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A PURELY NUMERICAL APPROACH FOR ANALYZING FLOW TO A WELL
INTERCEPTING A VERTICAL FRACTURE
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ABSTRACT

A numerical method, based on an Integral Finite
Difference approach, 1s presented to investigate
wells intercepting fractures in general and vertical
fractures in particular. Such features as finite
conductivity, wellbore storage, damage, and fracture
deformability and its influence as permeability are
easily handled. The advantage of the numerical
approach 1is that it is based on fewer assumptions
than analytic solutioms and heunce has greater gen-
erality. Illustrative examples are given to vali~
date the method against known solutions. New
results are presented to demonstrate the applicabil-
ity of the method to problems not apparently consi=
dered in the literature so far.

INTRODUCTION

The problem of fluid flow to a well intercep=
ting a single vertical fracture is of considerable
interest in the field of petroleum engineering. The
gransient pressure response of such a well to fluid
production has been investipated by previous workers
using analytical solutions, some of which are eval~
uated numerically. Despite their power, analytical
methods have certain limitations. To overcome
these limitations, numerical nmethods in conjunction
with fast computing devices can be utilized with
great advantage. The purpose of this paper 1is to
describe and demonstrate the powver of a fairly
general numerical model {n studying fluid flow to a
well intercepting a vertical fracture.

The Problem

The problem of interest is schenatically re-
presented in Fig. 1. The reservoir 1Is assumed to
be honopeneous, horizontal, aveally infinite and of
thickness he A vertical fracture of wvidth w, lensth
¢ and extending throu;hour the thicincss of the
reserveir and is fully penctrated by a well of
radius 1y« It is assumed that the well produres
fluid at a prescribed (usually constant) vate. The
probicem 1s tn predict the pressure transieat behav=

ior of the system in zeneral and the well in parti-
cular.

Previous Work

Although intere’ ‘. wells intercepting verti-
cal fractures dates ck to 1960, the first compre-
hensive study of the pressure transient response of
such a well was performed by Gringarten et al' who
studied the case of flow to an ianfinitely conducting
vertical fracture, with a hypothetical zero-radius
well at its center. This and a few subsequent
studies considered not only an infinite reservoir
but also various types of bounded reservoirs. Later,
Cinco-ley et al? extended the Green’s functions
approach of Gringarten et al to consider the more
realistie cases of finite conductivity vertical
fractures. In their studies, Cinco=Ley et al coup-
led the Green’s function solution of the earlier
vork! with a one dimensional, linear solution for
fluid flow within the fracture, the coupling proce-
dure being subject to continuity of fluxes at the
fracture surface. To evaluate their solutions,
Cinco-ley et al used a numerical method. In sub-
sequent studies, Cinco-Ley and Samaniego- extended
the solutions to include effects of wellbore storage
and formation damage around the fracture.

Although they do discretize the fracture into
several segments in their numerical evaluation,
Cinco-Ley et al’s method is basically analytic or at
best gemi-analytic in nature.

Limitations of Analvtic Approach

The analytic approach has formed the backbone
of well test interpretation and reservoir analysis
since the 30°s and has provided imnumerable valuable
insights in understanding reservoir response. Yet,
tractable analytic solutions can be obtained only 1if
the system under considerarion 1is simples. Thus, the
anluticns so far presented in the literature consi-
der : a) the reservoir is homogeneous b) the mat=
erial properties are constant with time c¢) gravity
effects are negligible and pressure gradients are
small everywhere, and d) that the system is ini-




tially hydrontatic, meaning that pressure drawvdown
with reference to hydrostatic pressure, p,, 18
zero evorywhere in the systen.

For handling realistic field problems, it {s
extrencly desirable to have the ability overcome the
aforesaid limitations. For exanple the assunption
that moterial properties are independent of pres-
sure, which is esseutlal in order to be able to
superinpogse analytic solutions, may often be ia-
correct. In this connection 1t is quite well known
that the permeability of a fracture is a strong
function of fts aperture and that fracture aperiure
ig dependent on pore-fluld pressure.

A sccond assunption which reduces the geneval-
ity of analytic solutions is that gravity is usually
neglected. The investigations veferred to in 1, 2,
and 3 all define Darcy velocity in terms of pressure
gradient, totally neplecting graviey. Although,
from a physical point of view, such a definition of
Darcy velocity 18 incorrect, petroleum engineers
have traditionally used it with the assumprion that
the veservoir is thin and that, essentially, pres~
sure 1s approximately equal to energy potentisl.
This assumption has gensvally been ceasonable since
£luid pressure neasurements vere often subject to
errors of about 7 % 102 pPa ( %10 psi) or
more. However, with the availability of sensitive
pressure measuring devices and the existence of
relatively thick veservoirs, the gravitational com~
ponent may not be negligible and merits {aclusion
in the solution process (H. J. Ramey, personal
comnunication.)

An alternate way to look at the equation of
motion is that the pressure tern used in Darcy’s law
by petroleum englneers actually denctes Ap rather
than po This 1s analogous to the practice in
hydrogeology where the dependent variable in the
diffusion equation 18 sowmetimes (reated to be the
drawdown rather than potential. This expression is
valid provided that the systen 18 initially sssumed
to be hydrostatic. Here again, the enalytic solu-
tion approach is limited 1n appliecability as it
cannot essily handle avbitrary initial conditions.

Scope of Present Hork

‘the aim of the present work is tu demonstrate 8
aumerical method im which the limitations of the
analytic methods can be convenlently overcome.
Intrinsically, the proposed computational model has
very fey agsumptions built into it. Ve will first
begin vith & deseription of the proposed numerical
model followed by a few typical examples serving to
validate its applicability. We will conelude the
paper with some wnew vesults which have not been
published in the literature to our knowledge.

DESCRIPTION OF NUMERICAL MODEL

GOVERMING INTEGRAL EQUATION

The equation governing the flow of a slightly
conpressible fluid In a deformable porvous mediuvm is
the well known equation of mass conservetion. Con=
sider a small domatn 2 of the flaw region of inte-
reste Let this subdenain, which has an abitvary
shape, be swall enough so that fluld potential and
other properties do not vary rapldly over it no that

one can define volune-averaged values of potential
and other properties over it and associate thesc
values with a nodal point fnterior to ¢. Then, for
¢his subdomain, one can write the mass conservation
equation,

k > & beg (1}
pGl + ifﬁ p;-(asz + Yp)endp = Mcai Be ;

in which G, 1s the volumetrie rate of fluild gener-
ation from element &, p is fluid demslty, k is
tutrinsle permeablilicy, u is dynamle coefficient of
viscosity, g is gravity, z is elevation with vefer~
ence to arbiltrary datum, p 1s pressure, R ois unit
outernormal, dI s a megment of the closed surface
Py which bounds subdomaing ¢, Mg.gis the fiuid
mass capacity of element £ defined as the mass
of water vequived to change the average pressure
over ¢ by unity (MNavasimhan and Qithcrspooné)
and D/Dt iz the material derivative. The element
¢ {s so defined to always have a constant mass of
solids, Vg so that the Darcy velocity im (1)
denotes the mean veloeity of water with reference to
the solid grains.

In general, for a saturated-unsaturated pevrous
mediun, Hgagean be shown to be®,

LI 45 2
ﬁcaﬁ Vgp[eSeg +8a, +e dv (2)

in which ¢y 18 volumetric compressibility of water
§ iz fluid saturation, ay = (~de/do’) vhere e is
void ratio and 0’ is effective stress. We make aa
implicit asssumption here that Ag”= = Ap. The first
cern within parenthesie in (2) denotes expansion of
water, the second denotes skeletal deformation and
the last, desaturation of pores.

In the problem that we are presently concerned
with we are desling with & fully saturated material
for which § = 1 and dS/dp = 0. Hence (2) simplifies
to

o Voolec +a)
Mcgz sp ecw év (3}

Hote that Hggg denotes & genevaliszed storage
coefficient of the volume element g. We could, for
convenience, normalize H§’Ew1th reference to the
bulk volume of the element Vg and divide through
both sides of (3) by 0 and define the quantity, Sg
which may be termed specific storage and defined as
the volune of fiuid released from a unit bulk volume

of the element per unit change in pressure. Thus,
& Mi 3 i
§h o blvig = foc, + (G-0)a, @)

If instcad of ay in (4) we wish to use cg, the
pore~volume compressibililicy of the formation,
then, noting that cg = (L ) ay, ve may rewrite (4)
as i-4

S: - @{cg % cf} = ¢c, (3

vhich is the expression that is familiar to
leun enpineers.
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Tn general, the ceefficlents in (1) are all
functions of pressure or of time. Thus, 6; can be
an arbitrary function of rire or pressure, ¢ i5 a

function of pressure through the equation of state,
k is a function of pore georetry (hence, aperture)
and Hgy;is a function of pressure since ¢ and ay can
both vary wvith stress.

Before we proceed further, 1t is instructive to
relate (1) to the partial differential equation
employed fn references 1-3. To do this, we first
divide both sides of (1) by V. and o and let Vi=0s
Then, in view of the basic definition of divere
gence5 (1) reduces to,

v & -5 B
gy + div 7 (pgV¥z + Vp) = 8_ &

(6)
where gy is the fluid generation rate (volumetric)
per unit volume of the  subdomain . If, in (6) we
neglect gravity, and divide through by k/u, we
finally end up with the equation used in references
1-3,

¥y duc
u . =8 Dp 7t Dp 7
BBy TAvVeoUp = g - Dt M

DESCRIPTION OF MUMERICAL MODLL

The Integral Finite Difference Hethod

The Integral Finite Difference Method, herein-
after referred to as IFDM has been described else-
where by Narasiwhan and ¥itherspoon®. Basically,
this method consists in discretizing the flow region
into an appropriately large number of subdomains
such that the potential varies linearly over each
subdomain. The velume-averaged potential over each
subdomain is associated with a representative nodal
point interior to each subdomain. The discretization
is so carried out that the line joining nodal points
of neighboring elements 1s normal to the interface
in between. To each subdonain, the conservation
equation is directly applied, subject to compati-
biliey of fluxes and potentials between adjoin-
ing elements. The gradient in potential between
adfoining elements is evaluated using the sinple
concept of finite differences.

The discretized equivalent of (1) wmay now be
written as7,

« P&z ~z)) + (p -p.) x By (g
£G. + L pm e B znc e
Eoomou Dy m 2 L Ag
vhere m denotes all the subdomains communicating

withs, Dg,m is the distance between nodal points 2
o and Ty o is the area of the interface between
fand m. lote that if Ty ,m coincides with the
external boundary of the flnw region for some n,
then for that m either py or the entire [lux term
is wnown from boundary conditions.

Temporal Discretization

In (&) both py and py vary with &t and for
maxinum  accuracy one should use their mean values
defined by

P = P0 +

m m m (9a)

- o .

PQ =Py + A..;"i (Gyl))

values over At, the
initial value aund

bars denvte mean
superscript o denotes the known
0 < % <l denotes a weightling function. A =20
results in an explicit equation while X = 0.5 and
V=1 respectively correspond to Crank-Kicholson and
backward differencing approximations. The set of
difference equations resulting from (8) and (9) are
written in a mixed explicit {wmplicit form which is
then solved by a point iterative scheme using an
accelaration factor. For _details the reader is
referred to Harasimhan et all,

where the

Non-linear Coefficients

In equation 1 the parameters Gy, k, and MY ,
are all functions of pressure and time, in general.
So also are the boundary conditions. In the compu=
tational algorithm, all these non-linear coeffi-
cients are handled in a quasi-normalized form. That
is, wusing the past history of pressure variation
over the system, a reasonable mean value of pressure
is estimated for each subdomain and the coefficients
are evaluated at these estimated values of pressure.
For purely time dependent variations such as the
source term or boundary conditions, the parameters
are estimated for an Instant midway through 4 t.
Since, 1in a saturated domain both k and Mg’g are
strongly governed by skeletal structure, and since
skeletal structure is dependent on effective stress
rather than pore fluid pressure, the pore pressures
are first converted to o’ using the effective stress
law, ¢’ =g~ p before evaluating k and Méile The
effective stress law used here uses the simple
one-dimensional consolidation theory of Terzaghi
(1925)8,

Some Advantages of the Numerical Method

In as much &s the proposed numerical method
solves the governing equation in the most primitive
form, it has very few assumptions built into 1t.
Thus there 1Is greater freedom to handle realistic
field problems involving complex geometry and
arbitrary heterogeneity. Secondly, because (1) is
basically a non=-linear equation, the numerical
methoed can provide solutions to problems such as
those involving deformable fractures. The method of
superposition of analytic solutions is not valid for
such non=linear problens. Also, as compared with
the analytic solutions, the numerical model gives
due consideration to gravity. Finally, the IFDM can
easily handle three-dimensional problems if required.

Among the disadvantages of the numerical method
one could mention the following. FEach given situa-
tion may have to be treated as a specific problem
increasing the effort involved in the solution
process. Also, each problem requires the prepara-
tion of a mesh of elements, the number of mesh
peints varying from problem to problem due to pro-
perty variations and depending upon the accuracy
desired. Input data preparation may often consume
significant time and effort. In rare instances, the
validity of the numerical solution may not be amen=—
able to easy check.

5 of Simulation

The investipgation cousisted of two sets of
simulations, the first set consisting of validation
problens and the sccond consisting of nev problems




apparently unreported in the literature. The
dotails of phenowena investigated in each set are
given belovs

Finite conductivity
effects of wellbore

Validation problemss
vertical fracture;
stovage and danage.

New problems: Unequal wing=-length; choked
fracture; deformable fracture; effect of
fracture storativity.

Mesh Used

For purposes of this study, the horizontally
infinite reservoir was treated as a two-dimensional
flow region with unit thickness in the third divec~-
tion. On grounds of symmetry, only omne-quarter of
the flow region needed simulation in all cases
except the unequal wing-~length problem in which
one-half of the flow region was simulated. The IFDH
mesh used is shown in Figure I, in which the mesh
detall increases as one proceeds from the top to the
bottom. The volume elements have been so designed
as to roughly conform to the expected pattern of
fluid flow. Thus, the elements are arcuate close
to the well and around the fracture edge to effi-
ciently simulate the vadial flow. 4s one proceecds
away from the well, the arcuate elements gradually
lose their curvature to become rectangular elements
close to the fracture and elsewhere to simulate the
expected, relatively rectilinear flows. In the mesh
the fracture itself is treated as one or more volume
elements with finilte volume, surface area and fluid
mass capaclty. In terms of magnltude, all the
simulations were carried out with xg = 10m (32.58

ft). For all cases except the deformable fracture
case, the fracture aperture w was fixed at 0.0lm
(G.39 in}. For the deformable fracture case the

aperture was initlally set at 0.00Llm (0.039 {in).
Fluid was allowed to enter the well through the
fracture as well as through the well casing (if
needed? . Fluid was allowed to enter the fracture
throu h 1ts edges.

As can be seen from the figure, the volume
elenents are widely varfable in size varying from
about 2 x 102 wd for the smallest fracture ele-
ent to more than 2 x 103 m3 for the largest element
at the periphery. The total number of elements
varied around 225 depending on the particular case
studied. Depending on the contrast inm permeability
between the formation and the fracture, the fracture
was discretized into volume elements varying in
number from 2 to 12.

For cases in which wellbore storage had to be
neglected to simulate analytic solutions, the well
radius was assumed be ry = 0.005m (.02in). In
other cases wellhore radius fixed as necded.
All the sinulatiens assumed wellbore storage due
to fluid level changes in the well.

was

Parameters Used

The parameters critical to the present study

are: formation permeability ki formation storative
fvv, S% (=¢c); fracture permeshility, ke and frac=
ture storativity Si,f (= n oaudition, for
particular ¢ 5, the perme vity of the skin, k,
or the perreability of the choke, ko are also

important.

In all the simulations, the resevvoir was
assumed to be of practically inlinite arcal extent
The propram, however, is general enough to handle
any type of time dependent boundary condition.

All the simulations were carried out with fixed
flow rate from the well.

The paraneters used in the simulation are given
in Table I.

In the interpretation and comparison of the
results of the sinulations, the following dimension-
less variables are important:

Dimensionless time, tpg = -~§£~Y~ {10}
duc X
e f
Dimensionless welle Py = Zukhap (11)
drawdown aw
wkf
Dinensionless fracture Cp = 5 (12)
conductivity HEAg
Dinensionless wellbore i = ¢ {13}
storage 2
ZW®ctX€
Dimensionless fracture Y ok
skin Ses" ¥y G b 0w
£ s

VALIDATION OF NUHMERICAL METHOD

Finite Conductivity Fracture

The first set of validation rums consisted in
studying the effect of varving the conductivity of
the fracture on the pressure transient response of
the system. The solutions generated were compared
with the semi-analytical solutions of Cinco-Ley et
a2, The results of these simulation are presen=
ted in Figure 3 in the form of a log-log plot of
tpg versus Pyp for different values of Cyp. Note
from the definition of C, that 1f the other para=
meters are held comstant, C, is directly related to
k.f-

In figure 3 solutions ave presented for four
values of Cyp: 0.2, 1, 10, 100. The Case, C* = 100
practically coincides with the infinite conductive
ley case while Cp. = 0.2 corresponds to a k¢ which
is 500 times smaller than that of Cp = 100. Compar-—
ison of the analytic and numerical solutions pre
sented reveal three interesting features. First,
there is excellent agreement between the numerical
solutions and those of Cinco-Ley et al? over wmost
of the range of tpg. The second is that for tpg >
30, all the four numerical results depart notice=
ably from the Cinco-Ley et al solution due to the
fact that outer boundary of the mesh used corres-
ponds as a barrier boundary. Finally, in the
particular case of C, = 0.2, the numerical results
differ from the semifavalytic solution for tpg <
0.01. This departure, which is noticeable because
of the low k¢, is due to the effect of the finite
value of vy, = 0.005m which was used in the nuner=-
ical simulation.

For values of tpy exceeding 10, the system
behaves essentially like a radial flow system with

an equivalent well with a radius equal to 1/4
xg(Pra et oal.?y. For values of tpfp < 10“4.
the ¢ en is dominated by well-bore storape (unit
alape), At this level, Cy cannot be accurately

>




used as unique parameter because of the fact
that at suwall tiees only o pertion of the fracture
clese to the well=bore will sce tae oitects of fluid
production.  The paraweter, Cp which has Xy in-
cluded in {ts definition cannot be Peaninatully
defined until such tine when the pressure transient
has migrated to the edre of the fracture so that the
entire fracture participates in transient fluid
flows Thus, in our future discussions we need to
restrict ourselves only over the range 107% to
10 for tpge

Effect of Uell=hore Storane

The influence of wellbore storage on pressure
drawdown is very clearly seen in Fipure 4. In this
figure, Pyp is plotted as a functiow of tpg for
different values of the wellbore storage parameter,
€ which is defined in (13). 1In (13), T is the
volune of fluid released from the wellbore per unit
chanre 1in wellbore fluid pressure. All the curves
in Figure & pertain to a Cp = 100.

The zero-wellbore-storage solution of Cinco-Ley
et al® is rvepresented by the upper most line in
Figure 4. This curve is very closely matched by the
nunerical result for C = 1.25 x 103 which corres~
ponds to a ry, of 0.005m. As can be seen from the
figure, wellbore storage effects persist up to a
value of tpg = 10 for Cp = 0.5. 1In the problem
studied, Cp = 0.5 corresponds to a ry, = 0.10m (4
in) and tpy = 10 corresponds to 105 secs (1.16
daysys It s obvious that in realistic field sit~
uations one may have to use packers to reduce well-
bore storage effects. Also, it can be demonstrated
that the effects of wellbore storage will persist
for a longer period as £racture permeability de-
creases.

Fracture-Skin

It is quite well-known that formation damage
around a wellbore can be quantitatively handled with
a skin factor. So also one can define a similar
skin concept for damage around a fracture. Thus
Cinco-Ley and Samaﬁiego3 define a fracture skin,
S¢gg by the relation given in (14) in which wg 1is
the width of the skin and kg is the permeability
of the skin. The effect of Sfg on Pyp for Cp = 100
is demonstrated by the family of curves shown in
Figure 5. The upper four curves and the Cinco=-
solution in this figure pertalns to a ry = 0.005m
(0.2 in) while the two lower curves pertains to a
ry = 0.076n (3 in). The mathematical representa=-
tion of the finite-width skin is shown as an inset
in Figure 5.

Three points of interest may be noticed in
Figure 5. First, the effect of wellbore storage
becomes more pronounced as Sgg Increases, since
higher Sgg implies a general degradation of per=
meability around the well. Second, there Is a
slight discrepency between the Cinco=Ley3 solution
and the solution of this study for Sgg = 0.1, for
tpg < 107+=. This 1is consistent with Cinco=-Ley and
Samaniogo3 who considered an infinitesimal skin.
However, they do state in their paper that a skin of
finite width should be expected to produce a slipht-
ly different well-response at early times. in other
words, for the same S¢g, diffcrent comhinations of
kg and wg should lead to different Pyup versus
tpr relation for small values of time. To verify

this, a second simulation was carried out in wvhieh
the wideh of the skin was increased by a factor of
twa over the value used for the results presented {u
Figure 5¢ A couparison of the two different finite=-
width skin solutions are givea in Figure 6. It can
be soen from Figure 6, that as the width is in-
creased for a coastant Spg, the curves tend to
nove down on the log=log paper. The final feature
worthy of note in Figure 5 is that as the well-bovre
radius {s increased, to represent realistic field
cases, the early-time details (up to tpg = 10) are
so completely masked that the utility of the Sgg
parameter in interpretation is curtailed.

Some Points of General Interest

Before we pass on to the the considevation of
new results, 1t is of interest to discuss a few
special aspects relating to the results presented so
far.

The first of these is the optimum number of ele-
ments into which the fracture is discretized for pur-
poses of simulation. As 1s obvious, the number of
elenents should be increased as the fracture conduc-
tivity decreases and the gradient of potential
within the fracture hecomes significant. Conversely,
as the conductivity of the fracture becomes infin-
ite, the entire fracture can be treated as a single
element or even as an intrinsic part of the well.
In the simulations, we used two fracture elements
for C, = 100 and 10; 10 fracture elements for
Cy, » 1 and 12 fracture elements for Cp = 0.2.
The drawback in using a large number of elements for
higher values of C, 1s that the higher conducti~
vity greatly decreases the stable time step for the
fracture elements resulting in greatly enhanced
computational effort. On the other hand, reducing
the number of elements for lower values of C,
leads to loss of accuracy. The optimum number
cf elements depends on the fracture surface area,
fracture storativity and the contrast between k and
kg.  Although, in the present study, the number of
fractures were chosen based on trial and error, it
should not be difficult to formulate a rational
criterion for deciding on the same.

A second point of interest concerns the manner
in which the flow at the edge of the fracture is
handled. In all the simulations the edge was assuned
to be rectilinear with fluid entering the fracture
through the narrow end. Examination of the computer
ocutputs showed that about one percent of the total
flux entering the fracture entered through the end.
Although the total flux is small, the velocity of
entry at the fracture was always found to be very
high due to the narrowness of the opening. Conside-
ring the fact that little is generally known about
the geometry of the fracture edge we need not con-
cern ourselves any more with that topic apart from
stating that the actual £lux through the end de-
pends very much on its geometry.

Finally, a brief mention about flow across the
wellbore. Careful examination of the results in-
dicated that the quantity of fluild entering the
wellbore increases with increasing wellbore radius
and decreasing fracture conductivity. In gpeneral,
the quantity of water entering the well through the
region cutside of the fracture is not more than
abnut onc-percent when a realistic wellbore radius
i5 assumed,




Ve nov pass on to consider some new results
that were generated during the present study.

Fffect of Fracture Storativicy

The solutions so far discussed are based on the
assunption that fracture storativity (¢Ct)f is the
same as formation storatixity, gces  The effect of
varying (gepdg from 1079 nf/ieveon to 1077 ml/lewton
on P,p is shoun in Flpure 7. In all the three cases
an ry = 0.005m was assumed. As can be seen from
the figure, for the particular conditions used 1in
the study, changing (gcg) from 1079 to 178 nl/Newton
did not significantly change the fluid mass capacity
of the fracture so that these two solutions are
almost identical. However, when (pcy)y is increased
to 1077 wl/tewton, the fracture capacity becares
comparable in magnitude to wellbore storage, there
by causing a significant change in the pressure
transient behavior.

Unequal Wing-lenpth

It is customarily assumed that hydraulic
fracturing at depth creates an opening symmetvrical
about the wellbore. However, it is conceivable that
fracture is initiated in only oue direction (single-
wing; see inset Figure 8) or that it propagates only
partially due to rock inhomogenelties. Recent
field studies! support this suspicion. That the
unequal wing-length problem may be of interest was
suggested some years ago by Raghavan of the Univer—
sity of Tulsa. Our investigation of the problem is
summarized ia Figures 8, A4, B and C. In as much as
an asymmetrical wing requires the sinulation of
one-half of the flow region, and since a symnetrical
wing requires only one-quarter of the flow region,
two different meshes were designed to appropristely
handle the single-wing and one and one-half wing
cases.

Figures 8 A, B and C show drawdown behaviors
for C. = 1, 10 and 100 with one wing, one and one=
half wing and two wings. In all cases, the undanm-
aged well had an vy = 0.005m, corresponding to a
€ =1.25 x 1073,

In all cases, the drawdown for the single-wing
condition 1s quite distinct from those of the one
and one-half- and two-wing conditions. This is due
to the decrease in overall permeability oun the
unfractured side. While the difference between the
one and one-half- and two-wing case is distinct at
Cy = 100, it is not so clear low tpg at Cp = 10
and disappears below tpy = 107¢ for the tight
fracture case (Cyp =1). This is to be expected
since, in tight {racture cases, flow is governed by
the well-bore end of the fracturc. Indeed, othervr
results generated during the present study showed
that for Cyp = 0.2, reducing the peruecability of
the further half of the fracture by an order of
magnitude had little effect on the pressure-~tran-
sient response of the well-bore.

The similarity in the shapes of the curves in
Figure 8 rai 8 the hasie aquestion of
deternining fracture pgeonetry and fracture :
bility by type~curve nateling proccdures. The
solution §s nbviously acn=unique and the trpe curves
have to be used with caution and judsercnt in the

light of pevlopical knowledge of the near-well
regine.

Choked Fracture

1f the proppant 18 not uniformly distributed in
the fracture, it 1s conceivable that permeability
variations may occur along the crack, most likely
near the well bore. The importance of a fracture
which is choked close to the well-bore was pointed
out to us recently by Alain Cringarten of Flopetrol
in France. Qur brief study of this problem is
supmarized in Figure 9. In all the four cases given
in the figure, the ¥,,, the choke length was
assumed to be 8 percent of Xg. As can be seen
from the figure the pressure transient behavior at
the well changes dramatically in the case of y, =
0.C05m, as the choke permeability decreases, con~
firming that prevention of choking 1s essential to
well-economics. However, it is also noticed from the
bottom curve in the figure that a realistic well of
0.0762n diameter (6" diameter) can completely mask
the early-time effects of choking. 1MNote also that
when ke 18 low (.001 kg) wellbore storage effects
are discernible up to tpg = 0.001.

Deforming Fracture

Thus far we have considered vigid fractures
with constant ky and (deg)g. Realistically, how-
ever, it 1s possible that proppant crushing may
occur, vesulting in fracture deformation with pore-
pressure change. For convenience, we nay tern
such a fracture to be "breathing”. The kg and
(geede of 8 breathing fracture are fumctions of
the effective fracture stresses. thus one can
define the fracture aperture as a function ofd’
in the manner proposed by Narasimhan and Wither-
spoon®,

6’} a {15)

ywy - (07 «
o o’ “v

Also, 1in the manner suggested by Iwaill, k¢ can
be treated as a quadratic function of w by the
relation

()

gE

(16)
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The incorporation of fracture deformation into
the governing equation renders it non-linear and
invalidares th: superposition procedures normally
employed in analytic solutions. The method proposed
in the present study was used to investigate, in a
preliminary fashion, the pressure transient behavior
of a well intercepting a breathing fracture. The
results generated using the following paranmeters are
gilven in Figure 10:

kg = wl/12

ay = 1.3 x 1010 u2/m
Yinitial = 1073 m

7 = 2,000 m

Po = 1,959 x 107 H/u?




The above paramcters have been chosen wmore with a
view to demonstrating the applicability of the
pethed than to simulate a very resiistic ficld case.
In Fipure 10, the breathinp fracture solution 1is
shown compared with two supposedly liniting rvigid
fracture solutions. Thus, the solution for Cp =
26,2 roughly corresponds to a ripid fracture with
the fnitial assuned fracture ayperture while the
case, Cp = 1,0 roughly corresponds to the average
fracture aperture at tpg = 10 for the breath-
ing fracture cases As can be sven from the figure,
the breathing fracture solution starts off with the
solution for Cp = 26.2 at tpy = 10-2 and, with
time, approaches the other lipicing solution for
Cp = 1. For tpe < 1072 the breathing fracture
solution lies slightly belov the solution for €, =
26.2. This scemingly anomalous behavior can be
explained by the fact that a rigid fracture capacity
is governed purely by the expansion of water while a
breatiing fracture has farx higher rrorage duc to the
added fracture deformation coefficient.

The Integral Numerical Method described in this
paper provides an efficient, general purpose tool
for studying the presure transient response in
finite diameter wellbores intercepting rigid or
deforning fractures. The results presented not only
validate the wethod in the light of already pub=-
lished literature, but also reveal new results and
thelr implicarioms in respect of problems not
hitherto presented to our knowledge.

NOMENCLATURE
a, coefficient of compressibility
[ wellbore storage constant = volume of fluid
released from wellbore due to unit change
in pressure
¢ pore volume compressibility of the formation
c, "total" system compressibility
Cw water compressibility wkf
C dimensionless fracture conductivity = ——=—
T ﬁkxf
C dimensionless wellbore storage constant
o 2
C/2n¢ctXf
e void ratlc
e, void ratic at veference effective stress oé
g gravitational constant

8, volumetric fluid generation rate per unitg
volume of 1

volumetric fluid generation rate

Gl
h height of fracture and formation
k permeability
kch choked fracture permeability
kf fracture permeability
ks formation skin damage permeability
M* {fluid mass capacity of a finite subregion;
el conceptually a generalized storage coelficient
Pyl average pressure in element %,m
p ,p; initial pressure in element f%,m

P prossure
Pe fracture pore pressure
N reference pressure
P dimensionless wellbore pressure drop
Ap drawdown; difference between pstatic and
p(lowing
q well pumping rate
£, wellbore radius
S saturation v
7.8 k
3 fracture skin damage coefficlent = [5 ==](——7)
fs 2 Xf kfs 1
S: specific storage (¢c:)
t,At time, change in time from initial time

T dimensionless time = kpgAt/uS:sz

v volume
v bulk volume of element 2
v

solids volume

<3
w

void volume

<

fracture width

fracture width at veference stress

o€ <

fracture formation damage thickness

o5

>
o

fracture wing length

elevation
formation depth below land surface
specific welght of water

bounding surface of element 2

=

weighting factor
fluid viscosity
density

aQ ©T oW o> "< N W

total stress

N

effective stress = - Pe
porosity

welghting factor

fluid viscosity

density

total stress

N

effective stress = - Pe

| a a v om > e Q

porosity
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Table 1

Parameters Used in Simulation

Parameter ST units Conventional units
K 1.0197 (10713 o? .103 Darcy

S, 8 107 p 7t 6.897-107 psi”!
s’ "sf pa ° P

Xf 10 m 32.8 ft

w 0L m .33 ft

Vw 005 m 1.27 4in

z 100 m 328 ft

h i1m 3.28 ft

w 2w 6.56 107" £t

s -8, 2 4

kf 3.204 (10 ) w 3.25°10° Darcy

q 6.2832 (1072) m3/sec 341 bbls/day

g 9,807 m/sec2 32.2 ft/sec

u ],()w3 kg/m-sec .1 cp

o 10° kg/u> 62.416/5¢t>

b, (overburden) 2.10% kg/m> 125 1b/€¢>

P 1.96 10° pa 285 psi

o
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Fig. 1., Representation of a Vertical Fracture
Intercepting a well,
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IFDHM Mesh Used for Simulating Flow to a Well
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