(k,k) - 2 - D 2(£) . ( 1 9) 
Therefore, pion interferometry (the analysis of R(k 1,k 2)) provides 
both geometrical and dynamical information about the pion source in 
nuclear collisions. 

The first data on pion interferometry in nuclear collisions 
are now available and are shown in Fig. 2. At the present, only 
impect parameter-averaged and momentum-averaged correlation data are 
available. Therefore,i; detailed study of D(k) is not yet possible. 
Nevertheless, these'data seem to indicate that at least the average 
(over kj+k 2 and b) degree of coherence is small. Planned correla
tion experiments at the Bevalac with much higher statistics will be 
able to determine whether there is coherence in at least soae modes 
for central collisions. 

While ths ideal form of the -~ir~ correlation function in Eq. (18) 
demonstrates .iow both dynamical and geometrical information can be 
extracted from R(kj,k 2), it i s important to recognize that effects. 
of final state interactions must also be taken into account.6 In 
nuclear collisions, the nuclear remnant has, for example, a residual 
nuclear sharge Z .- <-? 100 which can distort the TT~ wavefunctions and 
lead* to distortions of R(k, ,k 2) for |ki-k2 | ~ (Zoan^/R)^ - 50 MeV/c. 
To^incorporate distortion due to some effective optical potential, 
•V(x), into- the calculationof P^k,... kg,), we need, to know the form 
of the incoming Miller scattering wavefunction, t|;*%x), for that 
potential. The final result5 for partially coherent fields has 
the same structure as Eq. (18) except that the Fourier transform, 
pOt^kj), is replaced by the distorted transform 

p(k,-k 2)""* P v f e k 2 ) - Pv(k,,£2)(p (kj,k,)p v(k 2,k 2))" S s 

where 
(20) 

~ - t « i(u,-co2)t , v* , , _ 
P ^ v k j ) - jdtd^x p(x,t) e t|»i >(x) «i '(x) (21) 
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Alsp, the degree of coherence is distorted (D. •*• Dy) via 
^"'(k'). In Ref.' 6 we have evaluated Eqs. (20) and (21) using 
Coulomb wavefunctions. We find significant distortions of the shape 
of R(k,,k2) in the region 2 0 i |k.-k2|< 100 MeV/c. These distor- . 
tions are also sensitive to the orientation of the relative momentum. 
However, we find^ that distortions are minimized (~20Z)_for large 
pion momenta £Z m^)^especially for that orientation of Ej-£2 corre
sponding to |k, | » |k2|'. Experimentally, it will be important to 
concentrate on this equal energy configuration at high momenta to 
get the cleanest determination of the pion source geometry. 

Finally, we note a potential problem in determining D(k) due to 
relative ir~ir~ Coulomb interaction. An apparent_non-zero degree of 
coherence can result from a Coulomb hole® in R(kj,k2) for |kj—k2[ £ 
•/S~n% $ 10 MeV/c. It there were no strong external fields, then such 
a distortion could be easily taken into account^>^ and unfolded from 
the data via a Gamov penetration factor, 

l*S-E.)/2 ( 5^ ) | 2-. In the presence of an external potential though, this Coulomb hole 
tends to be filled up since the typical momentum transfer provided by 
the external optical potential V(x) is much larger than that provided 
by the relative ir~Tr" potential, U(x-y). The structure of the 
correlation function in this case is the same as that given in 
Eqs. (18, 20, 21), except that the correlation function is 
multiplied by a penetration factor ^(kj,k 2). In the limit V->-0, IP 
reduces to the familiar Gamov factor; for U-»0, <P+ 1. However, for 
V^0, (p Is much more difficult to evaluate. The formula for P given 
in Ref. 5 involves a 12-dimensional integral over products of Coulomb 
wavefunctions. Since the effect of <P is mainly to distort D(k), we 
feel at this time that only if there were data indicating a significant 
degree of coherence would the effort to evaluate P be worth it. 
Here we only emphasize that R(k,k) t 2 could in principal arise from 
relative ir"V interactions. We note that for chaotic fields 
R(k,k) * 2 if U-0, regardless of the form of V. 

In summary, two-pion correlation data can provide both geometrical 
and dynamical information that can be used in the search for collective 
phenomena in nuclear collisions. However, final state interactions 
must be first unfolded from the raw data. In the case of chaotic 
fields (D(k) H O ) this unfolding will be much easier than if partially 
coherent fields are produced. Nevertheless, we are still excited to 
have found at least one observable, R(k x,E 2), that is sensitive to 
possible pion field coherence. 
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Fig. 1. TI multiplicity 
distribution.; for 
Ar + Pb^b^at 1.8 
GeV/nuclebn : dots 
are datas 1 curve 2 
is the final;result^ 
of fireball model 
taking trigger bias 
into account. 
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Fig. 2. First data on the averaged TTTT correlation function 
R(q) 5 <R(k, k+q))v for the same reaction as for Fig. 1. 
Solid curve is f it I 5 of data based on pion interferometry12 

assuming a chaotic field in Eq. (18). The effective plan 
source radius is indicated in two trigger modes. 


