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Abstract 

The concepts of fuzzy numbers and fuzzy arithmetic are introduced 

and some of their numerical properties are investigated. Fuzzy 

numbers are presented as extensions of interval numbers, or 

possibility distributions between upper and lower bounds. These 

distributions are described in the literature as being shape invariant 

under addition and subtraction and "nearly shape invariant" under 

multiplication and division. This shape invariance is assessed 

through Fortran IV programs that multiply and divide fuzzy numbers by 

two different methods: 1) a point by point manipulation analogous to 

the convolution of probability densities that gives an exact result, 

and 2) an approximation to this result obtained by operations on a 

parameterized form of the possibility distributions. Since this 

approximation gives tolerable results given the basic intrinsic 

vagueness of the numbers. sequences of operations on these 

parameterized fuzzy numbers are examined via a Fortran IV program. 

The resultants are discussed in terms of error propagation. 
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vJhen one attempts an analysis of a complex system~ invariably 

there are some variables which are known. Traditionally, 

this inexactness is treated as a form of randomness and statistics are 

used to try and understand the behavior of the system. However, there 

are situations where the inexactness is not due to randomness but 

rather due to defined variables, such as occur in 

questionnaire data or any form of data which arises from human 

judgement. reasoning or perception. In order to handle this 

imprecision. L.A. Zadeh (1965.1973) introduced the concepts of 

approximate reasoning and fuzzy sets. In his approach. human 

reasoning does not approximate an exact logical or mathematical 

process; rather people use inexact concepts directly to describe and 

make sense of the world around them. A mathematical representation 

for this reasoning is provided by fuzzy set theory; it is a way to 

describe and analyse this form of imprecise data. While the primary 

aim of this paper is to examine the potential use of fuzzy arithmetic 

in data analysis. secondarily it should serve as a simple introduction 

to the concept of fuzzy sets. 

People communicate through phrases such as "go a short distance 

then make a hard right". We all have a feeling for what constitutes a 

"tall man". "sort of big" or "about 3 i1
• but the boundaries of these 

classes of objects are vague. These ideas date back to the Greeks who 
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expressed them in a series of paradoxes such as "How many hairs must 

be plucked from a man"s head before he is considered bald?" or "Hhere 

does bald end and not bald begin?" The boundary of the term bald~ the 

transition between applicability and non-applicability of it is vague~ 

as it is in much of language. 

"Bald" or "tall" or "about 3" are called linguistic variables 

which are labels for fuzzy sets and in fuzzy logic these coexist and 

interact with traditional numerical variables. The underlying idea is 

that membership in a set such as "old" is not a step function with 

values of 0 corresponding to "not belonging" and 1 corresponding to 

"belongingil~ but rather a grade of membership in the interval (0 

1). As an example~ consider the proposition "John is old". If OLD is 

defined to be the set { 20 ••• 100} and John is 30~ then he could be 

OLD to the degree .2 while at 90 he could be OLD to the degree 1.0. 

That is. each age of John's has a compatibility with the set OLD or a 

degree of membership in it. This leads to a distribution for fuzzy 

variables that Zadeh (1977) describes as a possibility distribution 

rather than a probability distribution. 

These ideas have great intuitive appeal for data analysis purposes 

since so much of so many systems in the real world are fuzzy. The 

difficulty with using them is twofold; first the degrees of membership 

or the distributions must be assigned and then they must be analysed. 

The assignment of grades of membership~ or possibilities. differ from 

determining probabilities in fundamental ways. First. possibility can 

be subjectively assigned by people in a given context; the 
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uncertainties in assignment are due to an intrinsic vagueness and 

arbitrariness rather than, as in a probabilistic event, a lack of 

knowledge about the future. Although it is possible to arrive at a 

degree of membership by questioning many people. the assumption of 

repeated sampling is not necessary as it is in statistics. 

Assuming we could assign grades of membership to variables, their 

analysis is the next problem in a real world context. From the 

theoretical point of view, a body of literature is being developed 

that allows the mathematical manipulation of fuzzy sets. From the 

computational point of view less work has been done, so it is 

difficult to get a "feeling" for the behavior of these variables. 

This paper addresses itself to this problem by investigating the 

computational behavior of fuzzy numbers. For simplicity, we will not 

deal with linguistic variables such as OLD, but only with numerical 

variables of the "about 3" sort. The techniques explored, however. 

are eventually applicable to both since their form is essentially the 

same. 

Since the assignment of grades of membership is always subjective 

and sonewhat arbitrary, it seens logical to first investigate the 

behavior of arithmetic operations with these numbers to see if they 

are well-behaved and interpretable. Only then does the issue of 

assigning grades of membership become germaine. Since this paper is 

an introduction to the concepts of fuzzy arithmetic, the thrust is 

simplicity and comprehensibility so that a potential user can get a 

"feeling" for the behavior of these numbers. There is no pretense of 
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rigor; the cited references can be referred to for that purpose. 

Fuzzy Arithmetic is an extension of interval arithmetic (:Hoore, 

1966) which arises when a number is considered to have an exact value 

and an error bound, or an upper and low"er bound to the exact result. 

An interval number is an ordered pair of real numbers [a.b] with as b 

or a set of real numbers {x I x ~ b}. 

In interval analysis, all values between a and b are equally 

possible or probable. A fuzzy number is an extension of this concept 

in that a number X := "about 2" takes a functional form between a and b 

(see figure 1). This function is described by the degree of 

compatibility ]J of each number in this range with "about 2". These 

compatibilities are represented by values in the set { O. I.} 

with 0 representing no compatibility with "about 2" and 1 representing 

the maximum compatibility or grade of membership in "about 2". In a 

simple case. let "about 2" range from 1 to 3 as in figure 1. The 

degree of compatibility at X "" 1 is 0, so ]J [1] '" o. Likewise, 

]J [l,5]= .5 

]J [2.0] '" 1. 

]J L2 • 5 J "" • 5 

]J [3.0] "" o. 

This is often expressed in the form ]J (x)/x. or the value of the 
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degree of compatibility at some X. In the above example, the degree 

of compatibility at X 1.5 can be written as 11(1.5) /1.5 =.5/1.5. 

To generalize this, a fuzzy number A can be considered to be the union 

of all the values for ~;7hich 11A > o. So 

A ",U 11A(X)/X 

or 

'\;rhere 2: stands for union. If A is a continuous function, the 

integral sign is used to denote union as in 

In figure 1, A "" "about 2" is shown as a continuous function that can 

be represented by a triangular distribution as 

2 3 
::: J eX-l)/X + J (3-X)/X 

1 2 

(Mizumoto & Tanaka (1976»). Here, + stands for union not arithmetic 

sum. The range 1 to 3 is called the support of "about 211. In 

general, if r A is defined to be the support, then 

The shape of a function can be determined in various ways. For 

example, B in Figure 1 could have arisen by asking a person a series 

of questions such as 

"'What is the most possible value of the number?" [MU"" 1.] 

"What is the point below/above which it is not possible for the 
number to lie?" [MU "" 0.] 
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"At what point below/above the mean is it equally possible 
for the number to be greater than or less than?" [MU "" .5] 

Closer to Zadeh's possibil postulate (1977) but more difficult 

to carry out in e are ions about the degree to which a 

number fits ones perception of "about 2". If you say X is "about 2"? 

then the possibility that X has a specific value, say 2.5. is equal to 

the grade of membership of 2.5 in "about 2". More formally. the 

proposition !IX is Pabout 2 P 
" induces a possibility distribution which 

associates with each value u between 1 and 3 the possibility that u 

could be a value of X. That is, the possibility of X taking a value u 

is equated to the grade of membership of u in the fuzzy set "about 2" 

or the degree of compatibility of X wi th "about 2". tJe could say 

based on Figure I, A: 

Possibility [X=u) Poss [X=l. 0] o. 

Possibility [X""I. 5] • 5 

Possibility [X=2.0] 1.0 etc. 

If one can justify. or arbitrarily assume a functional form. a 

number can be fuzzified with only the answers to these three 

questions. Other examples of building functions in this form occur in 

the psychological literature where subjects are asked to give the 

degree of compatibility between a form and a standard, as the grade of 

membership of bat in the category bird. 
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In general it is possible to any domain of mathematical 

reasoning that is based on set theory. One replaces the 

concept that a variable has a value with the fuzzy concept that a 

variable has a of 

Another way of fuzzy numbers is in terms of bandwidth 

at some value of 11 ~ as in C in Figure 1. Dubois and Prade (1978) 

use this form and express a number in terms of its left bandwidth, 

peak and t bandwidth. In this paper, this will be represented by 

C "" Ca, C, S). It is most convenient to use the bandwidth at 11 := .5 

due to the subjective nature of the methods used to determine points 

on distributions. This is true even in the case of fuzzy numbers that 

are normally distributed. For instance, let F be a continuous 

function normally distributed centered on 0 with a SD of 1. In the 

l. 
fuzzy system, II (1) or 11 (~l) "" .6067 ,a value difficult to 

obtain. It is interesting to compare this to P(X), the probability of 

X. For a continuous probability density, if X = ~1, P(X) = O. If F 

were a discrete probability density. then. of course, P(X) could be 

non~zero since P(X) is the number of occurrences of X compared to the 

total sample space. This simple example shows a fundamental 

difference between numbers conceived in a fuzzy versus a statistical 

framework. A fuzzy number can be continuously distributed yet possess 

a value at a discrete point. while in the analogous probability case. 

P(X) is defined as the area under the normal curve between two limits. 
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An interesting extension of these ideas comes from Nahmias P (1978) 

axiomatic approach in direct analogy to the sample space model of 

probability theory. He shows that for normal fuzzy variables~ the 

bandwidths add~ in contrast to uncorrelated random variables where the 

variances add. This could a methodology for testing whether a 

probabilistic model or a fuzzy model is more appropriate in a given 

context. 

In general if * is one of the symbols +,~,.,/, arithmetic 

operations on intervals are defined as 

[a , b ] * [c , d 1 '" { x *y 1 a'::; x ;;. b ,c :;; y :5 d} 

except that [a,b}/[c,d] is not defined if 0 t [c,d]. This definition 

is set-theoretic, hence the result of any operation is the set of 

sums, differences, products and quotients of pairs of real numbers one 

from each interval. In terms of formulae for endpoints, 

[a.b]+[c,d] 

[a,b]-[c.d] 

[a+b. c+d] 

[a-d, b-c] 

[a,b]. [c,d] [min[ac,ad.bc,bd] ,max [ac,ad~bc,bd]] 

and if 0 1: [c ,d] ~ then 

[a,bJ/[e,d] [a,b]. [l/d,lIe] 

The degenerate interval [a,a] is the real number a. These numbers 

do not necessarily distribute. for example 

[1,2] [[1.2]-(1,2]] := [l,2J l,lJ "" [-2.2] 

[I,2J [1,2]-[1.2] [1,2] = [1.4]-[1.4J "" [-3,3]. 
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This is rare in algebraic systems, and hence Noare (1966) notes 

interval arithmetic is a little studied system. 

Fuzzy arithmetic is approached from two points of view. The first 

is a point by point computation of values within in each distribution 

corresponding to a convolution of probab densities in statistics. 

The second is an extension of the concept of interval arithmetic 

operating on bandwidths such as shown in Figure 1. 

1. Point by Point Computations. 

In general, for two numbers, whether in functional form such as A 

and C in Figure 1, or discrete form such as B, ZadehPs extension 

2. 
principle can be used to combine these numbers. 

max(min(~(x), ~(y)) 

where w=u*v and * is any operation. Consider a simple example as 

shown in Figure 2. Let X and Y be triangular numbers such that 

X 4 
'-

0/3 + .1/3.1 + .2/3.2 + .3/3.3 + .4/3.4 + .5/3.5 

+.6/3.6 + .7/3.7 + .8/3.8 + .9/3.9 + 1./4.0 + .. 

in ~ (X) /X notation ~\There + again represents union and 

Y 12 0/11 + .1/11.1 + ••• + 1./12. + • , • 
N 
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Let Z X+Y. To calculate this sum, let Y Z-X. then 

~ (z) = max(min(~ ex). ~ (z-x)). 
z x y 

Performing this calculation for a sample value of Z = 15 gives 

Table 1 and ~ (15) ~ max [0 •• I,.2,.3,.4,.5J ~ .5. Dubois & Prade 

(1978) showed that two fuzzy numbers with the same arbitrary shape can 

be operated on to give a resultant with the same shape - or nearly so. 

This is true exactly for addition and subtraction and approximately 

so for multiplication and division. These other operations are given 

by: 

= max(min(~ (x), ~ (z+x)) x y 

= max(min(~ ex), ~ (z/x)) x y 

= max(min(~ (x), ~ (x/z)). x y 

These operations are analogous to the convolution of probability 

densities, but with an important difference - in the probabilistic 

framework, normal densities possess this shape invariance under 

addition, while under division with normal densities, the resultant is 

far from normal (a Cauchy density). Intuitively, the reason for this 

is that in statistics one manipulates densities, or the area under the 

curve, while in fuzzy arithmetic, one uses the surface of the curve. 
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There are obvious problems with this method of combining fuzzy 

numbers. The first is the enormous number of computations involved. 

Second~ if it is assumed that the number has a functional form, as a 

triangle, for example, then the number of steps one takes in X is 

crucial. For instance. in our simple case of Z "" 15., if only the even 

values of X are used~ 

V(15) = max(0.,.2 •• 4) = .4 

which is clearly in error. The next sections of this paper deal with 

these questions. First an analysis was undertaken to ascertain how 

many steps are necessary to reach "convergence" and how shape 

invariant distributions are under multiplication and division. This 

analysis was done with triangular distributions. although it is 

equally applicable to any shape as long as the same functional form is 

used for all the numbers in any sequence of operations. 

Computer AnalysiS of Triangular Distributions 

Computer programs were written in Fortran IV to perform point by 

point mUltiplication and division operations on triangular numbers. 

Any shape could have been chosen from the trivial case of a 

rectangular distribution to a normal distribution with a cutoff 

outside which v = 0, to a shape such as in Figure 1,B that is not 

defined by a function. In order to normalize these fuzzy numbers to 

some extent. the support was defined in terms of a percentage of the 

number. The number of steps in X which determined the number of 

calculations per point in Z was allowed to vary. It can be seen in 

Figures 3-7 that for a number with a support of ± 10% of that number 
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the remains excellent, one is willing to 

accept d to the left and t of the peak. However, 

for ± 50% of the number there is considerable deviation. If the 

tr invax.'iance rtant consideration, a measure could 

be devised sueh tha vih(m the deviation of the points from 

the line from 11 "'1 to fJ "" 0 exceeded a certain cutoff I 

shape invar:i.ance was no assumed 0 

Another ion that arises w:i.th this computational method is how 

many s must be taken in X to give convergence in Z. Since the 

computation is a • convergence for any point in Z is 

not a simple iterative procedure. If one happens, with only a few 

steps, to cycle through the value of X and Y that produces the maximum 

possible value of min (IJ fJ) then Z has converged for that point and 
x' y , 

it will remain constant as the number of steps is increased. Hence 

this analysis consists of a comparison of the maximum deviation in IJ 

at a point Z as the number of steps in X increases from 50 to 1000. 

The five cases in 3~ 7 were computed. A sample of 

the output is shown in Table 2 and the results for all five cases in 

Table 3. 

First, as \vould be expected, within any matrix, as the number of 

steps are increased, the in the maximum value of fJ does 

not change at 1000 s as to 50. 100 and 500. Secondly, 

for distributions. these maximum differences in IJ at 

specified points in Z are invariant under changing the values of X and 

Y. the range of their supports, or the operations performed. So one 
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can conclude that a relatively small number of calculations per point, 

e.g. 50. is probably adequate. 

Intuitively. this invariance can be understood by considering a 

simple example. Consider two cases where X = 3 but the bandwidth 

differs as in Figure 8. If n steps are taken in X, the X values are 

different in Xl and X2 but the ~ values are the same. Each value of 

z ~ X~Y or Y = Z/X and hence ~z and ~y are constrained by the 

chosen values of X; the only parameter of concern is the number of 

steps taken in X to calculate Z. 

If computations of this magnitude were necessary. arithmetic 

operations on fuzzy numbers would not be practically feasible. 

Another approach has been developed by Dubois and Prade (1978). 

2. Parametric Representation and Computation. 

Dubois & Prade have represented fuzzy numbers in terms of their 

peak values with membership at that point being ~ =1., and a 

bandwidth, usually at ~ ~.5. This is shown in C in Figure 1. It is 

possible with this representation to simply perform arithmetic 

operations on fuzzy numbers. It does not matter at what grade of 

membership the bandwidth is chosen as long as it is the same in all 

numbers in a given set of calculations. Table 4 gives the results of 

all 4 operations for all possible values of X and Y. Addition and 

subtraction are exact. while multiplication and division are 

approximate. That is. for addition and subtraction. the bandwidth is 
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the of bandwidths and the the sum or difference 

of the val In mult ication division the value is 

the t Oi" quotient while the normclLt:i.ed bandwidth of the 

normalized bandwidths. To 

ge a roy, Z at the P ,cc,.5 point was 

calculated for the 3.4,6 7 with the parametric 

formuJ.as. and then ~ t was determined pointwise using 

1000 " are shmvn in Table 5 It ean be seen 

that for a bandwidth of .OS of the • the ric representation 

a near perfect calculation for multiplication, in that the 

tr is Since division skews the resultant 

distribution more than mult ication, the parametric approximation 

for division does not such accurate results. However. it 

should be possible to derive a better approximation, since the error 

seems to be constant at Z as determined by the parametric formulae for 

ions on Al raic ions 

Assume for the moment that one is will to tolerate the error 

caused operations a is will to perform a point by 

point for d:i.vis:i.on and mult:i.pl:i.cation when the bandwidth 

exceeds an arbit chosen per of the peak. Hmv then do 

these fuzzy number behave after a sequence of operations? A Fortran 

IV program v.Jas written to any sequence of ions on any 

number of var:i.ables. As an let the operat:i.on be 

R E + [F * C * BJ [D / A] + F 
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Let the variables be "reasonably" defined so that the value of the 

bandwid th at ]l .5 is equal to 10% of the peak value. Table 6 shows 

this operation. 

If the bandwidth at ]l "".5 is allowed to be 50% of the peak for 

each number A to F 9 then 

R "" [ 26.938 ~33.250 64.813] 

Interpretation 

Interpretation of the degree of fuzziness of the resultant is not 

an obvious matter. vfuen two symmetric positive numbers are added, say 

A + C = 9., the resulting bandwidths •• 9. are still 10% of the 

resultant. However. for A ~ C = ~1 •• the bandwidths are again .9. 

Hence it is not possible to speak in terms of the bandwidths being a 

percentage of the original variable. Are the results of these 

operations 

A + C = [.9 9. 

and A - C a [.9 ~1. 

.9] 

• 9] 

really of different degrees of fuzziness given the original variables? 

This problem is intensified for multiplication and division. and if 

one were to add several large only slightly fuzzy numbers at the end 

of a series of operations. the resultant might appear quite good. 

indeed. 
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Our ion of the numbers then has to do with the 

non-normalized bandwidth, at least in the range of zero. Although 

this of cha:racte a number as a perc.entage of the 

band1f):Ldth. is useful ion of the inal variables, when 

the result of an is considered it is as if the peak, in some 

sense, becomes rtant in this of the real number line. 

Pass one should revert, at least to a representation 

of the resultant ed by interval analysis. For instance. 

A + C 

A 

that it is the 

[8.1,9.9J 

1.9.0.1] 

peak"" 9.0 

peak 1.0 

tude of the interval itself that is the 

most important datum to result from the computation. As the peak 

value gets large this psychological ion of the size of the 

bandwidth again could be 

example, let 

ted as a perc.entage of the peak. For 

A '" [80,100] or [10.90.10] 

B [800,1000] or [100,900,100] 

and both the same sense of precision. 

Another facet of the difficulty of the interpretation of interval 

numbers or numbers arises from the non-distributivity of these 

numbers. Different intervals are obtained for Y if. for example. one 

Y X/(X-l) and Y 1 + 1!(X-l). For example. let X be a 

fuzzy number X "" (1,5 and 1 a constant 1 "" (0,1,0). Then 

Y xl [. 75, 1. 25. • 9375 ] 

Y", 1 + l!(X~'lJ "" [.125. 1.25 •• 0625]. 
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The smaller bandwidth in the second expression is due to the 

mUltiple use of the constant 1. However in the example computed 

above~ 

and 

R ~ E + [F*C*B] ~ (D/A] + F 

R E + F(C*B+1] ~·D/A 

give the same resultant. If sequences of operations are to be 

performed utilizing any variables more than once, this property of 

non~distributivity must be taken into account. Moore (1966) discusses 

a scheme for selecting the expression to give the minimum interval, 

but it is complex 

It should be noted that these techniques are related in a broad 

sense to traditional error analysis that is concerned with the 

propagation of errors in numerical calculations. An example of such a 

system is process graphs (e.g. Dorn & l'1cCracken, 1972) which use 

different formulae than those used here but hit some of the same 

philosophical problems with regard to absolute vs. relative errors. 

It seems worth considering whether the types of errors traditionally 

considered in numerical analysis could be viewed in a fuzzy framework. 

Numerical analysiS tends to be concerned with inherent errors in the 

data. truncation errors and roundoff errors. Only the first is of 

interest here. For an instrument reading or a time interval. if only 

a few significant figures are given, as in. say 1.S seconds. we may be 

able to place bounds on the numbers. for instance, 1.S ± 0.2 seconds. 

If these numbers could be philosophically justified as fuzzy numbers, 

then fuzzy arithmetic could be applied to physical measurements or 

distance measurements as well as questionnaire data within the same 
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analysis. This could lead to a powerful technique for data 

I 'd' f' 3. va 1 atl0n. or lnstance. 

Reciprocally. the step by step computation in Table 6 might be 

viewed as a kind of process graph where each operation is a node. 

This formulation is useful if one wishes to see how the numbers spread 

under successive operations. particularly in the case of alternative 

algebraic representations of the same quantity. 

Some Further Thoughts on Fuzzy Numbers. 

These analyses suggest two interesting extensions. The first 

concerns manipulating different shapes of numbers while the second 

relates to possible applications of the theory of fuzzy numbers. 

1. Numbers with different shapes. Suppose that the shape of the 

distributions Were not triangular, but of another form. Zadeh (1973) 

has suggested using a piecewise quadratic function. and this seems a 

likely shape to investigate since it more closely resembles a normal 

distribution than does a triangular distribution. The difficulty in 

using a normal distribution is that its support is infinite. although 

an arbitrary cutoff could be made. beyond which it is considered to 

have y ~ O. Another form that frequently occurs in real-world 

applications is that of a rectangular distribution. This resembles an 

interval number where Y '" 1 or Y '" constant for every value within 

the support. Two approaches in the literature for dealing with these 

varied forms of numbers seem immediately relevant. First. Dubois and 
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Prade (1978) combine distributions in a piecewise fashion so more than 

one functional form could be used in the same operation. Second, Jain 

(1976) considers rectangular numbers alone within the context of 

tolerance is in network design where components and variables 

can take a range of values. By using a different definition for the 

sum of two fuzzy variables, rather than Zadeh's formulation he shows 

that two sets that have uniform ~ within each set add such that the 

values near the center of the sum have higher grades of membership 

than those at the extremes of the resultant distribution. 

This points up an interesting facet in the development of fuzzy 

set theory. Zadeh's initial formulation arose from the semantics of 

applied systems analysis while other, more formal developments) have 

emanated from many varients of multivalued logic (e.g. Gaines, 1976) 

or by analogy with probability theory (e.g. Nahmias. 1978). These 

different systems result in different formulations of fuzzy variables 

and different operations on them. Which is "correct" is addressed by 

Gaines (1976)~ 

••• only the semantics of particular applications can 
determine which is the appropriate choice. In many practical 
situations these semantics are so fuzzy that the choice 
does not matter over a wide range of possibilities. 
Developments of the mathematical foundations of vague 
reasoning need to take this into account and not attempt to 
introduce a new level of arbitrary precision in the 
metalanguage - detailed and specific arguements as to 
what are the "right" functions seem singularly inappropriate 
to the subject area. We need integrative. broadly 
based theories with strong intuitive appeal. 
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2. Discrimination of fuzzy numbers. This work was initially 

motivated by the idea of using fuzzy numbers in data analysis, for 

example in data validation 1tlhere two combinations of different 

variables should the same result. But if the resultants are A 

( • 5, 3. 9 • 5) and B ( 10 ,lh 910) 9 one must have a way of measuring to 

what the numbers agree. Complete overlap would give ]J "" L, 

while for complete separation ]J '" O. This type of measure relates to 

that developed by Enta (1978) who describes a technique for assessing 

the of among possibility distributions. This topic 

will be the subject of a future paper. 
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Footnotes 

1. A normal density with mean 0, SD 1 has a maximum Y ordinate of 
.3984. hence at ~lSD. Y "" • 2420. and ]J [X=~l] .3984 X .2420 '" 
.6067. 

the 
I the extension principle is analogous to 
ility density induced by a mapping. See. 

3. An example of the use of fuzzy set theory in the analysis of 
physical quantities is given by Jain (1976). In this paper he 
discusses a method for the analysis of the effects of subjective and 
objective tolerances in networks design. Since components used in 
practically every type of networks and systems may vary over a range 
of values, tolerance analysis is undertaken to show the effects of 
these variations. Sometimes statistical distributions of component 
values are available and standard techniques can be effectively used. 
At other times. however. the component variable values and their 
associated uncertainties are given linguistically as "small" or 
"large" or "about 100 K nil. Jain suggests that set theory could 
be used here. as well as in cases that could be conventionally 
analysed. but in which one wishes to consider the distribution of 
published component values as fuzzy. 
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APPENDIX 1 

Derivation of formulae in Table 4 

These formulae were derived by Dubois and Prade (1978). A few are 
explained for ease in understanding Table 4. 

Basically there are two rules: 

Addition X(±)Y 
Multiplication X@ Y 

these generate 

Subtraction 
Division 

x@ (-Y) 

X ® (l/Y) 

Dubois and Prade show that for 

Y =(y,Y,6) 

l/Y = (o/y2, l/Y, y/y2) 

Using the parametric forms, without the second order correction factor 
for simpl icity: 

For X > 0 Y > 0 

(a, X, B) EEl (y, Y, 6) :: (a + y, X + Y, 13 + 0) 

(a, X, (3) ® (y, Y, 0) :::: (Xa + Va, XY, Xo + VB) 

Subtraction and Division can be derived from these: 

(a, X, B) 8 (y, Y, 0) '" {a. X, (3) ® (- (y, Y, 0)) 

:::: (a, X, B) ~ (6, -Y, y) 

:::: (a + 0, X - Y, 13 + y) 

(a, X, (3) CD (y, V, 6) - (a. X, (3) ® (0/y 2, 1/y2, y/y2) 

:::: (Xo/y2 + a/V, X/V, Xy/y2 + SlY) 
:::: ((X6 + Ya)/y2, XIV, (Xy + YS)/y2) 

For X < 0 Y ~ a 

(- (a, X, B)) EB (y, V, 6) :::: (13, -X, a) @ (y, Y, 0) 

:::: (B + y. X + V, a + 6) 

- [(- (a, X, B)) ® (y, Y, 6)J :::: - [(B, -X, a) ® (y, Y, 0)] 

:::: - [-Xy + YB, XV, -Xo + Ya] 
:::: (-Xo + Va, XV, -Xy + YB) 

All the other formulae can be derived following these procedures. 
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MULTIPLICATION 

.85 .9 ,95 1.0 1.05 1.10 

Z :::: X'Y :::: 1: 1. 

Bandwidth at ]l ~ .5 

X (.05 1.0 .05) 

Y (.05 1.0 .05) 

1.15 

XBL 793-8783 

FIGURE 3 : Resultant of 1.·1.; 1000 calculations per point. 

MULTIPLICATION Z :::: X·y ::: 1..1. 

Bandwidth at ]l :::: .5 

x ( . 25 1. 0 . 25) 

Y :::: (.25 1.0 .25) 

XBL 793-8784 

FIGURE 4: Resultant uf 1.'1; 1000 calculations per point. 
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MULTIPLICATION z - X·y ::= 4.,7. 

Bandwidth at 11 '" .5 

X ::: (.20 4.0 .20) 

(.35 7.0 .35) 

24 28 

XBL 793-8785 
FIGURE 5: Resultant of 4: 7,; 1000 calculations per point. 

DIVISION Z := X/y ::: 1. /1. 
~ 

Bandwidth at 11 .5 

X '" (.OS LO . OS) 

y (.05 .LO .05) 

1,0 1.1 1.2 

XBL 793-8786 
FIGURE" 6: Resultant'of 1. /1. 1000 calculations per point. 

34 
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DIVISION Z ;:;: X/Y '" 1. / 1. 

1.0 
Bandwidth at 11 :::: .5 

X (.25 1.0 .25) 

Y (.25 1.0 .25) 

o 3,0 

XBL 793-8787 
FIGURE 7: Resultant of 1. /1. 1000 calculations per point. 

1.0 

.5 

o 

1\ 
'/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
2 4 

Xl 

X2 - -- -

5 

XBL 793-8788 
FIGURE 8: X 3 with different bandwidth. 



z x y=z- fl(X) fl(Y) min(fl(X) ,fl(Y)) 

15 3, 12, O. L O. 
3,1 11.9 . 1 ,9 , 1 

3.2 11.8 ,2 .8 ,2 

3.3 11. 7 ,3 .7 .3 

3.4 11.6 .4 .6 .4 

3.5 11.5 .5 .5 .5 

5,0 10.0 o. o. o. 

TABLE 1: fl for Z = 15 
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Calculation per point 
50 100 500 1000 

Z""X/Y V-I 
L 

Pz 100 
l1 Z 500 l1 z WOO 

1 .333333 .000000 ,000000 ,000000 ,000000 
2 ,466666 ,257141 ,260000 ,272000 .272000 
3 ,600000 ,480000 ,499999 .499999 ,499999 
4 .733333 ,680000 ,681818 .692000 .692000 
5 ,866667 .840000 .853846 .856000 .856154 
6 1.000000 1. 000000 1,000000 1,000000 1,000000 
7 1,133333 ,870588 ,870588 .874118 ,874118 
8 ',266667 ,760000 .760000 .764000 .764000 
9 1,400000 ,657143 ,660000 ,665714 ,666000 

10 1.533334 .565217 ,578261 ,578261 ,578261 
11 ',666667 ,488000 .500000 ,500000 ,500000 
12 1,800000 .422222 ,422222 .428000 .428000 
13 1.933334 .360000 ,360000 ,363448 .363448 
14 2,066667 .296774 ,300000 ,304000 ,304000 
15 2,200000 .240000 .245454 ,249091 ,250000 
16 2.333334 .200000 ,200000 .200000 .200000 
17 2.466667 .151351 .151351 ,152973 .153784 
18 2,600000 ,107692 ,107692 .110769 ,110769 
19 2.733333 ,068293 .068293 ,071219 ,071219 
20 2.866667 .032558 ,032558 ,033953 .034000 
21 3.000000 .000000 .000000 .000000 .000000 

TABLE 2: DIVISION Z :::: X/V 
for X ::::: ( .25 L .25) 

Y ;;:;: ( .25 1. ,25) 
Z ::::: (,4275 1. ,5625) 



MULTIPLICATION 1, x 1, 

Range of X ~ ,9 - 1,' 
Range of Y =.9 1,' 
Range of Z '" ,81 - 1.21 

(±10% of X and Y) 

steps in X 
50 100 500 1000 

x 50 - ,020 .019 .019 
b 
'F 100 ,008 ,008 
V) 

0- 500 ,002 Q) 
+l 
V) 1000 

x 50 
b 
'r- 100 
V) 

0- 500 Q) 

+> 
V) 1000 

X :: ,5 - 1,5 
Y :: ,5 - 1.5 
Z '" .25 - 2,25 

(±50% of X and Y) 

steps in X 
50 100 500 1000 

- .020 ,020 ,020 

,008 ,009 

,002 

All entries are the maximum value in the difference between ~Z columns 
as shown in the sample in Table 2, 

MULTIPLICATION 4, x 7, 

Range of X = 3,60 - 4,40 
Range of Y = 6,30 - 7.70 
Range of Z '" 22,68 - 33,88 

(±10% of X and Y) 

b 
50 

'r- 100 
V) 

~ 500 
+l 

"V) 1000 

steps in X 
50 100 500 1000 

- ,019 .019 ,019 

.008 ,008 
,002 

DIVISION 1./1, 

Range of X = ,9 - 1,' 
Range of Y = .9 - 1,' 
Range of Z '" ,8182 - 1,222 

(±lO% of X and Y) 

steps in X 
50 100 500 1000 

50 - ,019 ,018 ,018 
b 

'F" 100 
V) 

~ 500 
+> 
V) 1000 

,007 ,007 

,002 

X=,S-l,S 
Y '" .S - 1,S 
Z ::; ,3333 - 3,0 

(±50% of X and Y) 

steps in X 
50 100 sao 1000 

50 - ,019 ,019 ,019 
b 

'F" 100 ,012 ,012 
V) 

~ 500 ,001 
+l 

V) 1000 

TABLE 3: Matrices Showing the Maximum Value 
of the Difference in ~Z as the 
Number of Points in X Changes, 
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vi on "" L 

BANDWIDTH 
~ 

mean 1 

ght 1.1025 . 2 

+ 25% mean left .440 
right 1.5625 .560 

Division Z::::X/Y :::: 4./7. 

+ 5% mean 

+ 25% mean 

Multiplication 
+ 5% mean 

+ 25% mean 

Multiplication 
+ 5% mean 

+ 25% mean 

1 .5157 .487 
right .6300 . 2 

left 4 . 440 
ght .8929 .560 

Z :::: X*y "" 1 . 
left . 9025 .500 

right 1.1025 .500 

1 .5625 .500 
right 1.5625 .500 

X*Y :::: 4.*7. 

left 25.27 .500 
right 30.87 .500 

left 15.75 .500 
ght 43. .500 

TABLE 5: ~Z Computed Point by Point 
and Parametrically 

.500 

.500 

.500 

.500 

.500 

.500 

.500 

.550 

. 500 

.500 

.500 

.500 

.500 

.500 

.500 

.500 



VARIABLE MEAN RIGHT l.l '" ,5 POINT 

A ,40 4.0 ,40 

B ,10 1,0 .10 

C 5.0 .50 

D .30 .0 .30 

E .40 -4.0 .40 

F .. 50 .0 .50 

Then step by computations give: 

M"'D/A .158 -.750 .143 
N=F*C 4,750 -25.0 5.250 
O=N*B 6,775 -2~,O 8,275 

P=O-M 6,918 -24.250 8,433 
Q=E1oP 7.318 -28.250 8,833 

R"'Q1oF 7,818 - ,250 9,333 

TABLE 6: R ~ E + [F*C*B] - [D/A] + F 
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