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.ON CALCULATING FLOWS WITH SHARP FRONTS IN A POROUS MEDIUM 

by 

N. Albright and P. Concus* 

Abstract. A numerical method.capable of tracking sharp fronts 
is discussed·for solving multiphase flow problems in a porous medium. 
It is used to solve numerically the multidimensional Buckley-Leverett 
equation and simultaneous saturation-dependent pressure equation for 
the model problem of a five-spot waterflood of a petroleum reservoir 
in the absen~e of capillary pressure. The results indicate that the 
method performs favorably and that·for the model problem the total 
velocity departs only slightly from that of potential flow. 

1. Introduction. In the study of multiphase flo~ through a porous 

medium, there arises frequently the difficult task of solving a problem 

whose solution has sharp fronts or nearly sharp fronts. Examples of 
' 

these fronts are the ones between different fluids or between regions of 

differing chemical concentrations. Even though sharp fronts may not be 

present initially, they can develop with time as a natural consequence 

of the nonlinearities of a given problem. 

The fronts correspond mathematically to discontinuities, or near 

discontinuities, of solutions of hyperbolic, or nearly hyperbolic, par­

tial differential equations. If one attempts to compute these solu­

tions numerically, difficulty normally is encountered when conventional 

methods based on discretization of the partial differential equations 

are employed [2,8,12]. Such methods generally are based on smoothness 
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assumptions that are violated when discontinuities are present, and they 

often require devices such as the introduction of artificial dissipation 

for stability or f6r ensuring that the cor~ect solution i~ obtained. 

We are presently engaged in a study whose purpose is the development of 

numerical methods that are. capable inherently of tracking solution dis.,.. 

continuities in porous flow problems. 

2. Buckley~Leverett Problem. The fundamental exampleof a porous­

flow problem with sharp fronts is the Buckley-Leverett problem for 

immiscible, incompressible, two-phase flow, such as the displacement of 

petroleum by water in a porous medium~ If the ·effects of gravity and of 

capillary pressure are neglected, one obtains for one space dimension, 

with appropriate normalization,' the equation [2,3,11] 

(1) ~ ~ + q a: H < s)] = o . 
In {1) s (x, t) · is the. saturation of the displacing fluid (the fraction 

of available pore voiume occupied by that fluid), and x and t are 

the space and time variables~ The quantity q is the· total volumetric 

flow rate, which is independent of x and.is usually taken to be_a con­

stant, independent of time, so that (1) is, in essence, in conservation­

law form. The porosity·(not shown explicitly in (1)) also is constant 

for this problem and for simplicity is .assumed to have been absorbed 

into the other variables. 

The quantity f(s) is the fractional volimietric llow rate of the 

displacing fluid. Typically f(s) is a smooth function whose graph has 

the S-shape shown in Figure 1. Of particular interest is the presence 

of the inflection. Because f (s) is not convex, the possible configura-' 

tions of weak (discontinuous) solutions is more complicated than for the 
. . ' . 2 

related equations of gasdynamics, such a~ Burgers's equation (f (s) = ~s ), . 

for which the function corresponding to f(s) is strictly convex. 
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These complications are discussed in detail in [7], where the Piecewise 

Sampling Method (PSM), the numerical method of particular interest in our 

study, (see § 3) is used to solve (1). 

In more than one space dimension, the Buckley-Leverett equation (1) 

becomes 

(2) as at + q • grad [ f ( s) ] = 0 • 

Although for one space dimension the total velocity q is normally 

constant and could be absorbed into the other variables without appear­

ing explicitly, in two or more dimensions it must be determined simul­

taneously with s from the incompressibility condition [2,11] 

(3a) - div[A.(s) grad p] = Q , 

(3b) q = -A. (s) grad p . 

In (3) p is the pressure and Q the sources or sinks. The quantity 

A.(s) is the total mobility (sum of individual phase mobilities) and is 

positive, bounded strictly away from zero. 

typically ensure that if s were known, q 

by solving the elliptic equation (3a). 

Boundary conditions on p 

would be determined uniquely 

In [1], PSM is used to solve (2) numerically for two space variables 

with q given as the solution of (3) for A.(s) constant. That is, g 
is taken to be the potential-flow velocity corresponding to the given 

geometry and distribution of sources. This velocity represents qualita­

tive features of the actual flow and permits the solution of (2) to be 

obtained using analytic means, for comparison with numerically computed 

solutions. It is found in [1] that PSM is able to compute efficiently 

the solution of (2) for a model problem and to obtain a value of the time 

of breakthrough (of water from injection wells into producing petroleum 

wells) that is in good accord with the analytically derived one. 
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In the present paper we continue the study reported in [1] by remov­

ing the preliminary restriction of fixed . ~· We solve the system (2,3) 

inimerically in two Space dime~sions by coupling PSM with the generalized 

(preconditioned) conjugate gradient inethod. We summarize first the fea­

tures of PSM. 

3. Piecewise Sampling Method. The Piecewise Sampling Method is a 

numerical method that possesses the inherent capability of being able to 

track solution discontinuities.· It is based on a mathematical construc­

tion of Glimm [9] and was developed into an efficient computational 

algorithm by Chorin [4]. It is known also as Gliinm's Method and as the 

Random Choice Method. 

Among the features of PSM, which in its basic form is a one space 

dimensional method, ate: (i) The representation of discontinuities is 

based not on differencing or other discretizations but on local Riemann 

solutions and a sampling procedure. (ii) Discontinuities are propagated 

sh*rply. (iii) De~ices such as artificial dissipation are not requited. 

(iv). For a purely hyperbolic problem the correct solution is obtained, 

corresponding to the. limiting solution of parabolic problems as the dis­

sipation approaches zero. 

The method advances a solution one .step·in time by approximating the 

solution at the initial time by a piecewise-constant function on a spa-
' tial grid; solving analytically with the piecewise~constant initial data, 

and sampling this analytic solut.ion to obtain values for a piecewise­

constant approximation at the new time. 

The time incrementsare chosen sufficiently small so that waves prop­

agating from initial discontinuities at the spatial grid points do not . 

interact. ·The analytiC: solution may then be obtained by joining together 

the separate solutions to the Riemann problems for the propagation from 

each discontinuity. (A Riemann problem is one that has initial.data that 

is constant to the left and to the right of a single s~ep-discontinuity.) 

The reader is referred to [4,5~7] and the references therein for 
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a detailed description of.PSM. The extension to two space dimensions 

using fractional splitting is discussed for the Buckley-Leverett equa­

tion in [1). 

4. Numerical Solution Procedure. We obtain a numerical solut-ion 

of (2,3), subject to appropriate boundary and initial conditions, by 

advancing stepwise in time as follows. Assume the approximate solution 

for s(n), the saturation at time t = t , is known. Let p(n) denote 
n 

the pressure at time t . We solve a discrete approximation to 
n 

(4) 

and its boundary conditions, to obtain an approximation to 

we advance s one step in time by solving 

(5) 
as (n+l) . (n) (n+l) 

at· +s •grad[f(s )) = 0 

(n) 
p • Then 

(n) using PSM, where q is obtained using 
(n) 

s ' p(n), and a d-iscrete 

approximation to (3b). 

We illustrate this procedure in detail for the specific example that 

is studied in [1) of the five-spot configuration of the waterflood of a 

petroleum reservoir. The function used for f(s) is [1,12) 

f(s) = 
2 s 

2 2 s + a.(l-s) 

where a. is the ratio of water to oil viscosities. Figure 1 corresponds 

to the value a.=~. which is the value used in [1]. The function used 

for A(s) is [12) 

A(s) 2 2 
= s +a.(l-s) 
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where, for convenience, ·• A(s) is normalized by absorbing the physical 

constants of absolute permeability and water viscosity into p. 
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Figure 1: Fractional flow as a 
function of saturation. 
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Figure 2: Quarter configuration 
of the five-spot problem depict­
ing staggered pres.sure e and 
saturation 0 mesh points for a 
5 x 5 grid. . 

Let unit sources (water injection wells) be placed in the x~y plane· 

at x = 2£, y = 2m and unit sinks (petroleum production wells) be 

placed at x = 2£-1, y = 2in-1, £,m = .•. ,-2,-1,0,1,2, •.•. Then for 

the quartet configuration· of the unit sq.uare (see Figure 2) we solve (3) 

with 

(6) Q = o(x)~(y) - o(x-1)o('y-l) 

and symmetry boundary condition 

(7) ap/av = o 

.. 
on the edge of the square, where \) .. is the outer directed normal. 
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Correspondingly, we take the boundary conditions on s for (2) to be 

that 'Os/'O'V = 0 on the edges of the unit square and s = 1 at the source 

(0, 0). Initially we take s :: 0 everywhere except at the source. 

A discrete approximation is obtained by approximating p at spatial 

grid points staggered with respect to the grid points at which s is 

approximated (see Figure 2). For a uniform square mesh 

i=O,l, ... ,N, j=O,l, ... ,N, one approximates p(x,y;t) 

xi::i:ih, yj=jh, 

at the spatial 

mesh points (xi,yi), whereas s(x,y;t) and A.(s) are approximated at· 

the mid-points (xi+!~h,yj+~h), i = O,l, ••. ,N-1, j = O,l, •.•. ,N-1. 

This permits the standard five-point difference approximation to be 

written for (4). At a general interior point one has, denoting 

Pi,j =p(n)(xi,yj), A.i-f-.l~,j+~=l.(s(n)[x1+~h,yj+~h]), and Qi,j =Q(xi,yj), 

+ >... 1 ·+1 (- P. "+1- Pi 1 j+ 2p. . ) 
1-~.J ~ 1,J - ' 1,J 

+ >... 1 . 1 (-p. j 1-pi 1 j+ 2pi .)} 
1-~.J-~ 1, - - ' ,J 

= Qi . ,J 

At boundary points, one -obtains similar expressions, with appropriate 

terms absent from the left-hand side [14]. 

The resulting system of equations has a symmetric, positive semi­

definite coefficient matrix and could be solved by one of several 

numerical methods that take advantage of its special structure.. We have 

\ .• : .selected for our numerical tests the method of generalized (precondi­

tioned) conjugate gradients with a discrete Laplace operator splitting 

[6). This is equivalent to solving iteratively a discrete form of 

(8) - div (X grad p(t+l)) = -div[(X->..(s))grad P(t))+Q 
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for the new approximate solution p U+l) f.rom the old p (i), where I 
is a constan·t, with acceleration by the conjugate grad·ient method~ . 

Because the domain.is a .rectangle; the solution of the discrete form of 

(8) can be accomplished efficiently using standard, available computer 

programs. We have used for this purpose the program PWSCRT in the NCAR 

ellipti~ partial differential equation· software package [13]. 

After the approxittiate solution- for. p is obtained to desired accu­

racy, it can be differenced to give the corresponding values· for q on 

the same grid as for s. At a general interior point we 

take to be 

. . -1 
:: -A.-'..1.. '+1 (Zh) [p.+l.j+l-pi. '+l+p.+.l .-p .. ] 

1.•'2,] ~ l. ' ,J l. .• J l.,J 

with a corresponding expression for . qy (xi~' y j~). . 

Using the valuesof q(n) so obtained, (5) can be stepped ahead an 

increment in time to obtain s(n+i), the approximation to s a:t the new 

time, in the same manner as is. described in [1].· This. is· accomplished 

by means of fra.ctional steps, which split (5) into a sequence of one-

dimensional problems in X and in y. The resulting one-dimensional,. 

problems can then be solved by PSM, as described in [1,7]. We have used 

for this purpose modified forms of the computer programs developed with 

W. Proskurowski in. [ 1, 7] • 

For the present problem we have found it preferable to order the 
< 

fractional splittings so that 'two one-dimensional problems in x are 

done successively, and correspondingly for y. This permits a favorable 
. . . 

placement of the fluctuating PSM grid fo~ s r~lative to the grid on 

which q is given and relative to the boundaries •. After a complete time 

step of PSM two. one-dimensional x problems and two one-dimensional 

·Y problems the next stepwise procedure can be initiated starting 
<n+l> · 

from the obt.ained values of s • 

(.• 
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Figure 3: Saturation 
contours 0.5(0.1)0.9 of 
the numerical solution 
and fraction of initial 
oil recovered at times 
t = 0.5, 1.0, 1.5, 2.0, 
and 2.2. 



5. Results-. The five-spot problem was solved numerically by the 

procedure of § 4 on a 41 x 41 mesh for values of viscosity ratio ex = ~ 
and ex = ~. The solution obtained is depicted in Figures 3 and 4 for 

the case a = ~. In Figure 3 contours · s(x,y;t) = 0.5(0.1)0.9 are 

plotted at times t = 0.5, 1.0, 1.5, 2.0, and 2.2, respectively; the 

last is the time of breakthrough for this calculation. · The fraction 

of initial oil that-has been recovered at the production well at (1,1) 

is given at each time also. Figure 3 was drawn using subroutine 

CONREC from the NCAR graphics package. Since that subroutine displaces 

contours that should lie on top of each other into separate curves, the 

drawing of the contours for s = 0.1(0.1)0.4 .was suppressed for clarity. 

In essentially all cases the tabular output indicated that the front was 

sharp and that these contours wo~ld coincide with the one for s = 0 .. 5, 

which is the first plotted contour ahead Of the front. The.pinched con­

tours at breakthrough arise in part from the interpolation in the plot­

ting routine •. The analytically derived solution obtained in [1] for ,this 

problem gives a height at the fiont of 0.577. In Figure 4 the satura-

tion along the diagonal of the square is plo~ted for each of the 

times depicted 
1.0~~--r---r---..:...;,~~...;;,:,..;:~___,.......;,_;,...;....,;;-;-~~=.., 

s 

t= 0.5 1.5 2.0 2.2 

z 
XBL 797·2319 

Figure 4: Saturation vs. distance z v2. along 
the. diagonal y • x at times t • 0.5, 1.0, 1.5, 
2.0, and 2.2. 

(; 

10 



'• 

One observes from Figure 4 the sharpness with which the front advances. 

(The non-vertical front results from the linear interpolation between 

mesh values used in plotting Figure 4.) In Figures 3 and 4 can be seen 

the fluctuations of the order of one mesh interval that occur with PSM, 

in part because splitting is used. These fluctuations are stable, how­

ever, and do not grow with time. In a problem with dissipation (capil­

lary pressure) the fluctuations would, of course, be smoothed. 

Table 1 summarizes some of the information concerning the solution at 

the time .of breakthrough. The columns give, respectively, for each value 

of a, the value of t at breakthrough, the fraction of the initial 

oil recovered before breakthrough, the number of full time steps of (5) 

by PSM required to reach breakthrough, and number of those time steps at 

which s changed discernably so that a solution of (4) was required. 

t 

1. 75 

2.20 

TABLE 1 

Breakthrough Data 

fraction of 
oil recovered 

0.47 

0.56 

time steps 
of (5) 

174 

170 

solutions 
of (4) 

51 

51 

Fewer solutions of (4) are required, in general, than stepwise 

advances of (5), because s may remain essentially unchanged after one 

step of PSM. In our calculations, the time steps were reduced from the 

maximum allowed by the Courant-Friedrichs-Lewy condition (see [1]) to 

accommodate a uniformly spaced interval 0.05 of output times; as a con­

sequence for over two-thirds of the time steps the saturation remained 

essentially unchanged. 

Equation (2) was solved for comparison purposes with q fixed at 

the potential flow velocity, as obtained by one solution of (3) with A 
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constant. It was found that the remaining entries in Table 1 would have 

differed by only a few percent had this fixed potential-flow velocity 

been used. In fact; the similarity of the solutions. for the fixed and 

non-fixed velocities for the cases in Table 1 was striking, with at most 

a few percent difference in velocity and saturation away from the front 

and a displacement of at most about one mesh interval at the front.· 

(In our test problem with smaller values of a this similarity was not 

present, because "fingering'' of the advancing front occurred for the 

non-fixed velocity case. See also [10].) 

For the cases described in Table 1 one full time step for advancing 

s in (5) required on the average 0.074 CPU seconds on the CDC 7600. 

For the same cases one iteration for p in (8), consisting of one solu­

tion of Poisson's equation by the NCAR package PWSCRT plus associated 

conjugate gradient overhead, required on the average 0.117 CPU seconds. 

Whenever a solution of (4) was required, a sufficiently accurate approx­

imation was obtained after three conjugate gradient iterations of (8). 

Thus the total .CPU time required to reach breakthrough for each value 

of a was approximately 30 to ,31 seconds, ·of which about 18 seconds 

was required for solving (4) for the new velocities. Methods other than 

generalized conjugate gradients with discrete Laplacian splitting for 

solving (4) might obtain the velocity to required accuracy in less com­

puter time, but none were investigated as part of this study. 

In subsequent studies of PSM, we plan to include the effects of 

capillary pressure and gravity and to investigate alternatives to frac­

tional splitting for multidimensional problems. 

Acknowledgment. We wish to thank Alexandre Chorin for several help­

ful conversations concerning PSM. 
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