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ABSTRACT 

The set of degrees of freedom playing a relevant role in deep 

inelastic processes is discussed. General considerations concerning 

the dynamical regimes prevailing during the nucleus-nucleus interaction 

lead to interesting conclusions regarding classical and quantal features 

as well as to the applicability of transport theories. The damping 

associated with the relative distance coordinate is considered and 

the evidence for thermal equilibrium between fragments is presented. 

The role of the El mode and of all the other odd isovector modes on 

the charge distribution at fixed mass asymmetry is discussed and the 

possible evidence for quantal fluctuations is analyzed. The mass 

asymmetry degree of freedom is considered in terms of the experimental 

mass distributions. The origin of the two components, deep inelastic 

and fusion-fission is explained in terms of different dynamical regimes 

leading to greatly different interaction times. The rotational degrees 

of freedom are discussed in terms of y-ray multiplicities and sequential 

fission. The problem of angular momentum fractionation along the mass 

asymmetry coordinate is considered and the depolarization and misalignment 

of the fragment spins are discussed. 
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Introduction 

All the newcomers in a new environment are in need of an identity 

and strive to search for their "roots." Also the practitioners in the 

field of deep inelastic heavy ion processes seem to want or need an 

identify of their own, especially when confronted with the stern 

establishment of the nuclear spectroscopists. 

Our own natural roots go back to the grand days of fission which, 

in many ways, is the process in which all the present themes of interest 

are represented at least in germ. So this is our root and our legacy. 

Our own identity finds its focus in the wealth of new degrees 

of freedom associated with both fission and heavy ion reactions. 

Fission first indicated the great variety of large scale collective 

motions which can be present in a nuclear fluid. However, fission is 

not an easy reaction to work with. The initial conditions for all 

the collective motions are left at the whim of statistical fluctuations 

in the compound nucleus. This fundamental inability to choose the 

initial conditions at our own convenience was the major difficulty 

that faced the searchers in this field and prevented a substantial 

development in our understanding for a very long time. 

The advent of heavy ion reactions removed this difficulty to 

a very great extent. While essentially the same degrees of freedom 

are called into play, now we have control on the entrance channel 

kinetic energy, on the mass asymmetry, on the target and projectile 

neutron-to-proton ratios. 

This new freedom has generated an exciting and varied phenomenology, 

which can indeed be considered the new challenge in nuclear physics. 
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An understanding of all this new physics can occur at various levels. 

Phenomenological models have taken, as expected, the lead in interpreting 

the new data. However this new field not only needs an identity which 

after all was not difficult to discover. Most of all it now needs to 

integrate with the conservative sectors of nuclear physics. Phenomenology 

may not be enough and should not be enough. 

From this the microscopic quest is born. We want to cast the 

new theories in the framework of the old well understood spectroscopy. 

And, to be sure, we are now witnessing attempts to explain the new physics 

in terms of the shell model, or even in terms of nucleon-nucleon inter

action like in the TDHF model. The role of the giant resonances in 

deep inelastic processes is prompting attempts to explain energy and 

angular momentum transfer with the same language used in the interpretation 

of the collective strength functions. 

Admittedly we are very much at the beginning of this endeavor. 

Which means that the privilege of carrying this project to a good 

end may be ours indeed. 

An Open List of "Relevant" Degree of Freedom 

As pointed out before, a wealth of new degrees of freedom has 

substantially enriched the nuclear landscape with the advent of heavy 
1 ion reactions. While it may be useful to list these degrees of freedom, 

we may not be able to define them uniquely. Some of them are essential 

to the characterization of the reaction, like the separation coordinate, 

and are directly connected with physical observables. Others are 

perhaps less essential and in fact may not be related to a physical 
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observable in any straightforward way. High multipole modes, isoscalar 

and isovector as well, are part of such a class. Even from a theoretical 

standpoint these modes become less defined as their multipolarity 

increases in view, for instance, of the surface diffuseness. A pragmatic 

position has frequently characterized many attempts to describe these 

modes. Only those modes which are directly called into cause by the 

experimental observation should be taken into consideration. On the 

other hand, an a priori judgement on the relevance of a given mode 

occasionally has led to experiments which have substantiated the original 

expectations. 

Consequently, without introducing any specific model, let us make 

a list of those degrees of freedom which have had the chance of proving 

themselves already, and also of those which, in our judgement, may play 

an important role in the future. 

(a) The fragment relative distance is well defined in the exit 

channel but may, or may not, be clearly defined for the intermediate 

complex. The evolution in shape expected to occur from corripounu nucleub 

to fission illustrates how the two fragments progressively gain their 

identity. This degree of freedom is well documented experimentally 

in terms of the asymptotic kinetic energy. 

(b) The neck degree of freedom is, in principle, of dramatic 

importance. Together with the fragment relative distance one could 

conceivably construct a simple but non-trivial model to describe heavy 

ion collisions. Unfortunately, its relevance spreads over many 

observables and, so far, no clear cut experiment has characterized it. 
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(c) The mass asymmetry is a beautifully documented degree of 

freedom. The great variety of mass distributions observed experi

mentally have made it one of the pet degrees of freedom of this field. 

(d) The fragment neutron to proton ratios are now under intense 

study. The distribution of charge at fixed mass asymmetry has a strong 

and direct connection with the El mode, which may be studied now in 

a variety of new situations. 

(e) The rotational degrees of freedom are surfacing in many unexpected 

ways. Beside their obvious role in determining the angular distribution, 

they appear to affect the alignment of the fragment spin in a substantial 

way. Bending, twisting, wriggling, and tilting, while may not appear 

to belong to this class, do in fact bear angular momentum and may be 

worth considering here. 

(f) The (many) fragment deformation coordinates may play a role 

in the dissipation of energy and may well be responsible for part of 

the fluctuations in the relaxed peak. Symmetric and asymmetric 

stretching could be quite relevant in this respect. 

(f) Higher multipole isovector modes are conceivably important 

in controlling the neutron-to-proton ratio of the fragments. Very 

little attention has been dedicated to them so far. 

(g) Thermodynamic degrees of freedom appear to play a substantial 

role in view of the large degree of relaxation observed in these reactions. 

Temperature gradients may be important and certainly the difference 

in temperature between the two fragments appears to be quite relevant. 
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Characterization of the Dynamical Regimes 

After the attempt of listing the degrees of freedom, one should 

try to infer theoretically, or determine experimentally, what kind of 

dynamical regime should prevail. One of the first questions is 

whether a quantum or a classical regime applies. 

As a statement of principle, all of these systems are quantum 

mechanical because we are dealing with highly degenerate Fermi fluids. 

This does not mean that semiclassical or altogether classical approaches 

may not be applicable for specific collective modes. 

For instance the rotational modes may well be treated classically 

in so far as I >> fi . Yet the moments of inertia will almost surely 

be controlled by quantal features. Even the rigid limit is dictated 

by the Pauli principle. 

The treatment of low multipole vibrations depends upon the sharpness 

of their strength function. The presence of sharp peaks dictates, at 

least at low temperatures, a quantal treatment. On the other hand, if 

the strength function becomes very broad, the mode cannot be properly 

quantized, since we lose the ability to define its kinetic energy, 

or its inertia (classically the mode is overdamped). In this case 

the mode is not a dynamical variable any longer, and tan be treated 

as a parameter characterized by the potential energy alone. Its 

distribution could be, for instance, a classical Boltzmann distribution. 

Even within the classical limit it is not obvious which regime 

should apply. If one deals with large heat sinks a Lagrangian formula-
4 tion of the problem should be adequate. The three relevant physical 

quantities are 
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V the potential energy 

xf the i ne r t i a 

R the Rayleigh dissipation function 

Two regimes can immediately be i den t i f i ed . 

I f u5r»R the system is control led by the iner t ia (underdamped). 

lfor«R the system is control led by the viscosity (overdamped). 

On the other hand, i f the heat sinks are su f f i c ien t l y small to 

allow the temperature to increase to values comparable with the relevant 

k inet ic energies, f luctuations become relevant and may in fact dominate 

the whole picture. Diffusion is then the prevail ing regime and should 
5 6 be described in terms of transport equations. ' 

Damping of the Relative Motion and the Energy Thermalization 

Although the high degree of i ne las t i c i t y is cer ta in ly the oldest 

and most venerable feature of heavy ion reactions, the most recent 

studies in this l ine present a var iety of extraordinary and intr iguing 

features which challenge our attempts to a coherent in terpretat ion. 

The degree of relaxation varies greatly from reaction to reaction, 

and wide ranges of Q values, extending from zero to the Coulomb barrier 

are frequently observed in a single reaction (Fig. 1) . Estimates 

of the relaxation time can be obtained by various means. Despite 

the optimism of some authors, empirical attempts to define a time 

scale may have uncertainties of a factor of few. Nonetheless, for 

purposes of or ientat ion, the f igure of T E - 3 X 1 0 - 2 2 sec is certainly 

representative of the relaxation time. This is also to be taken as 

an estimate of typ ica l interaction times. 
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The dissipated energy is recovered to a very great extent in 

the evaporation from the excited fragments. I t is quite remarkable 

that such an extensive relaxation prevails even at very high bombarding 

energies. For instance, in the reaction ^Cu + 2C>Ne a t 158,252 and 
g 

343 MeV the charge loss of the two fragments near symmetry was determined 

as a function of exit channel kinetic energy by measuring the Z of both 

fragments in coincidence. The missing charge dramatically increases 

with bombarding energy and depends linearly upon excitation energy, 

which can be estimated from kinematics (Fig. 2). The slope is ~25 

MeV/charge. Since the total mass loss is about twice the evaporated 

charge, one obtains an average energy loss per particle of -12.5 MeV 

which one would expect from evaporation. This indicates that, even 

at t!ie highest bombarding energy the near symmetric fragments are 

very close to complete thermalization. 

Thus very large amounts of energy appear to be dissipated in 

a very short time, a time so short in fact to be uncomfortably close 

to a single particle period (-10-22 s e c f o r f^ = s -i ev). A variety 

of mechanisms which could be responsible for the energy dissipation 

in the available t-ime has been proposed, ranging from giant mode 

excitation to particle transfer. The excitation of several phonons 
Q 

and/or the random transfer of several particles (nucleons?) could 

provide a viable dynamical explanation to the observed energy loss. 

Neither of these fast mechanisms is at variance with the ultimate 

fata of the excitation energy which is spent in evaporation, since 

thermalization could conceivably occur leisurely inside each fragment 

on a time scale that needs not be comparable with the interaction 
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time. Unfortunately a catch is found in a remarkable experimental 

observation. The energy appears to be divided between the two fragments 

proportional to their mass. In a study performed on the reaction 

Ag + 340 MeV ^ ^ , the simultaneous detection of both fragments, together 

with the measurement of both kinetic energies, both angles and the Z 

of one fragment enabled us to deduce the preevaporation masses as well 

as the mean number of neutrons emitted by each fragment. These data 

(Fig. 3) establish that the Z dependence of the masses corresponds to 

the equilibration of the neutron-to-proton ratio while the two fragments 

are in contact (solid line). This feature will be discussed further 

later on. Furthermore the dependence of the mean number of neutrons 

on Z corresponds to a splitting of the excitation energy proportional 

to the masses, as verified by an evaporation calculation (dashed lines). 

This latter point has been verified by direct measurement of 
11-13 neutrons from deep inelastic reactions. These experiments verify 

that the energy is indeed split according to the masses (Fig. 4) and 

that the neutron spectra of the two fragments have the same temperature 

(Fig. 5). More outstanding is the fact that such an energy partition 

according to masses is not only observed for completely relaxed events, 

as in the experiment described above, but also for the whole range 

of Q values, up to very small energy losses (Fig. 6). 

The simplest hypothesis which can explain all these facts is 

that the thermalization of the energy is so fast that it occurs on 

a time scale shorter (and presumably much shorter) than the interaction 

time, thus allowing the fragments to be in thermal equilibrium at 

all times during their interaction. 
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The problem of the statistical energy partition between the two 

fragments is straightforward. 

The excitation energy distribution between two fragments sharing 

an amount of energy E is 

P(x) dx « P^x) P2(E-x) dx 

where P|,Pg a r £ the level densities of each fragment. At equilibrium 

one has 

d In P(x) _ d In Pj(x) + d In PqU-x) = = _i i_ 
dx ~ d¥ Sx ~ Ti T ? 

where J\ and T2 are the fragment temperatures. 

The equality of the intensive quantity T implies the proportionality 

to mass of the extensive quantity x: 
x _ Ai 

E - x A2 

One could argue that, perhaps, the very dynamical process responsible 

for the energy dissipation may distribute the excitation energy just 

proportionally to the masses, thus obviating the necessity of requiring 

thermal equilibrium. This would be quite peculiar and it is certainly 

not the case if the energy is transfered by mass transfer. In fact, 

for this model the excitation energy ratio is 

l a - i + A ^ _ i a 
El M1M2 

where Mi, M2 are the masses of the two fragments and A is the mass 

involved in each elementary transfer (a nucleon). In other words, 
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to a great degree of accuracy this model predicts the same excitation 

energy for both fragments irrespective of their mass ratio. 

Still it would seem worthwhile to further check if the two 

fragments are indeed in thermal equilibrium, in view of the dramatic 

relevance of this result on the relaxation time. An immediate and 

direct way is to check the excitation energy fluctuation between the 

two fragments. We can estimate this quantity by calculating the second 

moment of the kinetic energy distribution 

P(x) <* e 

(x - x 0) 
2a2 

2 2 32 In P(x) ., 9 In Pj(x) . 9 In P2(E-x) -—. o N / = -1/a? = — ~ + o 
3X* 3x< 9x̂  

V T i 
3x, 

V T2 
3X, 

Ti=T T 2=T 
A ^ l +<^2") 

from which 

g 2 _ Ji C v l C V 2 
CVi + Cv 2 

where Cyi, C\/2 are the heat capacities of the two fragments. For 

a Fermi gas system one obtains 

Cv = 2aT 
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and 

0 - 2 T ifTlz 

where ai, a2 are the level density parameters of the two nuclei. 

Notice that the fluctuation is at a maximum when the fragments 

are equal, so, if a^ = ag = a we have 

a? = aT3 

and 

JL = (JL)k 

\ l a E J 

where E is the dissipated energy. For E = 100 MeV and Atotal = 200 

one obtains (a = A/8). 

x = 50 MeV , a = 10 MeV 

or an easily measurable effect. 

What one needs to measure is, for instance, the correlated number 

of neutrons emitted by each fragment for events with the same Q value. 

Unfortunatly the covariance analysis of these data has not been performed 

as yet. 

If one can indeed rely on the fact that the two fragments are 

in thermal equilibrium even at the smallest Q values and thus for 

the smallest interaction times, a treatment of the energy loss in 

terms of a simple transport equation, like the Master Equation or the 

Fokker-Planck equation would definitely be warranted. 
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The Neutron-To-Proton Ratio and the Giant Isovector Resonances 

In heavy ion collision the neutron-to-proton ratio of the two 

fragments seems to undergo equilibration rather quickly ( TN/Z ̂  10 -^2 sec). 

The most probable value closely corresponds to that obtained by 

requiring that the potential energy be minimized with respect to the 

Z of one of the two fragments in contact, at fixed mass asymmetry. 

This implies that the degree of freedom controlling the neutron-to-

proton ratio relaxes faster than the mass asymmetry degree of freedom. 

We have pointed out before that the neutron-to-proton ratio 

degree of freedom can be identified with the El giant mode, and more 

precisely with the low energy component of the quadrupole-split 

giant El resonance in prolate nuclei. This component corresponds to 

the sloshing back and forth of the neutrons against the protons along 

the deformation axis, and clearly controls the charge distribution 

of the fragments forming the intermediate complex. One should of 

course keep in mind (and we shall return to this point later) that 

all the odd isovector modes potentially can contribute to the 

determination of the fragment neutron-to-proton ratio as well. 

Coming back to the El mode, it is clear that from the equilibrium 

value of the neutron-to-proton ratio we learn only about the potential 

energy term of the collective Hamiltonian. A way to obtain information 

on the total collective Hamiltonian for all the odd isovector modes, 

hopefully dominated by the El mode, is to look at the distribution of 

neutron-to-proton ratios at fixed mass symmetry, because this distribution 

can be related to the modulus square of the collecti.c wave function. 
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Let us assume that the El mode is fully quantized. We can try 

to estimate the phonon energy from the expression 

flu = 94/d MeV 

where d is the semimajor axis of the intermediate complex. This expression 

assumes that the neutron-to-proton ratio is frozen when the neck between 

the two fragments is quite large (remember that this expression is 

used to evaluate the El quadrupole splitting in deformed nuclei). If 

equilibrium were to be retained for smaller neck sizes, the relevant 

phonon energy could be substantially lower. 

For a great deal of target-projectile combination, the phonon 

energy is in the range 6-10 MeV, much greater than the typical temper

ature of 1-2 MeV. Since fiw/T » 1, the collective El mode should be 

almost completely in its ground state. Therefore the Z distribution 

at fixed mass asymmetry should be given by the modulus square of the 

ground state wave function and the second moment of the distribution 

should be: 

a2 - ^ 

where c is the stiffness constant defined by: 

V(E1) = | (Z " Z o ) 2 

and can be easily determined from the liquid drop model. The expected 

values of the charge variance are in the range: a ~ 0.6, 1.0 e<? 

Before turning to the experimental results, it is worth appreciating 

that, through the measurement of the change dispersion, one can 
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potentially learn about the El mode in unusually deformed nuclei at 

large excitation energies." Both of these situations are not accessible 

to the standard methods applied to the study of the giant resonance 

namely photoexcitation and photodecay. The experimental situation 

is somewhat perplexing. A large body of data ranging from Ar induced 

to Xe induced reactions yields very small variances, consistent with 

the relation 

J - T a 7 = — 
Z c 

as if the collective mode were not quantized at all and the distribution 
14 were a classical Boltzmann d is t r ibu t ion : 

i . ( z - z 0 ) 2 

" 2 c T 
P(Z) = e 

See for instance Fig. 7. The outstanding problem is then to understand 

why the distribution in Z is classical rather than quantal, as one 

would expect. 
3 The explanation may reside in the damping of the collective El 

mode. In photoexcitation, the giant resonance is mainly a lp,lh state 

and presumably owes its width to the coupling into the 2p,2h states. 
15 In the case of 280 MeV Ar+Ni, at relatively high excitation energy 

(60 MeV), the collective mode is an (np,nh) state which may couple into 
(n + lp, n + lh) or (np,nh), or again, ((n-l)p, (n-l)h) states. The 

resulting damping is energy-dependent and due mainly to the 

increasing density of the doorway states with increasing energy. 
It is interesting to see the consequence of this coupling to the Z 
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distribution. Following Bohr and Mottelson with a simple generalization, 

we can describe the coupling of the collective state |a> to the doorway 

states |a>. The exact state |i> is given by 

t- - n - v i o 

where P = I |a><a| , H 0 is the unperturbed Hamiltonian, and V is the 
a 

perturbation. 
The relevant charge distribution is given by P-j(z) = J dx |^-j(z,x) |2, 

where ip-i(z,x) = <z,x|i>, and x denotes all other variables which must 

be projected out. In order to compare theory with experiment we have 

to consider the average of the distribution over an energy interval 

around E-j. We can write 

Pi(z)ave = /dx[|{^i(z,x)} a v e|2 + {|„,J ( 2 ) X ) | 2 } a v e ] 

with <p. = \\>. - Hiiawe the "fluctuating" wave function. The fluctuatin 

part can be shown to be responsible for the broadening of the distri

bution. It leads to a statistical distribution for Z. We want to 

show that the first term can lead to a narrowing of the distribution. 

For this purpose we have to consider the averaged Green function 

{l/(E-j - H 0 - V ) } a v e . This average has been considered extensively 

in the literature. For large systems and high excitation energies 

only the average diagonal matrix elements of the resolvent have to 

be considered and it can be shown that 
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where r is the imaginary part of the "equivalent optical potential" 

describing the dissipation of the state |a> into the states \n>. 

The amplitude of the state |a> contained in the average eigenstate 

|i> is given by 

In summary, the omitting for simplicity the bracket of the average, 

|i> = ca(i)|a> + I ca(i)|«> a 

The next step is to establish that the sum over a in the above 

equation is a coherent one, and thus the corresponding term describes 

a wave packet, i.e., it leads to a narrowing of the distribution. 

One can prove that if V a a is random, the vectors \a> contain phases 

which destroy the random property of V a a. Having established this 

point from first principles, we are entitled to use as first guess 

a simple-as-possible model. The average wave function associated 

with the charge asymmetry coordinate can be written as 

*i(z) = c a(i) * a(z) + 1/D /dE ac a(i) iKo(z) 

where D is the level spacing of the available doorway states and 

^a(z) is the ground state wave function of the El mode: 

i|»a(z) = V2fTfio)/c exp[-cz2/2fito] 

Qualitatively one sees already that, as the coupling increases, the 

integral in the expression for $-j becomes progressively dominant and, 
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the more states that are called into play by the strength of the coupling, 

the narrower $-j(z) becomes. As a qualitative first guess on the ^n[z) 

we can use the plane wave expression 

* a(z) = s/27rhw/c exp (iz Vc/2fiw VE a/Di ) 

where the plane waves are normalized to unity in a z box of volume 

corresponding to that of the harmonic oscillator. By taking 

r = •ft(A+ + \® + A"), where ,\+, A^, A" are the transition probabilities 

from (np,nh) to (n+lp, n+lh), (np,nh) and (n-lp, n-lh) states, 

respectively, the integral in the expression for $.j(z) can be evaluated 

and gives as a result 

2 exp f-iz V c/2fioj V 1/Di V E, - ir j . 

2 The second moment of the z distribution, a 2, can then be obtained 

from the z distributions given by the modulus square of <J>-j. 
2 The calculated second moment of the distribution o z vs excitation 

energy is shown in Fig. 8. The narrowing of the distribution with 

increasing energy is quite evident. Since this calculation does not 

include thermal fluctuations, they are introduced in the simplest way, 

a z ' °z,Q + 0z,T 
where the labels Q and T stand for quantal and thermal. 

On the other hand a recent experiment on Mo + Kr shows variances 

a 2 - 1.0 e 2 , which are consistent with purely quantal rather than 

thermal f luctuat ion (see Fig. 9). The apparent contradict ion between 

these two sets of data is mystifying and an excit ing mystery. One 
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obvious difference is that the "thermal systems" are highly asymmetric, 

while the "quantal system" is nearly symmetric. However it is not clear 

how to relate this aspect to the different behavior of the two systems. 

On the theoretical side, one of the limitations of the model used 

so far is the inclusion of the lowest odd isovector mode only. One 

should consider in detail the effect of the zero point motion associated 

with all the other odd isovector modes. 

But, perhaps the answer still lies in additional experiments to 

confirm or disprove the present experimental situation. 

The Mass Asymmetry Mode and the Charge or Mass Distributions 

An inspection of the now abundant data on the mass or charge 

distributions associated with heavy ion reactions show the presence 

of two components which are usually quite distinct for values of E/B 

ratio larger than 1.5 and frequently merging together for E/B < 1.5. 

The first component which we call deep inelastic component is 

relatively narrow, concentrated around the target and projectile masses, 

its width varies with CJ value and angle, its angular distribution 

is side-peaked or forward-peaked. The second component, which we 

call fusion-fission component, when it exists, is broad, peaked at 

symmetry, is associated with the most relaxed Q values and its angular 

distribution is symmetric about 90° and close to 1/sine. 

a) The Deep Inelastic Component 

The former component has all the characteristics of a non 

equilibrium process and its time dependence is portrayed in many 

experimental features. 
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A comparison of the widths of the charge distributions at various 

angles associated with the first component leads to an estimate for 

the relaxation time along the mass asymmetry coordinate xy\ as 60 x 

10"22 sec. This is the largest relaxation time observed so far, much 

larger than the typical interaction time. A good impression about the 

time dependence associated with this mode can be obtained by observing 
17 18 the dependence of the width of the distribution upon Q value ' (Fig. 10). 

One can easily notice how the width increases with increasingly negative 

Q value. Yet even at the maximum Q value, when the relative motion 

appears to be fully relaxed, the mass distribution is far from being 

equilibrated. 

An even better feeling can be obtained by observing the dependence 

of the angular distributions upon the fragment atomic number (Fig. 11). 

Most remarkably, while the fragments close in Z to the projectile show 

a side-peaked angular distribution, characteristic of very short interaction 

times, the fragments farther removed in Z from the projectile show a 

progressive weakening of the side peak, until, vary far away from the 

projectile Z, the angular distributions become distinctly forward 

peaked. The evolution from side peaked to forward peaked angular 

distributions corresponds qualitatively to an increasing interaction 

time. The data are thus very suggestive of a time progression in 

the population of the configurations with atomic numbers farther and 

farther removed from the projectile. 

This feature, together with the rapid thermalization of kinetic 

energy and the large time constant of the mass asymmetry mode suggest 

the possibility that the mass asymmetry evolves in a Markovian fashion 
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towards equilibrium by maintaining a strong coupling to the heat bath 

provided by all the other degrees of freedom. The applicability of the 

Master Equation and of the Fokker-Planck equation to the time evolution 

of the various collective modes has been discussed in detail from a 
19 20 theoretical standpoint without a clear cut conclusion. ' However, the 

success of their application to a great variety of features in heavy ion 

reactions is undoubtabie. In particular these approaches are singularly 

successful when applied to the mass asymmetry degree of freedom. 

If we assume that the intermediate complex has a shape close 

to that of two touching fragments, the asymmetry of the system can 

be characterized by either the mass or the charge of one of the two 

fragments. We further assume that the time evolution along the asymmetry 

coordinate is diffusive in nature and describable in terms of the 
1 91 

Master Equation: ' 

<i»(Z,t) = / d Z ' A(Z.Z') i|>(Z',t) - A(Z\Z) * (Z, t ) 

where ijj(Z,t) and ijj(Z,t) are the populations of the configurations 

characterized by the atomic number Z of one of the fragments and their 

time derivative at time t ; and A(Z,Z') and A(Z',Z) are the macroscopic 

t rans i t ion probabi l i t ies . 

I f one writes V = Z + h and a l l the quantit ies are expanded 

about Z in powers of h, one obtains to low order: 

*(Z,t) = - £ [p^] + 1 ^ M ] 

which is the well-known Fokker-Planck equation. The quanti t ies \i\ 

and P2 a r e t n e f i r s t and second moment of the t ransi t ion probabi l i t ies 
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Uj = J"hA(Z,h) dh ; vz = JVA(Z,h) dh 

The Fokker-Planck equation has simple analytical solutions when 

PpP? are constants and for the initial condition iJ>(Z,0) = <5(Z - Z 0 ) : 

\|»(Z,t) = (2TTU2t)-l/2 expj-[Z - (Z 0 + P xt)] / 2 v 2 t ^ . 

Notice that the centroid of the Gaussian moves with velocity Pi which 

can be related to the driving force F = -V' and to the friction 
J z 

coef f ic ient K by the re la t ion : K = P]_F. 

When the force is harmonic, 

V z = c/2 (Z - Z s y m ) 2 = 1/2 ch2 

an analytic solution is also available 

<Mh,t) = c 1/2 ( l - exp - ^ ) 
•1/2 

\ c[h - h 0 exp - ct/^r{ 
x e x p j " 2T(1 - exp - 2ct/K) J 

where we have made use of the Einstein relation P1/V2 = - V /2T 

and T is the temperature. 

The difficulties arise in the choice of the transition probabilities. 

Assuming that no doorway states play any special role, the golden 

rule implies that: 

A(Z,Z') = A(Z,Z')PZ 

where \(Z,Z') is the microscopic transition probability and Pi the 

level density of the configuration associated with Z. On general 
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grounds one could guess the form 

A(Z.Z') = Kf Z ; or A(Z,Z') = 2Kf +
Z 

VP ZP Z, f
z
 l

z. 
where Kf is the rate-controlling factor, related to the particle 

transfer rate. The transition probabilities can be written as: 

A(Z,h) = Kf exp(-Vz h/2T) 

in the former case and 

exp(-V^h/2T) 
A ^ Z , h ) K f exp(-V'h/2T) + exp(V'h/2T) z ' r > z 

in the la t te r case. 

Assuming that only adjacent configurations are coupled by the 

transfer of uncorrected par t ic les , one obtains 

Kf Vz 

Ml = - 2 Kf sinh VZ/2T = ^ 

u 2 = 2 KF cosh VZ/2T = 2 Kf 

in the former case or 

-Kf V7 
PI = -2 Kf tanh VZ/2T = j± 

U2 = 2 Kf 

in the latter case. 

In both cases the Einstein relation is approximately satisfied. 

Alternatively, if particle transfer is specifically assumed to be the 
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21 doorway state, one can consider the transfer of a par t ic le between 

two fragments with chemical potential d i f fer ing by an energy a = V'h. 

The transi t ion probabi l i ty is then: 

A(Z,h) = Kf J ! + exp(c - a)/T I 1 " T T ^ 
Vh 

Kf z 

exp e/T' " 1 - exp(-V^h7TT 

From this we obtain 

Ul = -Kf V^ ; M2 = K f v z c o t h V z / 2 T ~ 2 K f T 

22 
Again the Einstein relation is approximately satisfied. Randrup , 

on the basis of the one body model calculates 

Kf = 2ir n 0R b X(c)/TF 

where n 0 is the particle flux in nuclear matter of saturation density, 

C 1 C 2 
R = 

c 1 + c 2 

is the reduced radius in terms of the central radii C of the two fragments: 

b is the skin thickness; and X(e) is a universal function depending 

upon the separation between the sharp surfaces of the two fragment 

in units of the surface thickness; Tp is the Fermi energy. This approach 

neatly factors out the geometrical features of the problem. 

The necessary potential energy can be written as: 

V(Z,£) = V L D(Z) + V L D ( Z T - Z) + V P r o x(Z,A) + V C o u 1 + V R o t 

The first two terms are the liquid drop masses of the two fragment. 

The third is the nucleus-nucleus potential (for example one can use 
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the proximity potential), the fourth and the fifth are the Coulomb 

and the rotational energy. 

The total potential V depends on the fissionabil ity of the system X, 

on the angular momentum I and on the distance between fragment centers D. 

A diffusion calculation is now possible if the distance between the 

two fragments and the interaction time are defined. These quantities 

clearly depend upon the detailed features of relative motion and of 

the angular degrees of freedom. Simple ansatz for the average fragment 

distance and interaction times as a function of energy and angular momentum 
21 lead to rather satisfactory results both for the mass distributions 

(Fig. 12) and for the angular distributions for individual fragments 

(Fig. 13). In particular, one can notice how elegantly the side peaking 

is reproduced in the vicinity of the projectile and how the forward 

peaking progressively dominates as one moves away from the projectile. 

If the one-body dissipation is employed in treating the dynamical 

part of the problem, one obtains a complete formalism that should 

consistently reproduce the energy dissipation as well as the charge 

and mass distribution as a function of angle. Calculations along 

this line are in progress. It should be mentioned here that brave 

attempts have been made to deduce the Fokker-Planck coefficients 
24 directly from the experimental data. This method is based upon the 

determination of the charge distribution widths for a sequence of 

contiguous Q value bins. It is claimed that with this procedure it 

is possible to assiqn an average angular momentum to each Q value 

bin. It is then possible to correlate angular momentum to energy loss 

and to the charge distribution width. While these correlations are 
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of definite qualitative value, the quantitative aspects of the method 
33 are very uncertain and severe systematic errors are almost inevitable. 

At the moment, any conclusion on the validity of various models, in 

particular of the one body dissipation based upon the correlation 

between energy loss and charge distribution width is perhaps premature. 

b) The Fusion-Fission Component 

This component, characterized by relaxed kinetic energies, by 

symmetric mass distributions peaked at symmetry, and by angular dis

tribution symmetric about 90° has been frequently confused with compound 

nucleus fission due to the apparent equilibration along the mass asymmetry 

coordinate and to the long interaction time shown by the angular 

distributions. 2 5" 2 8 

Evidence that one may not be dealing with true compound nucleus 

fission, surfaces when one tries to fit the excitation function of this 
no 

component in terms of a fission-evaporation competition model. The 

excitation function apparently can be fitted only at the cost of sacri

ficing our confidence in the liquid drop fission barriers and their 

angular momentum dependence. A reduction of the liquid drop barriers 
28 by as much as 40% is required to fit the data. 

This seems to indicate that "fission" does not actually compete 

with the other evaporation channels, thus showing that no compound 

nucleus is formed. Most likely a metastable long-lived intermediate is 

formed in the neighborhood of the barrier, which has time to equilibrate 

along the mass asymmetry coordinate, but which has either no time nor 

inclination to contract into a compound nucleus, but decays into two 

fragments directly. 
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What happens may in fact be a rather complicated story and we 

are going to explore only one aspect of i t . The most sophisticated 

models used to calculate fusion cross sections u t i l i z e radial 

potentials which, at suitably low angular momentum, portray a minimum 

or pocket. The t ra jectory is then calculated u t i l i z i n g a suitable 

f r i c t i o n (one-body, for example). When an orbit is trapped into the 

pocket, the system is assumed to fuse (to form a compound nucleus?) 

and the associated cross section is assigned accordingly. 

Yet a system in a trapped orbi t is not real ly trapped i f i t has 

enough thermal energy to overcome the barrier as i t frequently happens. 

In fac t , i t is t r i v i a l to calculate the decay width: 

E-B 

PR(X) dx L r - — -° 
' ou t SM-4-^i »* 

where E is the tota l energy above the minimum; B is the height of 

the barrier seen from the pocket; E-B-X is the kinet ic energy over 

the barr ier , control led by thermal f luctuat ions; PR is the level density 

over the barrier; p is the radial momentum inside the pocket, also 

ar is ing from thermal f luctuat ions; a is the second derivat ive of the 

potential at the minimum and Pp is the level density of the system 

inside the pocket. Both in PR and Pp the radial coordinate is not 

included since i t is treated e x p l i c i t l y . 

Both integrals can be evaluated approximately to y i e l d : 

r out = *> e " B / T 
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where hoi is the phonon energy associated with the oscillations inside 

the pocket and T is the temperature of the system. From the above 

equation we can calculate the decay lifetime T O U ^ 

Tout = 'losc e*P B/ T 

where t o s c is the oscillation period inside the pocket. It is apparent 

that the range of I waves associated with values of B/T < 1 have an 

excellent chance to hop out of the pocket. 

Of course, while the system tries to decide whether to hop out 

or not (and it may take some time), several things can happen. On the 

one hand the system may drift along the mass asymmetry coordinate and 

attain local equilibrium. On the other it may take an alternate 

route towards the compound nucleus configuration (other than the mass 

asymmetry coordinate). In the meanwhile the system is rotating. 

An extreme simplification is to assume that, if an orbit is not 

trapped, the system will split apart after some amount of mass diffusion, 

thus giving rise to a deep inelastic event. If, on the other hand, the 

orbit is trapped, the system will equilibrate along the mass asymmetry 

coordinate and decay, thus giving rise to a Z distribution of the form: 

P(Z) «y(2*+l) P ( Z ' A ) 

V 

where p(Z,£) are the level densities at a given asymmetry Z and angular 

momentum £. 
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29 An example of the calculation is shown in Fig. 14 where one can 

see both the deep inelastic peak and the fusion fission peak equally 

well fitted. 

The Relaxation of the Rotational Degrees of Freedom 

a) The Equilibrium Limit 

The relaxation of the rotat ional degrees of freedom can be best 

appreciated i f one considers two spheres which, during the co l l i s i on , 

interact through conservative and dissipat ive forces. The torques 

so generated induce a rotation in the fragments at the expense of the 

orb i ta l angular momentum. The secular equil ibrium, which is eventually 

attained i f the two spheres interact for a su f f i c ien t ly long time, 

correspond to r i g i d ro tat ion, namely to the regime characterized by 

a matching of the orb i ta l and in t r ins ic angular ve loc i t ies . The angular 

momentum par t i t ion between orbi tal and in t r ins ic angular momentum 

is then f ixed, and depends upon the mass ra t io of the two fragments as: 

! t o t y d 2 + <JJ£ +J£ 

where I i n t , I to t a r e the in t r ins ic and to ta l angular momenta; y is 

the reduced mass; d the distance between centers; ^XJ^Z are the two 

fragments momenta of i ne r t i a . This ra t i o is 2/7 at symmetry (two 

touching equal spheres) and increases with increasing mass asymmetry 

un t i l i t reaches 1 fo r the maximum asymmetry in which one of the two 

spheres is vanishingly small. 

In l i terature one finds an intermediate l im i t often quoted: 

the " r o l l i ng l i m i t . " This very a r t i f i c i a l l im i t corresponds to the 



-31-

assumption that only "sliding friction" is acting, until the two touching 

surfaces do not slide any longer, and no "rolling friction" is acting 

on the system. This limit requires the matching of peripheral velocities 

and, for two touching spheres, predicts an angular momentum ratio: 

lint _ 2 
Hot " 7 

irrespective of the asymmetry. The lack of practical significance 

for this limit is seen in the general case in which both "sliding" 

and "rolling friction" are simultaneously active. Under these circum

stances the rolling limit is never attained. 

The rigid rotation limit is visibly attained in certain reactions 

where the deep inelastic process is associated with a rather narrow 

angular momentum window. Such a limit is demonstrated by the rising 
30 31 Y-ray multiplicity with increasing mass or charge asymmetry ' (Fig. 15). 

(The Y-ray multiplicity is taken here as a measure of the intrinsic 

angular momentum. Under optimal circumstances, the greatest amount 

of the angular momentum is removed by stretched E2 Y-decay. Additional 

Y-rays, mainly El decays, occur through statistical emission. A 

relation frequently used and occasionally tested is M = 1/2 + a, 

where a is a number between 2 and 4.) 

b) The Relation Between Angular Momentum Transfer and Energy Dissipation 

Two extreme models for the process of energy dissipation have 

been proposed, the excitation of giant modes on one hand, and the 

nucleon transfer on the other. Both of these models predict large 
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energy losses, in approximate agreement with experimental observations. 

There has been great hope, and there is still some, that the correlation 

between energy loss and angular momentum transfer predicted by the two 

models is so different that the experimental data could decide in favor 

of either one, or point to combination of the two mechanisms (Fig. 16a). 

Unfortunately, it is easy to show that the problem is not very 

clear indeed. The kinetic energy E above the Coulomb barrier can be 

split into radial and tangential energies: 

2 P,2 

E - Erad Etang " Erad ^z ~ ^ 

where I is the entrance channel angular momentum, u is the reduced 

mass and r is the sum of the fragment radii. Clearly any model trying 

to dissipate the tangential energy must do so by transferring some 

orbital angular momentum into the fragments as spin. If the shapes 

are forced to remain the same, the correlation between energy dissipation 

and the fragment spin is "almost" fixed by the conservation of angular 

momentum and thus "almost" model independent. ("Almost" because the 

angular momentum conservation fixes the vectorial sum of fragment spins 

and not the sum of the spin moduli). A greater flexibility is available 

for the radial energy. However under the best of circumstances the 

average radial energy is only 1/2 of the total and in more realistic 

circumstances may be much less. For instance if the lower part of 

the JL-waves corresponding to 1/3 of the total cross section goes into 

compound nucleus, or goes into a completely relaxed two body decay, 

then the averagb radial energy is only 1/3 of the total. Furthermore, 

since the radial energy appears to be dissipated rapidly, it follows 
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that very little play is left to decide between the models. In other 

words any model is expected to reproduce reasonably well the correlation 

between energy loss and angular momentum transfer in all but the regions 

where sizeable fluctuations are expected (see Figs. 16a,21). In view of 

these considerations it is not too surprising to find out that the relaxa

tion time for the angular momentum transfer is T. = 3.0 x 10~22 sec, 

very close to the estimate for the energy relaxation time. 

c) Dependence of the Y-Ray Multiplicity Upon Mass Asymmetry 

In contrast with the conclusions reached above, a study of the 

angular momentum transfer as a function of energy and mass asymmetry 

should be more useful, because the varying asymmetry is certainly 

associated with net mass transfer, though the total back-and-forth 

mass transfer may not be easy to determine experimentally. On the 

other hand, the dependence of the Y-ray multiplicity upon mass asymmetry 

is complicated by other features as well, which may be even more important. 

From the relatively scant, experimental evidence, one can summarize 

the experimental situation as follows: (a) in the quasi-elastic region the 
30 3? dependence of the y-ray multiplicity upon mass asymmetry is V-shaped, ' 

with the minimum at the entrance channel asymmetry (Fig. 16b). (b) in 

the deep inelastic region the Y-1"ay multiplicity sometimes increase 

with increasing asymmetry when the deep inelastic process involves 
30 31 a narrow ^-window ' (Fig. 15); it usually stays more or less constant 

with mass asymmetry when the deep inelastic process involves a very 
32 large Jl-window (Fig. 17). 

The V-shaped dependence of the Y-ray multiplicity in the quasi-

elastic region can be explained either in terms of the angular momentum 
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transfer associated with mass transfer or, and it may be the same 

thing, in view of the fact that the average energy loss :ncreases 

as one moves away from the entrance channel asymmetry. 

The rising y-ray multiplicity with increasing asymmetry for narrow 

{.-windows may be directly attributed to rigid rotation. 

The flat dependence of the y-ray multiplicity vs mass asymmetry, 

for broad p.-windows does not imply that there is no rigid rotation. On 

the contrary, it is most likely due to angular momentum fractionation 

along the mass asymmetry coordinate. Since the experiments suggest 

that the interaction times are a decreasing function of angular momentum 

and the spread of the cross section along the ma ~ asymmetry should 

increase with increasing interaction times, it follows that the high 

{.-waves populate configurations with asymmetries close to the injection 

asymmetry, while the low a-waves can spread farther out to much greater 

asyinmetries. Thus the average entrance channel angular momentum 

decreases as one moves away from the entrance channels asymmetry. In 

particular the decrease in £-wave as one moves towards larger asymmetries 

(lower Z's) may compensate the rising trend required by the rigid rotation 

condition, thus generating a very weak dependence of the fragment spin 

and of the y-ray multiplicity upon mass asymmetry. 

d) Results of a Simple Model of the Dependence of the y-Ray Multiplicities 
Upon Mass Asymmetry and Q Value 

This problem is equivalent to drawing the lines of constant entrance 

channel angular momentum in the plane defined by the total kinetic energy 
24 and by the fragment atomic number. Empirical prescriptions suggesting 

that such lines are horizontal lines parallel to the Z axis have not 
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been justified and at large negative Q values are clearly incorrect. 

Therefore even a limited attempt at solving the problem from a theoretical 
33 standpoint is justifiable. 

In the limit of infinite radial friction the total kinetic energy 

hZlZ ,(2,£) 

where £ r el is the orbital angular momentum in the exit channel, u is 

the reduced mass, d is the distance of the two fragments at scission, 

and Z is the atomic number of one of the two fragments. There are 

two limiting patterns these lines of constant entrance channel angular 

momentum should display, corresponding to the two extreme regimes 

associated with the rotational degree of freedom of the intermediate 

complex. In the first limiting case the reaction occurs with no transfer 

of angular momentum from orbital motion to intrinsic spin. In this 

case, the angular momentum of relative motion as a function of Z, 

£ relU,£) is a constant independent of Z and equal to I. The curves 

in Fig. 18a show examples for this case assuming the shape of the 

complex to be two touching spheres. 

In the second limiting case the complex is rotating as a rigid 

body at the time of scission, regardless of the impact parameter (5-wave). 

In this case, the relative angular momentum is Z-dependent, and given by: 
9 

V 7 d 7 

Vel(Z.A) = — 
u zd^ +J-(Z)+J/(Z T - Z) 

where jf"(Z) is the moment of inertia of a fragment with charge Z about 

its own axis, and Zj is the total charge in the composite system. 
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This expression can be used to calculate the lines of constant 9. for 

this case. The curves in Fig. 18b show examples of this behavior 

for the same £-waves as for the previous case. 

Qualitatively, one would expect the correct curve for near grazing 

&-waves to be intermediate between the two extremes and to look like 

the dotted curve in Fig. 18c. A more reliable conclusion on the 

qualitative and quantitative aspects of this problem can be obtained 

from a model calculation which we have performed. 

Consistent with experiment, it is assumed that the radial kinetic 

energy is dissipated immediately at the interaction radius. (For 

the lowest #.-waves, the interaction times appear to be long compared 

to the relaxation time of the radial kinetic energy, and for the highest 

&-waves, even though the interaction times are short, very little 

of the kinetic energy is in the radial coordinate). The analysis 

is restricted to a system of two spheres separated by an £-dependent 

distance, d(£), dynamically determined. We need to calculate how 

the orbital angular momentum (&rel) is transferred into the spins 

of the nuclei (I]_,I2) and the functional dependence of Ii and I2 on 

the asymmetry of the complex (Z). This calculation is performed by 

assuming that particle transfer is responsible for energy and angular 

momentum transfer. 

Figure 19a shows the predictions of the model of the system 1156 MeV 

136xe + 197AU. Each pair of adjacent lines brackets 5% of the reaction 

cross section. The qualitative behavior predicted above is now very 

apparent. Figure 19b shows the upper portion of Fig. 19a with contours 

of constant cross section (as calculated by the Fokker-Planck equation) 
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drawn in. The horizontal lines divide the data into ten bins, 30 MeV 

wide. (Only every other line is shown for ease of viewing.) The lines 

of constant I calculated by the model are chosen to coincide with 

the parallel lines at the Z of the projectile. Figure 20 is a plot 

of the ratio of the variance predicted by the present model and the 

variance derived from the parallel cuts. Note the large difference 

for the first few bins. It is exactly in this energy region that a 

previously mentioned discrepancy between the experimental and theoretical 

(one-body theory) energy loss per particle was found. The empirical 

analyses seemed to indicate that the experimental energy loss per 

particle, calculated as 

F . (Ecm ~ TKE b i n) 
2 

o a 
2 2 

(a being the conversion factor defined by o = aa ) was between two 

and three times larger than the expected from a one-body dissipat ion 

mechanism. I f the empirical variances are in error by as much as 

indicated by the present work, the discrepancy between theory and 

experiment disappears. 

This model, which allows one to calculate the Z and Q value dependence 

of the in t r i ns i c angular momentum, can be used to analyze the experimental 

Y-ray m u l t i p l i c i t i e s . Al l that is needed is a transformation from angular 

momentum to Y-ray m u l t i p l i c i t y . The transformation from fragment spin 

to Y-ray mu l t i p l i c i t y is based upon the assumption that most of the 

fragment angular momentum is removed by stretched E2 decay, More 

spec i f i ca l ly we use the fol lowing transformation: 
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Il(ZlEk) + l2(ZlEk) = 2 ( M Y " 2 ^ 

where Ii and I2 are the fragment spins, M. is the y-ray multiplicity, 

and a is the mean number of statistical y-rays emitted by each fragment. 

Compound nucleus studies with heavy-ion reactions indicate that 

a -1 2 - 3.5 depending upon the nucleus. Because of this uncertainty, 

caution must be exercized in comparing the absolute values of the 

measured and calculated multiplicities. 

The kinetic energy dependence of the y-ray multiplicities will 

be considered first. In Fig. 21 the y-ray multiplicity M y associated 

with both fragments in the reactions Au, Ho, Ag + 618 MeV 86« r is 
34 plotted as a function of the total kinetic energy of each pair. Both 

in the experiment and in the theory, the y-ray multiplicities are inte

grated over all the exit channel asymmetries. The number of statistical 

y-rays per fragment is taken to be three. 

The plateau in the experimental multiplicities and the maximum 

in the calculated multiplicities corresponds to a regime very close 

to rigid rotation. The theoretical drop at lower kinetic energies 

is due to the effect of the Coulomb energy (which in the model is taken 

to be that of two touching spheres) and the fact that lower angular 

momenta, in the limit of rigidly rotating touching spheres, are asso

ciated with lower kinetic energies. The experiment does not show 

a drop in multiplicity as large as the theory does, because the exit 

channel configuration is not constrained to that of two touching spheres. 

Thus the deep inelastic component is spread over an energy range extending 

well below the Coulomb barrier. Furthermore, fluctuations in shape 

and fragment angular momentum may destroy the simple correlation between 
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kinetic energy and angular momentum predicted by the model at these 

low energies. 

The second aspect to be analyzed is the Z-dependence of M in 
32 the quasi-elastic region. Examples of data are shown in Fig. 16b. 

34 
Calculations for some of these cases are shown in Fig. 22. The charac
teristic V-shaped pattern is very nicely reproduced by the calculations. 
The qualitative explanation of this pattern is again rather simple. 
Fragments close in Z to the projectile and with substantial kinetic 
energy on the average have exchanged fewer nucleons than fragments 
farther removed in Z from the projectile. Thus less angular momentum 
is transferred to the former than to the latter fragments, giving 
rise to the rapid increase of the y-ray multiplicity as one moves 
away from the projectile in either direction. This good agreement 
is consistent with the agreement observed between experiment and theory 
in Fig. 21 at the highest kinetic energies. From both of these figures 
one is tempted to conclude that particle exchange is sufficient to 
quantitatively explain the dependence of the angular momentum transfer 
upon kinetic energy loss, without invoking the excitation of giant 
collective modes. Apparently the same one-body theory that reproduces 
both the Z distributions and the angular distributions vs Z so satisfactorily, 
also handles the energy and angular momentum transfer more than adequately. 

The final aspect to be considered is the Z dependence of the 
32 Y-ray multiplicity in the deep-inelastic region. Examples of data 

34 are shown in Fig. 17 and of calculations are given in Fig. 22. Again, 

the experimental data are reproduced quite well. It must be emphasized 

that in this energy region the calculation predicts near rigid rotation 
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throughout the Z range. Yet the rise of M with decreasing Z, commonly 

considered a fingerprint of rigid rotation is conspicuously absent. 

The reason for this behavior is to be found in the angular momentum 

fractionation along the mass asymmetry coordinate as first inferred 

elsewhere. The main cause for angular momentum fractionation is 

the interaction time dependence upon I. The high £-waves are 

characterized by a short interaction time and cannot spread too far 

away from the entrance channel asymmetry. The low £-waves are character

ized by a longer interaction time and can populate asymmetries farther 

removed from the entrance channel. Consequently as one moves towards 

more extreme asymmetries, one selects progressively lower £-waves. 

Furthermore, at high angular momentum, the driving force is strongly 

directed towards the higher Z's and discourages any diffusion towards 

low Z's (see Fig. 23). As the angular momentum decreases, the driving 

force also diminishes and may even reverse its direction, thus allowing 

for a substantial diffusion to occur in the direction of the low Z's. 

Consequently the low Z's are selectively populated by low £-waves and 

hence the lack of rise in the Y-ray multiplicity with increasing Z. 

An extreme case of angular momentum fractionation can be seen in Fig. 17c 

at the lowest Z's. Similar results have been obtained by other groups 
35 with similar approaches. 

e) The Second Moments of the y-Ray Multiplicities and Their Sources 

Recent measurements of the 2nd moments of the y-ray multiplicities 

indicate that they are substantially larger than the values expected 

from a 21 + 1 distribution (a/I = 0.35). When the measurements are 

performed as a function of Z, the diffusion process which, as was 
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Tientioned above, can fractionate the angular momentum, can also introduce 

a substantial second moment as can be seen from this simple exercise. 

Let us use an analytic diffusion model without drift to interpret 

the dependence of the angular momentum distributions upon mass asymmetry. 

The solution of the Fokker-Planck equation takes the form 

-1/2 2 
P(Z,t) = [4Try2t] exp -(Z - Zp) / 2u 2 t 

where P is the probability of producing a complex with asymmetry Z 

after an interaction time t , Zp is the entrance channel asymmetry, 

and P2 is the spread coefficient. The cross section for a given impact 

parameter b can be expressed as: 

$(Z,b) = N[T(b) ]" 1 / 2 b exp[-(Z - Z p ) 2 / 2 p 2 x(b)] . 

A simple form for the interaction time x(b) i s : t(b) = x 0 ( l - b / b m a x ) . 

By defining B = (Z - Zp)2/2y2To> a n d by changing variables to n = b / b m a x , 

one arrives at the distribution function 

*(S,n) = N[l -r)Tin B~ 1 / 2 n exp[-6/(l - n)] . 

Given the angular momentum limits ^l, 1"^ and the asymmetry B, 

one may write the moments of the angular momentum distribution as 

y n i 

/ -
ym = / n%(6,n)dn = / u~n7 exp - e / ( l - n ) d n 

m J J [ 1 - T ! ] 1 7 2 

'l n 2 

By making the change of variable x = (1 - n ) _ 1 and defining 

Ui = (1 - Tii)~l for i = 1,2, one arrives at 
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m + 1 - ' m + 1 
^m E M ) 1 ! U.(u r u 2 ,e) 

i=0 V i / 

where 
c 

C i (u i ,u 2 ,B) = J x _ ( i + 3/2) -Bx , ' e dx 

U l 

The integrals K\ satisfy a recurrence relation 

^i _ i + 1/2 
e" "1 e" "2 

"T+I72 ~T+I7T " ^i-i 
L u l u 2 

In order to evaluate the desired integrals, it is sufficient to evaluate 
one of them separately. Application of the recurrence relation now 
allows evaluation of all desired £-j's, and thus all necessary y m's. 

Consider a system in which essentially all impact parameters 
contribute to the deep inelastic process. In order to leave out events 
in which the kinetic energy in incompletely damped, it is assumed 
that ni = 0 and n 2 = 0.9, thus allowing 20% of the cross section for 
incompletely damped (QE) events. Three very striking features, shown 
in Fig. 24, emerge: (1) The mean angular momentum <n> decreases as 
a function of 3. (2) The ratio p = a/<n> exceeds the 2£ + 1 value 
for nearly all asymmetries. (3) The skewness Y changes sign as a 
function of asymmetry. 

In order to compare with experiment, it is necessary to correlate 
86 197 g with Z. From previous work in fitting data from 620 Mev Kr + Au, 
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21 2 -1 the fol lowing parameters are used: y„ = 6.6 x 10 e sec , 
_2l 

T 0 = 4.0 x 10 sec. To calculate the Y-ray mu l t i p l i c i t y , M (Z), 

we assume r i g i d ro ta t ion. Then one has M v (Z) / l /2£ „ = f(Z)<n(3)>, 
T max 

where f(Z) is the fraction of the angular momentum tied up in the 

fragment spins. The curve of asterisks in Fig. 24 is a plot of this 

quantity. As can be seen, the multiplicities are approximately 

constant as a function of Z, in agreement with the data. Large values 

of Y are predicted in excess of those expected from a 21 + 1 distribution. 

Numerous sources of fragment angular momentum fluctuations can 

be found in the thermal excitation of angular momentum bearing normal 

modes, like bending, twisting, wriggling etc. Their effect will be 

considered in the next lecture. It sufficies here to say that, putting 

all the contributions together one can easily account for the experimental 

2nd moments and still one may be left with some. 

f) Alignment and Polarization of the Fragment Angular Momentum 

The torques associated with the frictional forces acting between 

target and projectile during their interaction should induce a spin in 

the fragments aligned with the total angular momentum, and perpendicular 

to the reaction plane. Such an alignment can be effectively used 

to determine whether the fragments are scattered at positive or negative 

angles by determining, for instance, the circular polarization of the 

Y-rays emitted by the fragments. Clear-cut cases of positive scattering 

angles have been demonstrated for the strongly focussed reaction 

612 MeV Kr + Au through the substantial negative circular polarization 
38 of the emitted y-rays. 
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Cases of weak polarization have been observed in the reaction 

Kr + Ag and have been interpreted in terms of contributions to the 
38 cross section from opposite sides of the interaction region. 

The circular polarization of y-rays tests whether the fragment 

angular momentum points above or below the reaction plane and is therefore 

not very sensitive to angular momentum misalignment, provided that 

it is not so severe as to flip the very sign of the spin projection 

on the perpendicular to the reaction plane. 

Spin misalignment can arise from the "thermal" excitation of 

normal modes in the intermediate complex that can bear angular momentum 
39 such as wriggling, tilting and bending modes. This will be discussed 

in detail in the next lecture. One special way in which this can 

occur, is through the fluctuation in z projection of the transferred 
35 nucleons during the mass transfer. In the case of the reaction Au 

con 

+ MeV Kr, the thermal excitat ion of the col lect ive modes generates 

approximately 17fi of random angular momentum to be coupled to about 

27fi of aligned compontent of angular momentum arising from r i g i d ro ta t ion. 

This corresponds to an alignment parameter P - 0 . 6 . 

Attempts to measure the alignment have followed essent ial ly two 

routes, namely the out-of-plane y-ray anisotropy and the out-of-plane 

sequential f ission fragment anisotropy. 

A beautiful measurement of the out-of-plane anisotropy of resolved 
1 fi 4$ 

Y-ray l ines in the reaction 96.5 MeV 0 + Ti indicates an alignment 
parameter ranging from P = 0.8 to P = 0-5 with increasing i ne las t i c i t y 

38 of the reaction. 
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The continuum Y-rays are more d i f f i c u l t to test because of the 

presence of a mixture of mu l t ipo la r i t ies . In the reaction Au + Xe, 

a window set on symmetric mass sp l i t t i ng allows one to observe fragments 

that are known from compound nuclear studies to deexcite at least 80% 

by stretched E2 decay. Preliminary studies of the out-of-plane angular 

d is t r ibut ions rule out deviations for isotropy larger than 30%. This 

is consistent with the alignment parameters P = 0.6 i f proper account 

is taken of the s ta t i s t i ca l y-rays which are present with an abundance 

of ~ 20%. 

The study of the out-of-plane angular d is t r ibut ion of sequential 

f iss ion fragments is complicated by the fact that the f iss ion fragments 

are not emitted exactly perpendicular to the angular momentum, but 

have r.m.s K projection K > 0. 
39 In the reaction Kr + Au at 620 MeV, an out-of-plane r.m.s angular 

width of ~25° has been measured for the sequential f iss ion fragments 

(see Fig. 25). Similar results have been reported for the reaction 

Kr + B i 4 0 and U, Pb + 5 8 N i , 9 0 Z r . 4 1 With the possible exclusion of U, 

a l l the systems give the same out-of-plane angular width of ~25°. 

For the reaction Au + Kr, one would calculate, assuming an equi l ibr ium 

exci tat ion of the col lect ive modes, a random component of angular 

momentum leading to an average angular misalignment of ~32° - 33°. 

The presence of K > 0 should increase the out-of-plane angular width 

even over such a value. The apparent inconsistency between the continuum 

Y-ray angular d is t r ibut ion and the out-of-plane sequential f i s s i on 

angular d is t r ibut ion and/or between the theory and the sequential 

f iss ion data can be resolved in the fol lowing way. Sequential f i ss ion 
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does not occur with equal probabi l i ty for a l l angular momenta. Quite 

to the contrary, i t favors greatly the largest angular momenta. This 

w i l l substantial ly reduce the effect of the random component R of the 

angular momentum, since 

and also reduces the ef fect of K 0 in a simi lar way. An indi rect proof 

of th is is available from the correlation between out-of-plane angle 
41 and f i ss ionab i l i t y in Pb + Ni,Zr. When the f i ss ionab i l i t y is low, 

at small energy losses, the r.m.s angular width is - 2 5 ° . When the 

f i s s i onab i l i t y at large energy losses approaches unity, no great angular 

momentum discrimination can take place and the r.m.s angular width 

is close to 35°, in reasonable agreement with our theoretical expectations. 
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FIGURE CAPTIONS 

Fig. 1. Contour plots of the cross section in the total kinetic energy 

angle plane for various exit channel asymmetries in the reaction 

620 MeV 8 6 K r + 1 9 7 A u . 7 

Fig. 2. a) Missing charge vs. total exit channel kinetic energy for 

various bombarding energies in the reaction Ne + Cu. 
Q 

b) Missing charge vs. excitation energy. 

Fig. 3. Masses prior to evaporation and number of evaporated neutrons 

vs. the atomic number of the fragment prior to evaporation. The 

solid circles and the open triangles refer to the heavy and light 

fragments respectively. For the significance of the lines, see 

text. 1 0 

Fig. 4. Ratio between the number of neutrons emitted by the two 

fragments vs. the mass ratio of the two fragments in the reaction 

400 MeV Cu + Au. 1 1 

Fig. 5. Center of mass kinetic energy spectra of the neutrons 

associated with the two fragments in the same reaction as in 

Fig. 4. 1 1 

Fig. 6. Ratio of the mean number of neutrons emitted by the two 

fragments \>1/\>2 vs. the mean kinetic energy loss for the same 

reactions as in Fig. 4. 

Fig. 7. Variances of the distributions in Z at fixed mass asymmetry vs. 

excitation energy for deep inelastic fragments from the reaction 

6.9 MeV/u Xe + Au. The dashed curve indicates the expected 

variance from quantal fluctuations. The solid curve is the 

prediction for classical statistical fluctuations. 
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8. The quantal (curve 1) and classical (curve 2) widths of the 

Z distribution for fixed mass asymmetry vs. excitation energy. 

Curve 3 is the sum of both contributions and the triangle indicates 
3 the experimental value. 

9. Widths of the Z distributions for several masses vs. the total 

kinetic energy for the reaction Kr + Mo. 

10. a) Contour plot of the cross section in the total kinetic 

energy-atomic number plane for the reaction Kr + Er. The 

parallel lines between E r -, and Q are 20 MeV apart. 

b) Center of mass charge distributions for various kinetic energy 

bins at various lab angles in the reaction Au + Kr. The energy 

bins start 50 MeV below the Coulomb barrier of two touching spheres 
I g 

and increase in steps of 25 paral lel to the Coulomb barr ier. 

11. Center of mass angular distr ibui tons for various fragment Z's 

produced in the reaction 620 MeV 8 6 K r + 1 9 7 A u . 7 

21 
12. Z distributions calculated from the diffusion model for the 

reactions 1 9 7 A u and 1 8 1 T a + 620 MeV 8 6Kr. The dots are the experi

mental data. 7' 2 3 

13. Angular distributions for individual fragments calculated from 
21 the diffusion model for the same reactions as in Fig. 12. 

14. Deep inelastic and fusion-fission components in the reaction 
170 MeV Ar + 1 0 7 ' 1 0 9 A g . The solid line represents the data and the 

29 calculated cross section. 

15. a) Gamma-ray multiplicities vs. atomic number for the reactions 
175 MeV 2 0 N e + Ag at 90°(lab) 3 0 and for the reaction 237 MeV 4 0 A r + 
89 Y. In the lower part of the figure the average gamma ray energies 
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31 for the latter reaction are also given. b) Gamma-ray multiplicity 

vs. atomic number for the reaction ' 1 0 9 A g + 288 MeV Ar (curves) 

and 1 0 7 ' 1 0 9 A g + 340 MeV 4 0Ar (open squares) [Author's unpublished 

data]. 

16. a) Gamma ray multiplicity vs. TKE for the reaction 476 MeV 
5 6 F e + 1 0 7 ' 1 0 9 A g , for different Z bins. b) Gamma-ray multiplicity 

32 vs. atomic number for the quasi-elastic components of the 

reactions 1 6 5 H o , 1 9 7 A u + 618 MeV 8 6 K r . 

17. a) Gamma-ray multiplicites vs. Z for the deep inelastic 

component in 618 MeV 8 6 K r + 1 0 7 ' 1 0 9 A g , 1 6 5 H o and 1 9 7 A u . 3 2 

b) Same as in a) for the reaction 470 MeV 5 6Fe + 1 0 7 , 1 0 9 A g [Author's 

unpublished data]. Notice the angular depenience of M . c) Same as 

in a) for the reaction 340 MeV Ar + Tb [Author's unpublished data]. 

Notice the precipitous drop of M at low Z's. 
Y 

18. a) Lines of constant angular momentum in the Z, TKE plane without 

angular momentum transfer, b) Same as in a) for a rigidly rotating 

system, c) Qualitative expectations for the correct lines of 

existant angular momentum. 

19. a) Lines of constant angular momentum in the TKE vs. Z plane. 

b) An expanded view of a) including contours of constant cross 

section. 

20. The ratio of the charge widths calculated for energy cuts along 

the lines of constant angular momentum and of constant total kinetic 

energy vs. the bin number for the energy loss. 

21. Gamma ray multiplicity vs. total kinetic energy for three Kr 

induced reactions. The solid and dashed curves are fits to the data. 
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22. Gamma ray multiplicity vs. atomic number for three reactions. 

The open circles represent the quasi-elastic components and the solid 

circles the deep inelastic components. Solid curves are fits to the 

data. 3 4 

23. Potential energies vs. the atomic number of one fragment for 

various angular momenta for the system in Kr + Au. 

24. Mean angular momentum <n>, its second moment o, the relative 

function p = a/<n> and the skewness Y vs. the asymmetry parameter B 

(see text) The asterisks represent the expected dependence of the 
37 gamma ray multiplicity upon g. 

25. FWHM of the out of plane fission and non-fission components 

as a function of Z. 
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