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ABSTRACT

We consider the interaction of vector currents with hadrons in
a two dimensional SU(N) color gauge theory coupled to fermions in
leading order in an N—l expansion. Aftef giving a detailed review of
the model, we consider various transition matrix eleﬁents of one and two
vector currents between hadronic states. A pattern is estallished where-
ty the low mass currents interact via meson dominance ana the highly
virtual currents interact via bare quark-current ccuplings.

This pattern is especially evident ip the hadronic contribution
to inelastic Cogpton scattering, My =fdx IUX < nIT*(Ju(x)Jv(O))Im >,
which we investigate in various kinematic limits. It is shown that in
the dual Regge region of soft processes the currents interact as purely
hadronic systems. Modification of dimensional counting rules is indicated
by a study of a large angle 'scattering analogue. In several hard inclu-
sive non-light cone processes, parton model ideas are confirmed. The
impulse gpproximation is valid in a Bjorken-Paschos-like limit with
very virtual currents. A Drell-Yan type annihilation mechanism is
found in photoproducticn of massive lepton pairs, leading to identi-

fication of a parton wave function for the current.



I. INTRODUCTION

The experimental realities of hadronic physics lead to the
consideration of a non-Abelian gauge theory of colored gluons
interacting with fermionic quarks as a possible candidate for
describing the dynamics of the strong interactions. The high energy
dependence of electron-positron annihilation and the scaling behavior
(with violations thereof) of deep inelastic leptoproduction shows
that, as seen by large mass currents, the hadronic constituents are
weakly coupled on a short distance scale. This is understood to be
a consequence of the proven asymptotically free [1] structure of the
theory. On the other hand, it is hoped that che long distance
problems that arise in perturbation theory are indicative of a
mechanism for quark confinement.

A dynamical system which has the properties of asymptotic
freedom and quark confinement and, at the same time, gives an
S-matrix which is analytic and unitary on the space of physical
states is clearly special, being highly constrained. It is therefore
of interest to ask whether the dominant phenomenclogical prejudices
about hadronic ‘interactions, which have'developed to explain
isolated aspects of the dynamies without much regard for the overall
constraints, can be realized consistently in a realistie theéry of
hadrons.

These prejudices fall into two large areas - dual Regge ideas
[2] about soft processes (no large final state transverse momentum)

and parton model [3] ideas about hard processes. Regge models are



implicitly bound state models, and describe coherent, diffractive
scattering. Currents are introduced by the ansatz of vector
dominance, which assumes that the current interaction with the
strongly interacting system is mediated by hadrons with the quantum
numbers of the current. The parton model description is in terms of
pointlike hadron constituents seen in processes with large momentum
transfer. Current~hadron interactions are viewed as an incoherent
sum of current-constituent scatterings in this kinematic region.

The standard strong interaction gauge theory is quantum
chromodynamics. QCD, based on the group SU(N), with N = 3,
coupled to spin % quarks transforming as the fundamental represent-
ation. The insolubility of the theory due to infrared singularities
prevents the extraction of the mass shell S-matrix elements visa
standard perturbation theory technigues. A likely form of attack,
perturbing in N-l, developed by 't Hooft [4] has not led to any
significant clarification of the quantitative problem in four
dimensions. In two dimensions, one space and one time, hcwever,

1 gsl.

The spectrum of (QCD)2 in this approximation consists of

(QCD)2 can be solved exactly to leading order in N

an infinite sequence of zero width color singlet bound states.

There is no continuum corresponding to free quarks. Examination of
hadronic amplitudes [6] indicates analyticity [7] and consistency
with unitarity in the color singlet sector with no long range forces.
Asymptotic freedom is trivial due to the fact that (QCD)2 is

superrenormalizable. The model is thus a "realistic" model of



strong interactions, in the sense that it is a consistent structure
with the required ﬁroperties. As such, it has often been used as a
laboratory to investigate hadron dynamics with the hope that, in the
process of understanding its working mechanisms, insights into the
four dimensional problem might arise.

Extrapolation to four dimensions must however be regarded
with caution due to the special unphysical features arising from the
lack of transverse dimensions. The usual Regge ideas are inappro-
priate since there is no continuous independent variable associated
with the t-channel and no spin. There are po dynamical degrees of
freedom associated with the gluon field, so that "glueballs"
cannot appzar. On the other hand, there are experimental indica-
tions of strong transverse momentum damping in high energy hadronic
interactions, giving rise to the speculation that two dimensional
physics may be a useful first spproximation to scattering in the
real world.

Previous work in the 't Hooft model, (QCD)2 to leading
order in N—l, for the most part substantiates theoretical ideas.
Examination of current form factors and two current vacuum expecta-
tion values [6, 8l confirms light cone scaling ideas and shows how
underlying quark dynamics is recovered from amplitudes which show
only hadronic intermediate staxesf The hadronic production of
massive lepton pairs which, though not light cone dominated, is
amenable to a neive parton model impulse approximation treatment,

shows parton scaling structure [9]. Soft hadronic amplitudes



show power law high energy behavior with the power determined by the
properties of quanta exéhanged in the crossed chapnel, direct and
crossed channel factorization, and signature, indicative of the
operation of some precursive dual Regge mechanisms [10,11 ]J. There
is, however, no indication of a pomeron in the model. Finally, a
possible modification [8] of dimensional counting rules [12] :y small
dynamically determined powers is suggested.

The purpose of this paper is to examine the interaction of
hadrons with vector currents in the 't Hooft model. We are, of
course, motivated by the possibility of abstracting our results to
photon-hadron interactions in four dimensions. Through the treatment
of simple single current vacuum to meson and meson to meson matrix
elements, the salient préperties of the current interaction are
established. The current is dominated by hadrons in the Regge limit
and interacts with bare pointlike quanta in the hard scattering
linmit. This pattern carries over to the two current matrix elements
and gives rise to a rich, unified, picture of the photon-hadron
Compton scattering process which is our major concern [13].

We investigate inelastic Compton scattering in the 't Hooft
model by considering the comnected part of the matrix element of‘the
time ordered product of two vector currents between mesonid states.
After computing this amplitude, we examine it in various limits of
interest. The incident virtual photon is taken spacelike and the
outgoing virtual photon is taken timelike in our calculation. In

. general, we do not consider the zero mass "on shell" photon limit in



order to avoid possible unwanted effects strongly dependent on the
two dimensionality of the theory.

Several authors have invéstigated various aspects of the
Compton amplitude in this model. Einhorn [8] has discussed the
imaginary part of the forward slastic amplitude with very spacelike
photons in connection with inclusive leptoproduction. Erower, et al.
have looked at the zero photon mass limit [10]. In this paper we
examine the full inelastic Compton scattering amplitude for
arbitrary photon masses.

We show that scattering in the forward high energy 1limit is
closely related to meson-meson scattering. The scattering amplitude
shows all the Regge properties attributed to hadronic scattering.

In particular, we find no conclusive evidence for fixed poles
arising in the inelastic Compton amplitude which are not present in
the hadronic amplitude.

. We examine a part of the Compton amplitudg in the forward
high energy limit as an ansatz for large angle scattering for con-
parison with the predictions of the dimensional counting picture.
After modification of the counting rules due to the lack of photon
degrees of freedom is accounted for, important modifications in
the asymptotic power dependence and coefficient of the amplitude
remain due to non-perturbative aspects of the model.

Several inclusive limits are investigated. We show that the
parton "handbag" model is realized for ineclusive Compton scattering

at large energy and momentum transfer with very virtual photons. 1In



the process of photoproduction of massive lepton pairs we find that
the amplitude scales in agreement with the parton model prediction
{14] based on the Drell-Yan parton-antiparton annihilation mechanism.
We show that the partonic structure of the photon probed in this
process arises totally from couplings to negative parity mesons.

The remainder of this paper is organized as follows: In
Section II, we qualitatively discuss important properties of the major
elements of the 't Hooft model. In the course of this discussion we
try to emphasize the similarities and differences between (QCD)2
and (QCD)h so that there is some guide as to how seriously the
abstraction of the behavior of the 't Hooft model to the four
dimensional world should be taken. Section III contains a review of
the solution of the 't Hooft model, establishing notation and
presenting formulae which will be of use. ﬁe discuss single current
matrix elements in Section IV, and two current matrix elements in
Section V, with the exception of the Compton scattering amplitude,
which we treat in Section VI. In this section we compute the amplitude
and then examine it in various kinematic limits. Exclusive scattering
limits with finite mass photons are treated in Section V.B while
inclusive processes and comparison to parton model descriptions are
discussed in Section V.C. We include a proof of some simple parity
identities in Appendix A, discuss other currents in Appendix B, and
show the conservation of vector currents in Appendix C.



ITI. ELEMENTS OF THE MODEL

The strong interaction dynamics we consider in this paper is
an SU(N) gauge theory of vector gluons and fermonic quarks in one
space and one time dimension. This theory, two dimensional quantum
chromodynamics, (QCD)Q, was first considered by 't Hooft [5] in
leading order in an expansion in v,

The purpose of this section is to review the important
elements of the 't Hooft model - the two dimensional space-time,
SU(N) gauge theory, and the N_l expansion. We shall be expecially
interested in highlighting the properties of the dynamies which
are highly dependent on the two dimensionality of the space-time
and comparing them to the properties of the four dimensional
theory, (QCD)h. This will give some idea of the extent to which
behavior of (QCD)é can be reasonable abstracted to (QCD)h.

A. Two Dimensional Space-Time.

1. Poincare Group Structure
Minkowski space in two dimensions is described by a set of
real points (%, x). The Poincare group is the set of real, linear,

transformations under which the distance between two points remains

invariant. The distance between x) = (tl, zl) and x, = (ta, za)
. 2 _ 2 2 .
is (xl - 32) = (tl - t2) - (zl - 22) so that the metric temsor is
1 0
- T
g = =gl=g . (1T.A. 1)



We first look at homogeneous {(origin preserving) transforma-
tions of the Lorentz group. The invariant length requirement requires
the Lorentz group to be the set of real two by two matrices, M(A),

such that
T _
M (Mg M(A) =g . (11.4.2)

The proper Lorentz group, continuously connected to the identity, is
a one parameter group whose unimodular elements, Mo’ are of the
form

cosh A sinh A

Mo(l) = = exp (AK) (I1.A. 3)
sinh A cosh A

where

0 1
K20 = . (1II.A. &)
1 0
The group is abelian with law of composition
MO(A)MO(A ) = MO(A + A7) . (11.A. 9)

Physically, we see that the angular momentum and transverse
boost generators in four dimensions do not appear once transverse

dimensions are eliminated. The only transformation remaining is a



boost 'along the 2z direction with velocity B = tanh A, as seen by
the familiar form of eq. (II.A. 3).

Since K in eq. (II.A., 4) is a real symmetric matrix,
it can be diagonalized by a similarity transformation. This
diagonal representation is called the light cone representation and

is achieved by rotating to the light cone [see fig. (II.A. 1)]

R N

In this representation, the metric tensor of eq. {I1.A.1) is

0 1
g = (I1.4. 7)
1 0
and the Lorentz transformations of eq. (II.A. 3) become
exp A 0
M;(A) = = exp MK’ (II.s. 8)
0 exp -A
where
|‘1 0
K* = Oy= . (II.4. 9)
lo -1

Light cone coordinates thus scale under Lorentz transformation. Under
a parity transformation, z + - z, we have x Xz - Two Lorentsz

invariants can be formed from two vectors x and y, a scalar



product x Yy = xy_ + x Y, and a pseudoscalar product
= oHV = - .
Xy = € xuyb Xy ~xXy,.- A pseudoscalar function of two vectors,

possible in two dimensions because of the EUV

tensor, cannot be made
in four dimensions.
The full Poincare group is gotten by including translations

in the space and time directions. The group thus consists of

transformations M(A, x) of the form

M(A, x) = T(x) M_(A) = exp (x - P) exp (AK) (11.A.30)

where T(x) is a translation by amount x. The group has the law of

composition
M(A, x) M(A", x”) = M(A + A5 Ax” + x) . - (I1.A.11)
The generators Pu and K form a Lie algebra given by

[Pu, Pv] =0 [K P“] = EWPv . (11.4.12)
We see from eq. (II.A. 12) that the operator P° is the only one
that commutes with all elements of the Lie algebra. Thus all
representations are characterised by an invariant mass and the
carriers of the representation satisfy the Klein-Gordon equation.
This differs from the four-dimensional case where there is another

invariant operator which labels the spin of the representation. Spin

10



is not realized in two dimensions.
2. Simple Representations Of The Two Dimensional Poincare Group
8. Scalar. The scalar representation is carried by a set of

fields ¢(x) which transform under the mction of the group as
A,; . _ T
$(y) o(y” = M(A, x)y) . (II.A. 13)
b. Spinor. The spinor representation is constructed in
analogy to the four dimensional) case. The Dirac Y matrices are
realized on a two dimensional space with the algebra
M, v =28 . (II.A. 14)

The Y's transform as components of a vector under Lorentz

transformation. This gives the elements cf this representation of

the group as
M(A) = exp (- 2 Ys) (II.A. 15)
where
1 -
Y5 =307, ¥l (II.A. 16)

and M()) acts on the Y“s by conjugation. We thus see that under

a Poincare transformation



v(y) Ax exp ( %‘Y5) iy = M(A,x)y) . (II.A. 17)

The spinor space is separated into two distinct subspaces by the

projection operators P(+) = %‘Y_Y+ = %-(l + Ys) and (+]
‘b .
P(—)= l-y Y = - Y-)- In the represention where 1 =
2 2 5 (-)
v
-
@y, o (-) 0
such that P' " =L and P’ ‘¢ = (~) the Y matrices have
0 3
_ [0 1 . 00 (£)
the form vy = /2 and y = V2 . The fields Y¢'™ 7,
[0 0 10
analogous to light cone coordinates, scale under Lorentz transforma--
P(i) in four dimensions project spin

tions. The operators
helicities of massless fermions. In two dimensions however YS is
the boost operator [see eq. (II.A. 15)] and plays the role of
ouv in four dimensions. This is explicit by comparing
g . = l-[Y Y.] to Y. as defined in eq. (II.A. 16). We thus
po 2 Flutle 5
expect some connection between helicity properties in four dimensions
and momentum boosts in two dimensions. This connection will be
clarified when we discuss short distance behavior below.

c. Vector, The vector representation is the one realized on
the points of Minkowski space and has already been discussed. A

vector field, Au(x), is a pair of fields which transforms under a

Poincare transformation as

A0 2% 0 A = OGx)), . (ILA. B)

12



3. Kinematics In Two Dimensions
‘Scattering in two dimensions is, of course, restricted to a
line. Thus particles either scatter fbrward or b;ckward. Since
there are no angles, fewer invariants are needed to specify an given

scattering event. For an J~body process with all external masses

known, J-3 invariants describe the two dimensional process compared

with 37-10 invariants in four dimensions.

13

We see that in the case J = L4, only one continuous invariant is

needed to describe the two dimensional scattering. The usual
partial wave representation of the amplitude is not possible and
Regge theory methods of analytic continuation into cross channel
variables are inapplicable.

B. Color SU(N) Gauge Theory.

We consider a theory of massive fermions coupled to color
SU(N) gauge gluons with coupling g . The Lagrangian density

describing the system is
J: 1 v -2 ) a
= E-Tr(Gqu )+ g (ip - maI)q . (11.B. 1)
where

G =2

" uAv - BvAu + g [Au,Av] (11.B. 2)

D =31 . .B.
uau”gu (rr.B. 3)



In the above., Au is an N X N matrix of anti-hermitian gluon fields
[15] transforming as the adjoint representation of the group U(N)
and qa is a fundamental multiplet of spinor quark fields with
measurable internal quantum numbers, e.g. flavor, indicated by the
superscript "a". The U(l) gluon couponent has been removed in the
quark-gluon vertices so that E‘u = A, - N-lTr(Au)I. The U(1)
component is thus a free field. (This formulation is used because

it results in Feynman rules with transparent N dependence, as
discussed below).

This theory describes the interaction of color gluons with
fermions. The choice of spinor rather than scalar particles is
motivated by the experimental evidence that hadronic constituents
are spin % particles. On the other huand, there is no essential
difference between spinors and écalars in two dimensions since spin
is absent and statistics a matter of convention [16]. Scalar (QCD)2
has been investigated [17] and results similar to those of spinor
(Q,CD)2 obtained.

Color SU(N) is a gauge theory, i.e. the Lagrangian density of

eq. (II.B. 1) is invariant under a gauge transformation of the type
alx) — exp (id)a(x)

Au(x) — exp (iCDAu(x) exp (- i9) - é-a o

1k
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where @ is an N X N traceless hermitian matrix valued function
of spece-time. We choose to quantize the theory with the axial gauge
condition, n * A =0, for some vector n. This choice leads to two
simplifications in the solution of the theory.

First, the linearity of the gauge constraint eliminates
the need to introducée Fadeev-Popov ghosts [18] into the theory. These
ghosts are fictitious wrong statistics scalar fields in the adjoint
representation of the gauge group whose inclusion in internal loops of
Feynman diagrahs is necessary to maintain the unitarity and
renormalizability of the theory. The interactions of the N X N

matrix ghost field, n{x), =are described by a term in the Lagrangian

cf the form b

£ = ) §Enix) (11.. 5)

wvhere F is the equation of gauge constraint and O9F/3@ describes
the change of ¥ under an infinitesimal gauge transformation. For the
axial gauge case F=n - A . Using eq. (II.B. L), we find that

aF = i[O, n * A] - é(n -.a)e = . é{n *3)0 since the first term

is zero in axial gauge. The ghosts, thus, do not couple to anything
in theory, and can be factored out of the S-matrix. This
elimination of ghosts is independent of the number of space-time

dimensions.

The second axial gauge simplification is, by contrast, highly
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dimension dependent. Since in two dimensions, one component of a two
component vector field has been eliminated by choiceof gauge, the
commutator appearing in eq. (II.B. 2) 1is zero. As a result, all three
and four point gluon vertices disappear from the theory. This
elimination of vertices cannot occur in four dimemnsions.

The model is most easily solved when quantized on the null
plane. Light-cone quantization [19]1involves the specification of
initial conditions, i.e. canonical equal "time" commutation relations,
on the lightlike surface x_ = 0, with the dynamics generate& by the
hamiltionian operator conjugate to x_, P+. Thus the roles of the
coordinates are: x = “tim.e",x+ = "space", p, = "energy",

p_ = "momentum". The initial condition surface x_ = 0, can be
obtained from the surface xo = 0 by a boost of the form given in
eq.(II.A. 3) in the limit that A approaches infinity. This
quantization is thus appropriate for the description of the dynamics
of the "infinite momentum frame".

The infinite momentum frame has been used extensively in
current algebra [20] to derive fixed ‘Q? sum rules and in parton
models [21] to motivate the use of impulse approximation physics.
Field theories in the infinite momentum limit [22] show a ;implified
structure which is particularly amenable to a non-relativistic type
of description [23] where graphs with particles moving backward in
time are eliminated.

Applications of infinite momentum are typically plagued by

questions of the existence and uniformity of the infinite momentum
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1imit. This question also appears in the light cone gquantizatioa
scheme. The point is ‘that since there is no finite continuous
transformation which transforms the X, = 0 surface to the x_=10
surface, spacelike quantization and light cone quantization do not a
priori describe the same physical theory [24]. An investigation by
Bars and Green [25] shows the comsistency of the spacelike quantized
and light cone quantized 't Hooft model.

Operator quantization of (QCD)2 [25, 26] cannot be done so
as to consistently generate the Poincare algebra of eq. (II.A. 12)
due to the existence of a background color electric field. A consistent
covariant theory can only be formulated on a Hilbert space whose
states are all color singlets. There is thus an intimate connection
between the Poincare struqture and gauge group structure in (QCD)Z.
We restrict ourselves to a color singlet Hilbert space in this work.

We choose to work in the covariant, A =0 gauge so that
Lorentz invariance is retained. This choice however, destroys fhe
explicit parity invariance of the theory. Quantizing in A_ =0
gauge, an equation of constraint for A+ can be derived from the

Euler-Lagrange equations:

2 . = -

3_A+(x) = - igdx)y_talx) * 1=~ 1gJ_(X) (1I.B. 6)
vhere the N X N matrices T form the fundamental representation of

the lLie algebra of the gauge group. Since there is no operator

conjugate to A, , the field can be eliminated with
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A(x) = - iga:zj_(x) . (II.B. 1)

There are thus no dynamical gluon fields in (QCD)E. All that

remains is an instantaneous Coulomb potential V(x) which satisfies
82(x,, x ) = 8(x,)8(x ) . (II.B. 8)

The elimination of two gluon degrees of freedom can be done in this
way in four dimensions also. However the transverse gluons in four
dimensions remain as dynamical variables. We thus lose the hope of
finding in (QCD), any (QCD)) effects whose origins lie in the
existence of gluon degrees of freedom.

The general solution of eq. (II.B. 8) for the potential

V(x+, x_) is
Vix,, x) = 2 |x,|8(x) + B(x )x, +C (x).  (IL.B. 9)

The first term is the linearly rising Coulomb potential in
two dimensions. Thus, even at a classical level, quarks must be
confined in neutral color configurations. Confinement in (QCD)h
is presumably very complicated, arising non-perturbatively from the
singular infrared behavior of the theory. We see, then, that (QCD)E,
by virtue of its trivial confinement mechanism, can offer no insight

into the dynamiecs of confinement in four dimensions.
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The second term in eq. (II. B. 9) gives rise to a background
color electric field and can be ignored in the color singlet sector.
The last term, C(x_), corresponds to no new physics. It reflects
the fact that the light cone gauge, A =0, is preserved by the
class of gauge transformations, eq. (II.B. 4), where 6 .as no
x, dependence.

The fermion field equations of motion deriveé from the
Lagrangian of eq. (II.B. 1) in the A_ =0 egauge include another
equation of constraint:

Mg
V2

(=)

13 @' 7'{x) = i) (I1.B. 10)

where the superscripts denote the (1i-y5) projections discussed

above. .The q(_) field can thus be eliminated by writing

(y) = o (2 (+)
a7 (x) = ;‘52_“ Id v(x_ -y ) elx, -y)a (y) . (II.B. 11)

There are thus only two degrees of freedom, q(+) and §(+) s
remaining. The theory is gquantized by sgtting up the canonical equal
x_ anticommutation relations and solved in a perturbation series in
the coupling g. The usual Feynman rules result and are given in

fig. (II.B. 1). Notice that the gluons, in the adjoint representation
have the color structure of a quark-antiquark state. It is sometimes

convenient to represent the gluon propagator as two quark lines as

in fig. (II.B. 1) to keep track of the color flow through the diagram.



20

The singular behavior of the gluon propagator at zero
momentum introduces infrared divergences into the theory. These
infinities must be regulated. The regularization question is, in
turn, tied to the residual gauge invariance in the problem. This
can be clearly seen by taking the Fourier transform of eq. (II.B. 9)
for the potential. The residual gauge term C(x_) gives rise to a
8(k_) term in momentum space, If C(x_) is set equal to zero, the
gluon propagator is given by the Fourier transform of the Coulomb

potential, - l-[ 1 + L ] . (The symbol P refers

kf 2 l(k_+ 1g)? (x_- i)
to principal value). The propagator can also be regularized by

cutting the k =0 point out of momentum space and taking the
gluon propagator to be G(ké_- Ae)/kf for some small fixed A.
This is 't Hooft's A cutoff method and corresponds to C(x_) =
6(¥)/wkl27]. Gauge invariant gquantities  should then be finite in
the limit A - O.

The principal value prescription is useful sinte'all diagrams
are finite and the non-trivial cancellations due to gauge invariance
can be clearly seen. The 't Hoqft prescription is better suited to
rapid calculation of graphs because of simplifications due to the
A+ 0 limit. We will use this method of regularization in our
discussion.

Having regularized the infrared divergences of the theory, we
now look at the ultraviolet region. Using the familiar [28] power

counting arguments, the superficial degree of a divergence, D,
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of a Feymman diagram with n vertices, F external fermion lines,

and B external boson lines is
_ 1
D=2 - E-F -n . (11.B12)

The only superficially divergent diagram is thus the one loop
correction to the gluon propagator (n =2, F=0, D= 0) which is
however finite due to the gauge invariance of the theory. The
conclusion is that there are no ultreviolet divergences in the
coupling constant perturbation theory of (QCD)E. Mass and coupling
constant renormalization is finite. This softening of the theory
occurs because there is a dimension associated with the quark-gluon
vertex;the coupling constant g has dimensions of mass. This is
why n appearsineq.{II.B.12). Such theories are called superre-
normalizable, as opposed to renormalizable theories like (QCD)h
where ghe c§upling constant is dimensionless and the degree of
difergence of a diagram does not depend on the number of vertices.
Theories with dimensionful parameters are trivially asymptoti-
cally free [1). This means that,at short distances, (QCD)2 looks
like a free field theory. This assertion can be fozpally shown
using renormalization group techhiques. The independence of the
Green's functions of the theory on the renormalization point U

leads to the identification of a dimensionless running coupling



22

- 2
coupling constant, A(Q ), which gives the strength of the coupling

when the scale of all momenta is set by Qz. The Q2 evolution of

A is given by

d* - 8(%) - (1I.B.13)

where t = log Q and B(A) is the differential change in the coupling
due to a logaritimic change in the renormalization point u. Since the
coupling constant g has dimensions of mass in (QCD)E, take a
dimensionless parameter A = g(u)/u, where g(u) is typically
calculated as a perturbation series of the form g(p) = g(1 + ag2/u2+'ﬂ.
Then

B(A) = uaé-= - A+ 0(X3) . (II.B.14)

If X is small enough so that only the leading term may be

retained, eq.(II.B.13) gives g (Q ) ‘uA (Q ) = g Q /Q where

= E(Qi) for some value of Qb' The runnlng coupling constant
scales exactly as a power and free field theory diagrams (g = 0)
dominate as Q2 + oo,

This behavior is modified in (QCD)h where the coupling
constant is dimensionless. The first, linear, term in eq. (II.B.1lk)
does not appear. The asymptotic freedom of the theory is then deter-
mined by the sign of the cubic second term. Even if the sign is

negative and asymptotic freedom results the form of the £ funection



induces logarithmic, interaction dependent, corrections to scaling
not present in two dimensions.
C. Free Field Short Distgnce Behavior Of Currents

The short distance behavior of the product of two operators

is given by the operator product expansion [29]

lim - ifdx eiq'x<A|T(Ol(x)02(C))|B> =Edn(q)<l\| o_(0) B>  (1I.c. 1)

+
1 n

where the {On} are the local operators of the theory esnd the limit

on q 1is such that the dominant region of integration comes from

X =~ 0. The leading behavior of the coefficients dn(q) as q * @

is determined by simple dimensional analysis from eq. (II.C. 1).

If D(Og is the mass dimension of the operator On’ dn(q) = an@)q?n+-.

as q»® where P_=-2+D(0))+D(0,) -D(0) and e [a)

is a dimensionless function of log q. Clearly the dominant terms in

the short distance expansion will come from the operators of smallest

dimension. In view of the asymptotic freedom of (QCD)2 |

discussed above, the a, can be caelculated from free field theory.
There are four siﬁple, gauge invariant, hermitian, fermionic

currents, J(C)(x) = EKx)Y(C&(x):, (c =8, PS, V), where

YS = I.(scalar), YPS = iyg {pseudoscalar), Yv = y* (vector).

Short distance products of these currents can be expanded to give

- ijdzx 1% 23 ) (1) 0 B> = 0l 5> + {Emaﬁ(q)

<als Poyp > - . (IL.c 2)
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These are the dominant terms since the identity operator, D(I)=0, and
the current operator, D(J) = 1, are the lowest dimension operators
in the theory [30]. The free field values of the expansion coef-

ficients can be obtained from simple Wick expansion. The coefficents

a8l 4(P8)
o (o]

dﬁC)(q), for example, are found to be =1(2n)_1log (- q)2,

d(v)= (g -~ E]‘-'-(52-)1‘!(17)'"1. The imaginary part of d(C) is related by
o) quv q2 o

the optical theorem to the cross section for the decay of the current

C) (v)

o

J( into a quark-antiquark pair. Thus, since 4 is real, the

leading short distance behavior does not contribute to the process
e+e— + X 1in two dimensions and the canonical scaling behavior does
not occur. This is the simplest example of the general pattern of
anomolous scaling behavior in two dimensions.

This origin of this behavior can be seen be examining the
free field Dirac equation which, written in terms of the (1 % Y5)

(+) (=)

projections P and Y s, 1is:

ia(i)w(i) =\/—‘“§¢(;) i (II.C. 3)

In the short distance limit, when the fermion mass is small

+ -
compared to relevant mass scales, & ) (w( )) becomes an eigenstate

of p+(p_) with zero eigenvalue. The field w(+)(w(-)) thus creates

and destroys right (left) moving quanta only. The fermion currents,

(£)

written in terms of ¢ are,
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t
3 LT T, (11.c.1)

t - 7T (-
PO LEN O RS GRS

The vector currents, as shown by eq. (II.C. 4), can only produce a
quark-antiquark pair where both quanta are moving in the same
direction. Since such a pair cannot be produced from vacuum due

to momentum conservation, there is no contribution to J(v)+ da in
leading order (fermion mass equal to zero).

We define the momentum helicity of a right {left) moving
fermion or a left (right) moving antifermion as positive (negative).
The discussion above shows that the leading short distance behavior is
non~-canonical in any process vhere momentum helicity is not
conserved at a vector current vertex or is conserved at a scalar
or pseudoscelar current vertex. The momentum helicity behavior
in two dimensions is exactly analogous to spin helicity behavior in
four dimensions, becausé, in both cases, the helicity states are
projected out by %(1 % ys).

D. The N - Expansion

't Hooft [4] has shown that tre set of Feynman diagrams of a
U(8¥) [31] color gauge theory with color singlet sources contributing

to a given order in N_l in an expansion of the theory as N + =
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with gaN fixed is determined by purely topological properties. This
is true in any number of space-time dimensions.

The Feynman rules of the theory can be written in‘an N
independent way and all the quanta represented by color flow lines
(as done, for example, in fig. (II.B. 1)). A diagram is then a two
dimemsional surface with &£ color loops, f fermion loops, and h
handles. The N dependence arises from the color loops while the g
dependence at the vertices is fixed by the structure of the theory.
These can be related by Euler's theorem to show that a diagram

r(e,f, h) - (n1)2h+e-2

. The leading diagrams are planar (h = 0)
with no internal fermion loops (f = 1). Figure (II.D. 1) shows a
simple example of how the N-dependence on internal fermion loops
comes akout. Each internal loop results in a factor g2 at the
quark-giuon vertices without making any new color loops. Figure
(II. D. 2) shows a simple example of how the N-dependence on
handles comes about. Handles result in the twisted connection of
qolor loops which are separate on the planar level,

Several important properties [32] of the mesonic amplitudes in
leading order in N-l can be gbstracted from the planarity of the
graphs:

(1). Mesons, color singlet quark-antiquark bound states, are
absolutely stable to leading order. This is due to the color
normalization of each external state in an amplitude. The probability

for a meson to decay to two mesons is thus down by a féctor of N_l
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from the probability for stable particle propagation.

(2). Similar color normalization arguments can be used to show
that, in an inclusive process, the unseen state consists of only
one meson. Generally, the implementation of unitarity through
application of the optical theorem involves next to leading orders
in N-l, since the unitarity constraint is non-linear.

(3). The mesonic ampitudes are meromorphic functions of the
Lorentz invariants. No multi-particle threshold cuts can be created
on the planar level because a planar diagram cannct be cut through
more than one guark-entiguark pair. This is illustrated by the
example of fig. (II.D. 3) which shows a gquark diagram which
contributes to the buildup of a two particle intermediate state in
the meson-meson scattering amplitude. This however cannot contribute
to leading order in N-l due to the internal fermion loop. The
theory in leading order in N-l is thus a tree diagram theory of

mesons with simple Born exchange amplitudes.
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III. MADRONIC STRUCTURE OF THE MODEL
The treatment of quantum chromodynamics in two dimensions
to leading order in N—l renders the 't Hooft model simple enough
so that it can be solved exactly for mesonic amplitudes., These
amplitudes are expressed as integrals over mesonic wave functions
which are derived non-perturbatively by Bethe-Salpeter [33] techniques.
In this section we formulate the bound state problem and

reviewl5, 6 its solution in (QCD)2. We thus arrive at an equation
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for the bound state wave function and discuss its properties. The
entire theory is then reformulated as a graph theory of mesons,
with the three and four point functions used as examples.

A. The Meson Wave Function.

The color singlet quark-antiquark bound state wave function is
obtained from the residues of the poles of the color singlet quark

antiguark four point vacuum amplitude, given by

Dog 5Y8*?

] 1] 1 ] 2
(2)%6(p + p' - a - q )iDyg. Yé(p,p;q,q ) =/d2xld2x2d Yld2Y2
exp(ip . xl + ipl . x2 - iq . -y-l - iql - YQ-
. < o|T(Tr($a(xl)wB(x2))Tr(tﬁy(yl)wd(ye)))|0 > (IITA.1)

and shown in fig. (III. A.l). (The Gr:ek letters are .Dirac .indices
and the traces are in color space.) This is seen by examining the
behavior of the amplitude due to a one particle intermediate state
when the @w clusters are separated by a large distance in space-

time. Defining the total momentum P =p + p =q + q' and the

. : X X ¥
- + = = - — = +
centér of mass coordinates Xy X 2 X, X > yl Y 5
Yo =Y - 12, A= L—I-E and using translation invariance to translate

the system by X—;X-, we have

. 2 2 2 . . .
1DaB;y<S(P;P’ q) ='/:1 Aﬁ x-/; vy exp(iA - P)exp 1% . (2'9-P)exp—1}2:-(2q-P)-

<olt (e, ((FE g (52) e, (FEws (5))) | 0> (a1T.42)
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If Tr(y ¢) is the source of a single perticle bound state of mass
Mn and momentum k,| k; Mn?n which is confined to a finite region
of space time, there is a contribution, D°(P;p,q) to D(P;p,qa)
coming from the region A > Ao, for some A° large compared to

the size of the bound state, which is given by

ip°(P;p,q) = f f fd.xf jEk (2ﬂ)6(ko _\/1‘5'2 + Mf], )

exp(ip* (P - k)) expld % - (2p - P)) exp(-1i }2: - (2q - P))
<Ol T(Tr (T (FWg(- DNy 1> <k w | (Te(d, (P (- D)) |0> (111.4.3)

where we have used the restriction on A° to split up the time
ordered product, inserted a sum over single particle intermediate
states, and used translation invariance. The A and k integra-
tions can be done to give

exp iAC(P°- /P? + M® )(III.A.N)

- o{8) 2.3 (r,0)
3bsq) = -~ ——

2¢° (p° - P2+Ms+ ie)

where the wave function ¢;§%P,P) is

(“’(P.p) fdex (- 3% - (2p - P))<P,M, | 20T (T, (Dvg(- 3 0>

A(III.A. 5)



(n) (n)

and X is the time reversed btermitian conjugate to ¢ .

Equation (III.A. 4) shows that ¢(n)

can be obtained from the
residue of the pole in the lower half p° plane of D(P;p.q). This
is schematically indicated in fig. (III.A. 1).

The amplitude» D{P;p,q) in the 't Hooft model is given by a
. sum of planar diagrams like fig. (III.A. 2). These diagrams
are characterized by uncrossed ladder exchange of gluons between
renormalized fermion propagators. Thus, in order to solve the bound
state problem, we must dress the quarks and then sum the infinite
series of ladder exchange diagrams., There are no vacuum polarization
or vertex corrections in the planar, two dimensional, theory.

l.Renormalizing the Quark Propagator.

The proper self energy vertex, iZ(p), is related to the

full propagator iS(p) by the sum shown in fig. (III.A. 3). The

geometric series gives
. . -1 . -1
iZ(p) = (is(p)) ™~ - (i8_(p)) (III.A. 6)

where So(p) is the bare propagator given in fig. (II.B. 1). The
planarity of gluon further relates S(p) to Z(p) as shown in

fig. (IIT.A. L) giving

- dzky is(k)y
iZ(p) = ig"N 27 '2 ) (III.A. T)
: (2m)"(p_- k_)

The Dirac structure of eq. (III.A. T) shows that iZ(p) = iy_o(p).

.



Combining eqs. (III.A. 6) and (III.A. 7) , we get

2 ,
o(p) = igsz 2‘1 k > 1 = (111.A.8)
(em)™(p_ = X7 (- o) - E{- + ek )

which shows that o(p) is only a function of p_. The k,

-integration is logarithmically divergent but can be done symmetrically
to give

dk dk
&EN —5 sen k_= fﬂ —5 sen(p_ - k_).(IIT.A.9)
(p_- k) K2

alp) =
The integral over k_ is infrared singular. To regularize the
integral we cut a hole around the origin from -A to A by replacing

eq.(III.A. 9)with

2k 2. [sen(p )
o(p) = hf‘rs e(k - 39) sen(p - k_) = %—%[—ﬁ—- -pl—] . (III.4.10)

The full propagator is found from o(p) by eq. (III.A.6). It is

given by ,
2 [segn(p )
- [____'_ .1
is(p) = i (Y“‘P- * Y—(p+ on by o (II1.A.11)
2



The A cutoff dependence of the propagator is expected
because 5(p) =.I;2x exp(ip * x) <0|T(P(x)y(0)]|0> is not a gauge
invariant matrix element. The mechanism for quark confinement,

i.e. the disappearance of quark mass singularities in the physical
S-matrix, is clear in this formulation. These singularities are
shielded by the A™" term in the limit A ~ 0. As A~ 0, Ghe
propagator is linearly proportional to A if a Y_ stands to either
side to eliminate the ) dependence of the numerator.

2. The Bound State Wave Equation.

Armed with the dressed propagator, the wave function can
be found by summing all gluon ladder exchange diagrams. This can
be done by writing an integral, Bethe-Salpeter, equation for the
wave function Qig (P,p) describing the nth bound state of quark
a with momentum f and antiquark p with momentum P - p.

(The explicit Dirac indices of eq. (III.A. 5) have been dropped)
B
(20)® (p_- k)

P,k)

b .2 .. .
4’2' (P,p) = ig N(lS(p))Y_f 3 'Y_(lS(P - p)). (II1.A.12)
This equation is represented diagramatically in Figure (III.A.5).

The equation can be simpiified due to the Dirac structure
and to the instantaneous potential which depends only on minus

momentum components. Defining the function ¢§b by

ab . (. b
¢ (Psp_)v_ —fY_zpf‘l (P.p)y_dp, (II1.A.13)
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gives

~2
= . 2 i m 2
ab _ ig N _a g . ) -1
¢, (Pyp) = - (on)2 fdp+(P+- 35 " (210\ - ie) sen p_)
~2 ab
m 2N ) 'lf ¢ "(P,k_)
(P+- By " EP - 5) £ - 1) sente - 2o, Y
(III.A.1L)

The P, integration can now be done as a contour integal. The
only non-2ero contribution comes when the poles are on opposite
sides of the real axis. Taking P_ positive for a real particle,
this imposes the condition that p_> p_> 0. Performing the

integration gives

~2 .2 )
a b N |,ab - .
(P+- 2p " 2(P-p )" %A_ )¢n (Pop_) = - Eé_'f? 8(p)e(p_-p_)
dk = :
. - .ab
f;.,? $2°(pp k) . (III.4.15)

The integral on the right hand side of equation (III.A.15) needs
infrared regularization by the A cutoff prescription. The A
dependence generated by the cutoff exactly cancels the A defendence
of the left hand side. Multiplying through by 2P_ and defining

the variable x = p_/PL in eq. (III.A.15) gives the 't Hooft
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equation [5 } for the meson bound state of mass Mn.

2 ab fic ﬁi b 2N [:l ) g
Moo (x) =(—xE + (1-x))° (x)-g ;;j’ dy (;_x)a (H* V)(ﬁl’(X) xe[0, 1]
(I11.A.16)
¢%2(x) = 0 %0, 11

where H_~ is the free particle Hamiltonian (P+) and V is the
Coulomb potential. The Lorentz invariant variable function, x, is the
fraction of the total meson momentum carried by the quark in an
infinite momentum frame where the meson is moving to the right. This
description is not parity invariant due to the choice of gauge.

The disappearance of the A dependence in the 't Hooft
equation indicates that the wave function ié well defined with
respect to infrared ambiguities and is gauge invariant. The gauge
invariance of the wave function can be shown formally [8]. ¢n(x)

" can be expressed in terms of the function Qn(x) of eq. (III.A.S)

through eq. (III.A.13) as
¢n(x) =fdp (QQBY 30‘) = dp+f<12g exp '_?i(€+1’_(2x-l) +€_(2p+- P+))
t
<n|T(;p(+) (%)w(*‘)(- %))lo> = unfdg+exp - 16 P_(2x - 1) -

T
<l ™t (e, o= g, o> (III.A17)
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Due to the P, integration, only fields on the zero time
(§_ = 0) surface contribute to the wave function. We compare

this to the explicitly gmuge invariant wave function A(E) given

by "
£
M) =< niT(lT!(-E)expli f Andxu)w(5)>l 0> (I11A.18)
-E :

which shows that a general quark-antiquark state involves an
infinite number of gluons. Restricting & to the equal time sur-
face in the gauge A_ = 0 eliminates the line integral operator
and shows gauge invariance of the matrix element in eq. (ITI.A.1T7).
Thus, the choice of the A = 0 gauge together with the choice
of an infinite momentum frame with x_ =0 equal time surface
yield e simple gauge invariant quark-antiquark operator.
Investigations [ 34] into the existence of states of
greafer than two quarks by summing planar diagrams in (QCD)2
show that a A independent wave equation of the form of eq.JIII.A18),
with Ho equal to the total fpee particle energy and V equal to
the sum of pairwise Coulomb exchanges, can be cbtained provided
the state 1s a color singlet. It is only for the meson state,
however, thaf the planar diagram summation represents the leading

. -1 .
order in an N expansion.



3.The Color Singlet Quark-Antiquark Scattering Amplitude [6].
The remaining element needed in expressing the 't Hooft
model in mesonic terms is the color singlet quark-antiguark
scattering amplitude, iT:E;Ya@ﬁp,p'), which satisfies the ladder

exchange integral equation depieted in fig. (III.A. 6),

: .2 2 2k
. " = ig g N d v
iT aB YG(P p>p') - (wr_)w(\r_)&S + Py e k? pU YG(P,k,p )

*(y_s(p -~ k))BG(y_s(k))‘le . (III.A.19)

- 1] 1 . ¥ '
TQB;Yﬁ(P’ p,p') 1is related to DﬂB;Y6(P' p,p') of eq. (IIT.A. 1)

by truncating the external quark and antiquark lines. Its Dirac

structure is TdB;YG (P; p,p') = (Y—)ay(Y-)BﬁT(P;p’P')' The Dirac

algebra gives

- 2 . 2 2
L 1y = ig™N dk b
T2°(P'5 p,p') = . igp')e - (in)ef( o s2(k) [1Ta (P,k,p' )]s (P-k)

(III.A.20)

where SE(p) is defined by SE(p)Y = y_ S(p)Y . To separate the

integrals we take Tab(

2.01) = fap, 5, (e (P17 )5 (P - 2.
Following the same steps as for the wave equation, we find that

T(P;p_, p') satisfies an inhomogeneous 't Hooft equation:

- (IITI.A.21)

~2 ~2
m

m = 2 b . 2
(P% 2 B ) (pir,x) E?Nfdy © (P;Y”e") - _ching
' (y-x) (§:xl)2P_
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vhere x = p_/P_ and x' = p_'./P_. Solving by standard techniques

gives
h b
= .2 Y $2°(y)
12P(p, x,x') = - ATE Y, 2— Jay 2——— . (111.A.22)
P_ P2 _ M2 (y _ x)E
n n
Inserting this solution back into eq. (III.A.20), we find
ab aE
T (P,x,x") = P (x) (x') (III.p.23)
P2(x -X ) z n
M,
where Pgs(x) is the normalized meson vertex
1
2 ¢ _(v) 2
T e N1 o =i/Z N
(x) VN[«]— dy _JJ;[TT]
A (y - x)
29 (x)8(x)0(1-x) | y)
X + -Efdy Pa— (171.A.24)
(y-x)

sccording to the A cutoff regularization. This solution is
displayed in fig. (I1I.A.6).

The meson vertex Pn(x) is essentially the wave function
¢zs(x) with external propagators cut off. It gives the amplitude
for decay of a meson to a quark-antiquark pair. The correct color

. 1
normalization appears in the explicit N E factor. The A
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dependence shows the gauge variance of the vertex. The vertex

grovws as At as A+ 0 for 0 < x < 1l. This A_l bekavior

cancels the A behavior of the fermion propagator to give A
independent amplitudes for gauge invariant quantities as A+ o0.
The graphical structure of the bound state vertex expressed by
eq. (III.A. 24) is shown in fig. (III.A. 7).

B. Properties of the Bound State Wave Function.

The 't Hooft Hamiltonian operator is harmitian on the space
of functions f(x), xe[0,1] such that £(0) = £f(1) = 0. On this
space it has been proven [ 51] that the spectrum of the operator is
discrete and non-degenerate. The solutions, ¢n(x), to ﬁhe
't Hooft equation are conventionally taken to be real and positive
near x = 0. This implies

ba

02P(x) = (1R - x) (111.5. 1)

They form a complete, orthonormal set

Z ¢:E(x)¢§s(y) = 8(x - y)
n

1

dx ¢ib(x)¢;s(x) =6 - (III.B. 2)
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The meson Green's function, G(x,y; q2), can be written in terms

of the wave functions as

= ¢, (x)e. (y)
6*P(x,y; o°) = E%—Tk—— (III.B.3)

g O Mt ie

and

¢*P(x; %) = fdy a*P(x,y; qz)- (III.B.4)

The edge point boundary conditions arise because the infinities in HO
at the points x = 0, 1 must be cancelled exactly by terms in

the potential. This requires the edge point behavior of the wave

function to be

- C X X+ 0
2lx) = (III.B.5)

where Cz and Cza are positive constants and B is the solution,
0<B<1l, of

. T8 cot M8 = 1 - [—’%—] me (I1I.B.6)

g N

The wave function can be analytically extended [7] into the complex
x plane with cuts running to infinity from x = 0, 1 along the
negative and positive real axes. The branch point singularities

give rise to the non-integer power behavior of eq. (III.B. 5).



The large mass wave functions, Mi >> m2, have the approximate form
$2°(x) =VZ sin[(n+ 1)mxd, n>> 1 (III.B. T)

except at the edge points where eq. (III.B. 5) describes the behavior.

The mass of this state can be found from the 't Hooft equation to be

2
MI21 - [E?l‘l] w°n , n> 1. (III.B. 8)

The large masses thus lie on straight line "Regge trajectories”

of slope a' = ggNn. More elaborate W.K.B. techniques have be used
[7, 35] to find the first corrections to egs. (III.B. 7) and (III.B. 8)
An x dependent phase in the argument of the sin in eq. (III.B. T)

and further terms in eq. (III.B. 8) which grow like log n appear.
Numerical calculations show that the W.K.B. form is reached very
quickly. The edge point, large mass wave functions are universal

scaling functions [8]. From the 't Hooft equation, it is easily seen

that

1im ¢;b(521\rg/mi) = ¢*(E)
n -+

(III.B. 9)

1in (1) 221 - Puem) =P(e)

n > o
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The scaling functions depend only on quark properties and satisfy [36]

E>
aE™(E) = m —Tr—} . (111.B.10)
J- [gQN "e

The Green's function alsoc scales for large q2

q2Gab

lim (thNE./ﬂqe; q2) = h:(E) (I1I.B.11)

q_2 + * o

The wave functions satisfy several relations which arise from the
underlying Eaiitx invariance of the theory. Since the spectrum is
non-degenerate, every bound state has a definite intrinsic parity.
The parity relations [6] involve integrald over wave functions which,
as seen from eq. (III.A. 1T7), probe the origin of configuration space,

which is invariant under a parity transformation.

% (x) 6 22(x)
m, Id_x i;f— = el)n‘“lfdx (—‘ll_—ﬂi (I1I.B.12)
22(x) #20(x)
Mﬁ jdx ¢ (x) = mi J'dx —1‘;——){— + m.gfdx —i‘;i— (II1.B.13)

Equation (III.B. 13) can be shown directly from simple manipulation
of the 't Hooft eguation. We give a proof of these relations by
using parity invariance in the Bethe Salpeter formalism developed

above in Appendix A.
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C. Hadronic Scattering Amplitudes in the 't Hooft Model.

Knowledge of the meson vertex (eq. III.A. 24) and the quark-
antiquark T-matrix (eq. ITI.A. 23) allows the calculation of any
meson amplitude. In this section, we develop a step-by-step procedure
to compute any amplitude involving Y_ vertices (this includes
bound state vertices), using the meson three and four point functions
as examples. This allows all of the matrix algebra to be done
trivially so that it need never appear. A set of graphs arises from
bare guark graphs which includes only mesonic elements - wave functions
and propagators ~folded into Coulomb potentials.

These ruless> coupled wifh the assumption of electromagnetic -
gauge invariance, allow the calculation of all amplitudes discussed
in this paper. Modifications due to Y+,I,Y5 vertices are considered
in Appendix B and the divergencelessness of the vector current
amplitudes shown in Appendix C.

For the remainder of this paper we define units of mass such
that gEN/n = 1. These factors can always be restored by simple
dimensional analysis.

Consider an amplitude with n vertices.

Step 1.: Connect the vertices in all cyclically inequivalent ways

with clockwise directed quark lines to form (n - 1)! rings. Insert

a meson vertex function as shown in fig. (III.A. 7) at every meson
vertex. Keep only those rings whose internal flavor flow is consistent

with external particle flavor assigmments. (see fig. (III.C. 1)).



L3

Step 2. To every remaining ring diagram, draw another diagram
inserting the T-metrix, as shown in fig. (III.A. 6) in all possible
non-overlapping ways in the color singlet gquark-aentiquark channels,
excentlacross_bound state vertices. (8See fig..(III.C. 2))

In this step, we have performed the sum over all planar
diagrams to get the leading order in N—l contribution to the
aniplitude. The T-matrix does not appear across bound state vertices
because it is already included in the wave function.

Step 3. Eliminate all gluons exchanged across bound state vertices,
A remainiqg diegram has £ loops, f quark lines, B bound state
vertices and G gluons. Compute the integer m = f -%2-B ~ G for
each diagram. If m > 0 the diagram may be eliminated. (See fig.
(111.C. 3)

In this step, we are looking at the leading A behaviar of
a diagram as A + 0. Elimination of the gluon acrass the vertex is
the graphical equivalent of eliminating the non-leading piece in
eq.’(iiI.A. 24) as A + 0 and simplifies counting. The leading A
behavior of the diagram is Am; each fermion propagator gives a
factor of A (dq. III.A. 11), each loop integration effectively
eliminates a fermion propagator as in the derivation of the ‘'t Hooft
equation, each wave function contributes A-l from the first term
in eq. (III.A. 2L4), and the infrared singular part of every gluon
propagator contributes A_l. Simple topology shows that this constraint

eliminates all graphs with two or more bare current vertices.
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Step 4. The remaining diasgrams represent integrals over loop momenta.
The infegrals over the plus momentum components can be trivially done
by contour integration. This splits each loop of f fermion

lines into « sef of (f - 1) +time orderings, with the direction of

g quark line determined by its minus momentum component, positive
momentum flowing to the right.

To every diagran, construct a set of time ordered diagrams
by deforming the graph in all possible ways consistent with minus
momentum conservation at the external vertices. This deformation is
done by considering all orderings of the vertices. See fig. (III.C. k).
Step 5: 1In the time ordered diagrams, if there is a bound state vertex
where the quark and antiquark are not botk pointing in the same
direction as the vertex, insert a gluon to achieve this configuration,
See fig. (III.C. 5).

This step reinserts the non-leading piece of the vertex
which was-dropped in Step 3.

Step 6: Consider all time ordered diagrams which do not contain any
meson propagators. Recompute m as in Step 3, with the difference

that G is the number of gluons in the diagrams which do not change
the directions of the quark lines at its vertices. I1If m > 0, drop
the diagram. See fig. (III.C. 5).

This step counts the A dependence of the time ordered
diagrams by determining whether the singular part of the gluon

propagator can contribute. This A'l term can only contribute if
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the minus component of momentum flowing through the gluon is zero.

The plenarity of the diagram insures that m 2 - 1, There
are thus two cases:

Case 1: m = 0,

(i) Scale the minus momentum of each gquark line by
dividing by some external minus momentum component so that each
quark line is characterized by a Lorentz invariant momentum fraction
variable. The allowed ranges of the invariant integration wvariables
are determined by the time orderings of the diagram.

(ii) To every loop with fr(l)right (left) directed quark lines,

T, I+l -2 N .
f=f * 4., assign a factor (1) (i) = I, where the limits on the
r fz-l 2n

integration are determined by the time ordering. This factor arises
from Keeping track of the contour integration over plus momentum
components.

(iii) To every quark-gluon vertex assign a factor g.

{(iv) To every gluon carrying momentum fraction w which
does not change the directions of quark lines at its vertices assign
a factor 2is(w).

(v) To every other gluon carrying mcmentum fraction w
assign a factor i/we.

(vi) To every bound state vertex with momentum fraction
z, with quark a carrying momentum fraction w and antiquark to

carrying momentum fraction 2z - w assign a factor -2g¢ab(lz':)-
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(vii) Change loop integration variables so that all
integrals go from zero to one. This is the conventional standard
form for displaying the amplitude.

(viii) Insert factors of scale momentum as needed to satisfy
Lorentz index requirements.

Case IT: m = - 1,

This case only arises in connection with the n meson + n
meson function where the incident and outgoing mesons alternate
around the ring. These diagrams thus occur as part of the four,
six, eight, etc. point amplitudes. The Clut diagram of fig.
(III.c. 1) is an example.

These diagrams all go as A_l but, as demanded by gauge
invariance, the sum of them cancels out to this order. The next to
leading A° order must be recovered by taking into account the next
to leading pieces of the meson vertex, gluon propagator and fermion
propagator. The total meson vertex correction is easily seen to
vanish as a result of the vanishing of the A_l contribution.

(i) . To every m = - 1 diagram with G gluons which
do not change direction of the quark lines at its vertices compute
using the m = 0 rules with the exception that one of the G
gluons carrying momentum fraction w be assigned a factor i/we.

Do this for each of the G gluons, generating G terms.



This takes into account the non-leading gluon exchange
correction, giving rise to terms with gluon denominators which can
be zero in the loop integration region. These infrared singularities
are cancelled by the fermi;n pfopagator corrections by the following
prescription:

Take the M= .~ 1 diagram with n vertices and insert a
gluon across one of the vertices. Do this for each vertex, one
at a time, to create n diagrams. Compute these diagrams using the
m = 0 rules, except that a factor of i/w2 is assigned to the
inserted gluon carrying momentum fraction w. One of these diagrams,
with the gluons inserted across the ith state, will have the same
gluon denominator as one of the diagrams computed above when all
terms are written in the standard form. Add this term to the amplitude.
It should eliminate the infrared singularity. In addition add
an off mass shell term by imserting a factor (Mi - p?)d (gluon
denominator) into the integrand of the term just added.
Step 7: Now consider diagrams with meson propagators. They
connect subprocesses whose amplitudes are calculated by the rules
above. Connect the subprocess amplitudes by meson propagators
i i/pE-Mi + ie vhere p2 is the invariant mass of the meson channel.
The bound state surmations are to be done before any integration.

We have thus given a set of rules which generates explicitly
infrared finite, gauge invariant, amplitudes. The separation and

elimination of individual graphs contributing to an amplitude is a
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gauge variant procedure. The amplitudes are not explicitly parity
invariant, as seen from their dependence on minus momentum components.
This stems from thelack of parity invariance in the choice of gauge.
The equality of amplitudes calculated in parity reversed frames
leads to highly non-trivial parity relations. These identities can
hopefully be shown directly by clever manipulation of the pfoperties
of bound state wave functions. While no such proofs of these identities
exist, numerical calculations are consistent with their validity [9].
The rules of this section are stated as if for a general n
vertex amplitude. We believe these rules to be applicable in general
but have not checked them beyond the four vertex amplitudes computed
in this paper. In particular the prescription for handling m= - 1
diggrams might need modification. Using these rules we find the

mesonic three point vertex to be given by

1
p - -
N J (Pn,x = Pk-) = 2igx(1 - x) f dwdy ¢;‘b(W)¢:1c(y)
o

ne-

s o3 ’ (111.0.1)
b (xw) - ¢n {(y(1 - x) + x)

(y(1 - x) + x(1 - w))2

The notation and diagrammatic representation of this formula is
given in fig. (III.C. 6). Each contribution involves exchange of a
gluon, reflected by the denominator of eq. (ITI.C. 1).

The four point meson-meson scattering amplitude can also

be computed
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The notation and diagrammatic representation of this formula is given in

fig. (III.C. 7). As indicated, the amplitude car be written in terms

m,mn (l+xk) zg‘:gj;ln(l-xn)t_Mfl?; ( )

]% zk(l_x ) ; T smal® )7 m%+ g‘ﬁ,kz(xk).
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of three point functions and contact terms in each channel. We haye
made the usual separation into graphs arising from the (st), (us),
and (up) duality sectors. (See fig. (III.C. l(b))). The expressions
given here are valid for the kinematic region which will be of
interest; the 1 > X X > xk.

In any process, the external flavor content may allow
contributions from diagrams with quarks circulating in
opposite directions (see fig. (III.C. 1)). Denoting the amplitude
calculated from a given graph by 2 and that of the arrow
reversed graph by 2, the relation between Z and 2, apart

from changing flavor labels, is

z [o(x)] = Z [o(1-x)] . _ (III.c. 3)
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IV. SINGLE CURRENT MATRIX ELEMENTS

We proceed now to the main objective of this paper, the
investigation of the behavior of photon-hadron interactions in the
't Hooft model. The photon, of course, does not exist as a dynamic
degree of freedom in two dimensions. Its source field, the flavor
conserving, Lorentz vector, local bilinear in quark fields,
Jﬁm(x) = :g; eéaa(x)yuqé(x):, is a non-trivial operator whose
behavior can be studied in the 't Hooft model as a photon analogue.

Tt has been argued [37] that, due to the momentum helicity
conserving structure of the fermionic theory discussed above, the
electromagnetic analogue is better realized by Lorentz scalar
rather than vector currents. We describe how our results can be
applied to the scaler case in Appendix B.
A. The Photon-Hadron Coupling Y?q) + n.

The direct coupling of the electrcmagnetic current to a
meson n, éz ﬁ(q) = <'n(q)lJuld> , can be calculated from the diagram
of fig. (IV.A. 1) for the minus current component. Using current

conservation we find
3y -
n - v N aa
gu(q) =€ ea[n] axe_"(x) (Iv.A. 1)
Q

The existence of the euv tensor in two dimensions allows a gauge
invariant coupling betwesen a "scalar" meson and the electromagnetic

current. The current coupling in four dimensions to & vector meson



is proportional to the polarization vector of the meson.
Parity invariance gives a constraint on the intrinsic parity
of the meson. If we denote the intrinsiec parity of the meson n

by (-1)* ama q'A = q& the parity relation

g GV (-1)%F "R (q") (IV.A. 2)

implies that n 1is odd and the meson has negative intrinsic parity.
This follows just from parity invariance and the form of the gauge
invariant coupling. We can directly check that this is the case

by taking x +*+ 1 - x in the integrand of eq.(IV.A. 1) and using

eq. (III.B. 1) to show that the photon couples to an odd parity meson.

B. The Inelastic Meson Form Factor: n{p) + y*(q) -+ m(p+a}.

The computation of the amplitude for electromagnetically
induced transition from a meson state n to state m,
éﬁﬁm = <:m(p+q)|Ju|n(p) >, depends on the details of the scattering.
We take the transition to be an excitation, i.e. Mﬁ > Mﬁ. There

is only one divergenceless first rank tensor function of two momenta

in two dimensions and t+ & form factor can be written

gﬂm(p,q) =€ q"gm“(qg) . (Iv.B. 1)

We consider first the case where the incident photon is

timelike. The amplitude can be computed from the diagrams of fig.
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(Iv.B. 1), and is given by

1
F (z= q_/pm_) = pe {1z2) dy¢§b(y){ dib(y(l-Z) + z)

o

£20z0) - 42 (y(1-2) + 2) }

2 { aa 2
+ 2% [awG (w;q”) 5
(y(1-2z) + z(1-w))

+ (=1)*(a «— B) ' (IV.B. 2)

‘where the Lorentz invariant =z is restricted by kinematics to
0<z < 1- Mﬁ/Mﬁ. The scaling variable 2z can be written in terms
of external masses as the solution of the momentum conservation

condition

M2 2
e U WY <z <l-M2 /M2
Tt =M, 0<z<l-M /M (Iv.B. 3)

The two solutions to this quadratic, 2z, and Z, = q2/M2zl,
correspond to parity reversed kinematics. Parity invariance demands

that
gm(zl) = (—1)nh“"”ltoinm(z2 = qleizl)’ ©>0  (1v.B. W)

When the incident current is spacelike, the two parity

reversed reference frames give rise to amplitudes which have



explicitly different functional forms. The frames are distinguished
by the sign of gq_, the minus component of the current momentum.

We denote Frame I (II) by the frame in which q_ is negative
(positive). The effect of a negative q_ in the time-ordered
diagrams of fig. (IV.B. 1) is to flip the direction of the current,
so that in Frame I the amplitude 1s calculated as if the current

is outgoing and timelike. This effectively interchanges the initial

and final meson states in the amplitude, giving

nm
Fx=-arp)=-F"= (IV.B.5)

where 37§m denotes the Frame I amplitude and the scaling variable

x 1is kinematically restricted to 1 > x > 0 and satisfies

M2

o 2
ME - %;-= = 1>x>0

m
N o ¢ . (Iv.B.6)

The Frame II diagrams are the same as the timelike diagrams, giving

rise 10 the same functional form for the Frame II amplitude ;? .
G ™z = = g
F itz =a/p )= (z). (1v.B.7)

The variable 2z satisfies eq.(IV.B.3) but is now restricted to
)
1>z>1 - Mi/M; . There is only one solution to the quadratic

of eq. (IV.B.3) in this region. Parity invariance implies
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Frox = - o fp, ) = (AFz = - P, £<o.

(1v.B. 8)

The two terms in the curly brackets of eq. (IV.B.2) have
a simple physical interpretation which we have indicated in fig.(IV.B.1).
The first represents the coupling of the bare current to the mesons
wvhile the second represents the coupling of the hadronic currentcontent to
the mesons through the three point fun¢tion. This sepurationismuge invariant
The parity relations of eqs. (IV.B. 4) and (IV.B. 8) are
highly nontrivial. We cannot show them by direct maniputation but
can use these equalities to bring out some interesting properties
of the form factor not evident in either expression alone.
Having derived the form factors, we can look at the
imaginary part of the forward Compton scattering amplitude. In the
leading order in N-l tree diagram theory this is prdportional to
the form factor squared, where the mass of the final . state is equal
to the photon-hadron center of mass energy, Vs . We take this
energy to be large and look at Miimwynm first for finitel q2 <0

and then for g + - =, TFor simplicity we discuss the case where

(1) Finite q° < o.
We aro here considering forward Compton scattering of almost

real photons, a process which would be described by Regge theory ideas
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in four dimensions. In the large Mi 1limit, egs. (IV.B. 3) and
(IV.B. 4) show that the sceling variables are pushed to the edge
points: z # 1 - Mﬁ/Mi and x = - qalMi. Evaluating both sides of

eq. (IV.B. B) in this limit we get

-8 = -8 =
pe (M) 2cEP1%(d%) = 2e (M) “H(-a)e(dP)2®  (.3. 9)
where
B. 7 B B
Ie‘(qz) = (.-qa) & dn¢a(—q2n){ [(l+n) . a] +
J0O
" rl B B
i - a a
. . g - intl) | +Be
. dyGaa(y,q2) (n;l) }(IV B.10)
Jo (1-y+n)
- B, w8 [ D (2
Iib = - (Mﬁ) & dW¢2a(w)f amn 29 (M (14n)) - ¢ (M w)
)o J o (1—w+n)2
(Iv.B.11)
and fa(qg) is defined as
lim Gaa(x;qa) = £3(g%)xP (Iv.B.12)
x>0
which implies that
tays. (v) -
a, 2, _ ; k aa
£9(q°) = Z | —53 ck . (Iv.B.13)



The equality of eq. (IV.B. 9) shows that the ratio

Cab

n__ .a 2 ]
el r*(q%) (Iv.B. 1k)

n

. - a
independent of n and b. As a result we can evaluate r (qe) in

the n + o limit. This gives

m

. a .
r(g%) = Lsinufs (Iv.3. 15)

We thus find that

' A = '
. nm, 2, _ 2, "a@ab | 2.a 2 i
leimmg (") = 2¢ (M) “c, [ gt (q )] [—————va ]
m

slnﬁBa
=2 s-BWaE%’a( %) | (IV.B. 16)
) n ¥y 4 i
where
= = £
Y= B (IV.B. 17)
v sinTTBa

1
& }; dy¢k(Y) aa T %
a = ) — c — .(IV.B. 18)
Y5 =2 k[v ]

m (M.i/_qe = 1) ZsinmB_

With the form factor in the form of eq. (IV.B. 16), a

Reggeized form for the imaginary part of the Compton amplitude can be

5T
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constructed and investigated. The analysis is identical to that of
the meson-meson scattering amplitude done by Brower, et al. [10].
. 2 R . . g
The functlon‘ﬂQ(q ) given in eq. (IV.B. 18) shows how the
photon couples to the strongly interacting system, analogous to

ab . . . . 2,42
1/n , which describes the meson coupling. (More precisely 1/7(1/n)

is essentially the photon-photon-(meson-meson-) Reggeon vertex.)
Comparing eqs. (IV.B. 17) and (IV.B. 18), we see that the photon
interacts as if it were a certain weighted sum of mesons with
photon quantum numbers. The photon is totally meson dominated.

The mechanism responsible for this simple description is the mechanism
which causes the term proportional to fa(q2) to dominate in the
Frame II amplitude (see eq.(IV.B. 9)). This dominant conmtribution
comes from the region of phase space where the eidhangedgluon in the
three point function has vanishing minus momentum, giving rise to
large factors coming from gluon denominators. This soft gluon
exchange regién dominates because the scaling variables are pushed
to their edge points.

Looking at the diagrams of fig. (IV.B. 1), we note that the
presence of the first bare coupling diagram is not reflected in the
final pole dominated form of the form factor in the limit considered.
This feature is more general, as can be seen by writing the form
factor via dispersion relation from the crossed vy¥* - n+m amplitude

[8] . The first diagram of fig. (IV.B. 1) does not appear at all




in this current decay. The form factor can thus be written generally

in unsubtracted form as

1
(
Fom( 2y . e, Z U; Zy‘bk;')] Yoom (Iv.B. 19)
q =M + ie

k k

(2) Large q2 + - o [8].
Deep inelastic leptoproduction in the Bjorken [3 1 limit probes
the light cone structure of the theory which, via asymptotic freedom,

reflects underlying bare gquark dynamics. In this limit, we take
2 2 . . . 2,2 _ .
s M =+ ® in fixed ratio, —q‘/Mm = xBJ/l - Xgy» With xp.

being the usual parton model scaling variable which is fixed between

la

zero and one. The simplest description of this process in the
't Hooft model is in Frame I where x approaches Xp g in the
Bﬁorken limit. In this limit the bare coupling diagram completely

dominates and a scaling amplitude results:

ol

a X

JiaiJm Fr(x) = are () 2 ¢ (x) (Iv.B. 20)

EZ

We have used eq. (ITI.B. 10) in deriving this result. The anomolous
scaling behavior of eq. (IV.B.‘20) due to the presence of the quark
mass factor results from the momentum helicity non-conservation at the
current vertex. The fermion's direction is changed bv the photon,

as can most easily be seen in the Breit frame.
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The second term in the form factor is suppressed by the
large denominator of the Green's function. This suppression
cannot be overcome by soft gluon exchange because the scaling variable
x 1is not at its edge point.

This example using the form factor thus shows the trans-
ition from a meson dominated description to a bare coupliné

description as the mass scale of the current increases.



V. TWO CURRENT MATRIX ELEMENTS

A. The Vacuum Polarization.

The minus-minus component of the vacuum expectation value of
two currents, ﬂuv =fd2x et 1 ¥ OIﬂJu(x)Jv(O))IO > , has the simple
pole dominated structure indicated in fig. (V.A. 1). The amplitude

is logarithmically ultraviolet divergent and must be regulated by

a subtraction at q2 = 0. This leads to the gauge invariant expression

K _ 2 . 2N [f dx¢k(x)
K Mk+l€$ = {-gwq + q_uq,\’}lea‘ po k q Mk ' 1e

@) -Zgu

(v.A.1)

The asymptotic freedom of (QCD)2 guarantees that, as q2+—°°, this
agrees with the result of calculating the lowest order quark diagram.

Using the completeness relation of eg. (IITI.B.2 ), we get

. 2 4% 2N
lim 1 (q°) = {— + —J‘—} jeS = V.A.2
q_2+—°° uv ) . qu\) qa aTw ( )
which agrees with dév') computed from free quark field theory in

Sec. (II.C). Furthermore, using eq. (III.B.13), [6,8] it is easy
to show that the next order in q2 corrections to ﬂu y are
determined by bare quark masses. We thus see how non-trivial wave

function identities conspire to make the hadronic theory reflect the

underlying quark physics at short distance.
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The physical region of interest of “uv is the limit as
q2 + + ® ywhich is probed in the inelusive annihilation of the vector
current into mesons. This is not a smooth limit due to the delta
function discontinuity every time q2 passes over a resonance. The
delta function reflects the zero width of the bound states, whieh is
a consequence of retaining oﬁly the leading order in the N-l
expansion. Some smoothing procedure like resonance averaging is needed

in dealing with inclusive final states to take into account non-leading

1\1_l effects. Here, we simply interpolate between large mass states

using Mi > kﬂ2. Thus, for inclusive annihilation of the current,
we find
2
21im Im(iﬂuv) {g q - quqv}e NE G(q - Mk) J’ d.x¢ (x)
q -+ 00
1 2
{ q,uqv f de(q /7 -k) fdx(bk(x
o
2
ax¢. (x)
{ quqv I L -
o
SN
- BV 2yl _a
_{gw s }2eaN 2 (V.A.3)



where eq. (III.B.10) has been used in the last line. There is an
extra factor of % in the second line to give the correct density of
states counting since only odd parity states are included. Again,
the snomolous scaling behavior of the annihilation a.mplitlide due to
helicity nonconservation appears through the explicit dependence on
the bare quark mass.

The appearance of the bare quark mass factor and the correct
normalization of the annihilation cross section is insured by eq.
(II1.B.10). This equation is a prototypical example of a relation
between summation over final states and constituent parton parameters.
Relations of this type must exist in order to make the smooth
transition from the bound state hadronic description to the short
distance parton description of the theory.

B. Meson Decay To Photons: n(p) -+ 'Y*(ql) + Y*(qa).

We have derived the amplitude,

!7(:\, ='J‘dzx elql.x< OIJu(x)JV(O)]n(p)> , for the decay of a meson

n to two vector currents with positive outgoing minus momentum
components. There is only one independent, second-rank, divergenceless,
Lorentz tensor in two dimensions (as opposed to two such tensors in

four dimensions). The decay amplitude can be written generally

as (see fig. (V.B.l) for notation)

no_s4_ n - _ .2 2
Q%p\) 1{ gp\)q'l' q2 + ql\)q.?u}!ﬂ (Xl = ql_/Pn_ sz = q2_/pn_,ql!q.2)

(v.B.1)
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where the variables x, and x_, run between zero and one and satisfy

1 2
q2 q
Me =242 oy oex =1. (v.B.2)
n x1 x2 1 2
In the 't Hooft model
s i st (1
- (1+(-1) 2.,..2
A (x x gaqlqa) 2e dy x,G(y3a;)
[o]

((1-Y)x2 + l-z)xl)
{Vv.B.3)

The decay process can be thought of as the Bose symmetrized emission
of one of the currents from the meson via the inelastic form factor
followed by the decay of the resulting meson into the other current
via the direct current-meson coupling. The interference of diagrams
with quarks circulating in opposite directions with respect to each
other gives rise to an overall factor in the amplitude Vhich allows
only even parity mesons to decay into two photons. This is required

by parity and Bose symmetry. Parity demands

J{n(q1,q2 = (-1)A" (q1 q2) (V.B.b)

2 1 ,
x : ¢ (x,2)+¢ _(x.y)
. {dﬁ (yx,) - 'Ei j dz G(Z;qi) [ n 1 n %o’ 2]}+ (g a,).
o .
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where q')\ = q}\. In the center of mass of the decaying meson, however,
’ t
we have q' = q2 and a, = q;- The Bose symmetry of the amplitude
' 1
under ql “* q, insures that n must be even.

C. The Inelastic Form Factor (f The Photon: Y*(ql) + Y*(qe) - m(ql+ q2).

-ig.*X
We consider here the a.mplitude,‘/lfgv = f a%x e

* . . 2
<m(ql+ qa)h.‘ (.];J(x)Jv(b)lo >, for a spacelike photon, q < 0, and a
timelike photon, q2 > 0, to annihilate to form a final state meson
m. Since 9 < 0, there are two inequivalent parity reversed frames.
In Frame II, with Q_ positive the amplitude is explicitly related

by cressing to :7{“\) of eq. (V.B.3)

m - : _ . -
[./Vw<x1 =ay /ey %, = q2-/pn-’ql’q2)] II
" m = = .
Hou'®y T 4 _/py sxp = 4 /Py 39,45) - (v.ca)

The Frame I amplitude is given by the diagram of fig. {V.C.l), which
shows that the process takes place via the inelastic form factor of

a meson dominating the timelike photon channel,

[Nﬁv(z =- ./ ‘12-;‘11"*2)] T i{"guvql' %Q* ql\)q2u}2ei /5 (!L___ﬂ)__+(-1z (-z)

[ awo

Q

Gly(1-z) + z;qg) + zefde(w,qf)

2

6(zw305) - G(y(1-2) + 2305) i o)
. .C.2

(y(1-z) + 2(1-w))2
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With this expression, we can investigate the parton model aspects of
deep inelastic leptoproduction from a photon in anaiogy to our
discussion of Sec. (IV.B.). In the Bjorken limit,

- qi/Mi = xBJ/l—xBJ with Mﬁ + o, the incident spacelike current
probes the quark distribution of the finite mass timelike photon.
This process thus measures the photon wave function. Taking the

Bjorken limit, z - Xops the amplitude of eq.{(V.C.2) becomes

m
i = . ! ome 1-2) & /X 2
lgfb4ﬁv(z) = i{' gl T % Gydpy 2Me 2 N 2e /J w €(z:9;5)
m

(v.c.3)
with only the bare coupling part of the form factor contributing.
Comparing with eq.(IV.B.20) for the Bjorken limit of the .-r -0 form

factor, we can define a photon wave function ¢Y(x) in ansalogy

o (%) ~ e / %G(x;qg)
. 1 dyd, ()
~ e, % § of —e—k-M—i' ¢k(x)(V.C.h)

qe-

with ¢n(x) vwhere

The N% appears explicitly because Ju is not a normalized color
singlet operator while the charge reflects the photon~quark-antiquark
coupling. Again, as in Sec. (IV.B), we have arrived at a totally
meson dominated description of a finite mass vector current. The
photon wave function is a linear combination of meson wave functions,

the same linear combination as in eq.(IV.B.18).
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VI. THE COMPTON SCATTERING AMPLITUDE

A. Calculstijon Of The Amplitude

We now turn to the calculation of the scattering process
v*(a) + n(p ) + Y*(a ) + m(p,) in the 't Hooft model by considering
the Lorentz tensor Mst(q,q';pn,pm) =_,;?xe-iq'x<:n|T*(Ju(x)Jv(O)]m:> .
'"he states |n > and |m > are mesonic bound states of quark "a"
and antiquark "b". In order to facilitate comparison with experi-
ments involving virtual Compton scattering we take the momentum of
the incident current spacelike, q2 < 0, and that of the final
state current timelike q.2> 0. The spacelike incident current
distinguishes the two parity reversed frames. The incident current
minus momentuwm component, ¢_, is negative(positive)in Frame I (II).

The amplitudes computed in these frames are related by parity
= (_7yRtm [ v,nm .
[M:I“\‘}(qi)] ;= (1) [M (qi)] - (VI.A.1)

where the Roman numeral subscript denotes the frame in which the
tensor is calculated. In this section, the Compton scattering
amplitude is derived in both frames. We do this because each ampli-
tude has properties which are useful for demonstrating different
azpects of the physical picture. 1In addition, comparison of the
two expressions related by eq.(VI.A.l) brings out non-trivial
features which are not evident in the amplitudes separately.

The amplitude, which is a crossing Bose symmetrie

- ! = - 1 u - \) —
(Muv( a,a') M\nﬁq‘, q)) divergenceless (q Muv q' Mu = 0),

AV



second rank tensor, can be written in terms of a single structure

function as
m
. = - . LI ' .
Miotaatipgse)) = (- ga-a + ala ) (a,a%sp5p,)  (VILA2)

whereJtznm is symmetric under the interchange q ++ - q' and is
Lorentz scalgr or pseudoécalar depending on the parities of the
external mesons.

The computation in Frame I is considersbly simplified by the
fact that the incident current has negative minus momentum component.
Since construction of the amplitude is only sensitive to "time"
orderings of minus components, the incident current is automatically
crossed and treated symmetrically with respect to the outgoing

current. We are tﬁus calculating, in effect, the one-to-three
process n(pn)'+Y*(—q) + Y¥(q') + m(pm). The minus-minus component
of the Cométon amplitude is given in the model by the disgrams of
fig.(VI.A.1l}, which are characterized by simple Born exchange in

each of the s,t, and w channels. The structure function is given by

Lﬂm(Pn’xl = -a_/p, %, = a'/py ]1=

DG ) —E GG L1 - k)
k{ Pn>%y s-M]2{+i€J. o %2 1

+ gnk g-m(pn-q' X, /1 - x5)

(P ’x ;
Mk + i€
287
”'1:" = ;1{k (q' - q,xl/?c,xalx)
EQ.(VI.A.3) Cont. on P.&®

* Jn,km(Pn’x)
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k,b
*"(qt-q,x /x, /)}
t—M.E+ieJ{ Q'-q.% /x,x,/x

(v1i.A.3)
" where s,t, and u are the usual Mandelstam variables and
X =X + Xy The terms in curly brackets correspond one-to-one
with the diagrams of fig.(VI.A.1). In this form, it is immediately
seen that unitarity is satisfied in each chinnel to leading order
in NI, |

The structure of the amplitude is more complicated in Frame
IT. It is very useful, however, in that it is closely related to the
meson-meson scattering asmplitude. We have tried to indicate this
relation in fig.(VI.A.2). Since the current is flavor conserving,
each of the duality sectors of the amplitude contributesweighted
by the charges of the appropriate quarks. This is indicated by the
first graph of fig. (VI.A.2), which shows that the "meson dominated"
hadroﬁic two~-to~two function is a term in the Compton amplitude.
Contained in this term however there is a piece arising from the
off mass shell part of eq{(III.C.E) vhich has no counterpart in
hadronic scattering. The inverse propagator in this term cancels
the outgoing photon channel meson propazgator, resulting in a
contribution which loocks like the bare coupling of the outgoing
current to the contact term of the (ut) duality sector. The
remaining terms in the amplitude, shown in fig. (VI.A.2) have at
least one bare current vertex. The Frame II scattering amplitude

is given by



. P '_q' _ =iN
L/( nm(q,z:—qn—-, 2 -—q——)] == Zfdudvd) u)d)z

i i i

2 .2, . 2 2 .
q_Mk+1e q _M2.+l€

) ( i[al(cStx)nz(q’z 1+z-2'2") +d}(:’:tmz Gzl + 2 - z‘,z‘)]

2 a}({i;z(q, ,l+Z-Z'Z)+0~(utg(q, ,l+Z—Z'Z)]
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1tz
s -M2+ ie
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_ - i
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This expression is valid in the kinematic region where 1 > z' > z.
The Compton amplitudes given iJ:éqs.(VI.A.3) and (VI.A.Y4) are
functions of Lorentz invariant "scaling" variables. In Frame I, Xy
and *5 give the momenta of the crossed initial photon and final
photon respectively as fractions of the incident meson momentum,
while 2z and 2z' in Frame II give the momenta of the incident
meson and final photon respectively as fractions of the incident
photon momentum, where all momenta are measured in a left moving
infinite momentum frame. These variables are related by
X, == q2z/M§, X, = q‘aleiz'.
In this section we have derived two expressions for the
Compton scattering amplitude, related by eq.(VI.A.l), which are exact
to leading order in N_l in (QCD)2 . We now proceed to investigate
the behavior of these amplitudes in various kinematic and current
mass 1limits for inclusive and exclusive scattering

processes. A summary of limits considered is given in Table I.

B. Execlusive Limits.

‘ Ve now study the behavior of the Compton scattering amplitude
in the limit that the center of mass energy gets large while all
external masses are held fixed and finite. The scattering can either
occur in the forward or backward direction in this two dimensional
model. This is our analogue of high energy, inelastic, exclusive
scattering of real or slightly virtual photons from hadrons.

{(1). Forward Scattering-Regge Limit .

A simple picture of Compton scattering in thé Regge limit



arises in Frame II. The incident current is in the posgtive

direction in the center of mass with Q= -Z— (l - %—1- + 0(%)) .
The initial meson state n, moving in the oppositeMgirectionl;as
vanishing minus component of momentum so that 2z = =,

0 - 2)

The outgoing current is scattered such that 2z' =1 - 5 .
Thus, if »Mi > Mi, the kinematic region is the one to which eq.
(VI.A.4) applies. We take this condition on the masses to be the case.
Examining the amplitude in this 1imit, we find that the leading
behavior comes entirely from the first graph of'fig. (VI.A.2). The
leading behavior of the Compton scattering is given by the part

of the amplitude corresponding to the meson Gominated equivalent
hadronic scattering amplitude. This can be seen in a fairly
straightforwvard way by noting that leading behavior with scaling
variables at their edge points always arises from regions of phase
space where as many gluons with minus momentum fractions of order
s—l can be exchanged as possible, giving large contributions f.om
gluon denominators. These soft gluons are exchanged in graphs of
which the three point hadronic function is a subgraph {(see fig.
(I11.C.6)). Thus, roughly speaking, the more three point subprocesses
there are in a graph, the more important that graph is in this high
energy limit. It can easily be seen that all the graphs with two
three point subprocesses are contained in the meson dominated hadron’c
amplitude. This is because a bare current vertex eliminates a three

point subprocess.

T2



The leading behavior of the Compton amplitude is thus gotien
directly from that of the hadronic two-to-two scattering amplitude

with the substitution ¢aa(x) > eaGaa(x

;q?) in the iEH-current
chgnnel. The Green's_funcfign in the current channels is given by
Ga'a‘(x;q2) =S ay Eq:;m'(y) ¢;a(x)/q2—lvl.i. It can be shown using
eq.(III.B.7) that the contribution from high mass mesons to this
sum is negligible, o that Gaalx;qz) = % ck(q2)¢:Z{x) for some
finite A. Thus the Compton amplitude is essentially a weighted
sum of s finite mimber of hadronic two-to-two scattering functions
with all external mesons of finite mass., Having established this
correspondence, we have shown that the Compton amplitude has all
the Regge properties of the equivalent hadronic process. We will
therefore discuss some of these properties without proof, referring
the reader to ref. 10 for details.

The leading terms of the amplitude in this forward limit
arise from the (st) and (ut) duality sectors. The amplitude
is power behaved, with power determined by the masses of the quarks
in the t-channel. In the dominant, soft gluon exchange region the
exchanged quarks are constrained to have yanishing minus momentum
fraction of the incident hard photon. Feynman's mechanism [ 3 1]
of the buildup o1 Regge behavior by wee parton exchange is concretely
realized in the 't Hooft model. The power is given by
aij(O) = -B, - Bj where 1 and J denote the exchanged quarks.

1

In the Compton scattering case i = Jj =a or b. The amplitude

13



factorizes in the t-channel and is consistent with obeying an
unsubtracted dispersion relation. J = -1 fixed pole terms are
present.

Although we have shown a close correspondence between
photon-hadron and hadron-hadron scattering in the 't Hooft model,
we can say little about the analytic structure of the amplitudes.
The dependence of eq.(VI.A.3) and (VI.A.L4) on minus momentum
components obscures the properties of these expressions as analytic
functions of invariants. Thus, though we have been describing
current channels as "meson dominated," this does not imply agree-
ment with meson dominance models which mal 2 specific statements
about the amalytic behavior of the amplitude with respect to
the photon mass variables. Comparison with the amplitude calculated
in Frame I serves to clarify some of these issues.

The dimensionless variables Xy and x, in Frame I _both

2 (M2 + ¢2)
= - %;— 1 + L S and

go to zero in the Regge limit, with Xy

2 M+ d®) |
9
x2 = 1 + ———:;———- . The terms with two bare current vertices

s

dominate in the limit. The terms from the (st) end (ut) diagrams
cancel to the two leading orders, resulting in Regge leading behavior.
This cancellation points out a major difference between photon
scattering and the equivalent general hadronic process. BSince the
electromagnetic current is flavor conserving, the (ut) and (st)

amplitudes cannot separately be treated as analytic functions because

they cannot be physically distinguished. Only the sum of he two
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has any physical meaning, and it is only the sum that has the same
leading behavior as in the parity reversed frame.

A non-leading contribution arising from the cancellation of
these diagrems is a term which shows J = =1 fixed pole behavior.
This fixed pole was discussed by Brower et al. [10] in the zero mass
photon limit where it becomes the leading term. It only contributes
to elastic scattering and, thus, cannot be seen in the Frame II
analysis where the elastic boundary is outside the applicable
kinematic limit. The existence of fixed poles in the four
dimensional Compton scattering amplitude has been considered [38].
These are non-hadronic in origin, since fixed poles in hadronic
aﬁplitudes in four dimensions are forbidden by unitarity and
hermiiian analyticity. Fixed poles with polynomial residues in
the Compton amplitude can be motivated by continuation of operator
product expansion techniques to the Regge region {39]. 1In two
dimensions fixed poles can appear in both hadronic and Compton
amplitudes. We can conclude from the Frame II analysis, where
terms involving bare current fertices are proportional to s-(l+B)
in the limit, tnat in inelastic Compton scattering in the 't Hooft
model in the forward high energy region the photon acts as a purely
hadronic syétem. In particular, the only fixed pole contributions
to the inelastic amplitude are those directly related to the fixed

poles of the meson-meson scattering amplitude.



76

Futher analysis in Frame I shows that the leading order
Regge behavel terms arise from diagrams with bare current vertices
and from diagrams with meson dominated vertices, as opposed to the
situation in Frame II. The frame dependence points out the fact
that this separation of vertices may not have a general analytic
meaning.

(2). lLarge Angle Scattering Limit.

The exclusive scattering of photons and hadrons at fixed
angle in the center of mass at high energy can be studied in the
model by adopting an ansatz of Brower, et al. [10]in order to make
contact with the dimensional counting rules. We consider the limiting
power behavior of that analytic dual sector of the amplitude where
the variables associated with the meson poles are getting large as
an analogue to large angle scattering power behavior. Thus, in the
forward limit considered above, the (us) part of the amplitude
is appropriate. Note that, in accordance with this prescription,
this is the only limit in which contact with large angle scattering
can be reached. If we tried to study the possibly more physical
limit of backward scattering, we would be led to consider the (st)
dual sector which is, however, not analytic by itself as discussed
above.

The behavior of fhe (us) sector of the Compton amplitude
in the Regge limit in Frame II approaches that of the (us) sector
of the two-to-two hadronic scattering function. Thus, from the study

of the hadronic amplitude [10] we find that M(“s) ~ s_z_Ba._Bb°
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In the standard dimensional counting picture, the fact that
the Conmpton amplifude has the same power behavior as the equivalent
hedronic amplitude would indicate that all current vertices are meson
dominated, since contributions from bare photon couplings, if present,
are enhanced with respect to the meson dominated ones. This enhancament,
however, is due to the couplings to transverse photons only, and does
not appesr in longitudinel current couplings. Thus, in our two
dimensional model where all currents are longitudingl, we expect
the observed power law behavior equivalence between the hadronic
and Compton amplitudes.

Although this eguivalence can be motivated in the dimensional
counting picture, calculation of the integral power falloff by
computing contributions from lowest order irreducible quark diagrams
like fig.(VI.B.l) in superrenormalizable (QCD)2 where all quarks
have finite fractions of hadron momentum gives an 5_3 prediction
for the "large angle" behavior of the amplitude since there are
three propagators fa;‘frOm mass shell. Disagreement with the s°2+B
't Hooft model behavior stems from the fact that in a superrenor-
malizable theory it costs a factor of s_l to redistribute the
momentum in the bound state via one gluon exchange as in fig.(VI.B.1)
so that the quarks in the final state hadron all have finite momentum
fraction. In the 't Hooft model this redistribution doesn't cost
anything {except for nonperturbative factors s_B) due to the fact
that the gluon interaction is instantaneous and that there are no

transverse degrees of freedom. This results in a softening of the



Bethe-Salpeter wave function kernel so that the 't Hooft wave function
falls off more slowly as one of the constituent quark masses goes
far off shell with the other quark mass fixed than would be assumed
in the counting rule picture based on a superrenormalizable field
theory [40].

Aside from differences which seem to be specific to the
dimensionality of the theory, modifications of counting rule ideas
are indicated in the model [b1]. The coefficient of the power of s
in the amplitude cannot be interpreted exclusively in terms of short
distance physies. Terms involving exchanged mesons built up non-
perturbatively from gluon exchange contribute. In addition, the
integral power predictions of the counting rules are modified by the
B's, powers dependent on masses of constituent quarks. These povers
arise from infrared singularities in the wave function and are closely
related to the Regge intercepts in the model.

C. Inclusive Limits.

We turn now to the study of the inclusive Compton process
v¥(q) + n(pk) +¥*(q'") + X where X represents the unobserved final
hadronic state. . The parton model makes definite predictions concern-
ing the structure of the cross section in several inclusive limits.
Inclusive production of large mass lepton pairs via ﬁhotoproduction
and deep inelastic leptoproduction, two non-light cone processes,
are investigated in this section for the purpose of checking the
validity of parton predictions in the 't Hooft model. We will show

that the amplitude for these processes scales in the 't Hooft model
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and that the scaling functions are interpretable in terms of free
scattering of constituent quarks.

Recall that, as discussed in Sec.(V.A.), the inclusive
amplitude is computed by taking l X > to be a one large mass particle
state |m >, and smoothed by taking Mm equal to the invariant mass
of the inclusive channel. This interpolation is performed with the
proviso that terms in the squared amplitude proportional to (-1)™
arising from parity oscillations of the final state meson are dropped.

(1). Bjorken-Paschos Compton Limit With Very Virtual Photons.

We first examine a limit of the Compton amplitude where the
photon masses and momentum transfers to the hadron system are all
large. This limiting case would be applicable, for example, to the
deep inelastic electroproduction of massive 1ep£on pairs. Intuitively
we expect that the large photon masses will suppress the hadronic
content of the photon so that the current couples to the parton via
the bare electromagnetic pointlike interaction. Further, the large
momentum transfer suggests the validity of impulse approximation
ideas. In this view, the two currents must interact with the same
quark so as to avoid large energy in intermediate states. We are thus
led to a model of the scattering process in this limit in terms of
free parton "handbag" scattering amplitudes incoherently summed
and folded into parton momentum distribution functions.

A description of inclusive Compton scattering at large
momentum transfer with real photons in terms of a parton "hangdbag

diagram" model has been proposed by Bjorken and Paschos [L2]. We
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cannot examine this limit directly since, in two dimensiomns, the
Mandelstam variables cannot all be made large simultaneously as long
as the photon masses stay finite. This problem was encountered
in the large angle exclusive scattering limit discussed above,
where the power behavior of the (us) sector was analyzed as a
large angle power behavior analogue. Here, however, we are
interested in the structure of the coefficient of the power. There
is no reason to associate this coefficient with the (us) sector
coefficent, which, in this case, consists of "crossed handbag"
coherence terms which are assumed to be non-leading in the parton
model.

The very virtual photon limit is achieved kimenatically
by taking qe,q'e,s,t, v=p_ ° (q - q')/Mn large with their ratios
fixed. In our two dimensional case this limit can be fealized by
taking g = T :xi s, q'%= T )_czi [ - ————-———-—mnv(z - xl)] .

1 1

The fixed dimensionless variables x; describe the momentum transfer
across the current vertices: xl = -q2/2pn " X, q'2/2pn -q',
X =2 +x, 2 xp0= —t/2an. They are limited by X5 <x< 1 where
o< X5 <1, The Frame II scaling variables are given by

2M v

§ (1 - xl).

it

2z

2 f =
Mn(l - xl)/s and z' =1 -
The naive parton model prediction is, as discussed above,
gotten by summing the handbag diagrams shown in fig.(VI.C.1). The
quark propagators in these diagrams which are attached to the wave

function vertices are dressed while those between the current

-
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vertices are bare. This prescription is gauge invariant for the
class of gauges where A = 0. The amplitude computed i this

perton model is

2..
2 s(1-x,)
2 _ wy _ | _2n 2 1
|| = IMuvM | = [Mn\)J [l * u(l-—xl)l XX

. (eimi‘d)ig(xﬂe + e‘_*mng‘-’(l - x)lz). (VI.c.1)
b b

The handbag model thus predicts a scaling cross section, where the
scattering function \?|M|2 is, apart from kinematic factors,
related to the deep inelastic 1éptoproduction structure function
by making the replacement 'e2 g eh. We now show that this parton
description successfully gives the limiting behavior of the exact
Compton amplitude in the 't Hooft model.

Frame I is, in this éauge, the natural fraﬁe in which to
see simple parton béhavior, as is evident in the close relation of
the scaling variables in this frame to the usual parton variables.
The behavior of the amplitude in this frame can be found simply by
counting meson propagators, each of which contribute & factor of
s-l. The soft gluon mechanism, used to get leading Regge behavior,
no longer operates due to the fact that xl and x2 are not
constrained to fheir edge points. This, in turn,is'due to the large

current masses. Thus, as the currents get highly virtual, they are

no longer describable in purely hadronic terms. In fact, the ieading
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diagrams in this limit, those with the fewest meson propagators, are
precisely those with bare current couplings to quarks. The other source
of s dependence in the amplitude arises from the phase space pinch
due to the large mass final state. Roughly speaking, this suppresses
all terms in the amplitude equally. The leading contribution to the
amplitude in this limit thus comes from the bare current-quark coupling
terms in the s and u channel meson exchange diagrams of fig.(VI.Al)
Included in these diagrams are graphs where the currents interact
with the same gquark as well as those where they interact with different
guarks. These latter "crossed" graphs cannot contribute in the
handbag model. The impulse approximation is recovered, however, by
locking at the amplitude in Frame II.

The limit in Frame II involves scaling variables at their
edge points so thet the behavior of the amplitude is less obvious.
A little computation shows that the {us) sector of the amplitude
is non-leading in the limit. These terms, proportional to eaeE,
are suppressed.relative to the leading ea‘e-B terms in Frame I.
Parity conservation via eq.(VI.A.1l) implies, therefore, cancellation
of the leading Frame I terms. This cancellation implies that the

quantity

- (1-x.) (1-x.)
,ﬁnd)a(n){daﬁb(xl) . 1 hi(l_;l)+ - 2 A

- (1-x,) (1-x,) v(1l-x) ;
b *) 2
O R U (l_';l(l- ! - 1))




is symmetric under the interchange a <+ b. We have not been able
to directly prove this symmetry property.

The remaining terns in Frame I are proportional to ei
and Aef, and arise from diagrams with bare quark current couplings.

The limiting form of the amplitude is

[(l—x ) (1—x2)]

11‘“4{”] h(lX)lsl + -

1 - -
f dw¢;b(w) [ei‘i’gb(W(l ~-x)+x)+e ¢ (w(l - x))]
A ®

(VI.c.2)
This is a somewhat intermediate form of the final result
which we give to show that in this limit the two currents interact
as if they were a single spacelike current carrying a fractibn b4
of the minus component of the hadron momentum and interacting with

the quarks via the bare vertex with an effective coupling constant

= ~2e +
a a X X ] . u
172

(1-x;)  (1-x,) ]
ST 2 "[ L 2.1 . (VI.C.3)
With this coupling the invariant amplitudeu4zhm equals the
Of .
part of the invariant form factor opam for the single current
interaction vhich arises from the first, bare coupling, term in
eq.(IV.B.5). The Bjorken-Paschos intuitive picture of the two currents

giving a single large impulse to the hadronic system.is realized



in the 't Hooft model. This instantﬁneous interaction of the two
currents at a single vertex in an infinite momentum freme has been pro-
posed by Brodsky and Ry [43]as a necessary condition for the application
of parton model ideas to two photon processes.

Equation (VI.C.1l) can be obtained by taking the large final
state mass limit of eq.(VI.C.2), using eq.(III.B,10), squaring and
using the elimination of cross terms due to (—l)m parity oscillations,
Agreement with the parton handbag model is thus confirmed.

We conclude by pointing out that, in Frame I in the A =0
gauge, the lowest order quark diagrams of the "handbag" model are
expected to describe the behavior of the Compton amplitude in the
light cone limit on the basis of asymptotic freedom arguments. The
kinematic region which probes the light cone contribution to the
Compton amplitude is discussed by Iliopoulos and Paschos (I-P) [LU].

It is reached by a two step limiting procedure where first qz,q'2
and s are taken large in fixed ratio with t and v fixed, after
which t and Vv are taken large with x = -t/2MnU fixed. This
differs from the limit we have considered above where the ratio Vv/s
is held finite throughout. This one step 1limit does not a priori
probe the light cone due to the possible presence of large final
state mass oscillations in the matrix element <:X|T*(JUGQJV(O))|n >
which could invalidate the usual stationary phase analysis of

leading momentum space contributions.

8y



In the I-P 1limit, the second factor in the handbag amplitude
of eq.{VI.C.l), is of order (v/sﬁniue to kinematics in two dimensions.
This factor results from the Bose symmetrization of the amplitude.
The function velel thus approaches zero as (v/s)2 in the light
cone limit. We have found that in the I-P limit in the 't Hooft
model v2|M2| goes to zero in agreement with the handbag prediction.

(2). Photoproduction of Large Mass Lepton Pairs.

The inclusive photoproduction of lepton pairs, in the limit
that the mass of the pairlgets large in fixed ratio to the energy
in the center of mass, l.as been studied [14] in the context of a
field theoretic parton model in four dimensions with an ad hoc trans-
verse momentum cutoff. Due to the large lepton pair mass, the cross
section can be computed by considering the photon as a collection of
on~-shell partons, one of which annihilates with its antiparticle in
the incident hadron at a bare electromagnetic vertex to form a highly
virtual photon in the final state. The total cross section is given
by the inc§herent sum of qq ~+ 2% cross sections weighted by the
parton momentum distribution functions of the photon and hadron.

This parton model is shown in fig.(VI.C.2).

This photoproduction process is very similar to the Drell-
Yan procesé, and application of the parton model is on the same
theoretical footing in both cases. The major difference between
the two is the presence, in photoproduction, of diagrams where the
bare incident photon couples directly to quarks. In tﬁe parton

model analysis, the bare coupling time ordered diagrams which
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contribute in the infinite momentum frame look exactly like fig.
(VI.c.2), allowing the bare coupling contributions to be included
in the photon structure function.

The parton model prediction in the Drell-Yan scattering pro-
cess is borneout in the 't Hooft model [ 9 ). It is thus reasonable
to hope that the same is true for photoproduction scaling.

We will show that this is the case, although in any frame in this
gauge the final state production mechanism appears non-partonic.'

In this limit we take s and q'2 large and in fixed ratio
such that 1 = q'E/s, while keeping the masses of the incident
current and hadron finite. The hadronic contribution to the

scattering process is given, in general, by

BV (p,,a.0") = -%1: By 39 <t w (@))% 0) nl, (@) > -

spin” (VI.C.k)

Computing this tensor via the parton model of fig.(VI.C.2) in two

dimensions gives

222
TIRY 161%em -
uv _ s iy 'Yg! ' aa|,.a 2¢,a 2
H = )ghV s+ 2 A Z—~I¢(Y)I (¢ (¥, )]
PARTON l q'2 .y ylyzs Y've n"1l

(vi.c.5)
vhere the sum is over all flavors of quarks and antiquarks. The
¢?(x) are the usual wave functions describing the probability

that, in an infinite momentum frame, parton "a" has momentum
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fraction x of the total momenﬁum of the ith particle. The wave
functions are measured in deep inelastic leptoproduction. The
scaling vafiables are given by y; = V2 q'/ Vs and ¥, = 2 q;/fg
in the hadron-photon center of mass frame in which the photon is
moving in the positive direction (Frame I). They are restricted
by T fyi <1 and satisfy T= ylye. In terms of these variables
we have t = yl(ye— 1)s, u= yz(yl - 1)s, M§-= 1 - y2)(1 - yl)s
in the large s 1limit.

The important feature of eq.(VI.C.5) is that it is a sum
of terms each of which is a product of a function of ¥y and a
function of yo- We now verify this scaling form in Frame I .and
Frame II separately in the 't Hooft model. By relating the
expressions in each frame via parity., we extract simple. expressions
for t.= meson and photon wave function. This methcd is similar to
the . :ll-Yan analysis of ref. 9.

In Frame I the limit is achieved by taking x, = -q2/s,

1

x, = yl. The leading diagrams are those with bare currea- wpling -+

at both vertices. As in the Regge limit these terms cancel in leading
order. The cancellation in next order is, however, not complete
and a contribution arises from the (ut) duality sector diagram. In

this order there is also a contribution from the (ut) diagram

N

where the incident current is meson dominated and the outgoing current
is bare. These leading diagrams are shown in fig.(VI.C. 3(a)). There

are no other contributions. In particular, the large mass of the
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final current suppresses the contribution from meson dominated final

current vertices. The crossed terms, proportional to eae ,» are also

b
non-leading. In the limit we then have
2,2
wl _f w, aMgV] f (hey) ab 2 1 gl
™= e ( lrme 14 0l [ [an®(m)
q’ 172 21 - y,) Jo

bt - 9)-260)

2
. N 2
1 (o2 )_haya(i-j_—-q)
 (<g?)2 f av G(v.) [ M _( Yy )
© - n 2 2
(7 =)
+ (a <+ b)) . (vI.c.6)

This expression clearly gives the parton model scaling form of eq.
(VI.C.5). The meson probability amplitude is given by the meson

wave function squared, consistent with what is found in leptopreoduction
scaling. The photon wave function is given by expression in square
brackets.

The interpretation of this scattering in terms of parton
annihilation arises naturally from the dominance of the (ut) sector
diagrams in the 1limit. This is the only sector which contains those
quark diagrams where the final current arises via the annihilation

of a current quark and a meson quark. All other diagrams lead to an
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interpretation of final current production due to quark bremmstrahlung.
The formation of the final states in this frame is, however, distinectly
non-partonic, as can be seen by comparing figs. (VI.C.2) and (VIC.3{).
The final states in the model are inextricably bound up with the
incident current vertex, so that the final sitate production mechanism
is reflected in the photon wave function.

We can get a better idea of the form of the photon wave
function by computing in Frame II. Here, z' = yQ and z = Mi/s
in the liﬁit. In this frame the roles of the initial state particles
are reversed, so that the amplitude is given by a simple expression
for ihe current vertex and a complicated expression for the meson
vertex. The dominant terms all arise from the (ut) sector. The
contributions come from the off-mass shell term in the contact diagram
and from t-channel meson exchange diagrams where the incident current
is meson dominated which the outgoing current is bare, the last
diagram in fig.(VI.A.2). These contributions are represented in

fig.(VI.C.4). The limiting amplitude is given by

2,2 2
v ] | (ke )q L 2
[Huv]u = {g"v _ala Mnlc(yz,qz)!

2 Y1¥p8

_ 1
[yl jo' dw¢n<w>[¢"(m§<1 - - W)

.¢b(M§(1-yl)(1 yl)) - oo L(-yy) (l—w))”]

(ylw - V)

2 2
+
ﬁvdu g_ ( an ,uMn )

+ (a <> byy . (VI.C.T)
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The remarks below eq.{(VI.C.6) apply also in this frame with
the roles of the incident meson and current interchanged. The final
state production mechanism is not partonic, as seen by comparing
figs.(VI.C.2) and (VI.c3 (p)),though the dominance of the (ut) sector
again allows a quark-antiquark annihilation interpretation. The
photon wave function normalized to unity which arises from the Frame
II analysis is given by:
aa(

2
x3q97)

a2y _ G
¢Y(x,q )

I ax(6®B(x;02))2.

in agreement with the leptoprcduction result of eq.(V.C.4). The

(vi.c.8)

partonic structure of the photon, in this model, arises from its
couplings to mesons.

Relating egs. (VI.C.6) and (VI.C.T) through eq.(VI.p.1)
gives a simple expression for the amplitude which has the parton model

form

HV v, g'qV 16(e§)2 a:.a 2, .2 2 - .
B = gV + A A Cyidg (v )71y () |7+ (arB) |
ql

(v1i.c.9)
where Cv does not have any yi dependence. We have not tried to
see if Ci =.m§C; as demanded by eq. (VI.C.5). In the course of
relating the amplitudes in each frame, highly non-trivial equalitites
are generated between scaling functions and wave functions. We have

not tried to verify these identities but have checked consistency in

power behavior at the edge points. These equalities are more



complicated examples of relations between final state summations and

parton description than eq.(III.B.10) which we have used above.
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VII. CONCLUSION

We have investigated the behavior of currént scattering in
the 't Hooft model, (.QCD).2 to leading order in N-l. We have reviewved
the formulation of the model in order to show how an asymptotically
free theory with a realistic particle spectrum of color singlet
hadronic states can be obtained from a Lagrangian containing
only quark and gluon fields. Even in this simple theory, (compared
to four dimensional version) highly nontrivial mechanisms
operate. Detailed properties of the large mass wave functions give
rise to the identity of eq.(III.B.10), which gives parton scaling
behavior by summing over final state hadrons. We have shown that
very complicated identities imposed by the underlying parity invariance
of the theory simplify and clarify the structure of the scattering
amplitudes. Alternatively, these identities can be considerad as
the consequence of the underlying color gauge invariance of the theory,
since it is the choice of gauge that introduces the explicit lack of
parity invariance. The possibility of similar mechanisms operating in
four dimensions must be examined in light of the differences which
we have discussed between (QCD)e and (QCD),4 due to the difference
in the number of space-time dimensions.

The most important aspect of the results presented from a
phenomenological viewpoint is that there are no real suprises.
Generally used ideas - vector meson déminance in soft processes and
parton point coupling dynamics in hard processes - are found

to accurately describe vector current scattering behavior



in the 't Hooft model. In this model we haye found that "real"
photon states are effectively linear combinations of hadronic bound
states, a deseription which becomes inapplicable as the photon is
taken far off mass shell. We have shown how highly non-trivial
properties of hadronic wave functions allow parton model interpretation
in various deep inelastic inclusive limits.

The most interesting departure from phenomenological lore
is the ubiquitous modification of dimension counting rules by small
factors dependent on exchanged quarks. These factors are related to
confinement singularities [45] and may thus be present in more
realistie confining theories. This has been stressed by Brower [L4g]
in the more general context of the relation between large angle
scattering pover behavior and Regge intercepts.

Many aspects of scattering behavior in the 't Hooft model
are almost certainly dependent on the absence of transvers= dimensions.
The lack of real vector meson degrees of freedom, for example, probably
gives rise to qualitative behavior specific to two dimensions. The
failure of the pomeron to erise in hadronic scattering amplitudes is
probably due to the fact fhat there are no real gluons in the theory.
The mechahism respuisible for cancellation of the pomeron also seems
to be inhibiting possible non-partonic contributions to hard processes
which are leading in Nt [47]. Parton behavior might, then, be
modified by the appearance of the pomeron.

Photonic degrees of freedom in four dimensions give rise to
terms in the dimensional counting pieture which are responsible for

leading behavior in large angle scattering. These terms do not
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appear in the 't Hooft model. Additionally, transverse photons
might result in the presence of fixed poles [48]in the inelastic
Compton amplitude in the soft scattering region and extra terms

in the partonic description of the photon.
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APPENDIX A: Simple Wave Function Identitities Due To Parity Invariance

In this appenaix, we prove the relations of eqs.(II.B.12) and
(III.B.13) using the Bethe-Salpeter formalism developed in Sec.(III.A.)
As a first step, we find the complete Dirac structure of the meson

wave function @éz)(x) given by

(n)(x 3P) -j:ip+ (n)(P,p+,p = xP_) (4.1)

in terms of the Bethe-Salpeter wave function of eq.(III.A.5). This
structure can be found by observing that the vertex funetion, PuB,
is proportional to (Y_)uB. This can be seen directly from the
structure of the T-metrix, eq.(III.A.19), or by noting from fig.
(III.A.7) that FaB is bracketted by Y_ matrices duc to the quark-

gluon vertices. The wave function @;g) is related to the vertex by

the addition of the external leg fermion propagators. Thus

(“)( p) = 200 (x P){ [up * m] _[Y..(E.'PJ ¥ ”‘b”as

Y
T A N o
l 2 7 yP(x1) X 2P_(x-1)

(a.2)
vhere (11Y5) are defiﬁed in Sec.(II.A.2). The normalizing equality
8,0x) = 122 (™) (e, P)x(-1) (a.3)

is derived from eq.(III.A.13).



We next consider the effect of parity invariance on the
integral of the wave function. Integrating both sides of eq.(III.A.17)

without the y_ projection with respect to x gives

L (n) bg® -
f axp™ (x) = g <al T(J, (0)¥g(0))]0 > (A.4)

o aB

The integration over x thus probes the wave function at the origin.

We insert parity operators, SP, into eq.(A.4) using

Py, (xx) = (v ¥) (x_.x) (4.5)
and
P nse ,p_ > = (-1)"|n;p_,p, > (A.6)

since the spectrum of the Hamiltonian is non-degenerate. Performing

these operations gives

fl (n)y(x3p ,p.) = 1>“f1ax(1>( o ) ) (xs2.p ) (A7)
A dx(P_¢aB X, 2 + - - A - YO YO aB xs +a - -7

This gives two identities when eq.(A.2) is used for ¢§6. Since

YoYsYo= Y. 8nd ¥ (1vg)y, = (1Fy;) we get

¢, (x)
J:d.de (x) = (-1)™ mb fdx 1) (a.8)

1 ¢ (x)
+1
-1 my j;dx =) (2.9)
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Equation (A4.9) is eq.(III.B.12), and using eq.(A.9) in eq.{A.8) gives
eq.(III.B.13).
We conclude by noting that eq.(III.B.13) can be derived

directly from the 't Hooft eq.(TII A.16) with the identity

Ll [

1
=+ (a.10)
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APPENDIX B: Current Scattering in The 't Hooft Model.

(s) ;(5)

The incorporation of the fermion ecurrents J ) and

J(V) of eq.(II.C.4) into scattering amplitudes in the 't Hooft model
can be implemented via the gauge variant quark current form factor
depicted in fig.(B.l). Letting

w222 = (8% - n2)(p - 0% 0?)[5e) v, 52 - @] wien s(e)

given in eq.(III.A.11) and A denoting one of the four gamma matrix
indices., we get

n® + a_(x-1)&(p) + q_x&(p-q) , xE(p-q) - (x—l)E(p)
5

q_x{(x-1)

=p (p - q)(
s T PP qfx(x—l)

szl , ul&) +§(Q-g)]__y>

q_ x(x-1) q_x(x—l)

2
- _ - q_(x-1)g(p) ~ q_xE(p-q)
g = ip_(p_- g_) ((x't)igflx) xE(p-q) .

Y
qu(l-x) >
ny, a[e@ - se-a)] v
qx(x—l) ' q_x(x-l) )

w_=p(p -q)(”‘(z"'l’+ M5 . mov +’=‘Y>

- PR T R\ x(x-1) 7 qx(x-1) 2Pr(1on) +
w,=p (p -q)((dp)+5pﬂﬂ q€QFQ)'5PﬂY5 2£(p)E(p-a)Y_

+ T - q x(l-x) a_ Zx(1-x) q" 2x(1-x)

2
* - ) (B.1)
qfx(x-l)
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2y [sen(p))
where &(p) =[p+ - 5_2? (—A___ - ;—)] . We have considered flavor
conserving currents for simplicity.

These expressions show why the minus vector coupling is the
simpiest to deal with. It contains no & factor with divergent
behavior as A + 0. The existence of the £ factors in the other
current couplings invalidates the A power counting end, as z result,
the rules of Sec.(III1.C.). Thus, general current scattering amplitudes
may not be calculated by the rules given. We see, however, from
eq.(B.1), if the form factors are bracketted by Y_ matrices, all &
dependence disappears. As a result, in any ring diagram where at

least every other vertex is a Yy_ vertex, the rules of the text

apply with the insertion of the appropriate form factors fA where
. 1 1| 1.1
= __ . = R
f{a,x) = mg_ [x l_xl 3 f5(a,x) =imq_ [ ]
£ (a,x) =2q{g .~ —F5—=g,) . (B.2)
H - ¥ 2qfx(l—x) U=

As a simple example, consider the direct current-meson

coupling. From eq.(IV.A.1l), we can see

n

5 o1 -
[ o rplameieo . (3.3)
o}

1l |N
Frw =3 [;r

The property of the form factors, f_(x) = - fS(l—x), fs(x) = fs(l-x)
[o]

and fu;x) = ﬁl(l—x), shows that +the scalar current couples to even



parity mesons while the pseudoscalar and vector current couple to

odd parity mesons.
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APPENDIX C: Divergence Properties of Current Amplitudes.

Electromagnetic gauge invariance leads to the requirement
that physical scéttering metrix elements involving vector electro-

magnetic currents be conserved on all Lorentz indices

3u<a|T*(...Ju(x)...)|B>= 0 (c.1)

As is well known, the matrix element of time ordered products
of operators does not in general satisfy. this divergence condition due
to the presence of non-covariant Schwinger terms{kg]. WNon-covariant
terms must be added to the time ordered product matrix element to
product the "T*" product matrix element, which is covariant and
divergenceless [50] .

It was shown in Appendix B that for diagrams where the
computational rules of the text apply, an insertion of a vector current
can be described by the quark vector form factor fu(q,y) of eq.(B.2).

From this coupling we can derive a simple Ward identity

[V

2
11} m
8 2
q“fu(.q,y) = q - —ya - — (c.2)

e

This form allows simplification of the divergence through the use of

the 't Hooft eq.(IIT.A.16) and the wave functim orthogonality

eq.(III.B.2). A primary simplification,which serves as a good example
of the kinds of manipulations involved, occurs in terms where the

photon is meson dominated. These terms are of the form
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Idw‘iv‘ G(W,Y;qe)ff:(q,lr)x(w), with X being some given function. The

divergence of this term is

2 2
m m
q“jdwdy G(w,Y;qz)fu(q,y)x(W) =_/:1wdy(q2 - —yi - ﬁ)ﬂ(w,y;qz)x(w)
2 2 aa aa
_ 2 2 2 Ta | Ta )%k (WM W)
—_I:‘lwdy % [(q - ) +(Mk -3 - ﬁ)]mr x(w) (c.3)
62 (w) 0ER(y) - ¢°3(z)
= Jawx(w) + e_Jawdy a = Jawx(w)
fww Jw zqz-Mi+ie (y - 2)° f N

We have used eq.(C.2) in the first step, the definition < the Green's
function in the second step, orthogonality and the 't Hooft equation
in the third step where the second term is zero due to the antisymmetry
of the integrand under y <> z. Taking the divergence thus »eliminates
meson propagators in the photon channels, leuving terms which can
cancel with those arising from the bhare current coupling terms.

The direct vector current-meson coupling defined by eq.(B.3)

satisfies.
l -
g n — (.2 2y 1 i f a8
g0 (0= (- 5 STe ) el (c.4)

where eq.(III.B.13) has been used. We have thus shown the validity

of the expression of eq.(IV.A.l) for the on-shell coupling.



The inelastic form factor, fFﬁm =<n|Ju|m>, is conserved
in the 't Hooft model when the initial and final mesons are on mass

shell, The divergence is given in general by

&) = [<p§ -u2) - (g2 - Mﬁwm)] :
(c.5)

. leade:G(nyiy(l - x) +x)+ (-l)mm(a-'ﬁ)}

for the q2 < 0, Frame I, case. The variabléd x is defined through
eq.(IV.B.6) using the off shell values for the masses.

The situation for the matrix elements of the time ordered
product of two vector currents is complicated by the fact that in
the A = 0 gauge,in view of the discussion of Appendix B, the
plus-plus component of the tensor is not calculable by standard
techniques. We will thus show that, for the matrix elements
considered, there exists a Lorentz covariant tensor which is
divergenceless on all indices whose minus-minus, minus-plus, and
plus-minus components agree with those calculated in the model.

The vacuum polarization tensor when, defined in terms of éz;

through the first equality in eq.(V.A.l) satisfies

1 1
@) =3 ] 2 fae 00 [ave,0 =k & (00

where we have used eq.(ITI.B.2) and eq.{C.4). This divergence is
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howaver spurious, since ]'[uv must be regularized. Regulating so as

to insure current conservation gives the second equality of eq.(V.A.1l).
The tensorj{:v discussed in See. (V.B) can be written in

an off mass shell covariant form from the diagrams of fig.(V.B.1l) in

terms of % and fu . The divergence is given by

ie x
S ) = 2 /TR a0+ (i),

. fv(qQ,W)¢iE(yx2)] (c.7)

The on-shell cancellation is very delicate, depending crucially on the
even parity of the decaying mesons.

| Finally, we turn to the more complicated case of the Compton
anplitude,./l{uv of Sec.(VI.A.), with external mesons on shell.
Evaluation oi the divergence is simplest in Frame I with the aid
of egs.(C.5) and (C.T) for the off-shell divergenees of the

Compton subamplitudes. To this end we define a quantity C:::l by

nm

= o = ]
C o {Pn¥y = ~9/Py 5%, a'/p, )

»> ; ¥m *2
k iYﬁk(pn,xl) - 2 f-‘}.\) (pn T 1-xl).

- + i
8 Mk ie

Ak i Km , A (c.8)
+$u (Pn,xa) u 12 :Y'\) (Pn- qQ°, 1_x2>

-Mk+ ie

- i ‘K.,a .
+ i ' LI
4 n;km(Pn’x) £ Mé + ie”’LHV (a b xllx’XE/X)c .
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Cont. from 104

) i k,b, ,
+ 13;;mk(pn,1 - x) 5 (a

- Q.%, /%, x,/x) .
t—Mk+ie Lol 1 2

(c.8)

The minus-minus, plus-minus, and minus-plus components of Cﬂl\r;
coincide with the respective components of the Compton scattering
tensor,.,/”:: in the model.. Calculating unuv, we find a complete

cancellation among crossing related terms proportional to eae and

b
among the terms proportional to ei and e2 which have meson

D
propagators in the outgoing current channel in the s, t, and u
channsl meson exchange diagrams., The cancellation among crossing

related terms in the s and u meson exchange channels with bare

coupling to the outgoing current is incomplete, however, giving

1 - -
quc}.l\) =ie, ﬂ:{J{;—)J; dw ¢:b(W)¢§b(w(‘l-x) + x)
- w(l - x) + xl) al , w1l - x))]
[f\) (q s - x2 - f\) (q , = -—-——x2
+ (s <>B). (c.9)

Cuv thus has a non-zero divergence and thus cannot be the correct

Compton amplitude. However, by eq.(B.2 ), unu = Q0 ahd we then

have proved pM = 0,

In two dimensions it can be shown that a covariant tensor

. T TR A Ay L A
Muv(ql,qz) which satisfies Mll- =0, M)N(-ql'qQ) = Mvu(qQ, ql)
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and the parity condition of eq.{VI.A.l) is divergencesless and can
be written most generally as in eq.(VI.A.2). The M+ " component

is then defined through eq.(VI.A.2) in terms of one of the other
tensor components. It cannot be expressed as a sum of simple
products of off mass shell form factors, We have thus shown that eq.

(VI.A.2) unembiguously gives the correct Compton scattering amplitude.
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FIGURE CAPTIONS
Two dimensional Minkowski space. The light cone
variable axes lie alon,y the light cone, rotated at
45° to the space-time axes. The spacelike, t = 0,
surface approaches th. x = 0 surface when boosted
into an infinite momentum frame.
The Feynman rules for light cone quantized (QCD)Q. The
letter a is & flavor index while i and J are color
indices. Figure (a) shows the color representation of
the gluon as a quark-antiquark pair. Figure (d) is a
correction to U(N) gauge theory to give SU(N). This
vertex does not occur to leading order in N-l.
The effect of putting a fermion loop in a diagram with
color singlet sources. The fermion loop in fig. (b)
creates an extra factor g2 without creating any new
color loops and is thus N 1 Qdown from fig. (a).
The effect of putting a handle in a diagram with color
singlet sources. The crossed gluon handle of fig. (v)
twists together the loops of planar fig. (a), resulting
ina N2 suppression.

A quark line diagram contributingtoa two particle
intermediate state in meson-meson scattering. The two
intermediate particles are represented by the cross-
hatched areas. The diagram contains a quark loop and

is thus non-leading in N-l.



Figure III.A.1.

Figure III.A.2.

Figure III.A.3.

Figure IIT.A.L.

Figure III.A.S.

Figure III.A.6.

The 4 point color singlet quark-antiquark vacuum
amplitude, iD. The 7reek indices are Dirac indices.
The dots on the external lines indicate that external
propagators #ve included in the amplitude. Exchange
of single bound state particles with wave function

L .contribute to the dominant, pole behavior of the
amplitude.

An example of a contribution to D in the 't Hooft
model. The set of a planar graphs are characterized
by uncrossed ladder exchanges between renormalized
quark lines.

The relation between the full fermion propagator, iS,
denoted by the darkened circle, and the proper self
energy, iZ.

The relation between the full fermion propagator *nd
the proper self energy induced by the requirements of
planarity in leading order in Nt

The Bethe-~Salpeter equation for the bound state wave
function @as consisting of a quark a and an antiquark
b. The Lorentz invariant variable x is the fraction
of minus momentum of the meson carried by the guark.
Note that, by definition, ¢ includes external
propagators.

The ladder exchange integral equation for the

quark-antiquark color singlet scattering amplitude,



Figure II1.A.T.

Figure III.C.1.

iT. DNote that iT 1is obtained from iD of fig.
(III.A.1) by truncation of external legs. The
solution to the integral equation is represented in
the second equality as the sum of a single gluon
exchange and pole contributions with strength H{,
shown in fig.(III.A.T).

The graphical struture of the meson vertex function,
Fk, as expressed in eq.(IILA.24). The gluon has an
infrared singular and principal value parts.
Examples of Step 1 for creating mesonic graphs. In
fig. (a), we show the mesonic diagrams contributing
to ig;;km(pn,x) desribing the decay of meson n
into meson k and m. In fig. (b), we show the
diagrams contributing to ié%k;mn(pj’xk’xm’xn)
describing the scattering of mesons J and k into
mesons m and n. The three diagrams shown are
labelled jL?t‘ oS i denoting the quark-
antiquark color singlet channels in each diegram.
Possible particle flavor content assignments

contributing to these graphs are shown. For the

.rest of this paper, all quark lines are dressed

unless otherwise indicated; the shaded circles are

dropped.
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Figure III.C.2. Examples of Step 2 of inserting T matrices into the
diagrams of fig. (III.C.l). In fig. (&), we show that
there are no possible insertions in the three point

~ amplitude. 1In fig. (b), we show the T matrix
insertions in the s and t channels of uLSt.

Figure III.C.3. Examples of Step 3 of eliminating gluons across bound
states and computing the graph index m.

Figure III.C.L. Examples of Step 4 of time ordering each loocp con-
sisting of f fermion lines into f - 1 time
orderings. The direction of positive minus momentum
flow is indicated. In fig. (a), we have time ordered
the three point diagram of fig.{III.C.3(a)whiie in fig.
(b) we have time ordered the first diagram of fig.
(111.C.3 (b)) fOr fl?t, for the case that
P > Pk- . The loop integration regions determined
by each time ordering are indicated.

Figure III.C.5. Examples of Step 5 and 6 for the time ordered diagrams
of fig.(III.C.4). Gluons are inserted to route the.
quarks into the bound states and the graph index m
computed. The diagrams of fig. (a) contribute to the
three point funetion using the rules of Step6 and
also to the meson exchange contributicns to the four
point function shown in fig.(IIT.C.2) using Step 7.
The diagrams of fig{b) do not contribute to ithe four

point function since m =1 > 0,



Figure III.C.6.

Figure III.C.T.

Figure

Figure

Figure

Figure

Figure

IV.A.l.

IV.B.1l.

V.A.l.

V. B.l.

vV.C.l.
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Diagrammatic representation of the three point
function, iéﬁ;;km(pn,x), as derived in fig.
(111.c.1(a) - 5(a)). Note that each diagram involves
a gluon exchange.

Diggrammatic representation of the four point function
iﬁzjk;mn(pj;xk,xm,xn). In figs. (a), (&) and (e¢), we
show the (us), (st), and (ut) contributions in terms
of meson dominated strings of three point functions
and contact terms. The representation is valid for
1> xm,xn > xk.

The direct coupling of the vector current to meson

n, denoted éZE in the text.

The inelastic form factor, éFL. The incident current
carries a fraction x of the final state momentum.
Both bare and meson dominated coupling diagrams con-
tribute.

The vacuum polarization ﬂuv(q) for the vector
current. The amplitude has the meson dominated
structure indicated.

The meson - current + current amplitude ‘7gLV' Note
that there are no contributions from the case where
both currents interact via bare couplings.

The current + current + meson amplitude uA;v in
Frame I where the incident spacelike current has

negative minus momentum component. This incident



Figure VI.A.l.

Figure VI.A.Z2.

Figure VI.B.1.

Figure VI.C.1.

Figure VI.C.2,

Figure VI.C.3.
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current is drawn to the right as a remnant of the

time ordering.

The structure of the Compton amplitude L4zuv]I in
Frame I. The diagrams are meson exchange tree dia-
grams. No contact terms appear. The diagrams
correspond one-to-one to the terms of eq.(VI.A.3).

The structure of the Compton amplitude [Asz] in
frame II. The first diagram represents contriiutions
from the meson dominated four point function. The
other diagrams contain at least one bare coupling
vertex. The diagrams correspond one-to-one to the
terms of eq.(VI.A.L).

An irreducible quark scattering diagram contributing
to Compton scattering in the dimensional counting
picture. TheAdotted lines are far off mass shell and.
give integer power behavior.

Parton handbag diagrams. The dotted propagators are
dressed. The dashed line indicates that the dis-
continuity is to be taken.

Parton model of photoproduction of large mass lepton
pairs via parton-antiparton annihilation.

Contributioﬁs to the photoproduction of large mass
lepton pairs in the 't Hooft model in {(a) Frame I and

{(b) Frame II. The (ut) contributions allow a

parton-antiparton annihilation interpretation.
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Figure B.1l. The coupling of the fermion current of type A to quarks,
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