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ABSTRACT 
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A systematic procedure is presented for constructing symmetrized 

functions of the coordinates of N fermion particles which may be used 

as trial wavefunctions in a quantum mechanical description of an N-electron 

molectlar system. The functions are symmetrized with respect to the 

mathematical point group of operators which commute with the system's 

electronic Born-Oppenheimer Hamiltonian, as well as the permutation 

group. The procedure is particularly useful if the group of operators 

is non-Abelian, which results in multi-degenerate irreducible representa

tions of the group. The procedure is essentially the Clebsch-Gordan 

geneological coupling method (which is well-known from its application 

to the coupling of angular momenta) applied to the finite groups which 

describe the symmetry operations of a molecule. 

The coupling procedure is applied to the study of the electronic 

structure of several states of the diatomic molecule sulfur oxide. 

The advantage of the coupling procedure in this study is that it results 

in entirely real N-particle functions which are constructed from entirely 

real single-particle functions. Most other procedures which are capable 

of generating symmetrized functions of non-abelian groups require the 

use of or result in complex functions. The use of complex functions 

tends to be cumbersome from a computational point of view and should be 

avoided when possible. 
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I. The Construction of Symmetrized N-particle Functions 

A. Introduction 

In quantum mechanics one is often confronted with the determination 

of eigenfunctions and corresponding eigenvalues of the time independent 

Schrodinger equation: 

tt<J> = Ei|> . (IA.l) 

The existence of any symmetry in the form of the Hamiltonian 

operator H can usually be exploited to facilitate the solution of 

(IA.l). Suppose, for example, there is an operator A which commutes 

with the Hamiltonian. Then it is well-known that functions may be 

found which simultaneously are eigenfunctions of both H and A. This 

fact may be used to help solve (IA.l) if it is easier to find eigen

functions of A than H. One first solves for the eigenfunctions of A; 

denote by {<(>.; i=l to g } the g eigenfunctions of A with eigenvalue a. 

Since H and A commute, the eigenfunctions of H with eigenvalue a of A 

may be expressed as some linear combinations of the g eigenfunctions 

of A. 

Consider now the slightly more complicated case of a collection of 

operators G = {A, B, C, ...} which all commute with H and with each other. 

One may then find functions which are eigenfunctions of all operators. 

If the collection of operators constitutes a group algebra, the require

ment of mutual commutativity defines the group as an abelian group. 

Abelian groups are special in that their irreducible representations 

(IRs) are all one-dimensional. This means that the allowable eigenvalues 
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of the group of operators may be looked up in a character table in a 

reference book if the group is isomorphic with any of commonly occuring 

groups. The eigenfunctions of the group which all have the same 

characters are identified by the label of the IR according to which 

they transform. By analogy with the case of one operator commuting 

with H, to solve (IA.l) when H commutes with an abelian group G of 

operators, one first finds the eigenfunctions of the group G. These 

are known as symmetrized functions and they are conventionally labelled 

by the standard label used for the IR according to which they transform. 

Each eigenfunction of H will transform according to a particular IR and 

can therefore be expressed as a linear combination of the corresponding 

symmetrized functions. 

Finally, suppose H commutes with a collection G of operators which 

do not commute among themselves. One cannot find functions which 

simultaneously are eigenfunctions of H and every element of G. If G 

forms a group, however, one may still take maximum advantage of the 

commutation of H with each element of G. The result is that the eigen

functions of H may be expressed as linear combinations of functions each 

of which transform as a given row of a given IR. Degeneracy of the IR 

implies a degeneracy of eigenvalues of H. This is, of course, a direct 

generalization of the preceeding two paragraphs. The demonstration will 

not be given here because it may be found in most group theory textbooks 
2 which discuss applications to quantum mechanics. 

It is important to note that if the Hamiltonian commutes with the 

elements of a non-abelian group, there will be degeneracies in energy. 

The fact that the elements of the group do not commute results in there 

being IRs with dimension higher than unity, and hence, corresponding 
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invariant subspaces of functions whose members have identical energy. 

Proof: Suppose there are two elements A,B of a finite group G which do 

not commute. Since ABA~ ?* BAA~ » B, the class that contains B will 

contain other elements. The number of classes will therefore be less 

than the number of group elements. It is well-known for finite groups 

that the number of classes equals the number of IRs. Since the sum 

of the degeneracies of the IRs must equal the number of elements, and 

since the number of IRs is less than the number of elements, there is 

required to be an IR with a degeneracy greater than unity. It is already 
3 known that functions which transform as different components of the 

same IR have the same energy. QED 

4 In the study of the properties of small molecules, it is customary 

to seek solutions to the time independent non-relativistic Schrodinger 

equation for a system of M nucleii and N electrons within the Born-

Oppnheimer approximation: 

+ 
N V, 2 Z, M Z.Z. 

i=l i=l,N '-i -j' i,j=l '~i -2 
j-l.M 

N 
£ lr -r I ( I A' 2> 

th 

where r. (R.) represents the three coordinates of the i — electron 

(nucleus), and Z the charge of the i—nucleus. Within the Born-

Oppenheimer approximation the energy and wavefunction depend parametrically 
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on the nuclear coordinates. 

In seeking solutions to (IA. 1) for the Hamiltonian given above it 

is natural to search for a set of operations which commute with it. 

Since H contains no dependence on the spin coordinates of any of the 

electrons, clearly 

R^HR • H (IA.3) 

where R is a rotation of the spin coordinates of any or all of the 

electrons. Furthermore, for a specific choice of nuclear coordinates 

{R.} there may exist a set of operations {T.} on the spatial coordinates 

such that 

T*1 H T ± - H iv . (IA.4) 

It might seem that the application of group theory would only be 

useful in the "rare" occurances that the set of commuting operators 

forms a group. However, it is straightforward to show that the set 

of operators which commutes with H always constitutes a group. 

Proof: If g. and g, commute with H then so does g_ = g.g- as can be 

seen from the following: 

83 1 H g 3 = (g 1g 2)" 1H<g 1g 2) « <g21gi1)H(g1g2) = g2 1(gJ 1Hg 1)g2 1 - %i 

• H 

This demonstrates closure of the set. The presence of inverse elements 

is obvious. Since the identity operation trivially commutes with H, we 

may add it to the set generated by the above procedures of including all 
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unique products of operations. The resulting set thus satisfies the 

group axioms. 

ft may be assumed, therefore, that {T }, {R} and also the set formed of 

their direct products are all groups. The determination of the eigen

values and eigenvectors of H then becomes first a problem of determining 

the invariant subspaces of these groups of operators. 

There is one other requirement on the eigenfunctions of H that 

comes not from any symmetry of H but from the fact that the electrons 

are fermions. The eigenfunctions must be antisymmetric on interchange 

of any pair of electrons. 

vK rT»• • • »r.»»• • • > r4 »• • • 'JM' = ~r(r,»• • • »r.,... ,r.,... ,r„) . (IA. 5) 

There will be presumed to exist a self-adjoint operator, A, called the 

antisymmetrizer which yields an antisymmetrized N-particle function 

when operating on an arbitrary N-patricle function. 

The form of the antisymmetrizer will depend on what form of N-particle 

function is to be used. The usual procedure is to use a product of N 

single-particle functions or a linear combination of such products. This 

is a good starting point because the Hamiltonian (1A.2) would be separable 

in electronic coordinates, and a product of single-particle functions 

would be exact, if it weren't for the electron-electron repulsion term. 

It may be assumed that the single-particle functions are solutions of 

some approximate Hamiltonian (e.g., one obtained by neglecting the 

electron repulsion term of H) and, as such, constitute an orthonormalized 

basis for a Hilbert space. Each unique product of N single-particle 
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functions then is a basis function for an N-body direct product Hilbert 

space. The antisymmetrizer operates on an arbitrary function in this 

space and projects out the component in Fock Fermion space, the anti

symmetric component. If the form of the wavefunction is an N-body direct 

product form, the resulting antisymmetrized form can always be written 
6 

as a normalized linear combination of Slater determinants. 

Since operations on spin and space coordinates of an electron 

commute and the Hamiltonian (IA.l) has no spin dependence, the single-

particle functions are expressed as a product of a space and a spin 

part, and the spin parts are the usual functions for a spin h fermion, 

y. = {a,6). The orthonormal space parts are finite in number for most 

practical applications, and will be denoted {f.|i=l,m}. Thus, 
* = 2 > i A[fx (r x).. .fN ( r ^ (1)...YN 00] (IA.6) 

is an acceptable form for IJJ. With ty in this form, A may be written 

A= (NSr^sgnCo.) P(0,j) (IA.7) 

where o. is an element of the symmetric group of N particles. P(0.) 

is an operator which produces a new function in the N-particle direct 

product space different than the operand by the permutation (a.) of 

particle indices. Recall that any permutation may be written as a 

product of transposition (simple exchange) permutations. The function 

sgn(o.) is +1 if the number of terms in such a product is even and -1 

if the number is odd. The summation is over all permutations of the 

N electrons. The (N!) is for normalization and this form for A assumes 



that the { f . } are orthonormalized. 

The best set of (a . ) and { f . } in (IA.6) i s usually determined 

by a variational procedure, i . e . , the functional E 

BC^Uf i^ ) = ^ j f , * - *({a1},{f±}) , (IA.8) 

is minimized. The two procedures most common today in the field of 

electronic structure are (a) the determination of the best set of 

spatial orbitals {f.} for a fixed and usually small number of a's, and 

(b) the determination of. the best set of coefficients {a.} for a fixed 

set of orbitals {f.}. Procedure (a) is known as the Hartree-Fock Self-

Consistent Field (HFSCF) technique, and procedure (b) is known as the 

Configuration Interaction (CI) technique. 

To use the theory of groups to help in solving (IA.l) it is required 

that tp be symmetrized—i.e., that \() transform as one component of some IR 

of the group of operators commuting with H. The terms of the sum in 

(IA.6) are Slater determinants which are not, in general, individually 

symmetrized. Linear combinations of Slater determinants arising from 

the same electron occupation (e.o.) of spatial orbitals (to be defined 

later) may be made which are properly symmetrized. These linear 

combinations will be called configurations. 

The construction of configurations may simplify both the HFSCF and 

CI procedures. For ty to transform as a particular component of a 

particular IR, it is sufficient that it be expressed as a linear combina

tion of configurations that transform the same way. Thus. (IA.6) becomes 
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. • i 

where each ty. is a configuration given as 

ij; « £ d x(determinants of the i — e.o.) . (IA.10) 
1 3 J 

The sum in (IA.9) is generally much smaller than the one in (IA.6) and 

so the construction of configurations simplifies a CI procedure. 

Furthermore, since a configuration is the simplest symmetrized function 

of a given e.o., the construction of a configuration is necessarily the 

first step that should be taken in a HFSCF procedure to ensure that the 

wavefunction (and, hence, the energy) corresponds to the desired invariant 

subspace. 

The remainder of this section will deal with the construction of 

configurations, the determination of the d.s of (IA.10). 

B. The Coupling Procedure 

In general there may be several determinants corresponding to the 

same electron occupation (e.o.) of spatial orbitals. The configurations, 

or various symmetrized functions, are constructed from these determinants. 

The e.o. numbers specify how many electrons are in each orbital of the 

molecule. For example, consider BH-, which belongs to the spacial point 

group D„. . The e.o. of the ground state is 

la*2 2aj2 ie'4 , (IB.l) 

while low-lying excited states might be expected to form from the e.o. 
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la[ 2 2a[ 2 le'3 la'J . (IB.2) 

(The numbers-which,are: neither superscripts nor subscripts,'refer to the 

"principal quantum number" of the molecular spatial orbitals. The super

scripts refer to the e.o. numbers, and the rest designates the 1R according 

to which the molecular orbital transforms under the space group of the 

molecule. It will be assumed that the spatial orbitals, referred to 

previously as the {f.}., transform appropriately as components of various 

IRs of the space group of the molecule.) Since the e' IR is two-fold 

degenerate, the determinants that can be constructed from the e.o. of 

(IB.2) are 

D, = A[la.'2 2a'2 le' 2 le! la" aBaBaBaa] 1 1 1 a b 1 

D 2 o " CIS] 

D 3 = " &x] 

D 4 = » m 

D 5.- Atla] 2 2aj_2 le£2 le^ laj aBaBaBaa] 

Dfi - " aB] 

D ? - " Ba] 

Dg = " 33] . (IB.3a-h) 

In the above, several simplifications in notation have been introduced. 

fj.(rk) w i l 1 b e d e n o t e d simply by f , and it will be assumed that when a 

product of single particle functions is written the single particle 
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functions are functions of coordinates of successive electrons. Further-
more, f* will represent, naturally, f ± < r f e > f ± C r f c + 1 ) . It will be obvious 

2 from the order of f. in the product what k is. Sometimes f (n) will be 
written to represent ^ ( O * 

Thus, the e.o. numbers specify how the electrons are distributed 
among the spatial functions without reference to their spin component 
(a or $) or to the component of the spatial functionif it transforms 
as a degenerate IR. In the above example, the e' orbital is degenerate, 
having an e and an e. component. 

It should be clear that the set of eight determinants listed above 
form an Invariant subspace under all the group operations. (All the a 
type orbitals transform to themselves. All the e orbitals transform 
to linear combinations of e and e. orbitals, and so on.) This subspace 
is, in general, reducible and the linear combinations (of determinants) 
which transform according to the various IRs of the full group are the 
configurations. Thus, the specification of the e.o. is the first step 
in the construction of the configurations. 

The e.o. numbers specify a partitioning of electrons into shells. 
The coupling procedure will involve first the coupling of electrons 
within a shell, then the successive coupling of shells to produce an 
N-particle function which carries a particular IR, and finally, to anti-
symmetrize the N-particle function and express the result, a configuration, 
as a linear combination of determinants. 

The possibility exists that an N-particle function symmetrized with respect 
to the space group cannot be made antisymmetric with respect to particle exchange. 
In this event, operation by A will kill the function, since A projects out the 
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component of the function in Fermion Fock space. For example, consider 

the two-particle function ̂  = (2) ̂ f (a&+8a). 

Ai}) = ̂  {|fj(ae+3a) - h fJ(Ba+aB)> - 0 . (IB.4) 

These cases can be eliminated by consideration for fermion statistics 

only during the first step listed above: forming the intrashell 

couplings. The necessity for consideration for fermion statistics at 

this point only is a result of the fact that the Pauli exclusion 

principle will exclude particular couplings of electrons in the same 

shell, but not of electrons in different shells. An example of this 
2 is that for two s type electrons as in He, the Is e.o. gives rxse to 

1 1 3 
only a S whereas the Is2s e.o. gives rise to both a S and a S state. 

With this in mind, the coupling procedure for constructing the 

configurations of a given e.o. is as follows: 

(i) Intrashell coupling. The possible space-spin states consistent 

with fermion statistics that can arise from each of the shells is 

determined, (see section D.) 

(ii) For a particular ordering of shells, the direct product of 

the states of each shell with the states resulting from the cumulative 

coupling of all previous shells is decomposed. This decomposition is 

done without regard for fermion statistics in contrast to (i). Further

more, the space and spin parts may be decomposed separately. The 

intermediate couplings which result in a state of the desired symmetry 
7 constitute a geneology. 

(iii) The geneologies are used in conjunction with a set of 

coupling coefficients to construct the symmetrized functions. (See 
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section C for the coupling coefficients.) If one e.o. gives rise to 

several symmetrized functions of the same symmetry through different 
8 geneologies, they are guaranteed to be orthogonal. 

(iv) The resulting function is symmetrized and if each shell 

function is written as a linear combination of determinants the product 

of such functions is trivially antisymmetrized. 

To illustrate this procedure, consider a molecule with C, spatial 
2 2 2 operations, and an e.o. of la. 2a. 3a.. le 2e. This might be an e.o. 

corresponding to some excited states of BH, which has a nonplanar 
3 geometry. Suppose configurations of space-spin symmetry A- are desired. 

For this e.o., the shells and their allowed space-spin states are 
2 1 2 2 1 1 3 2 
a.: A.; a.: A.; e : E, A., A_; and e: E. Section D will explain 

how these are determined and also how to obtain the correct linear 

combination of one- and two-particle functions that transform appropriately. 
2 1 For the ordering of shells as given, la.. ( A.) may be coupled only 

2 1 1 
one way with 2a. ( A.,) to give a resulting state A.. This may then be 

2 2 
coupled only one way with 3a. ( A.) to give A-. The result may then 

2 2 1 2 2 1 
be coupled four ways with le : with le ( E) to give E, with le ( A.) 

2 2 3 2 4 
to give A, and with le (A,) to give A„ and A,. These four states 

2 1 3 1 3 1 3 
may then be coupled with 2e( E) to give E, E, A., .A,, A_, and A, 
(from the 2 E ) , 2E and 3E (from 2A^)t

 1E and 3E (from 2 A 2 ) , and 5E and 
3 4 E (from A-). There is, therefore, only one geneology resulting in 

3 
the desired Â ^ symmetry. The decomposition of direct products of 

spin IRs is given by the usual formula S = |S +S_|,..., |S -sJ , and the 

decomposition of direct products of spacial IRs is given by the usual 

procedure 
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a. 4 ? X ( d ) ( C k ) * X ( C k ) N K (IB.5) 

where a. is the frequency index for the j IR, X (Cv) is the 
f*K t*Ti 

character of the j IR for the k class C. of N, elements in an 
h element group. X(Cfc) is the character of the reducible representa-
tion for the k class of elements obtained by multiplying the 
characters of the two IRs whose direct product is being decomposed. 

The geneologies resulting from this procedure are illustrated in 
figure 1. Lines connect intermediate cumulative couplings, and above 
each line is listed the coupling of each of the shells. 

3 To produce the configuration of symmetry A.., the space couplings 
for products of e-type IRs are required. These will be derived in 
section C, but for now they will simply be presented: 

h [e (l)e (2) + e (l)e (2)] transforms like the a IR v2 x x y y J. 

p [e (l)e (2) - e (l)e (2)] transforms like the a, IR v2 x y y x i. 

r i t e x < l ) e x < 2 > - e y ^ e y < 2 > 3 
transforms like the \ > IR . (IB.6a £} 

J '-v<yy 2> - v a ) e * ( 2 ) 1 > r 

In other words, the transformations of the two-particle functions on the 
left generate an IR of the type indicated on the right. The only spin 
couplings (Clebsch-Gordon combinations) needed are 
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^ M a ( l ) 8 ( 2 ) - 8 ( l )a (2) ] 

P [0(1)0(2) + B(l)a(2)] = 
V2 

a(l)a(2) 

3(1)8(2) 

[S=0; m =0>|S=0; mg»0> = |s=0; n» =0> 

S=0; ms=0> 

S=l; ra =0> 

S-l; ms=l> 

S=l; m s=-l> 

(IB.7a-e) 

Coupling the f i r s t four she l l s together yie lds the following 
2 seven-particle functions which have E symmetry: 

[ i la*(ci6-Ba)nj= 2aJ(aB^Ba)][3a 1a] [~ ( l e * - l e y ) (oB-Bo)] 

[3 a i 8] 

t 3 a i a ] [ ^ ( - l e x l e y - l e y l e x ) (aB-Ba) ] 

[3^8] (IB.8a-d) 

The four functions (IB.8a-d) transform, respectively as e a a, 

e„ 8 8, e„ 8 a, and e a 8. To obtain the highest spin component (m =1) x y y o 
for the desired geneology, A., the last shell is added with coupling 

given by (IB.6a) and (IB.7c). This produces the eight particle function: 

[ i la j (a8-8a)][ k 2a*(aB-Ba)][3a 1a] 

, l » r r l / , 2 
XIB.9) 

* ^ ) { t i ( l e x " l e y ) ( a B - B a ) ] t 2 e x a ] + [ f ( - l e x l e y - l e y l e x ) (aB-Ba)][2e ya]}. 
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This function is the eight-particle symmetrized function which must now be 

written as a linear combination of determinants. To do this, each shell 

function is written as a linear combination of determinants: 

[A(laJa3)][A(2aJa3)][3a1a]f|) {iiA(le*aS) - A(le^a3)] [2exa] 

-i[A(lele a3) - A(le le 8a)][2e a]} . 
y/2 x y x " y 

(IB.10) 

The configuration written as a linear combination of determinants is 

hk , = i ( D r V D 3 + D 4 > ( I B - n ) 

A1,m s=l 

where 

Dx = A E d a ^ C Z a J o B X a a ^ X l e ^ X Z e ^ ) ] 

(le^a3)(2e a)] 
y x 

(le lett3)(2e a)] x y y 

<lexley3a)(2eya)] . (lB.12a-d) 

It may be seen by construction that the other eleven configurations 

arising from this same e.o. are orthogonal to the one above and also to 

each other. 

The importance of the minus sign in (IB.6c) cannot be overemphasized. 

The minus sign of the two-particle function transforming as e ultimately 

resulted in the minus signs of the second and third determinants of the 

configuration (IB.11). The coupling method requires the partially coupled 

D 2 - A[ 

°3 - A[ 

D 4 - A [ 
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shells to transform in precisely the same way as the basis functions of 

the IRs. However, if the relative phases of a set of two-particle functions 

(as in IB.6c) is selected arbitrarily, the functions will not transform 

according to exactly the same IRs as their constituent one-particle 

functions. In other words, the two-dimensional representation of the 

C„ operations generated by the pair of functions (x,y) is different from 

that generated by (x,-y). The coupling coefficients generated by these 

two different representations would also differ. In practical applications 

of the coupling technique, care must also be taken that all degenerate 

partners of the set of one-particle spatial functions transform the 

same way. This point must be paid particular attention to because most 

HFSCF procedures which are used to generate the one-particle spatial 

functions produce these functions with random phases. This is usually 

the case because no aspect of the HFSCF procedure depends on the 

relative phases. 

C. The Coupling Coefficients 

This section will explain how coupling coefficients like those (IB.6) 

used in the previous section are derived and will illustrate with the 

derivation of coupling coefficients for the point group C, . 

Let T , T , and T Y be three IRs of a group G carried by the set of 

functions {fj}, {f|?}, and {fjj}, respectively. The index i, for example, 

runs from one to m(ot), the degeneracy of the a IR. The coupling 

coefficients CjJ?T are defined as 
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If 6 = SU(2), the c's are the Clebsch-Gordon coefficients which are 

tabulated in most quantum mechanics textbooks.No such information 

is tabulated if G is a finite dimensional point group, however. 

The most straightforward way to generate the coupling coefficients 

is with a projection operator technique like that described in many 
11 group theory texts which discuss the generation of symmetry adapted 

functions for a single particle. The generalization to a two- or more-

particle function space is straightforward. 

Recall that for a space of single-particle functions, P„ is defined 

as 

m(a) 
Vi = 53 * j r j t ( R ) » V B f 5 G » ( I C , 2 ) 

J •*• 

where r..(R) is an element of the matrix that represents element R in 

6 as described by the a IR. It is a consequence of the great 

orthogonality theorem that 

*?<*? - «„. *«a £ . (IC3) ij k vjk aB i 

where P.. is given by 

V^S^'R • <»•«> 
P.A is called a projection operator because it projects out of an arbitrary J 

fir .at., ••n the part that corresponds to the 1 component of the o IR if, the 

function contains a component that transforms like the j component of 

the a t h IR. 
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To extend this technique to a two-particle function space, we need 

only define P R on a direct product space. 

„<* in(a) m(3) a rBvrf* 

The coupling coefficients for the C_ point group can be worked 
12 out by the projection operator technique. The character table for 

this group is provided below. 

(IC.5) 

C3v E 2C3 3a v 

A l i 1 1 

A 2 l 1 -1 

E 2 -1 0 

-.a The representation matrices I".. for the one-dimensional IRs are given 

tr ivial ly as the f irst two rows of the character table. The representation 
13 matrices for the E IR wil l be taken as 

These matrices (a representation) are generated by the action of the group 

of operators on a vector space of functions. In fact they are generated 

by the functions (x,y) [where this notation specif ies their ordering] as 

"operated on" by the operations of the group. "Operation" i s defined for 
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the group elements as follows: the C. operations rotate the contours 

of a single-valued function in a left-handed sense about the +z-axis 

(clockwise in the xy plane) , the a operation reflects the contours of 

a function through the xz plane and the planes of reflection for a » 
2 and a , also contain the z-axis and are C„ and C„ rotations, respectively* 

of the 0 plane. Thus, the notation "e , and e " will be used to denote v x" y 
pairs of functions which transform among themselves exactly like (x,y). 

This notation is being presented meticulously because there are so many 

different conventions in the literature, 

Thus, from the matrix representing C„, and the defining relations 

(IC.2) and (IC.5), 

PC3[ex(l)ey(2)] = [- i ex(l) ->f . y ( 1 ) j [vf % ( 2 ) . A e y ( 2 ) ] 

= 7[-V^Te (l)e (2)+e (l)e (2)-3e (l)e (2)+\£e (l)e (2)] A x x x y y x y y 

and 

F n [ev(l)ev(2)] = -ev(l)ev(2) . (IC.7) 
« v l x y x y 

Once the operation of all operators on all possible two-particle functions 

constructed from the direct product of two single-particle functions 

(each properly transforming as one component of one of the IRs) is determined, the 

projection operator technique may be used. 

Suppose one wishes to determine the coupling coefficients for 

coupling two particles, each of which is in a single particle function 

transforming as the E IR. This situation provides the coupling coefficients 

for the e.o. Ie2e, which were given in (IB.6). One constructs the various 
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two-particle projection operators, guesses a two-particle 
function which has a component which transforms as desired, 
then projects out and normalizes the resulting function. Two inequivalent 
e. particles can be coupled to A., A,, and E. As an example of the 
procedure, 

P 1(xx) - \ {(Dxx + (l)(»)(xx+>£xyh£yx+3yy) 

+ (1) (i) (xx-v£ xy-\/3~yx + 3 yy ) 

+ (l)xx + (1) (i) <xx+>/Txy+v£yx + 3 yy) 

+ (l)0|)(xx->/3~xy-v£yx + 3yy)} 

= \ (xx+yy) . (1C.8) 

This must be normalized to j= [e (l)e (1) + e (l)e (1)] to give (IB.6a). 
v2 x x y y 

Similarly, 

A 
P *(xx) = 0 . (IC.9) 

P x x ( x x ) ' I ( x x y y ) ' (IC.10) 

Py X lj* (xx-yy) ] = - J (xy+yx) . (IC.ll) 

A 2 1 V *(xy) = -3 (xy-yx) . (IC.12) 

Note that the transverse projection operator, P® (i/j) must be used to 
give the correct relative phases of the various components of degenerate 
iRs. 
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After normalization, the e a e coupling coefficients are those 
presented in (IB.6): 

= (e e + e e ) transforms as the a, IR v«r x x y y' 1 

— (e e - e e ) transforms as the a n IR ^2 x y y x' 2 

transforms as the< *IR. (IC.13a-c) 
7> [e e - e e ]' 

- i [e e + e e ] ' | e 

*v£ * y y x 

Similar coupling coefficients may be obtained for a„ a e, 

a„e 2 y 

'•Vx 
transforms as the < 7-IR , (IC.14) 

and for a. a e, 

transforms as the ^ fTR . (IG.15) 

Actually, a, a (any IR) trivially decomposes to (any IR) and the 
components of a. a (any IR) match exactly with those of (any IR). 

The projection operator technique may be used, of course, for any 
of the point groups. (Coupling coefficients for the 24 element T, group 
have been derived and may be obtained from the author.) It should be 
obvious that if G is a group all of vhose IRs are one-dimensional, each 
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direct product of functions transforming as these IRs may be decomposed 

into only one of the other IRs. Thus, each direct product of functions 

is already symmetrized. The coupling coefficients take on a particularly 

simple form for these abelian groups. (IC.l) reduces to the following: 

f* = fa a f6 if x < Y ) cc k ) - x

( 0 ) < c k > - x X > , VR . 

The subscripts of the f. have been dropped because they are meant to refer 

to a component of the a IR, and if G has only one-dimensional representa

tions, the subscript is unnecessary. It is therefore seen that the 

coupling coefficients take on a particularly simple form: 

10 otherwise 

D. Allowed Intrashell Couplings 

As was mentioned in section IB, not all N-particle functions are 

allowed by fermi statistics. These functions cannot be antisymmetrized— 

the antisymmetrizer A annihilates them. 

Consider the shell in the C- example which contained two equivalent 

e electrons. Without regard to fermi statistics, the six states that 
1 3 1 3 1 3 can be constructed are A ^ Ap A 2 > A 2, E and E. The corresponding 

wavefunctions are (maximum m g value only) 

\ t | ( e x e x + eyey)(aB-Ba) 

\'\ J <Vx + V y ) a B 
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\ * I ( V y - eyex)<ae-3a) 

3 A 2 ! i (e*e
y " V x ) c x a 

f < ex ex - e y e y ) < a 3 - 3 a ) 

(-e e - e e ) (a3-6ot) 2 x y y x 

7=. (e e - e e )aa 

i 71 (-e e - e e )aa I k/2 x y y x' ' 
(ID.la-f) 

Operation by the antisymmetrizer, however, kills off all except the A., 
3 1 A, arid E states, leaving 

LA.: p A(e e a3) + i A(e e aB) 1 yfc v x x H' yfe y y 

A 2: A(e e aa) 

and 
rji A(e e aB) - h A(e e aB> 

LE < 
- i A(eeaS) - p A(eeBo) 

„. V2 * y V2 x y 

(ID.2a-c) 

In constructing the allowable states arising from other occupations 
of shells, for example, e , a cumulative coupling procedure exactly like 
that which was used in section IB may be used, provided only antisymmetrized 
states are kept. In most of these cases the antisymmetrizer will kill off 
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all but a few couplings. Without regard for fermi statistics, for example, 
2 2 2 2 1 2 2 

le le produces E, A,, A, (from coupling E with E), E (from coupling 
1 2 2 4 3 2 
A. with E) and E, E (from coupling A, with E). Of these six states, 

2 1 
the antisymmetrizer k i l l s a l l but one, the E r e su l t of coupling A. with 
2 
E: 

A(exexeyaSa) 
2E: 

A(eyeyexa0a) 
• transforms as 

This is, of course, an overly simple example because it is generally 
3 well-known that "holes" may be coupled like electrons. The e case can 

1 2 
be treated like the e case, which can only be coupled E. There are 

situations, however, where the cumulative coupling procedure for 

coupling particles in the same shell (followed by antisymmetrization) is 

easier than constructing projection operators in a higher-particle space 
3 One such situation arises in the intrashell couplings of t . 

14 
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2
E = (V'E^AJ/AJ/AJ, 3^} 

\—i- \ - X ̂  ̂ L-?^—-^-_ (VE) 

2 ^ fO E^-cV3^} 
, 4A 2| S — {3E,5E> 

Figure 1 

Caption: Diagram illustrating geneological couplings for an electron 
2 2 2 occupation a^a.a^e e. 

to 
in 
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II. The Application of the Geneological Coupling Method to the Study of 

Sulfur Oxide 

A. Introduction 

In this section the geneological coupling procedure will be used 

to generate configurations for a configuration interaction (CI) 

study of the diatomic molecule sulfur oxide, SO. 

In a single configuration scheme, SO has a ground state valence 

structure similar to both S, and 0,. Although S, and 0. have been 

studied extensively both experimentally and theoretically, the informa

tion available on SO is on considerably less stable ground. The ground 

state of SO arises from the electron occupation (e.o.) 

la 2 2a 2 3a2 4a 2 lir4 5a 2 6a2 7a2 2TT4 3ir2 . (IIA.1) 

This e.o. gives rise to three possible couplings each of which exists 

in nature as a bound electronic state. They are: the ground state 
3 - 1 1 + 

itself, X E , and two excited states, a A and b Z . Three additional 
states will be studied which derive from the e.o. 

... 2ir3 3ir3 . (IIA.2) 

1 - 3 3 + The states to be studied from this e.o. are c E , A, and Z . By 

analogy with the well-studied molecules S„ and 0_ and also by direct 

experimental evidence there is reason to believe the six states of the 

above two electron occupations are the lowest six electronic states of 

SO. Calculations will be performed on each of the states to determine 

various properties of the molecule. 
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The strategy for this study will be the usual one of a) constructing 

a configuration of the desired symmetry from one of the electron 

occupations, b) using a standard SCF-MO procedure to construct the best 

orbitals for this single configuration, c) generating a set of configura

tions obtained as all couplings with the same symmetry as that in (a) 

and derived from electron occupations that are substitutions of one and 

two electrons from the reference occupation, d) constructing 

Hamiltonian matrix over the reference configuration and all others 

generated in (c), and e) extracting the lowest eigenvalue and eigen

vector from this matrix. This procedure, which is called a singles and 

doubles configuration interaction calculation, has been discussed at 
2 length in the literature. 

B. The Coupling Coefficients for the C Group 

Both steps a) and c) above involve the generation of configurations 

from a given set of electron occupations. This involves, of course, the 

generation of coupling coefficients for the C group if the 

geneological procedure of part I is to be used. 

The projection operator technique used for the derivation of coupling 

coefficients for the C, point group in the previous section is not 

readily applicable to infinite groups such as C_. or D . . Here, an 

alternate method will be used. 

For the group C ?, there are two common sets of symmetry functions, 

a complex set and a real set. The complex set is given by 

?m •" ( 2 i r ) «tp(iwW". m - 0,±1,±2, ... (IIB.l) 

where <J> - arctan(y/x), and the real set is given by the linear combinations 
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n = (2) _ J s (C+C ) =ir_!s cosmif m m -m 
m = 1,2, ... . (IIB.2) 

, _, ,, , , *ir ̂  sinmd) I •m m -m n m - (-2)"** (C -C > «if * sinm<|> 
—m m —m 

These two sets of functions each provide a basis for a representation of 

the group. The two representations supplied diflur by an equivalence 

transformation. The coupling coefficients, of course, are different for 

the two representations. 

It is usually more convenient from a computational standpoint to 

construct configurations, calculate integrals, etc., if real single-

particle functions are employed. This demands the determination of 

coupling coefficients for basis functions tr?«c >rming as (IIB.2) rather 

than (IIB.l). The coupling coefficients, however, are more easily 

determined from the representations provided by (IIB.l). The procedure 

to be used here will be to a) examine the transformation properties of 

the complex functions £, and of the real functions n, as well as the 

unitary transformation that relates them and their representations, b) 

derive the coupling coefficients of the complex functions, and c) utilize 

a unitary transformation to derive the coupling coefficients of the real 

functions from those of the complex ones. 

The group C ^ is generated by the operators C(6) and o . A 

coordinate system may be chosen so that the C(8)-axis is the z-axis 

and a is a reflection in the xz plane. If one defines 

e m - exp(imO); c =cosra8; s = slnmG , (IIB.3) 
m m m 
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and "operation" as i t was defined in part IC, the effects of the 

generating operators on the basis functions are 

*m X 
C(6) mm c n +s n mm m -m 

0 
V C-m (sign m)n 

m 
(IIB.A) 

This table is adequate to generate the representation supplied by 
« 

either the complex or real functions. 

From inspection, the pair {t, ,£ } forms an invariant two-dimensional 
m -m 

subspace which is irreducible, if m ^ 0. If m = 0, the subspace is 

one-dimensional and the function supplies the A. representation. For 

non-zero m, however, the representations are 

<=«>= f e ° j » %• ( i . ; ) • «»•» 
and the characters are 2 cosmO and zero, respectively, identifying the E 

m 

Similarly for the real functions {i) ,n }, the real function m = 0 
m —m 

supplies the A. representation and the pair for nonzero m supply the E 

1R. For completeness, the representation matrices are 

m m 
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and these have the same traces as those above. 

The two sets of basis functions are related by a transformation 

from 5-space to n-space, T\ •» UC where * 

s - i C -3 • °" x-iC 1) • (IIB-7> 

An element of £-space, for example, is defined by a£ +b£_ and is 

represented by the column vector if J . The transformation is also a 

similarity transformation which relates (IIB.5) and (IIB.6) by 

r'(R) - U"1 T(R)U , R=C(6),a v (IIB.8) 

where I" is the representation supplied by S (IIB.5) and T is that 

supplied by n (IIB.6). Note that U is unitary, so U U = UU = 1. 

The coupling coefficients for the set of complex basis functions 

are easily determined. The axial rotation group is a subgroup of the 

full rotation group, and both are discussed in many textbooks on angular 
3 momentum and quantum mechanics. Consider first the direct products of 

the functions {c ,£ } and {£ ,£ } for m £ n £ 0. This examination will m -m n -n 
provide coupling coefficients for E a E , E a E , E a A., (for n = 0), 

m n m m m i 
and A, a A,. The four direct products are C C , C t , £, t, , and t, z, . i i m n ra —n -m n -m -n 
With operations on single-particle functions, the pair of functions 

{( C « d £ ) (in th i s order, of course) provides the representat ion m n ""IB ~n 

matrices 

q ( W l / v . • \ . / % « • \, /• \ I I B. 9 ) 
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Thus, this pair of functions transforms, as f fc / ,^) .*? . . / ,^)} ' . T h e 

pair of functions t?m5 »?_mS n} provides .the representation 

/*m-n ° \ f l \ 
C(0): I I s 05 1 J (IIB.10) 

\ 0 e , J \ l 0 / 
-(m-n) 

Thus, if m > n > 0, the direct products of two E-type representations 

E a E provide functions which in turn provide representations for two m n 
more E-type representations, E._ and E 

ra+n m-n 
If m >» n > 0, the above representations correspond to E„ , provided 

by {C C ,C C }, and to the two one-dimensional representations A. and 

A„, provided by { J*- (? ? ± C C )}t respectively. This can be seen 

simply by examining the (reducible) representation matrices supplied by 
{ V - m ' 5 - m ? m } ! 

'(' > vf ') 
v 0 1' vl 0' 

C(6): I I ; 0 : I I . (IIB.ll) 

The normalized sum and difference of the two products, however, provides 

C(9) •'(. ) • v ( 0 J • <"»•"> 
i l lustrat ing that this combination reduces the two-dimensional representa

tion ( I IB. l l ) to two one-dimensional ones with characters corresponding 

to A, and A,. 

If m > n • 0, or m - n • 0, the ( tr iv ia l ) coupling coeff icients for 

E 0 • Â  and A, • A. are obtained. When direct products of functions 
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transforming both as one-dimensional IRs are taken (such as A. a A., 

A„ a A,, and A. a A,) the coupling coefficients are always trivial since 

another one-dimensional representation is obtained. The only coupling 

coefficients needed, therefore, are for E a A 9, which will be a 

representation for E (as can be seen from a character table) provided 

by some linear combination of the functions X, f and C f where f 
m a, -m a- a. 

is any function transforming as the A, IR. The matrices for the A. 

representation are the same as the characters, so the two functions 

provide 

C(0): I I ; 0 : I I . (IIB.13) oj> v c :) 
This representation does not correspond to the E IR, but that provided 

by the pair {c f ,-C f } does, m a- -m a„ 
The coupling coefficients are as follows: 

/Sn?n \ /?m+n \ 
I j transforms as 1 I for m > n > 0 
^ - m ' - n ' K(#J 

/CmC-n\ / V n \ 
I 1 " I J for m > n > 0 
V W ^-(m-n/ 

(IIB.14a) 

(IIB.14b) 

Jf ( V^-Si > " Al f o r m > ° (HB.lAc) 

yk ( V - a ' ^ m V " A2 f o r m * ° (HB.Ud) 
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/V.A A \ 
1 I transforms as I J for m > 0 . (IIB.We) 

-m a, -» 

To obtain the coupling coefficients for the representations provided 

by the real functions, the column vectors above need only be multiplied 

by a unitary matrix V which provides the transformation from a pair of 

complex functions to a pair of real functions. The transformation V is 

defined as 

O-'CJ- -'-iCJ 
Note that V is different than U, which is given by (IIB.7), because V 

transforms functions whereas U transforms vectors which are described 

in terms of basis functions (n ,n } and {£ ,£ }. Application of V to the 
m -m m —m 

pair of functions (IIB.l4a), gives 

V/Sm?n \ B l / ? i W - n \ = 1 / W ^ m ^ - n V 

which transforms as 

V / C m + n \ - ("«** \ , for m > n > 0 , (IIB.15) 
" ^-<m+n)/ V n-(m+n)/ 

i.e., according to the representations (HE.6) supplied by the real 

functions r\. Continuation with this procedure results in the following: 
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for m > n > 0 

ifW-s-tX' " / v . \ 
n > 0 

1 (n ru-m n J " A, ^ ^ m V ' - m W "1 

h <n J r L~ n J' J " A o 
y2 ""mm ra -m i. 

for m > 0 

c:-) • c ) 
m a~ -m 

for m > 0 .(IIB.16a-e) 

The functions (IIB.lAc and d) yield (IIB.16c and d) directly after writing 

t, in terms of n and normalizing, since the A, and A. representations are m m x. t. 

one-dimensional. 

Configurations may now be constructed by the coupling procedure out

lined in part I and either real orbitals n + coupled according to (IIB.16) 

or complex orbitals ?. coupled according to (IIB.14) may be used. 

The coupling of two equivalent it electrons (m=±l) may be done to 
+ -produce functions transforming spatially as the A (E_), Z (A.) or £ 

(A,) IRs. The spin component may be coupled singlet (S=0) or triplet 

(S=l) for a possibility of six space-spin couplings (maximum m value 
s 

only): 

3Z+ ( \ ) : h (IT tr +ir ir )ao 
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V (\)i | (TTyirx-iTxTiy)(a$-Ba) 

\ ( V ) : | (iT^-TTyUyXae-Ba) 

X A y ( V ) : j ( V y + V x ) < C t e " 8 a ) 

3 3 1 
A ( E ) : /=•• (ir ir -IT IT ) a a 

x * v2 x x y y 
3A ( 3 E ) : i (IT IT -Mr IT ) a a . (IIB.17) 

y y V2 x y y x 

Application of the antisymmetrizer kills off all except three, 

h+ J A( W e > + J A <Vy a S ) 

3 -E A(TT TT cxa) x y 

A ^ > . (IIB.18) 
^ A<Vyae> + | A( V xaB) 

These functions are the analogs of (lD.2a-c) which represent the coupling 

of two equivalent e electrons in a C, molecule. The couplings are the 

same except for only one sign in the A function compared to 

the E function. 
y 
If two nonequivalent IT electrons are to be coupled, all six symmetry 

functions of (IIB.17) are permitted. By the particle-hole equivalence 
3 3 mentioned in the previous section, the coupling i\ ir produces the same 
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six states of (IIB.17) and the three of SO to be studied here (see IIA.2) 

are 

V " k ACnr^'m 2TT2 2TT aa) + i A(lTTy l u x 2ir£ 2TTX aa) 

| A(1TT2 lTty 2irJ 2TTX aB) - ~ A(1TTX ITT 2ir2 2TTX 3a) 

- i A(m 2 lir 2T72 2IT a© +• ! A(lir2 lir 2ir2 2ir 6a) 2 y x x y 2 y x x y 

3A i- A(lir2 lir 2TT2 2ir aa) - i A(1TT2 lir 2ir2 2TT aa) x ^ y x y x ^ x y x y 

3A i A(1TT2 lir 2TT2 2TT aa) + k A(lir2 IT: 2TT2 2TT aa) . (IIB.19) y ^ J y x x y ' ^ x y y x ' 

C. The Calculations > 

Using a wavefunction of the single configuration form as derived from 
the one of the two electron occupations of (IIA.l and 2) and having the 
appropriate space-spin symmetries as given in (IIB.18 and 19), the best 

4 set of orbitals was determined by the SCF-MO procedure. The orbitals 
generated by the SCF-MO procedure: were constrained to be orthonormal and 
consisted of optimized (by the variational theorem) linear combinations 
of single-valued functions of three-space called basis functions. Each 
basis function is itself a fixed (i.e., not subject to variational 
optimization) linear combination of simple spherically symmetric radial 

v» 2 
gaussians of the form 2^exp[-a.(r-R. ) ] multiplied by a cartesian spherical 

5 i 

harmonic. The gaussian functions that constitute a basis function are 
all centered at R. which is usually the position vector of one of the 
nuclei (the k C ) of the molecule. 
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The calculation performed here employed thirty-eight baŝ is functions, 

with twenty-three centered on the sulfur nucleus and fifteen on the oxygen 

nucleus. The basis set is denoted S[12s8pld/6s4pld] and 0[9s5pld/4s2pld], 

meaning that centered on the sulfur nucleus there are six s-type basis 

functions, four triplets of functions of p-type symmetry, and one set of 

five functions of d-type symmetry. The six s-type functions are six 

different linear combinations of twelve simple gaussians, and similarly 

for the p- and d-type functions. All the basis functions are real. 

The SCF-MO procedure produces orbitals which transform according to 

the various IRs provided by the real function T\ and n . The orbitals 
r' m -m 

are thus identified by the IR according to which they transform: IT ,ir 

if they transform as rj. ,n ; 6 ,6 if as n„,r) o» a n<* so on. It is thus 

at the SCF-MO stage that the symmetrized single-particle functions are 

generated. From thirty-eight functions, thirty-eight orbitals are 

produced. The molecular orbital basis set may be denoted [18o°8Tr26], 8TT 

meaning there are eight ir and eight IT orbitals. Although there are 
x y 

thirty-eight orbitals, only thirteen are occupied at the SCF level of 

theory. The twenty-five unoccupied orbitals are called virtual 

orbitals. 

From the SCF-MO wavefunction properties of the molecule may be 

computed such as the dipole moment and polarizabilities. If several 

calculations are performed at different internuclear distances, the 

resulting energies may be fitted to a curve an , vibrational properties may 

be predicted such as the classical vibrational frequency. 

Following the generation of a set of molecular orbitals, a configuration 

interaction (CI) calculation may be performed. First, a set of 
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configurations is generated as all those couplings of the correct space-

spin symmetry from a set of electron occupations. The set of electron 

occupations are usually generated as all excitations of one and two 

electrons from the occupied to the virtual set of orbitals generated by 

the SCF-MO calculation. Usually the configuration list consists of 

thousands of configurations. 

The next step of the CI procedure is to construct a Harailtonian matrix 

using the (orthonormal) configuration list as the basis. The lowest 

eigenvalue and eigenvector, which is a linear combination of configura-
2 tions, may be extracted from the Hamiltonian by an interative procedure. 

The resulting wavefunction may be used to compute properties of the 

molecule, and an electronic energy curve parameterized by internuclear 

distance may be constructed to compute vibrational properties, just as 

can be done with the SCF-MO wavefunctions and energies. 

The results of this procedure are shown in the table together with 

the best available experimental information for comparison. The column 

labeled T provides excitation energies from the minimum of the ground 
3 _ state (X £ ) energy curve to the minimum of the excited state energy 

curve. In addition to the dipole moment, spectroscopic data usually 

supplied by infrared experiments are also given. 

If the data provided by experiments are considered correct, it can be 

seen that the CI technique provides more accurage predictions than SCF. 

Also, by analysing the discrepancy between the molecular parameters. 

predicted by the theories and those provided by the experiments, the 

accuracy of the theory can be determined. Thus, as provided by the few 

experimental results, the SCF level of theory gives excitation energies, 
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bond lengths, and stretching frequencies to 40%, 3%, and 20%, respectively, 

whereas CI gives the same to 15%, 1%, and 8%. This is in agreement with 
1 similar calculations performed on S„ and so these percentages are expected 

to be applicable to the states of SO for which there is no experimental 

information. 



Comparison of Theoretical Predictions and Experimental Results for SO 

State Method 

A»V CI 
SCF 
Expt 

A , 3A CI 
SCF 
Expt 

cV CI 
SCF 
Expt 

bH* CI 
SCF 
Expt 

ah CI 
SCF 
Expt 

3 - CI 
SCF 
Expt 

Number of C ^ b 

Configurations T ,cm J^L u) ,cm -er 
-1 -1 

2349 

2615 

2041 

898 

959 

1046 

26200 
18200 

25400 
17500 
28400f 

24400 
16700 
27700s 

12400 
16400 
10509.97 

7140 
8300 
6150 

0 
0 
0 

1.797 
1.735 

1.789 
1.729 

1.788 
1.723 

1.518 
1.464 
1.5004 

1.506 
1.460 
1.4889C 

1.499 
1.457 
1.4810 

680 
810 

700 
820 

680 
820 

1160 
1350 
1067.66 

1200 
1260 
1115.3C 

1200 
1350 
1148.19 

B ,cm — G 3 — 

0.489 
0.525 

0.494 
0.529 

0.494 
0.532 

0.686 
0.738 
0.7026 

0.697 
0.742 
0 . 7 0 9 C 

0.7031 
0.7446 
0.7208 

U. Debye 

1.25 
1.32 

1.25 
1.27 

1.24 
1.26 

1.76 
2.10 

1.82 
2.23 
1.31d 

1.95 
2.42 



Table continued. 

°From Donnees Spectroscopiques Relatives aux Molecules Diatomiques, edited by B. Rosen 
(Pergamon, Oxford, 1971), unless noted. 

All excitation energies are relative to the minimum energy of the ground state potential 
curve. This energy is -472.33354 at the SCF level of theory and -472.51170 at the CI 
level. 

From laser NMR experiments of C. Yaraada, K. Kawaguchi and E. Hirota, J. Chem. Phys. 69, 
1942 (1978). 

From C. R. Byfleet, A. Carrington and D. K. Russell, Mol. Phys. GB_20, 271 (1971). 
eFrom Y.-P. Lee and G. C. Pimentel, J. Chem. Phys. j>9_, 3063 (1978). 

From D. E. Tevault and R. R. Smardzewski, J. Chem. Phys. 69, 3182 (1978). 
a t 
eFrom T. Ishiwata and I. Tanaka, "Sensitized Chemiluminescence by SO ( A)", Thirteenth 
Informal Conference on Photochemistry. Clearwater Beach, Florida, 1978. 
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III. A Harmonic Oscillator Model for Electronic Properties 

A. Introduction 

The wavefunctions and eigenvectors describing a particle moving in 

a harmonic potential are almost as old as quantum mechanics itself. 

Indeed, this potential is one of the few for which exact analytic 

solutions to the time-independent Schrodinger equation can be found. In 

view of this, the approximation of real non-harmonic potentials by 

harmonic ones has been the basis of many theories and "back-of-the 

envelope" calculations. All of normal mode analysis for the study of 

the vibrational energies and corresponding wavefunctions of polyatomic 

molecules, for example, is based on the assumption that the complex 

motions of the nuclei of a molecule may be described as some linear 

combination of a collection of harmonic oscillators. 

The following sections will deal with a harmonic oscillator model 

for the electronic properties of small closed-shell molecules. The 

attempt will be to approximate the 'electronic probability density of a 

molecule by the probability density of a particle moving in an aniso

tropic but harmonic potential. Three electronic properties will be 

investigated: the electric polarizability, the magnetic susceptibility, 

and the magnetic shielding of a nuclear spin by the electronic charge 

(chemical shift). The predictions given by the model for molecular 

hydrogen will be presented for comparison with experimental results. 

B. Electric Polarizability 

The application of a harmonic oscillator model in the study of 

electric polarizability is by no means a new idea. A classical treatment 
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of the oscillator toward this goal is given in many electrodyriamic texts 

and a quantum mechanical treatment is usually given as one problem in a 

problem set assigned in any first year quantum mechanics course. 

For a system which may not be spherically symmetric, for small 

enough electric fields, e, the energy may be expanded in a Taylor series 

in the field 

.«£> - B<°>* S ^ U h• £ i & S U «iV - • ( I I I B- 1 ) 

i i ~ i,j i j -

This expression can be used to generate a definition for the polarizability 

when combined with the fact that for a point dipole in an electric field 

the energy is given as 

E = E(0) - P*e • (IIIB.2) 

Apparently, the electric field induces a dipole moment in the charge 

distribution, p. ,. The total dipole moment will be a sum of a constant ma 
zero-field dipole moment, p 0, and the induced dipole moment which may also 

be written in a power series in the field: 

£<£> -Eo + ' m d ^ ' 
» p n + a»e + (higher order terms in e) (IIIB.3) 

This is the usual definition for the polarizability, a. An expression 

for a in terms of the energy may be obtained by inserting (II1B.3) into 

(IIIB.2) and equating "coefficients" of various powers of e. in (IIIB.l). 

One then finds 
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and 

a - l!^<il| ft . (IIIB.5) 

The procedure wil l be to use perturbation theory to develop an 

expression for E(e) and then use (IIIB.5) to get a corresponding 

expression for a. 

The Hamiltonian wi l l be that of a three-dimensional anisotropic 

Harmonic osc i l l a to r with three different frequencies (hence the aniso-

tropy) with a mass m and charge q. I t i s 

r , l 2 , 1 2 2. ^ . 1 2 ^ 1 2- 2 w , 1 2 ^ 1 2 2 . , H = [ Or- p + •=• mu> x ) + 0T~ p . + •=•. raw y ) + (r~ P + -x mw z ) J 2m x 2 x 2m y 2 y 2m z 2 z 

- qr»e ( I I IB .6 ) 

where r = xx + yy + zz is a vector which points from the origin to the 

particle. The part in brackets will be denoted H and the rest H'. The 

eigenvalues and eigenfunctions of H_ are known exactly. Since H n is 

separable in the three coordinates of the particle, its wavefunctions 

will be simply products of three one-dimensional wavefunctions, 

K n n W - : * n ( * > * n <y)'* n <z> . (IIIB.7) 
• V V n i ~ x ny n z 

where n , n , and n represent quantum numbers for motion in each of 

the uncoupled directions. Dirac notation will sometimes be used. 

•« « « <r) = <r|n ,n ,n > (IIIB.8) 
x* y* z ""' x y z 



48 

The use of functions of the form (IIIB.7) as the zeroth order 

wavefunctions, perturbation theory to second order gives 

E (e) = E (0) + <n|H'|n> 

+ J <n|lI'|n'><n'|H'|n> ( I I I f i > 9 ) 

n« En(0)-En,(0) 

where n represents the ordered triplet of quantum numbers which specify 

the state of the oscillator and the zercth order energies are given by 

the well-known expression 

En(0) = ftwx(nx+-|) + ho)y(ny+-|) + h w ^ +-|) . (IIIB.10) 

The first order term of (IIIB.9) is zero due to symmetry. 

(i|> (r)\J>(r) has even parity, whereas r has odd parity, so the integrand 

of the first order term has odd parity,) 

Substituting the form H* into IIIB.9, one obtains 

2 3 „' <tsUtl3,><5,|r,|Q> En(e) - E n(0) + q2 ± V EVE.(O)'1 Vj 
~ «• i,j=i n n n 

(IIIB.ll) 

From (IIIB.5) one finds that the polarizability is given by 

2 ~ ' <n|r |n'xn'|r |n> 
aij * " V V ^(oi-MO 1)' 1 ' • ( I I I B' 1 2> 

Since the operator r has nonvanishing matrix elements only between states 

which differ by one in n. quantum number, it is clear that unless i=j, 

either <n|r |n'> or <n'|r |n> is zero. Hence, a is diagonal. 
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In what follows, the model will be restricted to one describing 

molecules of axial symmetry, so co = to = to and u) = uio. Furthermore, 
x y z 

only propert ies of the ground s ta te of the molecule w i l l be predic ted , 

and i t w i l l be assumed that the charge d i s t r i b u t i o n of the ground s t a t e 

of the molecule can be adequately described by that of a ground s t a t e 

o s c i l l a t o r (n = 0 ) . This l a s t assumption w i l l certa in ly be b e t t e r for 

some molecules than others . In particular one would think i t to be best 

for molecules a l l of whose e lec trons are i n nodeless o r b i t a l s , as i s the 

case for molecular hydrogen. 

The assumption that a ground s t a t e o s c i l l a t o r probabi l i ty d i s t r i b u 

t ion adequately describes that of a real molecule makes the model at th i s 

point a purely geometrical one. That i s , a l l the features of a rea l 

molecule such as the number of electrons and the shape and nodal 

character of the various o r b i t a l s are absorbed into two parameters, 

ID and 0) , which define only the shape (geometry) of the o s c i l l a t o r 
z 

distribution. Clearly a more elaborate modal could be constructed where 

each orbital could be mimicked by an oscillator wavefunction with a similar 

nodal structure, and a total wavefunction built as an antisymmetrized 

product of orbitals (see section I). A less elaborate model than this, 

but still better than the purely geometric one, would be one where each 

orbital is described by a ground state oscillator distribution with a 

different size (different to and co ). Clearly, the treating of molecular 
z 

hydrogen is practically the same for all three levels of modeling since 

H- has only one orbital and that orbital is nodeless. 

Incorporation of the above notation into (IIIB.12) gives 
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a - a - - i s 1 < 0 | x | s , > < 5 ' | x l 0 > 

- ^ 2 ? 

£ t ffl-l^l2 . (IIIB.13) 
m n' -u(n'+n'+yn') ~ x y z 

Since matrix elements for the operator x are nonvanishing only 

between states which differ by one in quantum number n,, the sum 

reduces to one term with n' = (1,0,0). With <0|x|l> = (h/2mw) , 

2 2 
axx = q / 4 i m ° ' 

and similarly 

a = q2/4imJ2(u2 . (IIIB.14) 

In order to use the above relations, as well as those which follow, to 

predict properties, some means must exist for determining the parameters 

of the model; q, m, u> and y. The obvious choices for q and ra are the 

charge and mass of the electron. The values to be used for u and y will 

be chosen based on the geometry of the molecule to be studied through the 

relationships 

<0|x |0> = h/2mu) 

<0|z2|0> » ti/2mya) . (IIIB.15) 

2 
From the literature we obtain for H, 

2 2 
<x > = 1.533 a^ 

<z 2> = 2.121 a 2 , (IIIB.16) 
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which when combined with (IIIB.15) gives y=0.72 and values for a which 

are compared in the following table: 

i Model 3 Experiment 

a 
XX 

2.350 2.222 

a 
ZZ 

4.499 3.054 

a 3.066 2.499 (11113.17) 

3 The units are a n where a. is the Bohr radius. The last line of the table 

is one-third the trace of the polarizability which is the average 

polarizability per molecule of a randomly oriented mixture. 

Thus, the model gives values for the polarizability that differ by 

as much as 50% with the experimental values. Of course, the model values 

of the table above depend on the values for u and y used. These may be 

obtained many different .-ays. Values for 03 to be used for H 2 may be 
2 obtained, for example, as the- ones which give <r> or <r > correctly for 

the hydrogen atom when modeled by a spherical (y=l) oscillator. Values 

for y may also be derived by various procedures. It is interesting to 

note here that for the harmonic oscillator y = (a /a ) . Experimental 
XX ZZ 

polarizabilitles yield a value of 0.85 for y. 

C. Magnetic Susceptibility 

Although the use of the oscillator model in predicting electric 

polarizabilities is quite old, its use in predicting magnetic susceptibilities 

is actually a relatively recent one. Apparently the first one to derive 

expressions for the susceptibility was the Russian worker Rebane whose 

work was independently confirmed by Harris. 
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The development of the expressions for the susceptibility of an 

oscillator parallels cLonely that for the electric polarizability. The 

unperturbed oscillator Hum.il Cnnian will be the same H-.as in the previous 

section. The Hami.1 Ionian for a charged particle of mass m and charge q 

in the presence of a magnetic field U derived from a sector potential A 

is 

II " ~- (p -^ A ) 2 + (li.o. potential) 

H n - -s5- (p'A + A'p) + -A-~ A'A , (IIIC.l) 
2mc 

For a constant magnetic field B 

A = \ B>'-r (II1C.2) 
•%• £. -. ~ 

and since p ̂  V , 

P'A 'V [V'(BXr)] + (lixr)«V 

^ r«(VxB) - !J«(7xr) + (Bxr)'V 

^ A«p . (IIIG.3) 

The last proportionality holds because V*Il =* 0 (B being constant) and 

V*r = 0. When we apply these tacts to (IT1C.1), we obtain 

http://Hum.il
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2 

m c ~ •" . 2 m c 2 

2 
= - - ^ ( B x r ^ p + - S - j (B*r)-(B*r) 

= — - - 1 - B . L + - . f L..- . B« [ r« r l - rr]«B . (I11C.4) 
zinc •> - a i. - - - •- ••~ -, 8mc 

By exact analogy with s e c t i o n B, the s u s c e p t i b i l i t y i s def ined as 

1 3 2E(B)1 , T T f P « 
x i j " " ITBTBJPB-O • ( I I I C ' 5 ) 

Thus, a power series type expression for the energy needs to be derived. 

Only the terms quadratic in the field components are of interest, however, 

because terms of lower power will vanish by the second derivative and 

terms of higher power will vanish when the derivative is evaluated at 

zero field strength. As in the previous section perturbation theory 

provides the required energy expression. Retention of all terms of quadratic 

or lower order in the field yields 

2 
E(B) = E(0) - -r9- B'<0|L|0> + -a-5- B«<0|r«rl - rr|0>«B 

zmc „ ~ 8 m c / , „»...... 
2 , 

+ q
9 , ]T <0|B-L|n><n|B'L|0>[E_(0) - E (0)]~ , (IIIC.6) 

Am c n 

where it has been assumed that the ground state is being perturbed. 

The first first-order term is zero because the ground state is 

non-degenerate and therefore has no angular momentum. The remaining two 

terms of interest will be examined separately. The second first-order 

term will be called E because it will contribute to the diamagnetic 
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component of the susceptibility. 

X d * <0|r«rl - rr|0> . (IIIC7) 

d Since <0|r,r.|0> « o for i 3s j, it is clear that x is a diagonal tensor. 

Also, due to the cylindrical symmetry. X = X, • T n e independent components 
xx r̂y 

are, therefore, 

••xj a?^<o|y 2 +« 2 |o> 
8mc 
2 

x
d = _ _a._ <o|x2+y2|0> , (1IIC.8) 

8mc 

i 21 and since <0|r. |0> = li/2mw., the model yields 

Xx , - 2 2 u y ; 

16m c u 

8m c u) 

The remaining (paramagnetic) component of x> called x > is 

X1' % H <0|L|n><n|L|0> [E0(0) - E (0)]"1 . (IIIC.10) 

It will be shown that x is also diagonal: Consider an off-diagonal 

matrix element:, say X x y. This element is a sum of terms each proportional 

to <0|yp -!!|> |n><n|zp -xpJo>.. Owing to the selection rules for x and p z y ~ ~ x z X 
in a harmonic oscillator basis, the first factor is zero unless n = 0 
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and n • 1. The second factor is zero unless n = 1 and n = 0. Since y x — - y 
these conditions cannot be met for any n, X = 0» A similar argument 

shows that, all off-diagonal elements are zero. 

Due to the cylindrical symmetry of the oscillator in its ground 

state L r |0> = <0|L, = 0. This is seen to be so by remembering that 

L ^ JJ/3<J>, where <)> is the angle about the z-axis. ty _Q has no <j> 

dependence. This fact insures that x = 0. The cylindrical symmetry 
further insures that X = X • 

Axx Ayy 
The only nonzero elements of x are., therefore, 

*L - *yy - ftl Z \<°K\«>\2 t^0(0) - E^O)]"1 . (HIC.11) 
" 4m c n 

For <0 L n> to be nonzero it must be that n =0, n =n =1. Thus, the sum 
1 x ' x y z • ' 

collapses to one term. If we write L in terras of annihi lat ion and 

creation operators, then operating on |0,1,1> we obtain 

<O,O,O|L X|O,I,I> = ± (u g-w y)/(w yw z) , s 

2i 

ThuB, insertion of this into (IIIC.ll) yields 

•JT (V-D/Ju • (IIIC. 12) 

y p = j a i _ !i! (w-i) 2 __i ' , I I I C 1 3 ) 
Xxx 4 m 2 c 2 4 u , h(w+uu>) ' (HIC.1J) 

The following equations for the susceptibility have been derived: 

http://HIC.11


5f; 

x p + x d 

d JL!L_ 
X s z " ~ 2 2 

8m c w 

4 - <^>4/2» 

X P X - -(U-D2xj8/2M(1+W) 

x 1 K - ) 4 + 4 - 2 4 / < 1 - H i > • < m c J 

Note that all diamagnetic terms are negative and all paramagnetic terms 

are positive. The components of the total susceptibility (paramagnetic 

plus diamagnetic) are always negative. Since the energy goes as 

-B«X*B the separation of x into a diamagnetic component which is 

negative and a paramagnetic component which is positive is in keeping 

with che usual definition that a diamagnetic substance is repelled by 

a magnetic, field and a paramagnetic substance is attracted. The para

magnetism of most paramagnetic substances, however, is caused by a net 

magnetic moment in the ground state (as in the net spin moment of 
3 -molecular oxygen whose ground state is S ) which results in the first 

order term <0|L|0> of (I11C.6) being nonzero. Molecules of this type 

possess a molecular magnetic moment of -$-- <I> which interacts in a 
/.mc 

first order way with the magnetic field. The oscillator model does not 

describe this type of paramagnetism, hut a much smaller effect sometimes 

known as Van Vlcck paramagnetism. 
What is the source of Van Vleck paramagnetism? Recall that if Larmov 
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theorem were fully valid, the effect of the applied magnetic field would 

be to induce all the electrons of a molecule to rotate about the field 

with an angular frequency to » eB/2mc. The extra kinetic energy of the 

electrons caused by this induced Lens's law type current results in the 

diamagnctic component of the energy. Because of the anisotropy of the 

charge, distribution of a molecule, however, some of the electronic charge 

will not be as free to rotate about the. field. It is this "quenching" 

of the dlnmagnetic effect that is called Van Vleck paramagnetism. This 

explains why there is a paramagnetic component to the susceptibility 

only when the field is applied perpendicular to the axis of the molecule. 

When the field is applied in the a-direction, the axial synvmetry does not 

restrict the "Larmor rotation" of the electronic charge. Because the 

Van Vleck paramagnetism is only a reduction in the diamagnetism, it is 

clear that it can never dominate the diamagnetism to produce a truly 

paramagnetic molecule. This is seen from the model in that |x /X I < 1» 

for finite u. 

Proceeding with the application of the model to H„, one again identifies 

q and m as the charge and mass of an electron and uses u> and u from 

experimental data as was done in the previous section. The results are 

displayed in the table. 

Model 3 8 Experiment ' 

_ X X X 
0.446 0.427 

~\z 0.383 0.372 

-x 0.425 0.409 

i*L' X xx' 0.027 0.026 (IIIC.15) 
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2 3 The units in the table above are a a., where a is the fine structure 
constant. The model predicts susceptibilities remarkably better than 
polnrinubilities. The difference between model and experimental 
susceptibilities is about 4%. However, it should be noted that the 

2 2 "experimental data", <x. > and <z >, that were used to derive JJ and u> 
are thensolvcs derived from magnetic susceptibility experiments. To 
some extent, therefore, the model has been "rigged" to exhibit a size 
and shape that are superb for the modeling of susceptibility. The 
excelJ ant agreement between model and experimental values of |x /X I 
is to be noted, however. 

By combining equations (I1IB.14) for the polari"zability and (1IIC.14) 
for the susceptibility one obtains 

a = -| [(l+2u2)/u2]q2/4mu)2 

X - - -3- I(5+yV(l+u)]q2h/8m2c2w . (IIIC.16) 

These equations may be combined to eliminate w and obtain a new relation
ship between the polaristability and the susceptibility, 

X - -(e 2/4mc 2)f(u) A/a a|j , (IIIC.17) 

where the usual association of q and m with the electron has been made 
and 

f(,j> = !*i JL T+u 2~£ " (inc. 18) 
1 + P [3(1+2IJ )]^ 
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Due to the fact that the polarizability and the susceptibility represent 

responses of a system to extremely different types of perturbations, it 

would be indeed surprising if such a simple relation as (II1C.17) were 
9 valid. However, a similar relation, known as the Kirkwood equation, was 

developed for atoms by a variational argument in 1932. Note that, for 

atoms, n o 1 and f(l) = 1. The fact that the oscillator model yields 

the same relation as the Kirkwood equation is truly remarkable even given 

that ajjy_ relationship exists between these two properties. 

1). Nuclear Magnetic Shielding (Chemical Shift) 

The application of the oscillator model to the problem of 

estimating the shielding of a nuclear spin from an applied magnetic 

field is a new one. Indeed few non-trivial models exist that can shed 

light on and provide estimates for the magnitude of this phenomenon for 
, , 10 systems more general than atoms. 

Consider first a bare nucleus with intrinsic angular momentum (spin) 

S and a corresponding magnetic dipole moment of 

where c and M are the charge and mass of a proton, c is the speed of light. 

3 N is called the nuclear magneton and is a constant. g„ is a dimensionless 

quantity of the order of unity characteristic of the type of nucleus being 

considered. 

If a magnetic field B Is applied to the bare nucleus, the energy of 

the system depends on the orientation of the spin relative to the field. 

In particular, the system is described by the Zeeman Hamiltonian, 
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H = -m«B . (HID. 2) 

Now if there are electrons around the nucleus, as there usually are, 

the energy levels characterized by the nuclear spin quantum numbers 

will be perturbed.- The field will induce currents in the electronic 

distribution which will tend to screen the nucleus from the full effects 

of the applied fie.ld. The induced currents provide a field that is 

proportional to tt and opposite to it. Thus, in the presence of an 

electronic distribution the nucleus actually feels a magnetic field which 

is smaller and given by 

Seff '" <Wl ' (HID. 3) 

where 0 is called the chemical shift tensor which describes the effects 

of the electrons in the molecule. The Zeeman Hamiltonian is thus 

modified to 

H = H , - m«(l-o)'B , (HID.4) 
elec ~ ~ -. -

where li , is the Hamiltonian of the electrons in the field of the nuclei, elec ' 
the applied field, and the fields of the other electrons, if there are 

others. 

Consider now a particle hound to the origin with a harmonic force 

as before. The particle will he assumed to have a charge q and a mass 

m. The force will be degenerate in the x and y direction in order to 

produce an axlally symmetric (diatomic-like) probability distribution. 

Near the origin, at R, will he fixed a nuclear spin S with a magnetic moment 
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m. It should be emphasized that the spin at R is not charged and,so does 

not interact coulombtcally with the harmonically bound particle. In 

order to maintain axial symmetry, the spin will be placed on the z-axis 

so that R => Rz. This entire systf?in is then to be placed in a magnetic 

field, IV. The Hamiltonian for this is 

H = — (p - £ A) + (h.o. potential) - m-B . (HID. 5) 
£m c ~ •» ~ 

Other than the last term, this Hamiltonian is just the same as that for 

the magnetic susceptibility (IIIC.l). However, in (IIIC.l) the vector 

potential produced only a constant magnetic field, whereas the vector 

potential referred to above produces both a constant magnetic field and 

the magnetic dipole of the nuclear spin. 

A = 4 Bxr + ̂ 1(X-1U A + A . (HID.6) 
|r-R|3 -* ~ m 

The Hamiltonian may be divided and perturbation theory used, as before. 

The unperturbed Hamiltonian H- will include the kinetic energy of the 

particle, the Harmoific potential and the -m«B term. This Hamiltonian is 

separable in particle and nuclear spin coordinates and the eigenvalues 
2 -will be direct products of particle and spin (S ,Sr) eigenfunctions. The 

perturbation is, then, 

2 
M ' a ~ 'id < y y -p + T S < A B + 2 V A B + tb • < 1 I I D - 7 > 

"* 2mc " "" ~ ~ 
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An expression for the energy is desired that is first order in 
both the field and the magnetic moment so that 0" may be abstracted 
from it according to (HID.A). This expression can come from 
perturbation theory only to second order, and only perturbing terms 
that are zeroth or first order in B or in need be kept. This results 

in 

2 
H' « - -S- (A + A ).p +- a-- A 'A.. . (HID.8) mc vB .ra I 2 „m -H inc 

The neglected terms arc second order in either B or in and can never 
produce an energy expression of the form (HID.4). First-order 
perturbation theory produces only one term of the desired form 

2 
E 1 = (-!_) <o|!f.(JL"J&-(Bxr)|0> . (HID. 9) 

2mc. • .3 |r-R|-

By using vector manipulation and by extracting m and B outside the brackets, 
it is straightforward to identify a first-order contribution to the 
chemical shift tensor which will be called a , 

l 2 1 
0 ° = _<L_ <o|f(r-R)Tl:- (r-R)r]|r-R|"J|0> • (HID.10) 

2mc 

From the fact that the nucleus lies along the z-axis, R = Rz, the symmetry 
of the situation yields only two independent nonzero elements of o : 

2 
c,xx = °vv " - H " < 0 l [ y 2 + z(z-R)]|r-Rr3|0> X X y y 2mc 

al*mJLi <0^T7^l0> ' ( I 1 I D ' U ) ' 
mc Ir—R| 
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Second-order perturbation theory produces only one kind of sum all 

of whose terms are first-order in both B and m. This is 

2 r .2 q 

E r < ° l | B>«r«p|n><n|i.'S-(-^|0> + c. e.. ] --—" • < m » - 1 2 > 2 2 i~4 • • i: ~ ~ ~ • ~ ~ ' ^ i „ i j • r..A-i!i 
m c n |r-R| 0 n 

Again, use of vector identities and extraction of m and B outside the brackets 

yields the second-order contribution to the chemical shift, 

2 
0

p = ~ ^ - ~ T [<0|a|n><n| -^£^)~£-|0> + c.c.KE - E . ) " 1 , (II1D.13) 
2m c n |r-R | 

x*here I = r*p. It is obvious from the form of a1* that it is real and 

symmetric. Also, for the choice of R along the z-axis, o*p is diagonal 

with only two unique components. Furthermore, since £ |0> = <0U = 0, 
z z 

latum xu Lilt: aeuuxun uu s u a u c p L i u i i i L i c a , vT — 

leaves only 

as was discussed in the section on susceptibilities, a = 0. This 

2 , yp -(z-R)p , 
• 0

p = 0 P - - ^ T - E <0|£ |n><n|—5 __X|0>(E - E n ) _ i (HID. 14) 
xx yy 2 2 " ' x1 - ~' i „ 13 ' n 0 y y m"c~ n " " |r-R| 

As for the previous properties, the sum above reduces to one term. 

This is because when & operates on the ground state the resulting state 

is proportional to one of the excited states of the oscillator. In fact, 

using a ladder operator technique it is easy to show that 

<0|ax = <0|(ypz-zpv) = - i - - J ^ , <oil| , (HID. 15) 
V y z 

so that only the term n = (0,1,1) remains. Furthermore, since 



M 

p |0> = im(0 x|0> , (HID. 16, 

which can also bo proven simply usinf; ladder operators, o~ „ may be 
'writtun as an expectation value of a function of coordinates only. The 
result is 

2 yp -(z-R)p 
° L —f-"v < 0 1V~T—rr^l 0 > [ h ( 0 v + w

z > ] {1UD-l 

x x mc x |r-R| y 

2 2 2 2 (u -to ) w y •/. -ui y z(z-R) 
= _£ JU-S., <ol~ 2 JL |n> 
he y z |r-R| 

To simplify the three equations above for 0 , 0 , and cr , they 
will be normalized to the spherical limit (p=l, R=0) chemical shift. 
This gets rid of the excess baggage of constants that preface each 
expression. In the spherical limit, the well-known expression for 
the chemical shift is 

O o . J L . <„|I|O> 
3m c 

2 
1 2 c 

"3 2 ^nvSi^2 * ^ o r a n o s c i l l a t o r - (HID.J1 

2 "> Furthermore, a dimensionless length parameter is defined as d = (mw/li)R" 
to simplify the equations. 

Since the integrals to be evaluated involve integrands which are 
essentially Gaussian functions multiplied by simple functions of spatial. 

17 

coordinates, they may be simplifed using Gaussian transform techniques 

from three-dimensional to one-dimensional form. The resu l t s are 
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3 < J o 4 
x 2 exp[-jid 2x 2Hl-(l-iOx 2r 2dx 

**- - ̂ -s- / c.<xp[-|id2x2][l-.(l-y)x2]"2[l-x2-2dV(l-(l-y)x2)]ci 
3 0 o 

oL ..1/2 ,, ... 1 xx v1-'* (l~u) T 2 r .2 2 1 M M . 2,-.l 3a~ T" O H T ) JJ X expt",id x J [ 1- ( 1' u ) x 1 
2 2 

x {).-(l-l-2ud2+2u2d2)x2 + 2ud 2x 4+2u ^-* =-}dx . (11 
[1-<1-U)x'] 

Unfortunately, these integrals cannot be performed analytically. 
However, they are well behaved in the region of integration and this 

•7 

allows them to be easily evaluated for particular values of u and d" 
by any of several numerical procedures. In what follows, the Gaussini; 
quadrature procedure was used. 

It should be remarked at this point that an experiment cannot 
determine separately the paramagnetic and diagmagnetic contributions 
to the chemical shift, but only the sum of the two. The diamagnetic 
component may be determined indirectly by a measurement of the size 

2 2 
(<x >, <z >) of the molecule as determined by a different type of 
experiment. The paramagnetic component is then determined by subtract': 
the diamagnetic component from the total shift as determined by a 
standard magnetic resonance experiment. It may be argued that this 
procedure is ambiguous. 

This model, as wcl] as other theories of magnetic resonance, cann< 
escape this same ambiguity. This is because only the total chemical 
shift, the sum of the diamagnetic and paramagnetic components, is gaug' 
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2 i n v a r i a n t . The i n d i v i d u a l components a r e not gauge i n v a r i a n t . For 

example, in the model developed here , the e x t e r n a l cons tan t magnetic 

f i e ld was generated by a v e c t o r p o t e n t i a l A = -r Il*r, where r was measured 

from the o r i g i n . One could j u s t as wel l have used A\ = % Bxr , where 
** £ *« «.S 

r = r-K locates the Harmonic oscillator particle relative to the nuclear 

spin. This different choice of vector potential, or different gauge, 

produces the same magnetic field and the same total chemical shift. 

However, the paramagnetic and diamagnetic contributions to a are different. 

(One Advantage of the use of the vector potential A', however, is that 

the paramagnetic term is explicitly negative and the diamagnetic term 

is explicitly positive. This is in keeping with the usual definition of 

di.amagnetism and paramagnetism since E ^ m'C'B.) Since only the total 

chemical shift is observable, individual contributions will not be 

calculated. 

In applying the model to the hydrogen molecule, the first problem 

is the determination of the three parameters R, to and y. Clearly, since 

the oscillator should be centered between the nuclei, R will be half the 

equilibrium bond length of 1.4 a~. For y the value of 0.72 will be used 

as was done for the polarizability and susceptibility. Also -s before, 
2 

0) will be determined by <x > data and equations B.15 and 16. These 
assignments give 

d 2 = (^-H----^)2 = 0.16 . (HID. 21) 

These parameters provide enough information to evaluate the integrals 

(HID.20), but this only gives chemical shifts scaled to the "spherical 

limit". To determine the actual components of a, 0_ needs to be determined. 
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Clearly, there are many ways to do this. One way is to use equation 
(1110,19) for the shift of the spherical oscillator and insert a 

2 frequency u> determined from <x >, as above. However, w could also 
z 

be used for the frequency, and in keeping with the idea of 0 Q being 
2 2 2 a "spherical limit" shift, an w determined from <r > = <x > + <y > + 

2 <a > might also be considered. The fact is, however, that since H„ is 
so close to spherical (y » <x">/<z > • 0.72) these procedures give 
substantially the same results. 

An equally valid way to determine the spherical limit chemical 
shift is to consider the chemical shifts of various atoms. The united 
atom limit of H_ (helium) immediately comes to mind. However, since 
the nuclear charge is larger, helium has a much more localized probability 
distribution than would be needed here. What is desired is the shift 
in some limit where the charge distribution becomes spherical without 
"shrinking" much as if would if the nuclear charge increased. Thus, an 
appropriate value of 0~ could be that of twô  electrons in a hydrogen Is 
orbital. Since the chemical shift of hydrogen, which may be calculated 
analytically, is a « 17.76 ppm, a good value for o. for H, is 2 x 17.76 
ppm « 35.52 ppm. Using this and the above values for u>, U, and R, the 
values of the following table are obtained: 

2 14 Model Experiment ' 
0 18.3 ppm 27.3 ppm 
Of 29.8 ppm 34.9 ppm 
O x x / 0 2 z 0.61 0.78 

22.1 ppm 25.3 ppm 



Thus, the model gives values correct to within about 20%. 

The model has also been solved for the chemical shift .!: 

case of )i £ 1 (where the probability distribution is oblate, •;• 

shaped) and R =* Rx. In this form the oscillator may be used i. 
13 the proton or (for different R) the C chemical shift of. ben 

Another use which comes to mind is the modeling of the situat . 

nuclear spin at the active site inside a porphyrin ring (R-O", 

as in hemoglobin and chlorophyll. 

E. Comments 

As can be deduced from the three tables, the oscillator , 

not predict accurate values of properties of molecular hydro;-

was repeatedly mentioned above, however, that there a;>. . .riy v 

choosing values for the several parameters of the model, some 

may give better predictions for properties than were derive'] p 

Indeed, in some cases where experimental information is unavnU 

the accuracy of the model as used above may be enough. 

However, the real value of the model is not in the accur.n 

predictions but in the insight it provides to the 'complex inter 

of an electronic wavcfunction with electric and magnetic field; 

nuclear spins. Although simple enough to provide analytic exp-

for several properties, the model can exhibit a complex phenonv 

Van Vleck paramagnetism in both the magnetic susceptibility anu 

chemical shift. 

There is every reason to believe that the model is genera' 

to total anisotropy (ui j4 w ^ (0 ) so that less-thau-axially- s\ 

molecules could be mimicked. It is also probable that other inn 



properties may be predicted, such ns the spin-rotation coupling of 

nuclear (or electronic) spin with molecular rotation. 

Another line of. investigation,which coul4 prove fruitful, is 

the generalization of the theory to an oscillator in other than its 

ground .state. These excited states could then be used to model the 

various orbitals of a molecule by providing states of the correct nodal 

structure. Even more simply, each orbital of a large molecule, could 

be modeled by a ground state oscillator with different UJ and y. It is 

quite likely, however, that the model is most valuable in its simplest 

form, as presented here. 
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