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ABSTRACT 

We consider the interaction of vector currents with hadrons in 

a two dimensional SU(.N) color gauge theory coupled to fermions in 

leading order in an N~ expansion. After giving a detailed review of 

the model, we consider various transition matrix elements of one and two 

vector currents between hadronic states. A pattern is established where­

by the low mass currents interact via meson dominance and the highly 

virtual currents interact via bare quark-current couplings. 

This pattern is especially evident in the hadronic contribution 

to inelastic Cbftpton scattering, M =ldx e ^ < n|T*(j (x)J (0))|m > , 

which we investigate in various kinematic limits. It is shown that in 

the dual Regge region of soft processes the currents interact as purely 

hadionic systems. Modification of dimensional counting rules is indicated 

by a study of a large angle scattering analogue. In several hard inclu­

sive non-light cone processes, parton model ideas are confirmed. The 

impulse approximation is valid in a Bjorken-Paschos-like limit with 

very virtual currents. A Drell-Yan type annihilation mechanism is 

found in photoproduction of massive lepton pairs, leading to identi­

fication of a parton wave function for the current. 
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I. INTRODUCTION 

The experimental realities of hadronic physics lead to the 

consideration of a non-Abelian gauge theory of colored gluons 

interacting with fermionic quarks as a possible candidate for 

describing the dynamics of the strong interactions. The high energy 

dependence of electron-positron annihilation and the scaling behavior 

(with violations thereof) of deep inelastic leptoproduction shows 

that, as seen by large mass currents, the hadronic constituents are 

weakly coupled on a short distance scale. This is understood to be 

a consequence of the proven asymptotically free [l] structure of the 

theory. On the other hand, it is hoped that che long distance 

problems that arise in perturbation theory are indicative of a 

mechanism for quark confinement. 

A dynamical system which has the properties of asymptotic 

freedom and quark confinement and, at the same time, gives an 

S-matrix which is analytic and unitary on the space of physical 

states is clearly special, being highly constrained. It is therefore 

of interest to ask whether the dominant phenomenological prejudices 

about hadronic interactions, which have developed to explain 

isolated aspects of the dynamics without much regard for the overall 

constraints, can be realized consistently in a realistic theory of 

hadrons. 

These prejudices fall into two large areas - dual Regge ideas 

[2] about soft processes (no large final state transverse momentum) 

and parton model [3] ideas about hard processes. Regge models are 



implicitly hound state models, and describe coherent, diffractive 

scattering. Currents are introduced by the ansatz of vector 

dominance, which assumes that the current interaction with the 

strongly interacting system is mediated by hadrons with the quantum 

numbers of the current. The parton model description is in terms of 

pointlike hadron constituents seen in processes with large momentum 

transfer. Current-hadron interactions are viewed as an incoherent 

sum of current-constituent scatterings in this kinematic region. 

The standard strong interaction gauge theory is quantum 

chromodynamics, QCD, based on the group SU(N), with N = 3, 

coupled to spin =5 quarks transforming as the fundamental represent­

ation. The insolubility of the theory due to infrared singularities 

prevents the extraction of the mass shell S-matrix elements via 

standard perturbation theory techniques. A likely form of attack, 

perturbing in N~ , developed by 't Hooft [h] has not led to any 

significant clarification of the quantitative problem in four 

dimensions. In two dimensions, one space and one time, hcwever, 

(QCD)„ can be solved exactly to leading order in N~ f5l . 

The spectrum of (QCD) 2 in this approximation consists of 

an infinite sequence of zero width color singlet bound states. 

There is no continuum corresponding to free quarks. Examination of 

hadronic amplitudes [6] indicates analyticity [7] and consistency 

with unitarity in the color singlet sector with no long range forces. 

Asymptotic freedom is trivial due to the fact that (QCD)„ is 

superrenormalizable. The model is thus a "realistic" model of 
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strong interactions, in the sense that it is a consistent structure 

with the required properties. As such, it has often heen used as a 

laboratory to investigate hadron dynamics with the hope that, in the 

process of understanding its working mechanisms, insights into the 

four dimensional problem might arise. 

Extrapolation to four dimensions must however be regarded 

with caution due to the special unphysical features arising from the 

lack of transverse dimensions. The usual Regge ideas are inappro­

priate since there is no continuous independent variable associated 

with the t-channel and no spin. There are no dynamical degrees of 

freedom associated with the gluon field, so that "glueballs" 

cannot appaar. On the other hand, there are experimental indica­

tions of strong transverse momentum damping in high energy hadronic 

interactions, giving rise to the speculation that two dimensional 

physics may be a useful first approximation to scattering in the 

real world. 

Previous work in the 't Hooft model, (QCD) p to leading 

order in N~ , for the most part substantiates theoretical ideas. 

Examination of current form factors and two current vacuum expecta­

tion values [6, 8]confirms light cone scaling ideas and shows how 

underlying quark dynamics is recovered from amplitudes which show 

only hadronic intermediate states. The hadronic production of 

massive lepton pairs which, though not light cone dominated, is 

amenable to a naive parton model impulse approximation treatment, 

shows parton scaling structure [9] • Soft hadronic amplitudes 
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show power law high energy behavior with the power determined by the 

properties of quanta exchanged in the crossed channel, direct and 

crossed channel factorization, and signature, indicative of the 

operation of some precursive dual Regge mechanisms [10,11 ] . The:re 

is, however, no indication of a pomeron in the model. Finally, a 

possible modification [8] of dimensional counting rules [12] "$# small 

dynamically determined powers is suggested. 

The purpose of this paper is to examine the interaction of 

hadrons with vector currents in the 't Hooft model. We are, of 

course, motivated by the possibility of abstracting our results to 

photon-hadron interactions in four dimensions. Through the treatment 

of simple single current vacuum to meson and meson to meson matrix 

elements, the salient properties of the current interaction are 

established. The current is dominated by hadrons in the Eegge limit 

and interacts with bare pointlike quanta in the hard scattering 

limit. This pattern carries over to the two current matrix elements 

and gives rise to a rich, unified, picture of the photon-hadron 

Compton scattering process which is our major concern [13] . 

We investigate inelastic Compton scattering in the 't Hooft 

model by considering the connected part of the matrix element of the 

time ordered product of two vector currents between mesonic states. 

After computing this amplitude, we examine it in various limits of 

interest. The incident virtual photon is taken spacelike and the 

outgoing virtual photon is taken timelike in our calculation. In 

general, we do not consider the zero mass "on shell" photon limit in 
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order to avoid possible unwanted effects strongly dependent on the 

two dimensionality of the theory. 

Several authors have investigated various aspects of the 

Comptcn amplitude in this model. Einhorn [8] has discussed the 

imaginary part of the forward elastic amplitude with very spacelike 

photons in connection with inclusive leptoproduction. Erower, et al. 

have looked at the zero photon mass limit [lo] . In this paper we 

examine the full inelastic Compton scattering amplitude for 

arbitrary photon masses. 

We show that scattering in the forward high energy limit is 

closely related to meson-meson scattering. The scattering amplitude 

shows all the Regge properties attributed to hadronic scattering. 

In particular, we find no conclusive evidence for fixed poles 

arising in the inelastic Compton amplitude which are not present in 

the hadronic amplitude. 

We examine a part of the Compton amplitude in the forward 

high energy limit as an ansatz for large angle.scattering for con-

parison with the predictions of the dimensional counting picture. 

After modification of the counting rules due to the lack of photon 

degrees of freedom is accounted for, important modifications in 

the asymptotic power dependence and coefficient of the amplitude 

remain due to non-perturbative aspects of the model. 

Several inclusive limits are investigated. We show that the 

parton "handbag" model is realized for inclusive Compton scattering 

at large energy and momentum transfer with very virtual photons. In 
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the process of photoproduction of massive lepton pairs we find that 

the amplitude scales in agreement with the parton model prediction 

[1H] based on the Drell-Yan parton-antiparton annihilation mechanism. 

We show that the partonic structure of the photon probed in this 

process arises totally from couplings to negative parity mesons. 

The remainder of this paper is organized as follows: In 

Section II, we qualitatively discuss important properties of the major 

elements of the 't Hooft model. In the course of this discussion we 

try to emphasize the similarities and differences between (QCD)„ 

and (QCD). SO that there is some guide as to how seriously the 

abstraction of the behavior of the 't Hooft model to the four 

dimensional world should be taken. Section III contains a review of 

the solution of the 't Hooft model, establishing notation and 

presenting formulae which will be of use. We discuss single current 

matrix elements in Section IV, and two current matrix elements in 

Section V, with the exception of the Compton scattering amplitude, 

which we treat in Section VI. In this section we compute the amplitude 

and then examine it in various kinematic limits. Exclusive scattering 

limits with finite mass photons are treated in Section V.B while 

inclusive processes and comparison to parton model descriptions are 

discussed in Section V.C. We include a proof of some simple parity 

identities in Appendix A, discuss other currents in Appendix B, and 

show the conservation of vector currents in Appendix C. 
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II. ELEMENTS OF THE MODEL 

The strong interaction dynamics we consider in this paper is 

an SU(N) gauge theory of vector gluons and fermonic quarks in one 

space and one time dimension. This theory, two dimensional quantum 

chromodynamics, (QCD)p, was first considered by 't Hooft [5] in 

leading order in an expansion in N~ . 

The purpose of this section is to review the important 

elements of the 't Hooft model - the two dimensional space-time, 

SU(K) gauge theory, and the N~ expansion. We shall "be expecially 

interested in highlighting the properties of the dynamics which 

are highly dependent on the two dimensionality of the space-time 

and comparing them to the properties of the four dimensional 

theory, (QCD). . This will give some idea of the extent to which 

behavior of (QCD)- can be -easonable abstracted to (QCD). . 

A. Two Dimensional Space-Time. 

1. Poincare Group Structure 

Minkowski space in two dimensions is described by a set of 

real points (t, x). The Poincare group is the set of real, linear, 

transformations under which the distance between two points remains 

invariant. The distance between x = (t , z ) and x„ = (t , z ) 
2 2 2 

is (x - x ) = (t - t„) - (z1 - Zp) so that the metric tensor is 

g = 

On 

Lo -1. 
g - 1 = g T . (II.A. 1) 
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We first look at homogeneous (origin preserving) transforma­

tions of the Lorentz group. The invariant length requirement requires 

the Lorentz group to be the set of real two by two matrices, M(X), 

such that 

JTUJg M(X) = g . (II.A. 2) 

The proper Lorentz group, continuously connected to the identity, is 

a one parameter group whose unimodular elements, M , are of the 

form 

M QU) 
cosh X sinh X 

sinh X cosh X 
= exp (XK) (II.A. 3) 

where 

K = 01 = 
0 1 

1 0 

The group is abelian with law of composition 

(II.A. k) 

M (X)M (X') = M (X + X') o o o (II.A. 5) 

Physically, we see that the angular momentum and transverse 

boost generators in four dimensions do not appear once transverse 

dimensions are eliminated. The only transformation remaining is a 
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boost along the z direction with velocity 3 = tanh X, as seen by 

the familiar form of eq. (II.A. 3). 

Since K in eq. (II.A. h) is a real symmetric matrix, 

it can be diagonalized by a similarity transformation. This 

diagonal representation is called the light cone representation and 

is achieved by rotating to the light cone [see fig. (II.A. l)] 

Cl-iUQ- (II.A. 6) 

In this representation, the metric tensor of eg. (H.A.l) is 

0 l" 
g' = 

1 0 

and the Lorentz transformations of eq.. (II.A. 3) become 

"exp X 0 
M;(X) = 

0 exp -X. 
= exp XK' 

where 

K' = a3= 
1 0 

Lo -lJ 

(II.A. 7) 

(II.A. 8) 

(II.A. 9) 

Light cone coordinates thus scale under Lorentz transformation. Under 

a parity transformation, z •*• - z, we have x + •*• x- . Two Lorentz 

invariants can be formed from two vectors x and y, a scalar 
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product x • y = x y + x y and a pseudoscalar product 

x y = E x^X,= xv - x y . A pseudoscalar function of two vectors, 

possible in two dimensions because of the E tensor, cannot be made 

in four dimensions. 

The full Poincare group is gotten by including translations 

in the space and time directions. The group thus consists of 

transformations M(X, x) of the form 

M(X, X) = T(x) M (X) = exp (x • P) exp (AK) (II.A.10) 

where T(x) is a translation by amount x. The group has the law of 

composition 

M(X, x) M(X", x") = M(X + X', Xx' + x) . (II.A.11) 

The generators P and K form a lie algebra given by 

b , Pv] = 0 JK, P y] = E y V P v . (II.A.12) 

2 We see from eg.. (II.A. 12) that the operator P is the only one 

that commutes with all elements of the Lie algebra. Thus all 

representations are characterised by an invariant mass and the 

carriers of the representation satisfy the Klein-Gordon equation. 

This differs from the four-dimensional case where there is another 

invariant operator which labels the spin of the representation. Spin 
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is not realized in two dimensions. 

2. Simple Representations Of The Two Dimensional Poincare Group 

a. Scalar. The scalar representation is carried by a set of 

fields <j>(x) which transform under the action of the group as 

4»(y) ^ * +(y' = M(A, x)y) . (II.A. 13) 

b. Spinor. The spinor representation is constructed in 

analogy to the four dimensiona}. case. The Dirac y matrices are 

realized on a two dimensional space with the algebra 

{ Y
U , YV> = 2g P V . (II.A. 11*) 

The y's transform as components of a vector under Lorentz 

transformation. This gives the elements cf this representation of 

the group as 

M(X) = exp (- | Y 5 ) (II.A. 15) 

where 

Y 5 = | [ Y " , Y+l (II.A. 16) 

and M(X) acts on the Y'S by conjugation. We thus see that under 

a Poincare transformation 
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i|i(y) ^ exp ( | Y 5 ) *(y' = M(A,x)y) (II.A. IT) 

The spinor space is separated, into two distinct subspaces by the 

projection operators P ( + ) = I Y Y | (1 + Y 5 ) and 

P - - y v" = p i 1 " Ye)- I n "the represention where ty = 

such that P* + 'i|> -

the form y 

(+) 

(-) 

and P^~^ = 
0 

the y matrices have 

and Y fi 
0 0 

1 0 
The f i s l d s iji (±) 

analogous to light cone coordinates, scale under Lorentz transforma­

tions. The operators P (±) in four dimensions project spin 

helicities of massless fermions. In two dimensions however Y,- is 

the boost operator [see eq.. (II.A. 15)] and plays the role of 

a in four dimensions. This is explicit by comparing 
auv = ~2 ̂ Y u ' ^ t o Y l 5 a s d e f i n e d l n e 1 ' (H.A. 16). We thus 
expect some connection between helicity properties in four dimensions 
and momentum boosts in two dimensions. This connection will be 
clarified when we discuss short distance behavior below. 

c. Vector. The vector representation is the one realized on 
the points of Minkowski space and has already been discussed. A 
vector field, A (x), is a pair of fields which transforms under a 
Poincare transformation as 

Ay(y) ̂ 5 (M (X)A(y' = M(A,x)y)), (II.A. US) 
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3. Kinematics In Two Dimensions 

Scattering in two dimensions is, of course, restricted to a 

line. Thus particles either scatter forward or backward. Since 

there are no angles, fewer invariants are needed to specify an given 

scattering event. For an J-body process with all external masses 

known, *C-3 invariants describe the two dimensional process compared 

with 3J-10 invariants in four dimensions. 

We see that in the case Ji = U, only one continuous invariant is 

needed to describe the two dimensional scattering. The usual 

partial wave representation of the amplitude is not possible and 

Regge theory methods of analytic continuation into cross channel 

variables are inapplicable. 

B. Color SU(M) Gauge Theory. 

We consider a theory of massive fermions coupled to color 

SU(N) gauge gluons with coupling g . The Lagrangian density 

describing the system is 

£ = £ Tr(G j wG M V) + q (i# - mal)q.a (II.B. l) 

vhere 

G = 3 A - 3 A + g [ A , A ] (II.B. 2) yv u v v y & u' v 

Dy = V + g \ • (II'B- 3 ) 
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In the above > A is an N * N matrix of anti-hermitian gluon fields y 
[15] transforming as the adjoint representation of the group U(N) 

and q is a fundamental multiplet of spinor quark fields with 

measurable internal quantum numbers, e.g. flavor, indicated by the 

superscript "a". The U(l) gluon component has been removed in the 

quark-gluon vertices so that A = A - N~ Tr(A )l. The U(l) 

component is thus a free field. (This formulation is used because 

it results in Feynman rules with transparent N dependence, as 

discussed below). 

This theory describes the interaction of color gluons with 

fermions. The choice of spinor rather than scalar particles is 

motivated by the experimental evidence that hadronic constituents 

are spin % particles. On the other hc.nd, there is no essential 

difference between spinors and scalars in two dimensions since spin 

is absent and statistics a matter of convention [ l6]. Scalar (QCD)_ 

has been investigated [IT ] and results similar to those of! spinor 

(QCD) 2 obtained. 

Color SU(N) is a gauge theory, i.e. the Lagrangian density of 

eq. (II.B. l) is invariant under a gauge transformation of the type 

q(x) -*• exp (i3)q(x) 
(II.B. k) 

A (x) -*- exp (i0)A (x) exp (- Id) - J 3 9 
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where 0 is an N x H traceless hermitian matrix valued function 

of space-time. We choose to quantize the theory with the axial gauge 

condition, n • A = 0, for some vector n. This choice leads to two 

simplifications in the solution of the theory. 

First, the linearity of the gauge constraint eliminates 

the need to introduce Fadeev-Popov ghosts [l8 ] into the theory. These 

ghosts are fictitious wrong statistics scalar fields in the adjoint 

representation of the gauge group whose inclusion in internal loops of 

Feynman diagrams is necessary to maintain the unitarity and 

renormalizahility of the theory. The interactions of the N x u 

matrix ghost field, n(x), are described by a term in the Lagrangian 

cf the form ' 

jo G = Tr(n+(x) ||n(x)) (II.B. 5) 

where F is the equation of gauge constraint and 3F/30 describes 

the change of F under an infinitesimal gauge transformation. For the 

axial gauge case F = n • A . Using eq. (II.B. k), we find that 

3F = i[0, n • A] - i(n • 9)0 = - ̂ (n '3)0 since the first term g . g 
is zero in axial gauge. The ghosts, thus, do not couple to anything 

in theory, and can he factored out of the S-matrix. This 

elimination of ghosts is independent of the number of space-time 

dimensions. 

The second axial gauge simplification is, by contrast, highly 
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dimension dependent. Since in two dimensions, one component of a two 

component vector field has been eliminated by choice of gauge, the 

commutator appearing in eq. (II.B. 2) is zero. As a result, all three 

and four point gluon vertices disappear from the theory. This 

elimination of vertices cannot occur in four dimensions. 

The model is most e&sily solved when quantized on the null 

plane. Light-cone quantization [19]involves the specification of 

initial conditions, i.e. canonical equal "time" commutation relations, 

on the lightlike surface x = 0 , with the dynamics generated by the 

hamiltionian operator conjugate to x , P . Thus the roles of the 

coordinates are: x_= "time", x = "space", p = "energy", 

p = "momentum". The initial condition surface x = 0 , can be 

obtained from the surface x = 0 by a boost of the form given in 

eq.(lI.A. 3) in the limit that X approaches infinity. This 

quantization is thus appropriate for the description of the dynamics 

of the "infinite momentum frame". 

The infinite momentum frame has been used extensively in 
2 current algebra [20] to derive fixed Q sum rules and in parton 

models [21] to motivate the use of impulse approximation physics. 

Field theories in the infinite momentum limit [22 ] show a simplified 

structure which is particularly amenable to a non-relativistic type 

of description [23 ] where graphs with particles moving backward in 

time are eliminated. 

Applications of infinite momentum are typically plagued by 

questions of the existence and uniformity of the infinite momentum 
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l imi t . This question also appears in the l ight cone quantization 

scheme. The point i s tha t since there i s no f ini te continuous 

transformation which transforms the x = 0 surface to the x = 0 
o -

surface, spacelike quantization and light cone quantization do not a 

priori describe the same physical theory [2k] . An investigation by 

Bars and Green l25l shows the consistency of the spacelike quantized 

and light cone quantized 't Hooft model. 

Operator quantization of (QCD)? [25, 26] cannot be done so 

as to consistently generate the Poincare algebra of eq. (II.A. 12) 

due to the existence of a background color electric field. A consistent 

covariant theory can only be formulated on a Hilbert space whose 

states are all color singlets. There is thus an intimate connection 

between the Poincare structure and gauge group structure in (QCD)?. 

We restrict ourselves to a color singlet Hilbert space in this work. 

We choose to work in the covariant, A = 0 gauge so that 

Lorentz invariance is retained. This choice however, destroys the 

explicit parity invariance of the theory. Quantizing in A = 0 

gauge, an equation of constraint for A can be derived from the 

Euler-Lagrange equations: 

3^A+(x) = - ig3x)Y_rq(x) • T = - igj_(x) (II.B. 6) 

where the N x N matrices T form the fundamental representation of 
the lie algebra of the gauge group. Since there is no operator 
conjugate to A +, the field can be eliminated with 
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A+(x) = - ig^jjx) . (II.B. T) 

There are thus no dynamical gluon fields in (QCD) . All that 

remains is an instantaneous Coulomb potential V(x) which satisfies 

a^vU- x ) = <5(xjS(x ) . (II. B. 8) 

The elimination of two gluon degrees of freedom can be done in this 

way in four dimensions also. However the transverse gluons in four 

dimensions remain as dynamical variables. We thus lose the hope of 

finding in (QCD)p any (QCD)i effects whose origins lie in the 

existence of gluon degrees of freedom. 

The general solution of eq.. (II.B. 8) for the potential 

V(x+, X_) is 

V(x + , x_) = | | x + | < 5 ( x j + B ( x j x + + C (x_) . ( I I . B . 9) 

The first term is the linearly rising Coulomb potential in 

two dimensions. Thus, even at a classical level, quarks must be 

confined in neutral color configurations. Confinement in (QCDK 

is presumably very complicated, arising non-perturbatively from the 

singular infrared behavior of the theory. We see, then, that (QCD) 2 § 

by virtue of its trivial confinement mechanism, can offer no insight 

into the dynamics of confinement in four dimensions. 
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The second term in eq. (II. B. 9) gives rise to a background 

color electric field and can be ignored in the color singlet sector. 

The last term, C(x ), corresponds to no new physics. It reflects 

the fact that the light cone gauge, A = 0 , is preserved by the 

class of gauge transformations, eq.. (II.B. k), where 0 î as no 

x dependence. 

The fermion field equations of motion derived from the 

Lagrangian of eq. (II.B. l) in the A = 0 gauge include another 

equation of constraint: 

i3_q ( _ )(x) = ^ q ( + )(x) (II.B. 10) 

where the superscripts denote the (l + y,.) projections discussed 

above. The q field can thus be eliminated by writing 

q ( _ )(x) = ^ L f d
2

y 6 ( x _ y ) e ( x _ y )q ( + )(y) . (II.B. 11) 

There are thus only two degrees of freedom, q and q , 

remaining. The theory is quantized by setting up the canonical equal 

x anticommutation relations and solved in a perturbation series in 

the coupling g. The usual Feynman rules result and are given in 

fig. (II.B. l). Notice that the gluons, in the adjoint representation, 

have the color structure of a quark-antiquark state. It is sometimes 

convenient to represent the gluon propagator as two quark lines as 

in fig. (II.B. l) to keep track of the color flow through the diagram. 
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The singular behavior of the gluon propagator at zero 

momentum introduces infrared divergences into the theory. These 

infinities must be regulated. The regularization question is, in 

turn, tied to the residual gauge invariance in the problem. This 

can be clearly seen toy taking the Fourier transform of eq. (II.B. 9) 

for the potential. The residual gauge term C(x ) gives rise to a 

6(k ) term in momentum space. If C(x ) is set equal to zero, the 

gluon propagator is given by the Fourier transform of the Coulomb 
1 . 1 potential, P —p = — 

k (k + ie) 2 (k - ie) 2 
(The symbol P refers 

to principal value). The propagator can also be regularized by 

cutting the k = 0 point out of momentum space and taking the 
2 2 2 gluon propagator to be 0(k_- A )/k for some small fixed X. 

This is 't Hooft's A cutoff method and corresponds to C(x } = 

6(x)/7rA[27] • Gauge invariant quantities should then be finite in 

the limit A -»• t). 

The principal value prescription is useful sin'ce all diagrams 

are finite and the non-trivial cancellations due to gauge invariance 

can be clearly seen. The 't Hooft prescription is better suited to 

rapid calculation of graphs because of simplifications due to the 

A •+• 0 limit. We will use this method of regularization in our 

discussion. 

Having regularized the infrared divergences of the theory, we 

now look at the ultraviolet region. Using the familiar [28] power 

counting arguments, the superficial degree of a divergence, D, 
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of a Feynman diagram with n vertices, F external ferraion lines, 

and B external "boson lines is 

D = 2 - | - F - n . (II.BJ-2 ) 

The only superficially divergent diagram is thus the one loop 

correction to the gluon propagator (n = 2, F = 0 , D = 0 ) which is 

however finite due to the gauge invariance of the theory. The 

conclusion is that there are no ultraviolet divergences in the 

coupling constant perturbation theory of (QCD)?. Mass and coupling 

constant renormalization is finite. This softening of the theory 

occurs "because there is a dimension associated with the quark-gluon 

vertex;the coupling constant g has dimensions of mass. This is 

why n appears in eq.(II.B.12). Such theories are called superre-

normalizable, as opposed to renormalizable theories like (QCD). 

where the coupling constant is dimensionless and the degree of 

divergence of a diagram does not depend on the number of vertices. 

Theories with dimensionful parameters are trivially asymptoti­

cally free [l] . This means that,at short distances, (QCD)? looks 

like a free field theory. This assertion can be formally shown 

using renorraalization group techniques. The independence of the 

Green's functions of the theory on the renormalization point u 

leads to the identification of a dimensionless running coupling 
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_ 2 coupling constant, A(Q ), which gives the strength of the coupling 
2 2 when the scale of all momenta is set by Q . The Q evolution of 

A is given by 

H=6(A) (II.B.13) 

2 where t = log Q and 3(A) is the differential change in the coupling 

due to a logarithnic change in the renormalization point p. Since the 
coupling constant g has dimensions of mass in (QCD) , take a 

dimensionless parameter A = g(p)/p, where g(p) is typically 
2 2 calculated as a perturbation series of the form g(p) = g(l + ag /p + *')• 

Then 

6(A) = p|j = - A + 0(A3) . (II.B.1M 

If A is small enough so that only the leading term may be 
2 2 2 2 2 2 2 

retained, eq..( II.B.13) gives g (Q ) =pA (Q ) = g Q /Q where 
2 

g = g(.Q ) for some value of Q . The running coupling constant 

scales exactly as a power and free field theory diagrams (g = 0) 

dominate as Q -»• °°. 

This behavior is modified in (QCD), where the coupling 

constant is dimensionless. The first, linear, term in eq. (.II.B.llj) 

does not appear. The asymptotic freedom of the theory is then deter­

mined by the sign of the cubic second term. Even if the sign is 

negative and asymptotic freedom results the form of the (3 function 
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induces logarithmic, interaction dependent, corrections to scaling 

not present in two dimensions. 

C. Free Field Short Distance Behavior Of Currents 

The short distance behavior of the product of two operators 

is given by the operator product expansion [29 ] 

lim - i fdx ei4,X<MT(0n(x)0o(c))lB>=',Pdr,(q)<M0 (o)l B> (II.C. l) o - oo J 1 2 Z-«n n 

where the {0 } are the local operators of the theory and the limit 

on q is such that the dominant region of integration comes from 

x ~ 0. The leading behavior of the coefficients d (q) as q •+ °° 

is determined by simple dimensional analysis from eq. (II.C. l). 
F n 

If D(o) is thenass dimension of the operator 0 , d (q) = a (q)q +• 
n n 

as q •*• •» where P = - 2 + D(0,) + D(0o) - D(0 ) and a (q) n J- c. n n 
is a dimensionless function of log q. Clearly the dominant terms in 

the short distance expansion will come from the operators of smallest 

dimension. In view of the asymptotic freedom of (QCD)p 

discussed above, the a can be calculated from free field theory. 

There are four simple, gauge invariant, hermitian, fermionic 

currents, J '(x) = : q(x)y <l(x):, (C = S, PS, V), where 
S PS V u 
Y = I (scalar), y = iy5 (pseudoscalar), y = y (vector). 
Short distance products of these currents can be expanded to give 

- i|d2x e i q' X<WT(J { C )(x)J ( C )(0))|B>= do
C)(q)<aiB>+ ^jdfj^) 

<JV|J(D)(0)|B> ••• . (II.C 2) 
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These are the dominant terms since the identity operator, D(l) = 0,and 

the current operator, D(J) = 1, are the lowest dimension operators 

in the theory [30]. The free field values of the expansion coef­

ficients can be obtained from simple Wick expansion. The coefficents 

d (q.), for example, are found to be d ( S'= d^ P S^= B(2Tr)~1log (- q ) 2 , 

(qwj~ 2 ) N( i r)~ • T h e imaginary part of d* ' is related by o u ^ 
the optical theorem to the cross section for the decay of the current 
(C) (V) 

J into a quark-antiquark pair. Thus, since d is real, the 
leading short distance behavior does not contribute to the process 
+ -e e •+• X in two dimensions and the canonical sealing behavior does 

not occur. This is the simplest example of the general pattern of 

anomolous scaling behavior in two dimensions. 

This origin of this behavior can be seen be examining the 

free field Dirac equation which, written in terms of the (l ± Yr) 

projections ijj and iji , is: 

i9 m i | > ( ± ) = - ^ - ^ } . (II.C. 3) 

In the short distance limit, when the fermion mass is small 

compared to relevant mass scales, y (\(J ~ ) becomes an eigenstate 

°f P.(P ) with zero eigenvalue. The field ljr (\j) ~ ) thus creates 

and destroys right (left) moving quanta only. The fermion currents, 
( + ) written in terms of (|> are, 
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j( s> = + ( + > V - ) + * ( - > V + ) 

J(PS> = K t ^ V " 1 - •(")t*l + )J (II.C.U) 

j + = * ( + ) V + ) J- = ^ V - ) 

The vector currents, as shown by eq. (II.C. k), can only produce a 

quark-antiquark pair where both quanta are moving in the same 

direction. Since such a pair cannot be produced from vacuum due 
(V) -to momentum conservation, there is no contribution to J •*• qq in 

leading order (fermion mass equal to zero). 

We define the momentum helicity of a right (left) moving 

fermion or a left (right) moving antifermion as positive (negative). 

The discussion above shows that the leading short distance behavior is 

non-canonical in any process where momentum helicity is not 

conserved at a vector current vertex or is conserved at a scalar 

or pseudoscalar current vertex. The momentum helicity behavior 

in two dimensions is exactly analogous to spin helicity behavior in 

four dimensions, because, in both cases, the helicity states are 

projected out by h{l ± y ). 

D. The M~ Expansion 

't Hooft [h] has shown that tne set of Peynman diagrams of a 

U(N) [31] color gauge theory with color singlet sources contributing 

to a given order in N in an expansion of the theory as N •*• °° 
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with fixed is determined by purely topological properties. This 

is true in any number of space-time dimensions. 

The Feynman rules of the theory can be written in an N 

independent way and all the quanta represented by color flow lines 

(as done, for example, in fig. (II.B. l)). A diagram is then a two 

dimemsional surface with SL color loops, f fermion loops, and h 

handles. The N dependence arises from the color loops while the g 

dependence at the vertices is fixed by the structure of the theory. 

These can be related by Euler's theorem to show that a diagram 
—1 2h+f—2 r(£,f, h) ~ (N ) . The leading diagrams are planar (h = 0) 

with no internal fermion loops (f = l). Figure (II.D. l) shows a 

simple example of how the W-dependence on internal fermion loops 
2 comes about. Each internal loop results in a factor g at the 

quark-gluon vertices without making any new color loops. Figure 

(II. D. 2) shows a simple example of how the N-dependence on 

handles comes about. Handles result in the twisted connection of 

color loops which are separate on the planar level. 

Several important properties [32] of the mesonic amplitudes in 

leading order in N~ can be abstracted from the planarity of the 

graphs: 

(l). Mesons, color singlet quark-antiquark bound states, are 

absolutely stable to leading order. This is due to the color 

normalization of each external state in an amplitude. The probability 

for a meson to decay to two mesons is thus down by a factor of N 



from the probability for stable particle propagation. 

(2). Similar color normalization arguments can be used to show 

that, in an inclusive process, the unseen state consists of only 

one meson. Generally, the implementation of unitarity through 

application of the optical theorem involves next to leading orders 

in N~ , since the unitarity constraint is non-linear. 

(3). The mesonic ampitudes are meromorphic functions of the 

Lqrentz invariants. No multi-particle threshold cuts can be created 

on the planar level because a planar diagram cannot be cut through 

more than one quark-antiquark pair. This is illustrated by the 

example of fig. (II.D. 3) which shows a quark diagram which 

contributes to the buildup of a two particle intermediate state in 

the meson-meson scattering amplitude. This however cannot contribute 

to leading order in N~ due to the internal fermion loop. The 
_1 theory in leading order in N is thus a tree diagram theory of 

mesons with simple Born exchange amplitudes. 
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III. 1IADR0NIC STRUCTURE OF THE MODEL 

The treatment of quantum chromodynamics in two dimensions 

to leading order in N renders the 't Hooft model simple enough 

so that it can he solved exactly for mesonic amplitudes. These 

amplitudes are expressed as integrals over mesonic wave functions 

which are derived non-perturbatively by Bethe-Salpeter [33] techniques. 

In this section we formulate the bound state problem and 

review[5, 6l its solution in (QCD) Q. We thus arrive at an equation 
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for bhe bound state wave function and discuss its properties. The 

entire theory is then reformulated as a graph theory of mesons, 

with the three and four point functions used as examples. 

A. The Meson Wave Function. 

The color singlet quark-antiquark bound state wave function is 

obtained from the residues of the poles of the color singlet quark 

antiquark four point vacuum amplitude, D D ., given by 

(2TT) 25( P + p' - q - <l'UDag. Y 6(p,p;q,q') = fd2xf2x2&2y1&2y2 

exp(ip • x 1 + ip1 • x 2 - iq • y - iq' • y^• 

• <0|T(Tr($ a(x 1)# p(x 2))Tr($ (y1)i|) (y 2)))|0> (iIIA.l) 

and shown in fig. (III. A.l). (The Cteek letters are Dirac indices 

and the traces are in color space.) This is seen by examining the 

behavior of the amplitude due to a one particle intermediate state 

when the ijiiji clusters are separated by a large distance in space-

time. Defining the total momentum P = p + p' = q + q ' and the 
X X V 

center of mass coordinates x = X + —, x ? = X - —, y.. = Y + £•, 
y„ = Y - ̂ -, A = p and using translation invariance to translate 

Y + V 
the system by " ' , we have 

i D a 0 . y 6 ( P ; p , q) = / d 2 A / d 2

x y d 2 y exp(iA • P)exp i | • (2p-P)exp-iJ«(2q-P)-

< O l T ( T p ( * a ( ^ ) * 0 ( ^ ) ) T r ( $ (^ )* f i (= |=^) ) ) |d> .Cl I I .A2) 



29 

If Tr($ tp) is the source of a single particle bound state of mass 
M and momentum k,I k; M >, which is confined to a finite region n n 
of space time, there is a contribution, D (P;p,q) to D(P;p,g.) 
coming from the region A > A , for some A large compared to 
the size of the bound state, which is given by 

iD0(P;p,aJ = j dAo f M J i x j * j ^ ^ 6(kQ - Jf + M 2, ) 
A -oo 

exp(iA ' (P - k)) exp(i | • (2p - P) ) exp(- i | • (2q - P)) 

Ol T(Tr(iJJa(|)y- |)))|k; M n><k; Mn|T(Tr(iP7(|)^ (- |)))|Q> (HI.A.3) 

where we have used the restriction on A to split up the time 
ordered product,, inserted a sum over single particle intermediate 
states, and used translation invariance. The A and k integra­
tions can be done to give 

1 * i e ) ( P ' p ) X Y 6 ) ( P ' < l ) o o n 2 
D°(PiP,qJ = - -^•- 2 g '° exp iA°(P°-/P 2 + M 2 )(III.A.U) 

2 P (P° - / p 2 + M 2 + ie) v n 

where the wave function $ Q\P,P) is 

* a 0 ) ( P ' p ) = y * e x p ( " i f ' ( 2 p - P))<P»Mn|T(Tr(iJ<a(|)i|;6(- |)))|0> 

.(III.A. 5) 
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and X is the time reversed faermitian conjugate to $ 

Equation (ill.A. k) shows that $ can be obtained from the 

residue of the pole in the lower half P plane of D(P;p,q). This 

is schematically indicated in fig. (ill.A. l). 

The amplitude D(P;p,q) in the 't Hooft model is given by a 

sum of planar diagrams like fig. (Ill.A. 2). These diagrams 

are characterized by uncrossed ladder exchange of gluons between 

renormalized fermion propagators. Thus, in order to solve the bound 

state problem, we must dress the quarks and then sum the infinite 

series of ladder exchange diagrams. There are no vacuum polarization 

or vertex corrections in the planar, two dimensional, theory. 

l.Renormalizing the Quark Propagator. 

The proper self energy vertex, i2(p), is related to the 

full propagator iS(p) by the sum shown in fig. (ill.A. 3). The 

geometric series gives 

iS(p) = (iS(p))"1 - (iSo(p))-1 (III.A. 6) 

where S (p) is the bare propagator given in fig. (II.B. l). The 

planarity of gluon further relates S(p) to S(p) as shown in 

fig. (III.A. k) giving 

= ig 2N I-
J i 

d2ky iS(k)y 
iZ(p)=ig cN/ f -• . (III.A. 7) 

;£») (p - k ) 

The Dirac structure of eq. (ill.A. 7) shows that i2(p) = iy 0"(p). 
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Combining eqs . ( i l l . A . 6) and ( i l l . A . 7) , we get 

a(p) = i g 2 N / g -̂JE g — ^ - g ( I I I .A .8 ) 
•Mar) ( P . - k _ ) ( k + _ a ( k ) _ | _ + i E k _ ) 

which shows that o(p) is only a function of p . The k 
•integration is logarithmically divergent but can be done symmetrically 
to give 

_2- r dk 2^ rak 
o(p) = ^~-\ =—g- sgn k_ = S-A/—| sgn(p_ - k_).(lII.A.9) 

J (p - k ) •' k 

The integral over k is infrared singular. To regularize the 
integral we cut a hole around the origin from -X to A by replacing 
eq.(HI.A. 9)with 

A r * ? ? * 2N l"ssn(p ) i 1 
a ( p ) = i r f ) - f e ( k > * > s g n ( p -- k- } = % f [ x " - p J • ( I I I - A - 1 ° ) 

The full propagator is found from o(p) by eq.. (ill.A.6). It is 
given by 

i s ( p ) - - A ^ ^ ^ ^ !=*,_, (III.A.11) 

~2 2 2 where m = m - g N/ir. 
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The X cutoff dependence of the propagator is expected 

because S(p) = Id x exp(ip • x) <£)|T(ip(x)>J;(0) |0> is not a gauge 

invariant matrix element. The mechanism for quark confinement, 

i.e. the disappearance of quark mass singularities in the physical 

S-matrix, is clear in this formulation. These singularities are 

shielded by the X term in the limit X -*- 0. As X -*• 0, the 

propagator is linearly proportional to X if a y stands to either 

side to eliminate the X dependence of the numerator. 

2. The Bound State Wave Equation. 

Armed with the dressed propagator, the wave function can 

be found by summing all gluon ladder exchange diagrams. This can 

be done by writing an integral, Bethe-Salpeter, equation for the 

wave function $ (P,p) describing the n bound state of quark 

a with momentum p and antiquark b with momentum P - p. 

(The explicit Dirac indices of eq. (ill.A. 5) have been dropped) 

4>f (P,p) = ig^(iS(p)) Y | - ~ — p Y (iS(P - p)). (III.A.12) 

This equation is represented diagramatically in Figure (III.A.5). 

The equation can be simplified due to the Dirac structure 

and to the instantaneous potential which depends only on minus 
. ab momentum components. Defining the function <J> by 

C (?;P_)V_ =/Y_^b(P,p)Y_dp+ (III.A.13) 
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gives 

~2 

(V P. - 4 l 7 "(fef - -) -.p.-...)-/*- f^"' (p - k ) 2 

(III.A.1U) 

The p integration can now be done as a contour integal. The 

only non-zero contribution comes when the poles are on opposite 

sides of the real axis. Taking P positive for a real particle, 

this imposes-Ihe condition that P > p > 0. Performing the 

integration gives 

(v | - - iAn - fr )*>-*J - - & «*)•<*.•*_> • 

/ 
**- ab 
— ^ (P.P_-k_) . (III.A.15) 

The integral on the right hand side of equation (III.A.15) needs 

infrared regularization by the A cutoff prescription. The X 

dependence generated by the cutoff exactly cancels the A dependence 

of the left hand side. Multiplying through by 2P and defining 

the variable x = P /P in eq. (III.A.15) gives the 't Hooft 
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equation [5 ] f o r the meson bound s t a t e of mass M . 

o < * - > ' 

( I I I .A .16 ) 

• * b ( x ) = 0 x f lO. l ] 

where H is the free particle Hamiltonian (P ) and V is the 

Coulomb potential. The Lorentz invariant variable function, x- is the 

fraction of the total meson momentum carried by the quark in an 

infinite momentum frame where the meson is moving to the right. This 

description is not parity invariant due to the choice of gauge. 

The disappearance of the A dependence in the 't Hooft 

equation indicates that the wave function is well defined with 

respect to infrared ambiguities and is gauge invariant. The gauge 

invariance of the wave function can be shown formally [8] . <j) (x) 

can be expressed in terms of the function $ (x) of eq. (ill.A.5) 

through eq. (ill.A.13) as 

* n U ) = / d p + ( $ a B Y V = / d p + y ^ e x p ^ < C + P _ ( 2 x - l ) + S_(2 P + - P + ) ) • 

<ilT(4i ( + ) (§)i|/ + ) ( - | ) ) I 0 > = lwfaZ+ex? - i ? + P_(2x - 1) • 

•<nlT(i|> ( + ) (? 0H{+){- ? , 0 ) ) I O . ( I I I .A17) 
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Due to the p integration, only fields on the zero time 

(£ =0) surface contribute to the wave function. We compare 

this to the explicitly gauge invariant wave function A(£) given 

by ^ 

AU) = <nlT(iP(-Oexpli f A^dx^U)]! 0 > (IIIAJ8) 

which shows that a general quark-antiquark state involves an 

infinite number of gluons. Restricting 5 to the equal time sur­

face in the gauge A_ = 0 eliminates the line integral operator 

and shows gauge invariance of the matrix element in eq. (III.A.17)• 

Thus, the choice of the A = 0 gauge together with the choice 

of an infinite momentum frame with x = 0 equal time surface 

yield a simple gauge invariant quark-antiquark operator. 

Investigations [ 3̂ ] into the existence of states of 

greater than two quarks by summing planar diagrams in (QCD)2 

show that a A independent wave equation of the form of eq.(iH.Alo), 

with H equal to the total free particle energy and V equal to 

the sum of pairwise Coulomb exchanges, can be obtained provided 

the state is a color singlet. It is only for the meson state, 

however, that the planar diagram summation represents the leading 

order in an N expansion. 
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3. The Color Singlet Quark-Antiquark Scattering Amplitude [6] . 

The remaining element needed in expressing the 't Hooft 

model in mesonic terms is the color singlet quark-antiquark 
ab scattering amplitude, iT- »P',p,p'), which satisfies the ladder 

exchange integral equation depicted in fig, (ill.A. 6), 

IT**(P'.P.P') - ^ g (Y )aY(Y ) 6 6 + A / — o C v ^ ' ^ a3,Y6 ( p - p ' ) 2 " a Y " 6 6 (2ir)2-/(p -k? p a ' y S 

•(Y_B(P - k)) 3 o( Y_S(k)) a p . (III.A.19) 

T a 3 ; Y 6(P; p,p') is related to D^.^CP: p,p») of eq. (III.A. l) 

by truncating the external quark and antiquark lines. Its Dirac 

structure is T^.^ (P; P,p') = ( Y J ^ Y J ^ P ^ . P 1 ) . The Dirac 

algebra gives 

.2 . 2„ /. ,2, 
iTat(P,k,p') S*(P-k) iTaS(P-» P,p-) - i s

 2 - ̂  P ^ SJ(IL) 
(p_- PM 2 (2T;) 2^(P - k ) 2 E 

(III.A.20) 

where S„(p) is defined by S_(p)y = v S ( P ) Y • T ° separate the & & — • — — 
integrals we take t a b(P ;p_,p_') = /dp+SE(p)TalD(P;p,p' )S£(P - p). 

Following the same steps as for the wave equation, we find that 

T(P}P , p') satisfies an inhomogeneous 't Hooft equation: 
(III.A.21) 

~2 ~2 _ 
( p 2 " I T " I T J ^ * . * ' )+*£•{* ^IhlLfl . _ ^ L 

1 7 J ( y - x ) 2 (x-x ' ) 2 ? 
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where x = p /P and x' = P^/P_. Solving by standard techniques 

gives 

T (P; x,x«) = - -jj-*- 2w ~2 2 ^ d y 
C (y) 

2 2 P - M n n (y - x)' 
(III.A.22) 

Inserting t h i s solution back into eq. (III .A.20), we find 

?• . 2 ab . ab 

iTab(p,x,x-) --s-ia—p+ V r (x) * r (x.) (m.A.23) P ( x - x 1 ) P - M 

where T (x) is the normalized meson vertex n 

*«-^ffltf^tfl£] 

#3y) r24(x)0(x)e(i-x) r <n : 

I J SJ*IZ (y-x)^J 
(III.A.2U) 

according to the X cutoff regularization. This solution is 
displayed in fig. (Ill.A.6). 

The meson vertex T (x) is essentially the wave function 
.ab. <j>n (x) with external propagators cut off. It gives the amplitude 

for decay of a meson to a quark-antiquark pair. The correct color 

normalization appears in the explicit N factor. The X 
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dependence shows the gauge variance of the vertex. The vertex 

grows as X~ as X •*• 0 for 0 < x < 1. This X'1 behavior 

cancels the X behavior of the fermion propagator to give ^ 

independent amplitudes for gauge invariant quantities as . * "*" °* 

The graphical structure of the bound state vertex expressed by 

eq. (III.A. 2k) is shown in fig. (ill.A. 7). 

B. Properties of the Bound State Wave Function. 

The *t Hooft Hamiltonian operator is hermitian on the space 

of functions f(x), xe[0,l] such that f(0) = f(l) = 0. On this 

space it has been proven [ 51] that the spectrum of the operator is 

discrete and non-degenerate. The solutions, <j> (x), to the 

't Hooft equation are conventionally taken to be real and positive 

near x = 0. This implies 

<t£b(x) = (-l) n + 1^ a(l - x) . (III.B. 1) 

They form a complete, orthonormal s e t 

2 C ( x ) * n b ( y ) = 6 U " y J 

/ : 
dx <(> a b(x)<|) a b(x) = 6 . ( I I I . B . 2) 

n m nm 



39 

2 The meson Green's function, G(x,y; q ), can be written in terms 

of the wave functions as 

*Jx)*„(y) 

and 

G a b(x,y ;q 2) = V - f ^ (III.B.3) 

Gab(x; q2) = Jdy Gab(x,y; q 2). (III.B.U) 

The edge point boundary condi t ions a r i s e because the i n f i n i t i e s in H 
o 

at the points x = 0, 1 must be cancelled exactly by terms in 

the potential. This requires the edge point behavior of the wave 

function to be 

1 (-l)n+1CbS (1-x) b x •> 1 

S,"h "ho 

where C and C are positive constants and 0 is the solution, 

0 < g < 1, of 

. TTB cot ir8 = 1 - I -~-\ m 2 ( I I I . B . 6 ) ~\x\ 
The wave function can be analytically extended [7] into the complex 

x plane with cuts running to infinity from x = 0, 1 along the 

negative and positive real axes. The branch puint singularities 

give rise to the non-integer power behavior of eq. (III.B. 3)-
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2 2 The large mass wave functions, M » m , have the approximate form 

(j>ab(x) = \/T sin [ (n + 1)TTX], n » 1 (III.B. 7) 

except at the edge points where eq. (III.B. 5) describes the behavior. 

The mass of this state can be found from the 't Hooft equation to be 

M 2 = n 
g2N T72n , n » 1 . (III.B. 8) 

The large masses thus lie on straight line "Regge trajectories" 
' 2 of slope a = g Nir. More elaborate W.K.B. techniques have be used 

[7, 35] to find the first corrections to eqs. (III.B. 7) and (III.B. Q). 

An x dependent phase in the argument of the sin in eq. (III.B. 7) 

and further terms in eq. (.III.B. 8) which grow like log n appear. 

numerical calculations show that the W.K.B. form is reached very 

quickly. The edge point, large mass wave functions are universal 

scaling functions [8]. From the 't Hooft equation, it is easily seen 

that 

n -*• » 

( I I I .B. 9) 

lim (-Dn+\at(i - ghi/m2) =<£(£) . 
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The scaling functions depend only on quark properties and satisfy [36] 

Jd£<t>aU) = TT \~~] ma . (III.B.10) 

2 The Green's function also scales for large q 

lim q 2G a b(±g 2H£/irq 2; q 2 ) = h*U) ( i I I . B . l l ) 
? q ->• ± 00 

The wave functions satisfy several relations which arise from the 

underlying parity invariance of the theory. Since the spectrum is 

non-degenerate, every bound state has a definite intrinsic parity. 

The parity relations [6] involve integrals, over wave functions which, 

as seen from eq. (ill.A. 17), probe the origin of configuration space, 

which is invariant under a parity transformation. 

m a 
f *n U ) n+1 f *n ( x ) 

J dx - ^ (-l)n+1J dx -^a-y- (III.B.12) 

Mn j ^ t n W - ^ J ^ - V - * ^ . ] 3 * - ! ^ - (IH.B.13) 

Equation (III.B. 13) can be shown directly from simple manipulation 

of the 't Hooft equation. We give a proof of these relations by 

using parity invariance in the Bethe Salpeter formalism developed 

above in Appendix A. 
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C. Hadronic Scattering Amplitudes in the 't Hooft Model. 

Knowledge of the meson vertex (eq. III.A. 2^) and the quark-

antiquark T-matrix (eq. III.A. 23) allows the calculation of any 

meson amplitude. In this section, we develop a step-by-step procedure 

to compute any amplitude involving y vertices (this includes 

bound state vertices), using the meson three and four point functions 

as examples. This allows all of the matrix algebra to be done 

trivially so that it need never appear. A set of graphs arises from 

bare quark graphs which includes only mesonic elements - wave functions 

and propagators -folded into Coulomb potentials. 

These rules > coupled with the assumption of electromagnetic 

gauge invariance, allow the calculation of all amplitudes discussed 

in this paper. Modifications due to YJ-J^JYC vertices are considered 
+ ? 

in Appendix B and the divergencelessness of the vector current 

amplitudes shown in Appendix C. 

For the remainder of this paper we define units of mass such 
2 _ that g H/TT = 1. These factors can always be restored by simple 

dimensional analysis. 

Consider an amplitude with n vertices. 

Step 1.: Connect the vertices in all cyclically inequivalent ways 

with clockwise directed quark lines to form (n - l)! rings. Insert 

a meson vertex function as shown in fig. (III.A. 7) at every meson 

vertex. Keep only those rings whose internal flavor flow is consistent 

with external particle flavor assignments, (see fig. (III.C. l)). 
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Step 2. To every remaining ring diagram, draw another diagram 

inserting thfc T-matrix, as shown in fig. (ill.A. 6) in all possible 

non-overlapping ways in the color singlet quark-antiquark channels, 

except across bound state vertices. (See fig. fill.C. 2)) 

In this step, we have performed the sum over all planar 

diagrams to get the leading order in N contribution to the 

amplitude. The T-matrix does not appear across bound state vertices 

because it is already included in the wave function. 

Step 3. Eliminate all gluqns exchanged across bound state vertices. 

A remaining diagram has X, loops, f quark lines, B bound state 

vertices and G gluons. Compute the integer m = f - J l - B - G for 

each diagram. If m > 0 the diagram may be eliminated. (See fig. 

(III.C. 3) 

In this step, we are looking at the leading X behavior of 

a diagram as A. •*• 0. Elimination of the gluon across the vertex is 

the graphical equivalent of eliminating the non-leading piece in 

eq. (III.A. 2k) as A •*• 0 and simplifies counting. The leading A 

behavior of the diagram is A ; each fermion propagator gives a 

factor of A (dq. III.A. 11), each loop integration effectively 

eliminates a fermion propagator as in the derivation of the "t Hooft 

equation, each wave function contributes A - from the first term 

in eq. (ill.A. 2k), and the infrared singular part of every gluon 

propagator contributes A - . Simple topology shows that this constraint 

eliminates all graphs with two or more bare current vertices. 
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Step U. The remaining diagrams represent integrals over loop momenta. 

The integrals over the plus momentum components can be trivially done 

by contour integration. This splits each loop of f fermion 

lines into a, set"" of (f - l) time orderings, with the direction of 

a quark line determined by its minus momentum component, positive 

momentum flowing to the right. 

To every diagram, construct a set of time ordered diagrams 

by deforming the graph in all possible ways consistent with minus 

momentum conservation at the external vertices. This deformation is 

done by considering all orderings of the vertices. See fig. (III.C. k). 

Step 5: In the time ordered diagrams, if there is a bound state vertex 

where the quark and antiquark are not both pointing in the same 

direction as the vertex, insert a gluon to achieve this configuration. 

See fig. (III.C. 5). 

This step reinserts the non-leading piece of the vertex 

which was dropped in Step 3. 

Step 6: Consider all time ordered diagrams which do not contain any 

meson propagators. Recompute m as in Step 3, with the difference 

that G is the number of gluons in the diagrams which do not change 

the directions of the quark lines at its vertices. If m > 0, drop 

the diagram. See fig. (III.C. 5). 

This step counts the A dependence of the time ordered 

diagrams by determining whether the singular part of the gluon 

propagator can contribute. This X~ term can only contribute if 
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the minus component of momentum flowing through the gluon i s ze ro . 

The p l a n a r i t y of t h e diagram insures t h a t m > - l . There 

are t h u s two cases : 

Case 1: m = 0. 

(i) Scale the minus momentum of each quark line by 

dividing by some external minus momentum component so that each 

quark line is characterized by a Lorentz invariant momentum fraction 

variable. The allowed ranges of the invariant integration variables 

are determined by the time orderings of the diagram. 

(ii) To every loop with f ,.,right (left) directed quark lines, 
f /f - 2\ r 

f=f + f , assign a factor (-1) (i) ( J—J,vhere the limits on the 
At 

integration are determined by the time ordering. This factor arises 

from keeping track of the contour integration over plus momentum 

components. 

(iii) To every quark-gluon vertex assign a factor g. 

(iv) To every gluon carrying momentum fraction w which 

does not change the directions of quark lines at its vertices assign 

a factor 2ifi(w). 

(V) To every other gluon carrying momenturn fraction w 
2 assign a factor i/w . 

(vi) To every bound state vertex with momentum fraction 

z, with quark a carrying momentum fraction w and antiquark to 
ab carrying momentum fraction z - w assign a factor -2g<i> i^). z 
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(vii) Change loop integration variables so that all 

integrals go from zero to one. This is the conventional standard 

form for displaying the amplitude. 

(viii) Insert factors of scale momentum as needed to satisfy 

Lorentz index requirements. 

Case II: m = - 1. 

This case only arises in connection with the n meson •*• n 

meson function where the incident and outgoing mesons alternate 

around the ring. These diagrams thus occur as part of the four, 

six, eight, etc. point amplitudes. The U. diagram of fig. 

(III.C. l) is an example. 

These diagrams all go as X but, as demanded by gauge 

invariance, the sum of them cancels out to this order. The next to 

leading A order must be recovered by taking into account the next 

to leading pieces of the meson vertex, gluon propagator and fermion 

propagator. The total meson vertex correction is easily seen to 

vanish as a result of the vanishing of the A contribution. 

(i) To every m = - 1 diagram with G gluons which 

do not change direction of the quark lines at its vertices compute 

using the m = 0 rules with the exception that one of the G 
2 gluons carrying momentum fraction w be assigned a factor i/w . 

Do this for each of the G gluons, generating G terms. 
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This takes into account the non-leading gluon exchange 

correction, giving rise to terms with gluon denominators which can 

he zero in the loop integration region. These infrared singularities 

are cancelled hy the fermion propagator corrections by the following 

prescription: 

Take the m = - 1 diagram with n vertices and insert a 

gluon across one of the vertices. Do this for each vertex, one 

at a time, to create n diagrams. Compute these diagrams using the 
2 

m = 0 rules, except that a factor of i/w is assigned to the 

inserted gluon carrying momentum fraction w. One of these diagrams, 
•f"Vi 

with the gluons inserted across the i state, will have the same 

gluon denominator as one of the diagrams computed above when all 

terms are written in the standard form. Add this term to the amplitude. 

It should eliminate the infrared singularity. In addition add 
2 2 an off mass shell term by inserting a factor (M. - p.)6 (gluon 

denominator) into the integrand of the term just added. 

Step 7: Wow consider diagrams with meson propagators. They 

connect subprocesses whose amplitudes are calculated by the rules 

above. Connect the subprocess amplitudes by meson propagators 
2 2 2 

S i/p -M. + ie where p is the invariant mass of the meson channel. 
k K 

The bound state summations are to be done before any integration. 

We have thus given a set of rules which generates explicitly 

infrared finite, gauge invariant, amplitudes. The separation and 

elimination of individual graphs contributing to an amplitude is a 
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gauge variant procedure. The amplitudes are not explicitly parity 

invariant, as seen from their dependence on minus momentum components. 

This stems from the lack of parity invariance in the choice of gauge. 

The equality of amplitudes calculated in parity reversed frames 

leads to highly non-trivial parity relations. These identities can 

hopefully be shown directly by clever manipulation of the properties 

of bound state wave functions. While no such proofs of these identities 

exist, numerical calculations are consistent with their validity [9] • 

The rules of this section are stated as if for a general n 

vertex amplitude. We believe these rules to be applicable in general 

but have not checked them beyond the four vertex amplitudes computed 

in this paper. In particular the prescription for handling m = - 1 

diagrams might need modification. Using these rules we find the 

mesonic three point vertex to be given by 

1 

^nsk- ( v x = i r ; ) = 2 1 s x ( 1 - x ) J dwdy *?w*>> 

<j>*C(xw) - <t£C(y(l - x) + x) 

(y(l - x) + x(l - w ) ) 2 

(III.C.1) 

The notation and diagrammatic representation of this formula is 

given in fig. (III.C. 6). Each contribution involves exchange of a 

gluon, reflected by the denominator of e<j. (III.C. 1). 

The four point meson-meson scattering amplitude can also 

be computed 



./j(..t), > k.i-- f,, VW1-'' ) )'M i' )vfe*)•.<" 
( xm + "b ' V 1' 

E 3-,,^) -kz a- &) - S ^ ^ ' d i f ^ i 

•̂jk;mn jk;mn 

itf^'*5 = UlIJL I dwfr-(w) / dylx<j> (y)*p£) ^jk;mn N K T k v ^ ) m m w ' n\ x / 
•j'V^'Vk'^ 
(^(l-yj-x^d-w))^ 

+ x <{> (y)* n n rm (^H ^(l-xn(l-y)) - ^ ( x ^ d - w ) ) 

(yxn - v ^ ) 2 

2 „2 2 ,„2 p -M p -M rm m n n 
m 

*k A d>.(x - x, (1 - w))<fr (l - — (l - w))$ (—v) yj m Ti " Y m x Yn x m n 

t-M?+ie 3m;£k( x^j - 5Z^6;m4
Xm) u_ M2 +JSik£\x n) 

(III.C.2) 
The notation and diagrammatic representation of this formula is given in 
fig. (III.C. 7). As indicated, the amplitude can be written in terms 
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of three point functions and contact terms in each channel. We haye 

made the usual separation into graphs arising from the (.st), (us), 

and (ut) duality sectors. ySee fig. (.III.C. l(b))j. The expressions 

given here are valid for the kinematic region which will he of 

interest; the 1 > x , x > x. . 
' m' n K. 

In any process, the external flavor content may allow 

contributions from diagrams with quarks circulating in 

opposite directions (see fig. (III.C. 1)). Denoting the amplitude 

calculated from a given graph "by Z and that of the arrow 

reversed graph by Z, the relation between Z and Z, apart 

from changing flavor labels, is 

Z [<J>(x)] = Z [<Kl-x)] • (III.C. 3) 
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IV. SINGLE CURRENT MATRIX ELEMENTS 

We proceed now to the main objective of this paper, the 

investigation of the behavior of photon-hadron interactions in the 

't Hooft model. The photon, of course, does not exist as a dynamic 

degree of freedom in two dimensions. Its source field, the flavor 

conserving, Lorentz vector, local bilinear in quark fields, 

J (x) = x . e:q (x)v q (x):, is a non-trivial operator whose 

behavior can be studied in the 't Hooft model as a photon analogue. 

It has been argued [37l that, due to the momentum helicity 

conserving structure of the fermionis theory discussed above, the 

electromagnetic analogue is better realized by Lorentz scalar 

rather than vector currents. We describe how our results can be 

applied to the scalar case in Appendix B. 
# 

A. The Photon-Hadron Coupling Y(q) •*• n . 

The d i r e c t coupling of t h e electromagnetic current t o a 

meson n , u (q) = < n(q)l J I 0> , can be c a l c u l a t e d from t h e diagram 

of f i g . (JV.A. l ) for the minus current component. Using current 

conservation we find 

*?«>-v v •• {f]T*Cw (IV.A. 1) 

The existence of the e tensor in two dimensions allows a gauge 
uv 

invariant coupling between a "scalar" meson and the electromagnetic 

current. The current coupling in four dimensions to a vector meson 
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is proportional to the polarization vector of the meson. 

Parity invariance gives a constraint on the intrinsic parity 

of the meson. If we denote the intrinsic parity of the meson n 

by (-1) and q', = q, the parity relation 

$ \ <*> = (-D^'^l') (IV.A. 2) 

implies that n is odd and the meson has negative intrinsic parity. 

This follows just from parity invariance and the form of the gauge 

invariant coupling. We can directly check that this is the case 

by taking x •*-»• 1 - x in the integrand of eq.(lV.A. l) and using 

eq. (III.B. l) to show that the photon couples to an odd parity meson. 

B. The Inelastic Meson Form Factor: n(p) •+• v*(q) •+ m(p+q). 

The computation of the amplitude for electromagnetically 

induced transition from a meson state n to state m, 

€r = <m(p+q)|j |n(p) >, depends on the details of the scattering. 
2 2 We take the transition to be an excitation, i.e. M > M„. There m n 

is only one divergenceless first rank tensor function of two momenta 

in two dimensions and t'.e form factor can be written 

^™(p,q) - £ y v q ^ ^ U 2 ) • (IV.B. 1) 

We consider first the case where the incident photon is 

timelike. The amplitude can be computed from the diagrams of fig. 
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(IV.B. l ) , and is given by 

^ U •> <L /P_) = 2e a % ^ i ! dy<i>f (y)J <J)f (y(l-z) + z) 
Jo 

+ z IdwG (w;q ) ^ ? 
J I (y(l-z) + z(l-w)) 2J ) 

+ ( _ l ) n + m ( a ^ b) (IV.B. 2) 

where the Lorentz invariant z is restricted by kinematics to 
2 2 0 < z < 1- M /M . The scaling variable z can be written in terms n m 

of external masses as the solution of the momentum conservation 

condition 

M « n 2 p P P _ £ _ + i - = M < % 0<z<l-MVM (IV.B. 3) 1-z z m n m 

2 2 The two solutions to this quadratic, z. and z„ = q /M z, , 1 e: m l 
correspond to parity reversed kinematics. Parity invariance demands 
that 

&™(z.) = (-ir«*^™U = 4 V . ), q2 > 0 (iv.B. U) i c m i 

When the incident current is spacelike, the two parity 

reversed reference frames give rise to amplitudes which have 
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explicitly different functional forms. The frames are distinguished 

by the sign of q_, the minus component of the current momentum. 

We denote Frame I (II) "by the frame in which q is negative 

(positive). The effect of a negative q in the time-ordered 

diagrams of fig. (IV.B. 1} is to flip the direction of the current, 

so that in Frame I the amplitude is calculated as if the current 

is outgoing and timelike. This effectively interchanges the initial 

and final meson states in the amplitude, giving 

nm 
z (x = - q_/pn_) = - ^ m n ( x ) (IV.B.5) 

where & ~r denotes the Frame I amplitude and the scaling variable 
x is kinematically restricted to 1 > x > 0 and satisfies 

? 
o 2 vr 

M - i- = r^- , l > x > 0 . (IV.B.6) 
n x 1-x 

The Frame II diagrams are the same as the timelike diagrams, giving 
•nm 
II rise ;o the same functional form for the Frame II amplitude & . 

^ ' ( z = q_/pm_) =^'""(z). (IV.B.7) 

The variable z satisfies eq.(lV.B.3) hut is now restricted to 
2 2 1 > z > 1 - M /M . There is only one solution to the quadratic 

of eq. (IV.B.3) in this region. Parity invariance implies 
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^ ( x = - q_/pn_) = (-l) n + f f i^ b m(z = - q2(l-x)/M2x), q 2< 0. 

(IV.B. 8) 

The two terms in the curly brackets of eq. (IV.B.2) have 

a simple physical interpretation which we have indicated in fig.(l/.B.l). 

The first represents the coupling of the hare current to the mesons 

while the second represents the coupling of the hadronic current content to 

the mesons through the three point function. This separation is giuge invariant 

The parity relations of eqs. (IV.B. k) and (IV.B. 8) are 

highly nontrivial. We cannot show them by direct maniputation but 

can use these equalities to bring out some interesting properties 

of the form factor not evident in either expression alone. 

Having derived the form factors, we can look at the 

imaginary part of the forward Compton scattering amplitude. In the 

leading order in N tree diagram theory this is proportional to 

the form factor squared, where the mass of the final . state is equal 

to the photon-hadron center of mass energy, y/&~ . We take this 

energy to be large and look at J . ^ ^ first for finite q < 0 
2 m 

and then for q •+-<», For simplicity we discuss the case where 
eb = 0-

(l) Finite q 2 < 0. 

We p.cc here considering forward Compton scattering of almost 

real photons, a process which would be described by Regge theory ideas 
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i n four dimensions. In the l a rge M l i m i t , eqs . (IV.B. 3) and 

(.IV.B. k) show t h a t t he sca l ing v a r i a b l e s a re pushed t o t he edge 
2 2 2 2 p o i n t s : z P 1 - M /M and x = - q /M . Evaluating both s ides of n m m 

eq. (IV.B. 8) in t h i s l imi t we ge t 

„ / , ,2 , "a„ab T a , 2, 0 ,.,2s P a , 2,„a, 2 w a b 2e (M ) C I (q ) = 2e (M ) (-q )f (q )I a m n a m ^ n (IV.B. ?) 

where 

I a ( q 2 ) = C - q 2 ) ^ ! dnd>a(-q2n)j |(i+n) a - n a J 
JO 

+ • d y G a a ( y ; q 2 ) 

- 'o 

y a - (n+1) a 

( i -y+n) ' 

(IV.B.10) 

p s D f ^ ; K 
n = " ^ n ' *n ^WM n T 1 

Jo J o 

r ab <J>*(M2(l+n)) - <(.b(M2w) 

( l-w+n) ' 
(IV.B.11) 

a 2 and f (q ) i s defined as 

l im G a i ( x ; q 2 ) = f a ( q 2 ) x 3 

x ->- 0 
(IV.B.12) 

which implies t h a t 

**2> - £ 
Jo ^ - " k 

-,aa (IV.B.13) 
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The equality of eq. (.IV.B. 9) shows that the ratio 

-,ab 
n a./ 2\ - g — r (q ) (IV.B. Ik) 

~ a, p 
independent of n and b. As a result we can evaluate r (q ) in 
the n -*• °° limit. This gives 

P a ( q

2 ) = y-siM (IV.3. 15) 

We thus f ind t h a t 

M' 
... /n-nm, 2 . ' _ ,„2^ a„ab f 2_a, 2 J 1 ^ 1 „lim Of- (q ) = 2e (M) C - q f (q ) |— 2 • ~P a m n |_ J | y * s i n i r g J 

m 

-3. 
= 2V V n V ^ (IV.B. 16) 

where 

nf/ab ,_ _ab 
' n ~ n v sirnrB 

% 

y? = E JoX(r) 
• 2 , 2 r L(v* - H 

,aa 

(IV.B. 17) 

[v a s in7 rB a J 
(IV.B. 18) 

With the form factor in the form of eq. (IV.B. 16), a 

Reggeized form for the imaginary part of the Compton amplitude can be 
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constructed and investigated. The analysis is identical to that of 

the meson-meson scattering amplitude done by Brower, et al. [ 10] . 

The function"^.(q ) given in eq. '(IV.B. l8) shows how the 

photon couples to the strongly interacting system, analogous to 

f/ , which describes the meson coupling. (More precisely f/ (H/ ) 

is essentially the photon-photon-(meson-meson-) Reggeon vertex.) 

Comparing eqs. (IV.B. 17) and (IV.B. 18), we see that the photon 

interacts as if it were a certain weighted sum of mesons with 

photon quantum numbers. The photon is totally meson dominated. 

The mechanism responsible for this simple description is the mechanism 

which causes the term proportional to f (q ) to dominate in the 

Frame II amplitude (see eq. (IV.B. 9))-- This dominant contribution 

comes from the region of phase space where the exchanged gluou in the 

three point function has vanishing minus momentum, giving rise to 

large factors coming from gluon denominators. This soft gluon 

exchange region dominates because the scaling variables are pushed 

to their edge points. 

Looking at the diagrams of fig. (IV.B. l ) , we note that the 

presence of the first bare coupling diagram is not reflected in the 

final pole dominated form of the form factor in the limit considered. 

This feature is more general, as can be seen by writing the form 

factor via dispersion relation from the crossed y* "*" n + m amplitude 

[8] . The first diagram of fig. (IV.B. l) does not appear at all 
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in this current decay. The form factor can thus be written generally 

in unsubtracted form as 

* - V , - e a £ £p£k*± • dV.B.lo) 
k 1 - M k + i e 

(2) Large q 2 •*• - °° [8] . 

Peep inelastic leptoproduction in the Bjorken [3 ] limit probes 

the light cone structure of the theory which, via asymptotic freedom, 

reflects underlying bare quark dynamics. In this limit, we take 
P p p P 

| q | , M -»• » in fixed ratio, -q, /Mm = x^/l - x Bj, with x f i J 

being the usual parton model scaling variable which is fixed between 

zero and one. The simplest description of this process in the 

't Hooft model is in Frame I where x approaches x R T in the 

Bjorken limit. In this limit the bare coupling diagram completely 

dominates and a scaling amplitude results: 

lira &**(*) = 2Tre &=^ % * (x) (IV.B. 20) 
BJ a x M n 

m 
We have used eq. (III.B. 10) in deriving this result. The anomolous 

scaling behavior of eq. (IV.B. 20) due to the presence of the quark 

mass factor results from the momentum helicity non-conservation at the 

current vertex. The fermion's direction is changed lay the photon, 

as can most easily be seen in the Breit frame. 
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The second term in the form factor is suppressed by the 

large denominator of the Green's function. This suppression 

cannot be overcome by soft gluon exchange because the scaling variable 

x is not at its edge point. 

This example using the form factor thus shows the trans­

ition from a meson dominated description to a bare coupling 

description as the mass scale of the current increases. 
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V. TWO CURRENT MATRIX ELEMENTS 
A. The Vacuum Polarization. 

The minus-minus component of the vacuum expectation value of 
two currents, II = /d 2x eiq-'X< 0|tfU,.(x)J ,(0))l0 > , has the simple 
pole dominated structure indicated in fig. (V.A. l ) . The amplitude 
is logarithmically ultraviolet divergent and must be regulated "by 

2 a subtraction at q = 0 . This leads to the gauge invariant expression 

H (q 2) uv u 

2 

^ q -M^ie ̂  *~* q -^ + ie 

(V.A.I) 

The asymptotic freedom of (QCD) guarantees that, as q-*--00, this 
agrees with the result of calculating the lowest order quark diagram. 
Using the completeness relation of eq. (III.B. 2 ) , we get 

lim 11 ,(q2) = /-q ) + ^ M i e
2 ^ (V.A.2) 

0. -*"-00 

(v) 
which agrees with d computed from free quark field theory in 
Sec. (II.C). Furthermore, using eq. (ill.B.13), [6,8] i't is easy 

2 to show that the next order in q corrections to H are uv 
determined by bare quark masses. We thus see how non-trivial wave 

function ident i t i es conspire to make the hadronic theory reflect the 

underlying quark physics at short distance. 
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The physical region of interest of 11 is the limit as 
2 q -f + oo which is probed in the inclusive annihilation of the vector 

current into mesons. This is not a smooth limit due to the delta 
2 function discontinuity every time q passes over a resonance. The 

delta function reflects the zero width of the bound states, which is 

a consequence of retaining only the leading order in the W~ 

expansion. Some smoothing procedure like resonance averaging is needed 

in dealing with inclusive final states to take into account non-leading 
1 N effects. Here, we simply interpolate between large mass states 

2 2 using M -*• kff . Thus, for i nc lu s ive ann ih i l a t ion of t h e cur ren t , 
iC 

we find 

_L 

lim Im( iH u v ) = { g ^ q 2 - y ^ e ^ S ( q 2 - M*J J d x ^ x ) 
2 

n -+• oo 

•{ yv*1 ~ %%l 

2 <» 
•e N /• d k 6 ( q 2 / i r 2 - k ) 

/ 
dx<J>k(x 

e2W 
{g u v <l 2 - %%} ^ 

j 

J dx<j>k(x) , 2 , 2 k=q /TT 

- { • 
Vv 

3UV 
?2e 2N 1 a 

a 
2 

(V.A.3) 
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where eg. (III.B. 10) has been used in the last line. There is an 

extra factor of % in the second line to give the correct density of 

states counting since only odd parity states are included. Again, 

the siomolous scaling behavior of the annihilation amplitude due to 

helicity nonconservation appears through the explicit dependence on 

the bare quark mass. 

The appearance of the bare quark mass factor and the correct 

normalization of the annihilation cross section is insured by eq_. 

(III.B.10). This equation is a prototypical example of a relation 

between summation over final states and constituent parton parameters. 

Relations of this type must exist in order to make the smooth 

transition from the bound state hadronic description to the short 

distance parton description of the theory. 

B. Meson Decay To Photons: n(p) -*• Y*(q1) + y*(q 2). 

We have derived the amplitude, 

«#pv ~J C 
2 iq -X 
d x e < 0|j (x)J (0)]n(p)> , for the decay of a meson 

n to two vector currents with positive outgoing minus momentum 
components. There is only one independent, second-rank, divergenceless, 
Lorentz tensor in two dimensions (as opposed to two such tensors in 
four dimensions). The decay amplitude can be written generally 
as (see fig. (V.B.l) for notation) 

# S v = 1 { - guvV q2 + *lvq2M}jifn(xl = ql- / pn-' x2 = < 12- / pn- ; < 1l' q2 ) 

(V.B.l) 



where the variables x.. and x 0 run between zero and one and satisfy 

if = -i. + _£. x + x = l . (V.B.2) 
n Xl X2 

In t he ' t Hooft model 

At/at 2 2 \ o 2 /N (!+(-!)") f, 2_, 2, 
# ( x ^ j q ^ ) = 2 e j y - J dyx2G(y;<i2) 

o 

j^) - T j -. «.,^) | _ _ _ _ ? J | + ( ^ 
(V.B.3) 

The decay process can be thought of as the Bose symmetrized emission 

of one of the currents from the meson via the inelastic form factor 

followed by the decay of the resulting meson into the other current 

via the direct current-meson coupling. The interference of diagrams 

with quarks circulating in opposite directions with respect to each 

other gives rise to an overall factor in the amplitude which allows 

only even parity mesons to decay into two photons. This is required 

by parity and Bose symmetry. Parity demands 

J5r n(q vq 2) = (-l)njtfV,0 (V.B.U) 
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where ql = q . In the center of mass of the decaying meson, however, A 
i 

we have q' = q~ ana q„ = q . The Bose symmetry of the amplitude 
1 a 

under qn •*-»• q 0 insures that n must be even. 

C. The Inelastic Form Factor QC The Photon: Y*(q,)+ 7*^) + m(q,+ q 2). 
• x 

We consider here the ampli tude, t /^ = J d x e -1-

<m(q.+ qJfr (J(x)J (C) |o > , for a spacelike photon, q 1 < 0, and a 
2 timelike photon, q > 0, to annihilate to form a final state meson 

2 2 

m. Since q.. < 0, there are two inequivalent par i ty reversed frames. 

In Frame I I , with q.. positive the amplitude i s explici t ly related 

by crossing to t/Sf of eq. (V.B.3) 

[ X v K " 1l> n-' x2 = «2>a- s 4l'q2 )JlI = 

« # J v ( x l = q l - / p n - ' x 2 = ^ A ^ j V ' ( V - C J j 

The Frame I amplitude is given by the diagram of fig. (V.G.l), which 

shows that the process takes place via the inelastic form factor of 

a meson dominating the timelike photon channel, 

J <Jy*m(y)jG(yU-z) + z;q|) + z2JdwG(w,q^) 

r;qg) - G(y(l-z) + z;q2)l) 
(y(l-z) + z(l-w.))2 J' 

_ in i y_ m i 

'o 
G(zw; 

(V.C.2) 
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With this expression, we can investigate the parton model aspects of 

deep inelastic leptoproduction from a photon in analogy to our 

discussion of Sec (IV.B.). In the Bjorken limit, 
2 2 2 

- q,/M = x R T/l-x B J with M •*• °°, the incident spacelike current 

probes the quark distribution of the finite mass timelike photon. 

This process thus measures the photon wave function. Taking the 

Bjorken limit, z -> x__, the amplitude of eq.(V.C2) becomes 

m 
(V.C.3) 

with only the bare coupling part of the form factor contributing. 

Comparing with eq.(IV.B.20) for the Bjorken limit of the ,-."oi form 

factor, we can define a photon wave function <|> (x) in analogy 

with $ (x) where 

v x ) - e

a y f G ( x ^ ) 
e r El f1 *^(y)" 
a V IT , J 2 .,2 

k K *2 " \ 

<()k(x)(V.C.l>) 

h The W appears explicitly because J is not a normalized color 

singlet operator while the charge reflects the photon-quark-antiquark 

coupling. Again, as in Sec. (IV.B), we have arrived at a totally 

meson dominated description of a finite mass vector current. The 

photon wave function is a linear combination of meson wave functions, 

the same linear combination as in eq.(lV.B.l8). 
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VI. THE COMPTON SCATTERING AMPLITUDE 

A. Calculation Of The Amplitude 

We now turn to the calculation of the scattering process 

Y*(q) + n(p ) •+ Y*(Q. ) + ^ ( P ) in 'the 't Hooft model by considering 

the Lorentz tensor MjJ(q,q' ;Pn»Pm) «Ja2xe~ia"*<n|T*(J (i)Jv(0)]|m> 

The states (n > and |m > are mesonic bound states of quark "a" 

and antiquark "b". In order to facilitate comparison with experi­

ments involving virtual Compton scattering we take the momentum of 
2 the incident current spacelike, q < 0, and that of the final 

•2 state current timelike q > 0. The spacelike incident current 

distinguishes the two parity reversed frames. The incident current 

minus momentum component, q , is negative(positive)in Frame I (II), 

The amplitudes computed in these frames are related by parity 

K > i } ] i = ( - i ) n + m [ •^ • -v ] ii to-A-i> 

whe^e the Roman numeral subscript denotes the frame in which the 

tensor i s calculated. In th i s section, the Compton scattering 

amplitude i s derived in both frames. We do th i s because each ampli­

tude has properties which are useful for demonstrating different 

aspects of the physical picture. In addition, comparison of the 

two expressions related by eq.(VI.A.l) brings out non-tr ivial 

features which are not evident in the amplitudes separately. 

The amplitude, which i s a crossing Bose symmetric 

^uv*"*1'*1 1^ = M v i / q ' ' ~ < 1 ^ divergenceless (qyM = 1 , V M

U V = °)» 
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second rank tensor, can he written in terms of a single structure 

function as 

lQa.l';Pn,Pm> = (- V I - 1' + q ^ T U . - l ' S P n . P j (VI.A.2) 

where^rf is symmetric under the interchange q. •*-*•- a.' and is 

Lorentz scalar or pseudoscalar depending on the parities of the 

external mesons. 

The computation in Frame I is considerably simplified by the 

fact that the incident current has negative minus momentum component. 

Since construction of the amplitude is only sensitive to "time" 

orderings of minus components, the incident current is automatically 

crossed and treated symmetrically with respect to the outgoing 

current. We are thus calculating, in effect, the one-to-three 

process n(p ) -•YH-q.) + Y*(o.') + m(p ). The minus-minus component 

of the Compton amplitude is given in the model by the diagrams of 

fig.(VI.A.l), which are characterized by simple Born exchange in 

each of the s,t, and u channels. The structure function is given by 

• £f#nVxi> — V - ^ v *•> 
k V n x s - M. +i£ 

,Xg/l - x x ) 
s - MT+ie " 

• ̂ X-V —;j— S ^ V V 1 - •«) 
U - M. + I E 

+ #"n;km ( p n> x ) t - l £ + izCff^ ' q . x / x . x ^ x ) 
EQ.(VI.A.3) Cont. on P.6? 
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•^V 1 " X )
 t . ̂  + . ee^ k' 5(^-q, J i/x,X 2/x)} 

(VI.A.3) 

where s,t, and u are the usual Mandelstara variables and 

x = x 1 + x„. The terms in curly brackets correspond one-to-one 

with the diagrams of fig.(VI.A.l). In this form, it is immediately 

seen that unitarity is satisfied in each channel to leading order 

in if 1. 

The structure of the amplitude is more complicated in Frame 

II. It is very useful, however, in that it is closely related to the 

meson-meson scattering amplitude. We have tried to indicate this 

relation in fig.(VI.A.2). Since the current is flavor conserving, 

each of the duality sectors of the amplitude contributes weighted 

by the charges of the appropriate quarks. This is indicated by the 

first graph of fig. (VI.A.2), which shows that the "meson dominated" 

hadronic two-to-two function is a term in the Compton amplitude. 

Contained in this term however there is a piece arising from the 

off mass shell part of eq.(HI.C2) which has no counterpart in 

hadronic scattering. The inverse propagator in this term cancels 

the outgoing photon channel meson propagator, resulting in a 

contribution which looks like the bare coupling of the outgoing 

current to the contact term of the (ut) duality sector. The 

remaining terms in the amplitude, shown in fig. (VI.A.2) have at 

least one bare current vertex. The Frame II scattering amplitude 

is given by 
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jtm(*-* - vf - z ' = x)\ii= ^ S / d u d v **u>v*> 

2 2 2 2 
g - M, + ie q' - M . + i e 

+ e e 
a b 

• 2z J^fu) Z (..•f (^) • e *f (̂ )) —§— 
•'o k x v b \ / / s - M.+ I E 

s -M^+ i e 

+ 2 JTiifiDf d y Ed + (-i)k) 
V IT Z ^ k 

• ( e V a (y(l-z') + z -q 2 )^ 5 (y) t _J + i e#n;kn (Vl+sS7") 

- ( - l ) m + n ( a ~ S)J . (VI .A» 
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This expression is valid in the kinematic region where 1 > z 1 > z. 

The Compton amplitudes given in eqs.(VI.A.3) and (VI.A.U) are 

functions of Lorentz invariant "scaling" variables. In Frame I, x.. 

and x p give the momenta of the crossed initial photon and final 

photon respectively as fractions of the incident meson momentum, 

while z and z* in Frame II give the momenta of the incident 

meson and final photon respectively as fractions of the incident 

photon momentum, where all momenta are measured in a left moving 

infinite momentum frame. These variables are related by 

x 1 = - q. z/Mn, X g = q.' z/Mnz'. 

In this section we have derived two expressions for the 

Compton scattering amplitude, related by eq..(VI.A.l), which are exact 

to leading order in N in (QCD) . We now proceed to investigate 

the behavior of these amplitudes in various kinematic and current 

mass limits for inclusive and exclusive scattering 

processes. A summary of limits considered is given in Table I. 

B. Exclusive Limits. 

' We now study the behavior of the Compton scattering amplitude 

in the limit that the center of mass energy gets large while all 

external masses are held fixed and finite. The scattering can either 

occur in the forward or backward direction in this two dimensional 

model. This is our analogue of high energy, inelastic, exclusive 

scattering of real or slightly virtual photons from hadrons. 

(1). Forward Scattering-Regge Limit. 

A simple picture of Compton scattering in the. Regge limit 
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arises in Frame II. The incident current is in the positive 

direction in the center of mass with q._= / ^ 11 - — + ° ( ~2) ) 

The initial meson state n, moving in the opposite direction has 
M 2 

vanishing minus component of momentum so that z ** . 
( M m " M n } 

The outgoing current is scattered such that Z 1 — 1 - . 
2 2 Thus, if M > M , the kinematic region is the one to which eq. m n 

(VI.A.k) applies. We take this condition on the masses to be the case. 

Examining the amplitude in this limit, we find that the leading 

behavior comes entirely from the first graph of fig. (VI.A.2). The 

leading behavior of the Compton scattering is given by the part 

of the amplitude corresponding to the meson dominated equivalent 

hadronic scattering amplitude. This can be seen in a fairly 

straightforward way by noting that leading behavior with scaling 

variables at their edge points always arises from regions of phase 

space where as many gluons with minus momentum fractions of order 

s can be exchanged as possible, giving large contributions fj.om 

gluon denominators. These soft gluons are exchanged in graphs of 

which the three point hadronic function is a subgraph (see fig. 

(III.C.6)). Thus, roughly speaking, the more three point subprocesses 

there are in a graph, the more important that graph is in this high 

energy limit. It can easily be seen that all the graphs with two 

three point subprocesses are contained in the meson dominated hadron" c 

amplitude. This is because a bare current vertex eliminates a three 

point subprocess. 
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The leading behavior of the Compton amplitude is thus gotten 

directly from that of the hadronic two-to-two scattering amplitude 

with the substitution $ (x) -»• e G (x;q.) in the i—current 

channel. The Green's function in the current channels is given by 
Gaa(x;q ) = S dy ̂ lf^y) K ^x)/l ~\- Zt c a n t e shown using 
eq.(HI.B.7) that the contribution from high mass mesons to this 

aa • 2 2 r> a 
sum is negligible i>o that G a;q. ) * S o, (q )f "(x) for some 

k *• ~ 

finite A. Thus the Compton amplitude is essentially a weighted 

sum of a finite number of hadronic two-to-two scattering functions 

with all external mesons of finite mass. Having established this 

correspondence, we have shown that the Compton amplitude has all 

the Regge properties of the equivalent hadronic process. We will 

therefore discuss some of these properties without proof, referring 

the reader to ref. 10 for details. 

The leading terms of the amplitude in this forward limit 

arise from the (st) and (ut) duality sectors. The amplitude 

is power behaved, with power determined by the masses of the quarks 

in the t-channel. In the dominant, soft gluon exchange region the 

exchanged quarks are constrained to have vanishing minus momentum 

fraction of the incident hard photon. Feynman's mechanism [ 3 1 

of the buildup of Regge behavior by wee parton exchange is concretely 

realized in the 't Hooft model. The power is given by 
a. .(0) = -3. - 6. where i and j denote the exchanged quarks. I j i j 
In the Compton scattering case i = j = a or b. The amplitude 
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factorizes in the t-channel and is consistent with obeying an 

unsubtracted dispersion relation. J = -1 fixed pole terms are 

present. 

Although we have shown a close correspondence between 

photon-hadron and hadron-hadron scattering in the 't Hooft model, 

we can say little about the analytic structure of the amplitudes. 

The dependence of eq.(VI.A.3) and (VI.A. 1+) on minus momentum 

components obscures the properties of these expressions as analytic 

functions of invariants. Thus, though we have been describing 

current channels as "meson dominated," this does not imply agree­

ment with meson dominance models which mal' 2 specific statements 

about the analytic behavior of the amplitude with respect to 

the photon mass variables. Comparison with the amplitude calculated 

in Frame I serves to clarify some of these issues. 

The dimensionless variables x, and x_ in Frame_I,both 

go to zero in the Regge limit, with x n = - -*— 
2 T (M2 + q2) 

X 2 = i l s -
(MJ; + g.2) 1 

1 + — ^ . 
s J 

1 + 1 and 

The terms with two bare current vertices 

dominate in the limit. The terms from the (st) and (ut) diagrams 

cancel to the two leading orders, resulting in Regge leading behavior. 

This cancellation points out a major difference between photon 

scattering and the equivalent general hadronic process. Since the 

electromagnetic current is flavor conserving, the (ut) and (st) 

amplitudes cannot separately be treated as analytic functions because 

they cannot be physically distinguished. Only the sum of he two 
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has any physical meaning, and it is only the sum that has the same 

leading behavior as in the parity reversed frame. 

A non-leading contribution arising from the cancellation of 

these diagrams is a term which shows J = -1 fixed pole behavior. 

This fixed pole was discussed by Brower et al. [10 ] in the zero mass 

photon limit where it becomes the leading term. It only contributes 

to elastic scattering and, thus, cannot be seen in the Frame II 

analysis where the elastic boundary is outside the applicable 

kinematic limit. The existence of fixed poles in the four 

dimensional Compton scattering amplitude has been considered [38] . 

These are non-hadronic in origin, since fixed poles in hadronic 

amplitudes in four dimensions are forbidden by unitaiity and 

hermitian analyticity. Fixed poles with polynomial residues in 

the Compton amplitude can be motivated by continuation of operator 

product expansion techniques to the Regge region [39] • In two 

dimensions fixed poles can appear in both hadronic and Compton 

amplitudes. We.can conclude from the Frame II analysis, where 

terms involving bare current vertices are proportional to s 

in the limit, that in inelastic Compton scattering in the 't Hooft 

model in the forward high energy region the photon acts as a purely 

hadronic system. In particular, the only fixed pole contributions 

to the inelastic amplitude are those directly related to the fixed 

poles of the meson-meson scattering amplitude. 
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Futher analysis in Frame I shows that the leading order 

Regge behaved terms arise from diagrams with hare current vertices 

and from diagrams with meson dominated vertices, as opposed to the 

situation in Frame II. The frame dependence points out the fact 

that this separation of vertices may not have a general analytic 

meaning. 

(2). Large Angle Scattering Limit. 

The exclusive scattering of photons and hadrons at fixed 

angle in the center of mass at high energy can be studied in the 

model by adopting an ansatz of Brower, et al. [lO]in order to make 

contact with the dimensional counting rules. We consider the limiting 

power behavior of that analytic dual sector of the amplitude where 

the variables associated with the meson poles are getting large as 

an analogue to large angle scattering power behavior. Thus, in the 

forward limit considered above, the (us) part of the amplitude 

is appropriate. Note that, in accordance with this prescription, 

this is the only limit in which contact with large angle scattering 

can be reached. If we tried to study the possibly more physical 

limit of backward scattering, we would be led to consider the (st) 

dual sector which is, however, not analytic by itself as discussed 

above. 

The behavior of the (us) sector of the Compton amplitude 

in the Regge limit in Frame II approaches that of the (us) sector 

of the two-to-two hadronic scattering function. Thus, from the study 

of the hadronic amplitude [10] we find that M(aB' ~ s Pa~ Bb« 
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In the standard dimensional counting picture, the fact that 

the Conpton amplitude has the same power behavior as the equivalent 

hadronic amplitude would indicate that all current vertices are meson 

dominated, since contributions from bare photon couplings, if present, 

are enhanced with respect to the meson dominated ones. This enhancement, 

however, is due to the couplings to transverse photons only, and does 

not appear in longitudinal current couplings. Thus, in our two 

dimensional model where all currents are longitudinal, we expect 

the observed power law behavior equivalence between the hadronic 

and Compton amplitudes. 

Although this equivalence can be motivated in the dimensional 

counting picture, calculation of the integral power falloff by 

computing contributions from lowest order irreducible quark diagrams 

like fig.(VI.B.l) in superrenormalizable (QCD) where all quarks 
_3 have finite fractions of hadron momentum gives an s prediction 

for the "large angle" behavior of the amplitude since there are 

three propagators far from mass shell. Disagreement with the s~ 

't Hooft model behavior stems from the fact that in a superrenor-

malizable theory it costs a factor of s" to redistribute the 

momentum in the bound state^via one gluon exchange as in fig.(VI.B.l) 

so that the quarks in the final state hadron all have finite momentum 

fraction. In the 't Hooft model this redistribution doesn't cost 

anything (except for nonperturbative factors s ) due to the fact 

that the gluon interaction is instantaneous and that there are no 

transverse degrees of freedom. This results in a softening of the 



78 

Bethe-Salpeter wave function kernel so that the 't Hooft wave function 

falls off more slowly as one of the constituent quark masses goes 

far off shell with the other quark mass fixed than would he assumed 

in the counting rule picture based on a superrenormalizable field 

theory [ho] . 

Aside from differences which seem to be specific to the 

dimensionality of the theory, modifications of counting rule ideas 

are indicated in the model [1)1 ] . The coeffi cient of the power of s 

in the amplitude cannot be interpreted exclusively in terms of short 

distance physics. Terms involving exchanged mesons built up non-

perturbatively from gluon exchange contribute. In addition, the 

integral power predictions of the counting rules are modified by the 

(3's, powers dependent on masses of constituent quarks. These powers 

arise from infrared singularities in the wave function and are closely 

related to the Regge intercepts in the model. 

C. Inclusive Limits. 

We turn now to the study of the inclusive Compton process 

Y*(q) + n(p, ) •*• y*(q') + X where X represents the unobserved final 

hadronic state. The parton model makes definite predictions concern­

ing the structure of the cross section in several inclusive limits. 

Inclusive production of large mass lepton pairs via photoproduction 

and deep inelastic leptoproduction, two non-light cone processes, 

are investigated in this section for the purpose of checking the 

validity of parton predictions in the 't Hooft model. We will show 

that the amplitude for these processes scales in the "t Hooft model 



and that the scaling functions are interpretable in terms of free 

scattering of constituent quarks. 

Recall that, as discussed in Sec.(V.A.), the inclusive 

amplitude is computed by taking | X > to be a one large mass particle 

state I m >, and smoothed by taking M equal to the invariant mass 

of the inclusive channel. This interpolation is performed with the 

proviso that terms in the squared amplitude proportional to (-1) 

arising from parity oscillations of the final state meson are .dropped. 

(l). Bjorken-Paschos Compton Limit With Very Virtual Photons. 

We first examine a limit of the Compton amplitude where the 

photon masses and momentum transfers to the hadron system are all 

large. This limiting case would be applicable, for example, to the 

deep inelastic electroproduction of massive lepton pairs. Intuitively 

we expect that the large photon masses will suppress the hadronic 

content of the photon so that the current couples to the parton via 

the bare electromagnetic pointlike interaction. Further, the large 

momentum transfer suggests the validity of impulse approximation 

ideas. In this view, the two currents must interact with the same 

quark so as to avoid large energy in intermediate states. We are thus 

led to a model of the scattering process in this limit in terms of 

free parton "handbag" scattering amplitudes incoherently summed 

and folded into parton momentum distribution functions. 

A description of inclusive Compton scattering at large 

momentum transfer with real photons in terms of a parton "handbag 

diagram" model has been proposed by Bjorken and Paschos [1*2] . We 
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cannot examine this limit directly since, in two dimensions, the 

Mandelstam variables cannot all be made large simultaneously as long 

as the photon masses stay finite. This problem was encountered 

in the large angle exclusive scattering limit discussed above, 

where the power behavior of the (.us) sector was analyzed as a 

large angle power behavior analogue. Here, however, ve are 

interested in the structure of the coefficient of the power. There 

is no reason to associate this coefficient with the (us) sector 

coefficent, which, in this case, consists of "crossed handbag" 

coherence terms which are assumed to be non-leading in the parton 

model. 

The very virtual photon limit is achieved kimenatically 
2 2 by taking q ,q" ,s,t, V = p ' (q - q')/M large with their ratios 

fixed. In our two dimensional case this limit can be realized by 
2 -xi ,2 v r. ^ - v l 

takms q = r ^ ; s ' * " i ^ I L1 s J ' 
The fixed dimensionless variables x. describe the momentum transfer 

2 2 
across the current vertices: x = -q /2p ' q, x„ = q1 /2p • q1, 
x = x + x = x R T = -t/2M V. They are limited by x„ < x< 1 where 

0 < x p < 1. The Frame II scaling variables are given by 
2M v 

z = JTO. - Xj_)/s and z' = 1 - ~ - (l - x 1 ) . 
The naive parton model prediction is, as discussed above, 

gotten by summing the handbag diagrams shown in fig.(VI.C.l). The 

quark propagators in these diagrams which are attached to the wave 

function vertices are dressed while those between the current 
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vertices are bare. This prescription is gauge invariant for the 

class of gauges where A = 0 . The amplitude computed is, this 

parton model is 

2 -

M< = IvH - [̂ J I 2 - l u »* U V I 
s( l -x ) 

1 + u l i ^ T X 1 X 2 

• ( e V | * f ( x ) | 2 * e ^ | * f ( 1 - x ) | 2 ) . (VI.C.l) 
b 

The handbag model thus predicts a scaling cross section, where the 
P P scattering function v |M| is, apart from kinematic factors, 

related to the deep inelastic leptoproduction structure function 
• 2 k by making the replacement e -*• e . We now show that this parton 

description successfully gives the limiting behavior of the exact 

Compton amplitude in the 't Hooft model. 

Frame I is, in this gauge, the natural frame in which to 

see simple parton behavior, as is evident in the close relation of 

the scaling variables in this frame to the usual parton variables. 

The behavior of the amplitude in this frame can be found simply by 

counting meson propagators, each of which contribute a factor of 

s~ . The soft gluon mechanism, used to get leading Regge behavior, 

no longer operates due to the fact that x 1 and x ? are not 

constrained to their edge points. This, in turn,is due to the large 

current masses. Thus, as the currents get highly virtual, they are 

no longer describable in purely hadronic terms. In fact, the leading 
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diagrams in this limit, those with the fewest meson propagators, are 

precisely those with bare current couplings to quarks. The other source 

of s dependence in the amplitude arises from the phase space pinch 

due to the large mass final state. Roughly speaking, this suppresses 

all terms in the amplitude equally. The leading contribution to the 

amplitude in this limit thus comes from the bare current-quark coupling 

terms in the s and u channel meson exchange diagrams of fig.(VI.A2)t 

Included in these diagrams are graphs where the currents interact 

with the same quark as well as those where they interact with different 

quarks. These latter "crossed" graphs cannot contribute in the 

handbag model. The impulse approximation is recovered, however, by 

looking at the amplitude in Frame II. 

The limit in Frame II involves scaling variables at their 

edge points so that the behavior of the amplitude is less obvious. 

A little computation shows that the •fcus) sector of the amplitude 

is non-leading in the limit. These terms, proportional to e e , 
a b 

are suppressed relative to the leading e e terms in Frame I. 

Parity conservation via eq.(VI.A.l) implies, therefore, cancellation 

of the leading Frame I terms. This cancellation implies that the 

quantity 
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is symmetric under the interchange a <-»• b. We have not been able 

to directly prove this symmetry property. 
2 The remaining tjeras in Frame I are proportional to e a 

• 2 
and e , and arise from diagrams with bare quark current couplings. 

b 
The l imi t ing form of the amplitude i s 

lim •jr-L- (l-x) ' (1 -3^) ( 1 - X 2 ) 

X 1 X 2 s u 

ft*? (w) [eV* (W(l - x) + x ) + e_<t>a (w( l - x ) ) 
b 

(VI.C.2) 

This is a somewhat intermediate form of the final result 

which we give to show that in this limit the two currents interact 

as if they were a single spacelike current carrying a fraction x 

of the minus component of the hadron momentum and interacting with 

the quarks via the bare vertex with an effective coupling constant 

eff ^ 2 x e - -2e a a x-jXg 
(l-x ) (l-xj — — i _ + 

U (VI.C.3) 

With this coupling the invariant amplitudeê ?* equals the 

part of the invariant form factor for the single current 

interaction which arises from the first, bare coupling, term in 

eq.(IV.B.5}. The Bjorken-Paschos intuitive picture of the two currents 

giving a single large impulse to the hadronic system.is realized 
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in the 't Hooft model. This instantaneous interaction of the two 

currents at a single vertex in an infinite momentum frame has been pro­

posed by Brodsky and Ifcy [U3 ] as a necessary condition for the application 

of parton model ideas to two photon processes. 

Equation (VT.C.l) can be obtained by taking the large final 

state mass limit of eq_.(VI.C.2), using eq.(ill.B.10), squaring and 

using the elimination of cross terms due to (-1) parity oscillations. 

Agreement with the parton handbag model is thus confirmed. 

We conclude by pointing out that, in Frame I in the A = 0 

gauge, the lowest order quark diagrams of the "handbag" model are 

expected to describe the behavior of the Compton amplitude in the 

light cone limit on the basis of asymptotic freedom arguments. The 

kinematic region which probes the light cone contribution to the 

Compton amplitude is discussed by Iliopoulos and Paschos (i-P) [**4 ] . 
2 2 It is reached by a two step limiting procedure where first q ,q' 

and s are taken large in fixed ratio with t and v fixed, after 

which t and V are taken large with x = -t/2M V fixed. This 
n 

differs from the limit we have considered above where the ratio v/s 

is held finite throughout. This one step limit does not a. priori 

probe the light cone due to the possible presence of large final 

state mass oscillations in the matrix element <x|T*(J fc)<J (0))|n > 

which could invalidate the usual stationary phase analysis of 

leading momentum space contributions. 
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In the I-P limit, the second factor in the handbag amplitude 

of eq.(vI.C.l), is of order (v/s; due to kinematics in two dimensions. 

This factor results from the Bose symmetrization of the amplitude. 

The function v |M | thus approaches zero as (v/s) in the light 

cone limit. We have found that in the I-P limit in the 't Hooft 

model v |M | goes to zero in agreement with the handbag prediction. 

(2). Photoproduction of Large Mass Lepton Pairs. 

The inclusive photoproduction of lepton pairs, in the limit 

that the mass of the pair gets large in fixed ratio to the energy 

in the center of mass, J .as been studied [l1* ] in the context of a 

field theoretic parton model in four dimensions with an ad hoc trans­

verse momentum cutoff. Due to the large lepton pair mass, the cross 

section can be computed by considering the photon as a collection of 

on-shell partons, one of which annihilates with its antiparticle in 

the incident hadron at a bare electromagnetic vertex to form a highly 

virtual photon in the final state. The total cross section is given 

by the incoherent sum of q.q •+• 8$. cross sections weighted by the 

parton momentum distribution functions of the photon and hadron. 

This parton model is shown in fig.(VI.C2). 

This photoproduction process is very similar to the Drell-

Yan process, and application of the parton model is on the same 

theoretical footing in both cases. The major difference between 

the two is the presence, in photoproduction, of diagrams where the 

bare incident photon couples directly to quarks. In the parton 

model analysis, the bare coupling time ordered diagrams which 
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contribute in the infinite momentum frame look exactly like fig. 

(VI.C.2), allowing the bare coupling contributions to be included 

in the photon structure function. 

The parton model prediction in the Drell-Yan scattering pro­

cess is borneout in the 't Hooft model [ 9 ]. It is thus reasonable 

to hope that the same is true for photoproduction scaling. 

We will show that this is the case, although in any frame in this 

gauge the final state production mechanism appears non-partonie. 
2 In this limit we take s and q1 large and in fixed ratio 

2 such that T = q' /s, while keeping the masses of the incident 

current and hadron finite. The hadronic contribution to the 

scattering process is given, in general, by 

H^Cp.q.q') = S fd2y e- i 4' , y <n(p )Y(q)|jy(y)JV(0)|n(Pri)Y(q) > . n I l p o l j n n 
s p i n " (vi.c.U) 

Computing this tensor via the parton model of fig.(VI.C.2) in two 
dimensions gives 

2 2 2 ( ,y .v ) xr^ l6ir e m 0 -

(VI.C.5) 
where the sum is over a l l flavors of quarks and antiquarks. The 

(j).(x) are the usual wave functions describing the probability 

that, in an infinite momentum frame, parton "a" has momentum 



th fraction x of the total momentum of the 1 particle. The wave 

functions are measured in deep inelastic leptoproduction. The 

scaling variables are given by y = /2 q 1/ v/s and y = v2 q.'//s 

in the hadron-photon center of mass frame in which the photon is 

moving in the positive direction (Frame I). They are restricted 

by T <y. £ 1 and satisfy T= y^o* I n terms of these variables 

we have t = y^yg- l)s, u = y 2(y 1 - l)s, M x = (l - y 2)(l - y-^s 

in the large s limit. 

The important feature of eq.(VI.C.5) is that it is a sum 

of terms each of which is a product of a function of y. and a 

function of y p. We now verify this scaling form in Frame I and 

Frame II separately in the 't Hooft model. By relating the 

expressions in each frame via parity, we extract simple expressions 

for ti.e meson and photon wave function. This method is similar to 

the . _-ll-Yan analysis of ref. 9-
2 In Frame I the limit is achieved by taking x, - - = /s, 

X., = y, • The leading diagrams are those with bare current ipling * 

at both vertices. As in the Regge limit these terms cancel iii leading 

order. The cancellation in next order is, however, not complete 

and a contribution arises from the (ut) duality sector diagram. In 

this order there is also a contribution from the (ut) diagram 

where the incident current is meson dominated and the outgoing current 

is bare. These leading diagrams are shown in fig.(VI.C. 3(a)). There 

are no other contributions. In particular, the large mass of the 
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final current suppresses the contribution from meson dominated final 

current vertices. The crossed terms, proportional to e e , are also 
a to 

non-leading. In the limit we then have 

2,2 

2 2 r 1 2 r* a<*v> - *iy*{1^ ~ *2))] 
+ (~<12)2 J dv G(v,q.2) [ - § ^ § 'J 

dn<))a(n) 

+ (a <•+• to) (VI.C.6) 

This expression clearly gives the parton model scaling form of eq. 

(VI.C.5). The meson protoatoility amplitude is given toy the meson 

wave function squared, consistent with what is found in leptoproduction 

scaling. The photon wave function is given toy expression in square 

torackets. 

The interpretation of this scattering in terms of parton 

annihilation arises naturally from the dominance of the (ut) sector 

diagrams in the limit. This is the only sector which contains those 

quark diagrams where the final current arises via the annihilation 

of a current quark and a meson quark. All other diagrams lead to an 
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interpretation of final current production due to quark bremmstrahlung. 

The formation of the final states in this frame is, however, distinctly 

non-partonic, as can be seen by comparing figs. (VI.C.2) and (VLC.3(a)). 

The final states in the model are inextricably bound up with the 

incident current vertex, so that the final s.tate production mechanism 

is reflected in the photon wave function. 

We can get a better idea of the form of the photon wave 
2 function by computing in Frame II. Here, z 1 = y and z = M /s 

in the limit. In this frame the roles of the initial state particles 

are reversed, so that the amplitude is given by a simple expression 

for the current vertex and a complicated expression for the meson 

vertex. The dominant terms all arise from the (ut) sector. The 

contributions come from the off-mass shell term in the contact diagram 

and from t-channel meson exchange diagrams where the incident current 

is meson dominated which the outgoing current is bare, the last 

diagram in fig.(VI.A.2). These contributions are represented in 

fig.(VI.C.U). The limiting amplitude is given by 

2,2 2 
r - ̂  R & - **.•'"• 

A / a - y 1 ) u - vj) | y l / d w * n ( w ) 

+ /dvdu gJvM^) * jjj 
(y-L* 

+ (a <-»• b) J . (VI.C.7) 
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The remarks below eq.(.VI.C.6) apply also in this frame with 

the roles of the incident meson and current interchanged. The final 

state production mechanism is not partonic, as seen by comparing 

figs.(VI.C.2) and (VI.C.3.(b)), though the dominance of the (ut) sector 

again allows a quark-antiquark annihilation interpretation. The 

photon wave function normalized to unity which arises from the Frame 

II analysis is given by: 

„ „aa, 2 N 

*j<*w > • G ( x : q } - (vi.c.8) 
V^dxCG^xjq 2)) 2. 

in agreement with the leptoprcduction result of eq.(V.C.U). The 

partonic structure of the photon, in this model, arises from its 

couplings to mesons. 

Relating eqs. (VI.C.6) and (VI.C.7) through eq.(VI.A.l) 

gives a simple expression for the amplitude which has the parton model 

form 

*" - \^ * ̂ J ( § ? c»i>l2KM2-u*s>) .-
(vi.c.9) 

where C does not have any y. dependence. We have not tried to 
a 2 t 

see if C = m C as demanded by eq. (VI.C.5). In the course of 

relating the amplitudes in each frame, highly non-trivial equalitites 

are generated between scaling functions and wave functions. We have 

not tried to verify these identities but have checked consistency in 

power behavior at the edge points. These equalities are more 
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complicated examples of relations between final state summations and 

parton description than eq.(UI.B.lO) which we have used above. 
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VII. CONCLUSION 

We have investigated the behavior of current scattering in 

the 't Hooft model, (.QCD)p to leading order in N~ . We have reviewed 

the formulation of the model in order to show how an asymptotically 

free theory with a realistic particle spectrum of color singlet 

hadronic states can he obtained from a Lagrangian containing 

only quark and gluon fields. Even in this simple theory, (compared 

to four dimensional version) highly nontrivial mechanisms 

operate. Detailed properties of the large mass wave functions give 

rise to the identity of eg.(III.B.10), which gives parton scaling 

behavior by summing over final state hadrons. We have shown that 

very complicated identities imposed by the underlying parity invariance 

of the theory simplify and clarify the structure of the scattering 

amplitudes. Alternatively, these identities can be considered as 

the consequence of the underlying color gauge invariance of the theory, 

since it is the choice of gauge that introduces the explicit lack of 

parity invariance. The possibility of similar mechanisms operating in 

four dimensions must be examined in light of the differences which 

we have discussed between (QCD) and (QCD). due to the difference 

in the number of space-time dimensions. 

The most important aspect of the results presented from a 

phenomenological viewpoint is that there are no real suprises. 

Generally used ideas - vector meson dominance in soft processes and 

parton point coupling dynamics in hard processes - are found 

to accurately describe vector current scattering behavior 
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in the 't Hooft model. In this model w.e have found that "real" 

photon states are effectively linear combinations of hadronic bound 

states, a description which becomes inapplicable as the photon is 

taken far off mass shell. We have shown how highly non-trivial 

properties of hadronic wave functions allow parton model interpretation 

in various deep inelastic inclusive limits. 

The most interesting departure from phenomenological lore 

is the ubiquitous modification of dimension counting rules by small 

factors dependent on exchanged quarks. These factors are related to 

confinement singularities [Uj] and may thus be present in more 

realistic confining theories. This has been stressed by Brower [ h6] 

in the more general context of the relation between large angle 

scattering power behavior and Regge intercepts. 

Many aspects of scattering behavior in the 't Hooft model 

are almost certainly dependent on the absence of transversa dimensions. 

The lack of real vector meson degrees of freedom, for example, probably 

gives rise to qualitative behavior specific to two dimensions. The 

failure of the pomeron to arise in hadronic scattering amplitudes is 

probably due to the fact that there are no real gluons in the theory. 

The mechanism responsible for cancellation of the pomeron also seems 

to be inhibiting possible non-partonic contributions to hard processes 

which are leading in N [^7]. Parton behavior might, then, be 

modified by the appearance of the pomeron. 

Photonic degrees of freedom in four dimensions give rise to 

terms in the dimensional counting picture which are responsible for 

leading behavior in large angle scattering. These terms do not 
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appear in the 't Hooft model. Additionally, transverse photons 

might result in the presence of fixed poles [U8]in the inelastic 

Compton amplitude in the soft scattering region and extra terms 

in the partonic description of the photon. 
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APPENDIX At Simple Wave Function Iderititrties Due To Parity Invariance 

In this appendix, we prove the relations of eqs.fHI.B.12) and 

(III.B.13) using the Bethe-Salpeter formalism developed in Sec.(III.A.). 

As a first step, we find the complete Dirac structure of the meson 

wave function *~g (x) given by 

* £ i > U i P ) = / d * + * i e ) ( p ' P + ' p - = ^ J t*-1* 
in terms of the Bethe-Salpeter wave function of eq.(III.A.5). This 

structure can he found by observing that the vertex function, T 0 , 

is proportional to (Y_) a g- This can be seen directly from the 

structure of the T-matrix, eq.(HI.A.19), or by noting from fig. 

(.III.A.7) that I" - is bracketted by y matrices due to the quark-

gluon vertices. The wave function *~g is related to the vertex by 

the addition of the external leg fermion propagators. Thus 

• ^ j W ) = f(n)U;P){[Y+P_+ma Y+CP -P.) + \ aS 

r- (Yj. m m.Y- m (1-YJ m, (l+Yc) ) 

where (l±Yi-) are defined in Sec.(II.A.2). The normalizing equality 

4>nU) = l»P^f(n)(x,P)x(x-l) (A.3) 

is derived from eq.(III.A.13). 
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We next consider the effect of parity invariance on the 
integral of the wave function. Integrating both sides of eg..(ill.A.17) 
without the -y projection with respect to x gives 

f dxcj>(n)(x) = |5- < n| T(ffi (0)#ft(0))|0 > (A.U) 

The integration over x thus probes the wave function at the origin. 
We insert parity operators, <& , into eq..(A.U) using 

^ *„(*+.*_> a (Y 0*) a(x_,x +) (A.5) 

and 
^|n;P +,P_ > = (-l)n|n;P_,P+ > (A.6) 

since the spectrum of the Hamiltonian i s non-degenerate. Performing 

these operations gives 

J* dx(P_$^ ) )(x;P_,P + ) = (-l) nr'ax(P_(Y o<I. nY 0) ag)(x;? + 5P_) (A.?) 
"o o 

This gives two identities when eq..(A.2) is used for $ R. Since 
Y o Y + Y o = Y- a n d Y o ( l ± Y 5 ) Y o = t 1*^) tfe get 

Mn I **n™ = (- 2 ) V b I** xfc) ( A" 8 ) 

ma f
L V x ; n+1 r-1 V*' 
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Equation (A.9) is eq.(HI.B.12), and using eq.(A.9) in eq.(A.8) gives 

eq.(HI.B.13). 

We conclude by noting that eq.(HI.B.13) can be derived 

directly from the 't Hooft eq.(lIIA.l6) with the identity 

f ^ T~? = i i + ^ ( A - 1 0 > 
^ o (y-x) 



APPENDIX B: Current Scattering in The 't Hooft Model. 
The incorporation of the fermion currents J ,J and 

J v of eq.(H.C.U) into scattering amplitudes in the 't Hooft model 
can be implemented via the gauge variant quark current form factor 
depicted in fig.(B.l). Letting 
w A(p,q) = (p 2 - m2)((p - q ) 2 - m2)[s(p}| Y A[s(p - q) with S(p) 

given in eq.(.III.A. 11) and A denoting one of the four gamma matrix 
indices, we get 

.,. PJ,.. 4 )( -2 * y ; ( " * *-^-• ^ ^ « ' ^ 5 
q x(x-l) -

m(2x-l) .. »k(p) +E(p-q)l \ 
q x(x-l) Y + 2 , . . r-i - q x(x-l) / 

o m - q_(x-l)£(p) - q_x£(p-q) 
-. - * > . - o ('~ffl&7 *'"' - . . . - • * ,- - xp vp - q ; I v(i-*l 2 "5 
5 \ q xll-x) q2x(l-x) * 

m y m[5(p) ~ 5(p-0] Y_ 
-qjTG^l)+

 q 2 x ( x _ l } 

, ,/ m(2x-l) x
 m Y 5 . in Y_ A _ \ 
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where £(p) f ii / s s n ( p - } i V We have considered flavor 

conserving currents for simplicity. 

These expressions show why the minus vector coupling is the 

simplest to deal with. It contains no £ factor with divergent 

behavior as X •* 0. The existence of the £ factors in the other 

current couplings invalidates the A power counting and, as a result, 

the rules of Sec.(III.C.). Thus, general current scattering amplitudes 

may not he calculated by the rules given. We see, however, from 

eq.(B.l), if the form factors are bracketted by y matrices, all E, 

dependence disappears. As a result, in any ring diagram where at 

least every other vertex is a y vertex, the rules of the text. 

apply with the insertion of the appropriate form factors f. where 

f gU,x) = mq._ I _1_ x l-x ; f5(q,x) =imq._ x l-x 

f (l,x) =2q_(g + - — 2 
V +

 2 ( 1
2 x ( l - x ) ^ -

g„ ) • (B.2) 

As a simple example, consider the direct current-meson 

coupling. From eg.. (IV.A.l), we can see 

*?»> - i [C £ ** *4<w»f w (B.3) 

The property of the form factors, f n(x) = - f (l-x), f,-(x) = f_(l-x) 
o S P s 

and f ,:;) = f (l-x), shows that the scalar current couples to even 
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parity mesons while the pseudoscalar and vector current couple to 

odd parity mesons. 
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APPENDIX C: Divergence Properties of Current Amplitudes. 

Electromagnetic gauge invariance leads to the requirement 

that physical scattering matrix elements involving vector electro­

magnetic currents be conserved on all Lorentz indices 

3 <<x|T*(...JW(x)...)|e > = 0 (C.l) 

As is well known, the matrix element of time ordered products 

of operators does not in general satisfy.this divergence condition due 

to the presence of non-covariant Bchwinger terms[b$] . Non-covariant 

terms must be added to the time ordered product matrix element to 

product the "T*" product matrix element, which is covariant and 

divergenceless [ 50] . 

It was shown in Appendix B that for diagrams where the 

computational rules of the text apply, an insertion of a vector current 

can be described by the quark vector form factor fu(q,y) of eq..(B.2). 

From this coupling we can derive a simple Ward identity 

2 2 

This form allows simplification of the divergence through the use of 

the ' t Hooft eq.. (III.A.16) and the wave function orthogonality 

eq..(III.B.2). A primary simplification,which serves as a good example 

of the kinds of manipulations involved, occurs in terms where the 

photon i s meson dominated. These terms are of the form 



Idwdy G(w,y;q. ) f a (q . ,y)x(w) , with x being some given funct ion . The 

divergence of t h i s term i s 

(f 2 2 v 

q 2 " ~f~ ~ I ? y 7 3 ( w » y i q 2 M w 

) 

2 2 , , , a a , ^ a a , 
r *-» T 2 2 / 2 m a m a \ l * k ( w ) * k ( y > = /dwdy L (q2 - M*) +^l . J - ^ * J * ( V ) ( C ' 3 ) 

•̂  k t - V * ' ' J q, - M. + j£ 

C ( » ) l* a a (y) - 4>aa(*) 
dwx(w) + e Jdwdy dz - § 5 — § = |dwx(w) 

V a 2 - *£ + ie L (y - z) 2 J J 

We have used eq.(C2) in the first step, the definition of the Green's 

function in the second step, orthogonality and the 't Hooft equation 

in the third step where the second term is zero due to the antisymmetry 

of the integrand under y •«-»• z. Taking the divergence thus eliminates 

meson propagators in the photon channels, leaving terms which can 

cancel with those arising from the hare current coupling terms. 

The direct vector current-meson coupling defined by eq.(B.3) 

satisfies. 

<?& n U) = (d 2 - M2) i / I e / dx4>ai 

(TV n 2 v ir a •'o n 
a a U ) (ci.) 

where eq.(III.B.13) has been used. We have thus shown the validity 

of the expression of eq.(lV.A.l) for the on-shell coupling. 



The ine las t ic form factor, Vr" = < n | j \m>, i s conserved 
'-' u U 

in the 't Hooft model when the initial and final mesons are on mass 

shell. The divergence is given in general by 

(C.5) 

ray<J>f (y)<A(i - x) + x) + ( - i ) n + n W b ) s a / d 

2 

for the q < 0, Frame I, case. The variable, x is defined through 

eq.(lV.B.6) using the off shell values for the masses. 

The situation for the matrix elements of the time ordered 

product of two vector currents is complicated by the fact that in 

the A = 0 gauge,in view of the discussion of Appendix B, the 

plus-plus component of the tensor is not calculable by standard 

techniques. We will thus show that, for the matrix elements 

considered, there exists a Lorentz covariant tensor which is 

divergenceless on all indices whose minus-minus, minus-plus, and 

plus-minus components agree with those calculated in the mode?.. 

The vacuum polarization tensor when, defined in terms of U 

through the first equality in eq.(V.A.l) satisfies 

L J •'o •'o 

where we have used eq.(lII.B.2) and eq.(C.U). This divergence is 

6) 
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however spurious, since II must be regularized. Regulating so as 

to insure current conservation gives the second equality of eq.(V.A.l). 

The tensor,lKT discussed in Sec. (V.B) can be written in 

an off mass shell covariant form from the diagrams of fig.(V.B.l) in 

terms of jff and f . The divergence is given by 

^OV3^ = ^ / l <P2 ~ M n ) ( 1 + (-Dn)/d«dy[G(w,y;q2). 

• f
v(l 2' W^n (yx2^ (C.7) 

The on-shell cancellation is very delicate, depending crucially on the 

even parity of the decaying mesons. 

Finally, we turn to the more complicated case of the Gompton 
anplitude,rffl of Sec.(VI.A.), with external mesons on shell, uv 
Evaluation of the divergence is simplest in Frame I with the aid 

of eqs.(C.5) and (C.7) for the off-shell divergences of the 

Compton subamplitudes. To this end we define a quantity C by 

C
u v

( P n ' X l = - ^ n - ' x 2 = <!**J 

k 
k 

+ 3 3 - n ; k m ( V x )
 t . M| + i E^fe a(l' - *• X l / x ' X 2 / x )

C o n t < 

(C.8) 



Cont. from 10U 
+ ^njmk^n' 1 ' x )

 + "2 + . CtC^^ - 4,^/x, Xg/ x ) 

t - M. + le 1 
* (C.8) 

The minus-minus, plus-minus, and minus-plus components of C u v 

coincide with the respective components of the Compton scattering 

tensor »t/yt in the model. • Calculating fC , we find a complete 

cancellation among crossing related terms proportional to e e and 
2 2 a S 

among the terms proportional to e and a. which have meson 

propagators in the outgoing current channel in the s, t, and u 

channel meson exchange diagrams. The cancellation among crossing 

related terms in the s and u meson exchange channels with hare 

coupling to the outgoing current is incomplete, however, giving 

+ (a<-*b). (C.9) 

C thus has a non-zero divergence and thus cannot be the correct 

Compton amplitude. However, hy eq..(B. 2 ), q C = 0 and we then 

have proved o = 0. 

In two dimensions it can be shown that a covariant tensor 

I ( vu 
M
Uv(ql'<l2^ w h i c h satisfies qMM^_ = 0, M^t-^.q^) = M (l2»~ql^ 
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and the parity condition of eq.(VI.A.l) is divergencesless and can 

he written most generally as in eq..(VI.A.2). The M component 

is then defined through eq..(VI.A.2) in terms of one of the other 

tensor components. It cannot be expressed as a sum of simple 

products of off mass shell form factors. We have thus shown that eq.. 

(VI.A.2) unambiguously gives the correct Compton scattering amplitude. 
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FIGURE CAPTIONS 

Figure II.A.1. Two dimensional Minkowski space. The light cone 

variable axes lie along the light cone, rotated at 

1*5 to the space-time axes. The spacelike, t = 0, 

surface approaches th x = 0 surface when boosted 

into an infinite momentum frame. 

Figure II.B.l. The Feynman rules for light cone quantized (QCD) p. The 

letter a ie a flavor index while i and j are color 

indices. Figure (a) shows the color representation of 

the gluon as a quark-antiquark pair. Figure (d) is a 

correction to U(N) gauge theory to give SU(N). This 

vertex does not occur to leading order in M 

Figure II.D.l. The effect of putting a fermion loop in a diagram with 

color singlet sources. The fermion loop in fig. (b) 
2 creates an extra factor g without creating any new 

color loops and is thus N down from fig. (a). 

Figure II.D.2. The effect of putting a handle in a diagram with color 

singlet sources. The crossed gluon handle of fig. (b) 

twists together the loops of planar fig. (a), resulting 

in a N suppression. 

Figure II.D.3. A quark line diagram contributingto a two particle 

intermediate state in meson-meson scattering. The two 

intermediate particles are represented by the cross-

hatched areas. The diagram contains a quark loop and 

is thus non-leading in N~ . 
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Figure III.A.l. The h point color singlet quark-antiquark vacuum 

amplitude, iD. The Ireek indices are Dirac indices. 

The dots on the external lines indicate that external 

propagators pve included in the amplitude. Exchange 

of single bound state particles with wave function 

$ contribute to the dominant, pole behavior of the 

amplitude. 

Figure III.A.2. An example of a contribution to D in the 't Hooft 

model. The set of a planar graphs are characterized 

by uncrossed ladder exchanges between renormalized 

quark lines. 

Figure III.A.3- The relation between the full fermion propagator, iS, 

denoted by the darkened circle, and the proper self 

energy, iS. 

Figure III.A.U. The relation between the full fermion propagator :.nd 

the proper self energy induced by the requirements of 

planarity in leading order in K 

Figure III.A.5. The Bethe-Salpeter equation for the bound state wave 
ab function $ consisting of a quark a and an antiquark 

b. The Lorentz invariant variable x is the fraction 

of minus momentum of the meson carried by the quark. 

Wote that, by definition, $ includes external 

propagators. 

Figure III.A.6. The ladder exchange integral equation for the 

quark-antiquark color singlet scattering amplitude, 



ill* 

iT. Note that iT is obtained from iD of fig. 

(iII.A.l) by truncation of external legs. The 

solution to the integral equation is represented in 

the second equality as the sum of a single gluon 

exchange and pole contributions with strength T , 

shown in fig.(ill.A.7) • 

Figure III.A.7- The graphical struture of the meson vertex function, 

r . as expressed in eq. (IILA.2U). The gluon has an 
K. 

infrared singular and principal value parts. 

Figure III.C.l. Examples of Step 1 for creating mesonic graphs. In 

fig. (a), we show the mesonic diagrams contributing 

to i£/ > k(p ,x) describing the decay of meson n 

into meson k and m. In fig. (b), we show the 

diagrams contributing to ±iL, (p..»x, ,x ,x ) 
jK;mn j K m n 

describing the scattering of mesons j and k into 

mesons m and n. The three diagrams shown are 

labelled -\, , Lt t (L , denoting the quark-

antiquark color singlet channels in each diagram. 

Possible particle flavor content assignments 

contributing to these graphs are shown. For the 

rest of this paper, all quark lines are dressed 

unless otherwise indicated; the shaded circles are 

dropped. 
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Figure III.C.2. Examples of Step 2 of inserting T matrices into the 

diagrams of fig. (III.C.1). In fig. (a), we show that 

there are no possible insertions in the three point 

amplitude. In fig. (b), we show the T matrix 

insertions in the s and t channels of 

Figure III.C.3- Examples of Step 3 of eliminating gluons across bound 

states and computing the graph index m. 

Figure III.C.lj. Examples of Step k of time ordering each loop con­

sisting of f fermion lines into f - 1 time 

orderings. The direction of positive minus momentum 

flow is indicated. In fig. (a), we have time ordered 

the three point diagram of fig. (III.C-3(a)while in fig. 

(b) we have time ordered the first diagram of fig. 

(III.C.3 (b)) for iX s t, for the case that 

p > p. The loop integration regions determined 

by each time ordering are indicated. 

Figure III.C5* Examples of Step 5 and 6 for the time ordered diagrams 

of fig.(ill.C.It). Gluons are inserted to route the 

quarks into the bound states and the graph index m 

computed. The diagrams of fig. (a) contribute to the 

three point function using the rules of Step 6 and 

also to the meson exchange contributions to the four 

point function shown in fig.(III.C.2) using Step 7-

The diagrams of figXb) do not contribute to the four 

point function since m = 1 > 0. 
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Figure III.C.6. Diagrammatic representation of the three point 

function, \.Gj -km^p ' x^' a s d e r i v e d i n f i S -

(ill.C.l(a) - 5(a)). Note that each diagram involves 

a glion exchange. 

Figure III.C.7. Diagrammatic representation of the four point function 

i ^ j k ; m n ( p , ;x k,x m,x n). In figs, (a), (b) and (c), we 

show the (us), (st), and (ut) contributions in terms 

of meson dominated strings of three point functions 

and contact terms. The representation is valid for 

1 > X ,X > X, . 
m n Tc 

Figure IV.A.1. The direct coupling of the vector current to meson 

n, denoted % in the text. 

Figure IV.B.l. The inelastic form factor, @f> . The incident current 

carries a fraction x of the final state momentum. 

Both bare and meson dominated coupling diagrams con­

tribute . 

Figure V.A.I. The vacuum polarization 1f (q.) for the vector 

current. The amplitude has the meson dominated 

structure indicated. 

Figure V. B.l. The meson -»• current + current amplitude $Cuyj- Note 

that there are no contributions from the case where 

both currents interact via bare couplings. 

Figure V.C.I. The current + current -»• meson amplitude t/r.̂ . in 

Frame I where the incident spacelike current has 

negative minus momentum component. This incident 



117 

cur ren t i s drawn t o the r i g h t as a remnant of the 

time o rde r ing . 

Figure VI .A.1 . The s t r u c t u r e of the Compton amplitude l/H ] in 

Frame I . The diagrams a r e meson exchange t r e e d i a ­

grams. No contact terms appear . The diagrams 

correspond one-to-one t o t h e terms of eq . (VI .A.3) . 

Figure VI.A.2. The s t r u c t u r e of the Compton amplitude i n 
P I I 

frame I I . The f i r s t diagram represents con t r ibu t ions 

from t h e meson dominated four point funct ion. The 

o ther diagrams contain a t l e a s t one bare coupling 

v e r t e x . The diagrams correspond one-to-one t o t he 

terms of eg,. (VI.A.U). 

Figure VI.B.l. An irreducible quark scattering diagram contributing 

to Compton scattering in the dimensional counting 

picture. The dotted lines are far off mass shell and 

give integer power behavior. 

Figure VI.C.l. Parton handbag diagrams. The dotted propagators are 

dressed. The dashed line indicates that the dis­

continuity is to be taken. 

Figure VI.C.2. Parton model of photoproduction of large mass lepton 

pairs via parton-antiparton annihilation. 

Figure VI.C.3- Contributions to the photoproduction of large mass 

lepton pairs in the 't Hooft model in (a) Frame I and 

(b) Frame II. The (ut) contributions allow a 

parton-antiparton annihilation interpretation. 
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Figui'e B.l. The coupling of the fermion current of type A to quarks. 
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