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Several ~xperimentall,2 and theoretica13- 5 investigations of 

vibrational predissociation of van der Haals molecule$ have been c~~-ried 

out recently. In this cOlllITlunication we report the experimental estima-

tion of the vibrational predissociation rate of vibronically ~xcited 
.' i". i 

hydrogen molecule dimers using the known auto ionization rate of hydrogen 

molecules as a clock. The scheme is based on the competition between 

autoionization and vibrational predissociation following photoexcitation 

of hydrogen molecule dimers thus: 

- .. + 
H3 + H + e 

hv • 

Since (H2)2 is very weakly bound, it is expected that the (H2)2 

excitation spectrum should be very similar to that of H2 , 

*Permanent Address: Instituto de Qulmica, Universidade de Sao Paulo, 
C.P. 20780, Sao Paulo, Brazil. 
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* In the absence of vibrational predissociation of H2 "H2 , the photo-

ionization spectrum of H3+ hom (H2,)Z should be nearly ideritical 'to 

. that of H2 + from H2 , at .17ast above theH2 + ionizat:&m threshold, 

+ .. +, . 
since H2 "H2 decomposes to H3 + Hrapidly .. '. On the other hand, by 

carefully examining the differences that appear in the spectra, one 

can learn somethingaboutt:he vibnitional predissociation process in 

* H2 "H2 · 

The experiment was done uSing.a.molecular beam photoionization 

arrangement described previously.6 Hydrogen dimer was produced by 

expanding hydrogen at 18.4 atm pressure through a liquid ,nitrogen 
~ ,~.;- .. \ "". ; ", _ : " • ~ . • ' - : ,I ':; :' 

cooled 10 micron ,nozzle. ,Formation of Jarger clusters was negligible 
-( . ~.: . , . ~ ,'~' " . . , .- . "., ;. . .' ,~ ':: .. ' -/ 

under these conditions. :he. b,eam '. co~t~ining both ,H2 a~d (H2)'2,.w;as ,> 

then crossed with a dispersed vacuum UV photon beam. Pressure in the 
': ;. j' :' i:' ".' ." .. ,,":- .. " :) '" _ .~<,_' : -~ :',., i .".' :-." .... ;. '.' .' .:':,: .. 1', ':::(:'1..! 

-7 ' 
interaction region, was 3 x 10 torr. The lightsoutce w.as the helium 

.~, ,'. "'-.,; ,". ;"-', •••• ,.: J .,-;." ;1 . .'.: .,"_.,~.i"~-;:;~~":· 

Hopfield continuum. To obtain sufficient light intensity, the 1 m VUV 
, .. .l~, . ~ ,:..: ;", ':i 

monochromater W'~s set for 4 A resolution. '. The, H2+ ;photoioIlV<7~~~n:,: 

spectrum was obtained at much lower stagnation pressure to ~voidcon-

. + H + 
The photoionization spectra of R3 and 2 are shown in Fig. lao 

. ',. 0 0 

The two spectra are normalized at 778 A and 799 A to facilitate com-

parison. The high resolution photoionization spectrum of H2 reported 

7 
by Dehmer and Chupka clearly indicates that the ionization near the 

threshold is 'entirely dominated by intense and narrow autoionization 

lines. The observed features in our spectra result from resolution 

averaging of this sharp structure. 
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·····7 .' .' . 
In H2 photoionization. it:. has been shoWI?,thatvihrat.ionalauto-

. ' ·'1112' ionization which oc.curs via /:'v ::i 1 1S much faster (k=lO . -10' . 
. -1' '.' . ...• ..... ..... .... .... ...... .' 8 a, 9-1 

sea. ) ·than that which occurs via tJ.v > 2 (k =10-10 sec.). In: . - a' ., ... 

Fig. la, we have plotted . under . our:.spec.tra those states .which must 
. ....... 7 8 

autoionize via a tJ.v > 2 process.' State.$.with . uncertain assignments, 

but likely to autoionizevia' tJ.v .::. 2, are shoWn .'withdashedlines. The 

arrows show the thresholds for various H2+ vibrational states. 

, + + . 
When the H3 and H2 spectra are compared, it is apparent that 

+ above the H2 threshold, they are very similar as predicted. However, 

+ there are regions where the H3 spectrum lacks the intensity of the 
o 

H
2
+ spectrum. The parts which are identical, 780 - 790 A and 797 -

o * 802 A, are the regions where H2 auto ionization is dominated by tJ.v 1 

processes and the parts where H3+ is less intense are those where 

tJ.v·'::' 2 processes contribute significantly. Since tJ.v > 2 autoionization 

is slow, it seems possible that vibrational predissociation is removing 

* these (H2)2 states before they can autoionize, lowering the ion 

intensity. We can therefore estimate the rate of vibrational pre-

dissociation by assuming that for, these states which autoionize via 

tJ.v .::. 2, kd ~ ka · From the reported values for ka for different states, 

8 -1 0 8 
which are 2.1 x 10 sec for Q(l) 6pTI, v = 2 (795.9 A); and 7.6 x 10 

sec -1 for Q(l) 5pTI, v = 4 (780.4 A), 7 we estimate kd 

* 9 -1 * for H2 (v=2)oH2 and kd ~ ~O sec for H2 (v=4)oH2 , 

8 -1 
~ ~ x 10 sec 

Since tJ.v = 1 

11 -1 
autoionization seems uneffected, kd < 10 sec in both cases. 

4 The predissociation rate of H2 (v=1)oH2 was ca1cu1at€d by Ewing 

3 -1 to be 4 x 10 sec However, there are at least two effects present 
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* in the high excited (H
2
)2 that we are dealing with that would lead 

* one to expect higher predissociation rates. In (H2)2 the Rydberg 

electron has a principal quantum number of at least 5, lending con-

siderab1e ionic characterter to the excited hydrogen. This pre-

sumab1y reduces the vibrational level spacings in the excited hydto-

gen and increases the depth and steepness of the intermolecular 

potential in the dimer. Both these effects are expected to lead 

3 4 
to higher predissociation rates.' An increase in the predissociation 

rate with vibrational quantum number is also expected. 

The H3+ spectrum below the H
2
+ ionization threshold corresponds 

* primarily to transitions to the H2 oH2 Rydberg series converging on 

+ H2 (v=0)oH2 · Since these states can neither vibrationa11y predissociate 

* nor auto ionize without additional irtteraction between H2 and H2 ' 

ionization in this spectral region must occur via a chemiionization 

* process in H2 oH2 · 

Figure 1b shows the experimentally observed H3+ intensity near 

threshold without photon flux normalization. This allows better 

estimation of background ion intensity. The measured threshold is 

14.09 ± 0.05 eV. Taking the proton affinity of H2 to be 4.37 eV
9 

we calculate a thermodynamic threshold of 13.70 eV. The difference 

of 0.37 eV in the threshold presumably is due to the limited sen

sitivity of detecting the low level H3+ signal from H2*oH2 near the 

threshold, rather than a real discrepancy in the proton affinity of 
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FIGURE CAPTION 

FIG, 1. + (a) The photo;ion:tzation efficiency curve of H3 from (H2)2 

+ and H2 from H2' The lines at the bottom shows the autoionization 

s ta tes with t::.v > 2 from. Ref,. 7; (b) the threshold region of H3 + , 

"]ii>: 
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