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FAULT ZONE CONTROLLED CHARGING OF A LIQUID 

DOHINATED GEOTHERJ.viAL RESERVOIR 

K.P. Goyal* and D.R. Kassoy 
Mechanical Engineering Department 

University of Colorado 
Boulder, Colorado 80309 

A mathematical model is developed for the fault zone controlled charging 

of a geothermal reservoir. The model is used to describe a reservoir of finite 

vertical extent with an impermeable upper boundary. A quasianalytic theory is 

developed for high Rayleigh number convection of liquid in a rigid porous 

medium. In this approximation, liquid rises up the fault and spreads into the 

near regions of the reservoir isothermally. The cooling effect of the surface 

on the fault flow is confined to a thin layer near the surface. This layer 

grows with distance from the fault. In the far field of the aquifer the full 

depth of the reservoir is cooled by the surface. A study is made of the effe,ct 

of various parameters such as mass flow rate, Rayleigh number, and fault width 

on the pressures, velocities, temperatures and their gradients at different 

locations in the fault and in the aquifer. This analysis can be applied to 

geothermal systems where the thickness of thL impermeable reservoir cap is 

quite small compared to the reservoir depth. 

1. Introduction 

In recent years mathematical models of heat and mass transfer in unexploi

ted liquid-dominated geothermal systems have evolved from the extremely ideal

ized variety into a form which is at least physically viable. As geophysical 

field data from a multitude of systems was collected and analysed it has become 

possible to develop conceptual reservoir models which contain elements of 

physical plausibility. The latter property has not always been present in 

modeling efforts. For instance the category of hypothetical idealized models, 

represented by extensions of classical hydrodynamic stability theory in porous 

*Present address: Earth Sciences Division, Lawrence Berkeley Laboratory, UC 

Berkeley, California 94720 
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media (see review articles by Combarnous and Bories [1975], Cheng [1978], Garg 

and Kassoy [1979]) lacks both the significant internal structure and the 

boundary conditions relevant to real geothermal systems. These models can be 

used to develop the fundamental principles of convection processes and even to 

find semi-quantitative estimates of the magnitudes of heat and mass transfer in 

field situations. Yet their configuration and properties preclude the compari

son of theoretical prediction with field measurements. In addition elements of 

hydrodynamical stability, which appear as.a result of an incompletely defined 

system (infinite slab configuration) or simplified thermal boundary condition 

(uniform temperature on a horizontal boundary), tend to introduce specicous 

physical effects which probably do not arise in real systems. As an example 

the convection mode observed in the field is almost surely the result of 

--georogical-structure-(the-combinati:on-of-fr-act-ure-zones,-faults,-aquifers) 

rather than hydrodynamic stability properties. 

Hypothetical but more plausible models which contain elements of config

urational, structural and thermal reality, were introduced by Einarsson [1942], 

Wooding [1957] and Elder [1966]. The first author's pipe model concept arises 

from on the hydrostatic imbalance that exists between the heated, low density 

water in the active part of a geothermal reservoir and the colder, denser 

water in the peripheral region. Qualitative properties of these global geo

thermal systems were discussed by Elder [1966], Bodvarsson [1961] and White 

[1961]. A quantitative study is given by Donaldson [1968, 1970]. 

The large scale convection cell models of Cheng and co-workers, summarized 

in Cheng [1978] represent a second type of plausible model. In a typical 

example Cheng and Teckchandani [1977] investigate the time-history of a convec

tion pattern initiated by a distributed hot spot on the lower boundary of a com-

. pletely defined reservoir region. In a related fashion Norton [1977], Norton 

and Knight [1977], Cathles [1977] and Torrence and Sheu [1978] have examined the 

evolution of a convection system caused by the emplacement of an intrusive or 

pluton in.a water-saturated fractured rock system. 

Other plausible models concentrate on smaller-scale geological configur

ations. Sorey [1975] and Turcotte, Ribaudo and Torrence [1977], and Kassoy 

and Zebib [1978], have generated distinctly different models for hot springs 

systems based on convection in high permeabilty fracture zones associated with 

·faulting. Heat transfer from a simple model of a dike has been described by 

Cheng and Hinkowicz [1977]. 

v· 
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Preproduction models of unexploited systems are based on interpretation 

and analysis of field data sets. An effort is made to represent the essential 

physical features of the observed systems in both the conceptual and mathemat

ical sense. Typical examples include Wooding's [1957] cross-sectional model 

of upflow in the Wairakei system, the two-dimensional areal reservoir model for 

Wairakei by Mercer, et al. [1975] and Mercer and Faust [1979], Sory's [1976] 

large-scale vertical model of the Long Valley Caldera, the Salton Sea reser

voir areal model developed by Riney et al. [1977] and a vertical analysis of 

East Mesa System by Goyal [1978]. 

The present study involves a plausible, hypothetical model for a geother

mal reservoir charged by heated water from a vertical fault zone. It is moti

vated by observations of the East Mesa field in the Imperial Valley, California. 

A two-dimensional mathematical model of a liquid dominated geothermal system 

with impermeable upper boundary has been developed. The saturated porous media 

equations are used to describe this model. The solution techniques involve the 

combination of perturbation methods, boundary layer theory and numerical 

methods. Results are presented for the pressures, velocities, temperatures and 

temperature gradients in the system. The application of this theory to a 

typical geothermal system is discussed in the last section of this paper. 

2. Conceptual Model Development 

Recent studies of liquid-dominated geothermal systems like Wairakei 

[Grindley, 1965], Broadlands [Grindley, 1970], Long Valley [Rinehart and Ross, 

1964], Ahuachapan [Ward and Jacobs, 1971], and Imperial Valley [Elders et al, 

1972] suggest that geothermal anomalies are intimately associated with specific 

patterns of faulting. Combs and Hadley [1977] have suggested that the Mesa 

fault at the East Mesa geothermal anomaly in the Imperial Valley acts as a 

conduit for hot waters rising from depth. - It has been hypothesized [Bailey, 

1977] that the geothermal reservoir is generated by charging of hot water from 

the fault at an intersection with a aquifer of appropriate horizontal perme

ability. A conceptual model of such a system is shown in Figure 1. The 

fault is hypothesized to be a vertically oriented region of heavily fractured 

material of finite width (2 Ye'). The vertical extent and the second horizontal 

dimension of the fault are large compared to the width. The fault extends 
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downward through the interbedded sediments of the reservoir for a distance L' 

and then into the basement rock. It is postulated that the fault is charged at 

depth by the liquid which has been heated in an extensive basement fractured 

system. The rate of charge cannot be specified a priori without a global analy

sis of the convection process. The liquid rises up in the reservoir section of 

the fault and is pushed into the aquifer by the overpressure associated with 

the convection process. The liquid is assumed to flow horizontally in the 

aquifer since general vertical permeability is minimized by the presence 

of shaley layers associated with interbedding in geothermal systems like those 

at East Mesa [Bailey, 1977] and at Wairakei [Donaldson, 1978]. 

For mathematical purposes, the fracture zone is idealized as a vertical 

slab of porous media. The adjacent aquifer is represented as a porous medium 

of lateral half width H' with horizontal permeability only. Spatially uniform 

temperature boundary conditions are imposed on the cold top surface and at the 

hot bottom boundary of the reservoir. As a result, far from the fault the 

horizontal temperature gradient becomes vanishingly small even though the 

horizontal motion of the liquid persists. The temperature distribution at a 

vertical boundary in this region will be controlled essentially by the vertical 

conduction. The horizontal location of this boundary (y'= H') is specified 

during the calcuations by locating a position where the horizontal heat flux is 

small compared to that in the vertical direction. The associated hydrostatic 

pressure distribution at the far field boundary can be calculated once the 

density distribution is known. 

It is to be emphasized that this model is only a part of a "global circu

lation pattern." It does not define the downflow and heat-up zones, and thus 

input mass cannot be specified. The driving mechanism for the convection, the 

result of a hydrostatic pressure imbalance between the hot upflow region and 

the cold downflow zone, is identical to that envisioned by Donaldson [1968] • 

3. Mathematical Model 

A detailed derivation of the describing equations for a thermally active 

saturated, deformable porous material is given by Goyal [1978]. The equations 

used in the present study are obtained from that set by assuming that the flow 

is steady, the solid matrix is rigid, the fault medium is homogeneous and iso

tropic, liquid properties are constant, the thermal conductivities of the 
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fault and aquifer media are constant and equal, and that the vertical perme

ability in the aquifer is much smaller than the horizontal value, which is 

equal to that of the fault. In addition the Boussinesq approximation is 

invoked. 

The describing dimensional equations are: 

Fault zone: 

V' 
y' + W' z' 0 (1) 

V' K' P' -V' y' (2) 

W' 
K' 

{- (P' - v' - p~)z, + g' (P, - p ')}: 
0 

(3) 

c' { V' T,, + W' T' ,l =X'{T', , + T', ,l 
p y z m y y z z 

(4) 

p , p '. [1 - a' 
0 e 

(T, - T' 
0 

) ] (5) 

Aquifer: 

v'(z') (6) 

C' v' Q', 
p y 

X' (9' . + 9' ) 
m y'y' z' z' 

(7) 

where the variables are defined below eqation (18). The solution of 

the above system is subjected to the following boundary and continuity 

conditions. 

Boundary conditions: 

Fault zone: 

W'(y' ,0) = 0, impermeable upper boundary 

+y' f e, W' (y', - L ') dy' = M', input mass flow rate 
-ye 

T'(y', 0) = T', 
0 

T'(y', - L') = T' 
max' 

T', (0, z') = 0, 
y 

cold upper boundary 

hot lower boundary 

symmetry 

(8) 

(9) 

(10) 

(11) 

(12) 

v 



Aquifer: 

S'(y', 0) = T' 
o' 

S'(y', - L') = T' 
max' 

8' (H', z') = T' 
0 

- (T' - T') 
max o 

7 

cold upper boundary 

hot lower boundary 

, 
z 

aquifer edge 
L'' 

(13) 

(14) 

(15) 

Equation (15) is a formal statement of the required conduction -

controlled heat transfer at the far-field boundary. The value of 

H' is found in ·the course of analysis. 

Continuity conditions at the fault-aquifer boundary: 

T'(ye'' z') = 8' (ye'' z') (16) 

V' (± y e' , z') = ± v' ( z') (17) 

P'(ye' ,z') = p' (ye'' z') (18) 

The dimensional variables are defined by 

V' = horizontal Darcy mass flux in the fault per unit area, 

gm/cm2 
- sec 

W' = vertical Darcy mass flux in the fault per unit area, 

gm/cm2 
- sec 

K' = fault permeability and horizontal permeability in the 

aquifer, cm2 

v' kinematic viscosity, cm2 /sec 

P' = fault pressure, dynes/cm2 

p~ cold hydrostatic pressure with respect to density p~, 

dynes/ cm2 

p' 
0 density of the liquid at the ambient temperature T~, gm/cm3 

p' =density of the liquid at the temperature T', gm/cm3 

g' acceleration due to gravity, cm/sec2 
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c' 
p 

2 2 specific heat of the liquid at constant pressure, em /sec _oK 

T' 

>.' 
m 

a' = 
e 

T' 
0 

fault temperature, OK 

3 
medium thermal conductivity, gm - em/sec - OK 

coefficient of thermal expansion of the liquid, /°K 

ambient temperature, °K 

, 2 
v = horizontal mass flux in the aquifer per unit area, gm/cm -sec 

, 
p = 

9' = 

Ye 
, 

= 

L' = 

M' 

T' 
max 

aquifer dynes /em 
2 

pressure, 

aquifer temperature, OK 

semifault width, em 

depth of the reservoir, em 

mass flow rate per unit length in the direction perpen
dicular to the plane of paper, gm/cm-sec 

maximum temperature at the hot bottom boundary of the 
reservoir, °K 

In the fault, where the characteristic horizontal dimension and 

velocity component are much smaller than their vertical counterparts, 

the appropriate nondimensional variables can be defined as: 

y = y'/y ', y = y '/L', z = z'/L' 
e e e 

v V'/ ' p' W = W'/ 'p' T = T'/T' yeqo o' qo o' o' 

T = (T, - T,) /T, p = (P, - , ) I , 
max o o' PH Po• 

Substitution of (19) into (1)-(7) leads to an inherent balance 

between the buoyancy, Darcy, and pressure terms in the vertical 

momentum equation, if 

q~ 

p~ 

a' l!.T'g'K' 
e 

v' 

p' 'a'L' l!.T' og e 

reference convection velocity 

reference convection pressure 

(19) 

(20) 

• 
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>. ' ( t. T '/L ' ) 
m 

= Rayleigh number R = 

where t. T' = T' - T' 
Max o 

The nondimensional equations, transformed boundary and continuity 

conditions relevant in the fault zone can be written as 

Fault zone: 

v- +W = 0 (21) 
y z 

2. v = - P- (22) Ye y 

w - p 
z 

+ (T-1) /T. (23) 

y2. (VT- + WT ) T-- + Ye 
2. T (24) y z yy zz 

1 /2. 

y = R Ye (25) 

W(y, 0) 0 (26) 

W('y, -1) = M (27) 

M = M' /M', M' = 2 , p' , 
(28a, b) 

0 0 Ye 0 qo 

T(y, 0) 1 (29) 

T(y, -1) = 1 + T. (30) 

T- (O,z) 0 (31) 
y 

V(±1, z) ± v(z) (32) 
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"' In the aquifer where the horizontal scale is measured by y 

the pressure p = P,, the temperature e = T, and the velocity 

v = V; the appropriate system of equations is given by: 

Aquifer: 

v(z) = -~/d y 

dY 2 v(z)S,., = 2 e,.._,., + d2 9 
y Ye yy zz 

where 

H' /L' = d/ye, d 0(1) number 

e (y, 0) = 1 

e (y, -1) = 1 + T 

1, z) 

0(y = 1, z) = 1- Tz 

y' /H,' 

(33) 

(34) 

(35a,b) 

(36) 

(37) 

(38) 

(39) 

The magnitude of H' with respect to the fault depth, L', given in 

(35) is chosen to ensure a balance between the nondimensional aquifer velocity 

v and the horizontal pressure gradient as shown in (33). The specific value 

of d is found in the course of analysis. 

In order to proceed further we must consider the magnitude of the Rayleigh 

number and the parameter y. If parameter values typical of geothermal systems 

(K' = 10-13 m2 and thermodynamic variables evaluated at T' 298 °K) are 
o· 

used in (19) and (20) we find that 

3x10 5 Pa ~ p0 '~ 15 x 10 5 Pa 

0. 2 f T £. 1 

2x10 2 L R { 10'+ 
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Large values ~f R suggest that energy transfier associated with liquid 

convection is far greater than that due to conduction. In this regard one may 

expect that fluid particles moving through the system will tend to behave iso

thermally unless affected by cooling associated with a relatively cold boundary. 

The parameter y is assumed to be an 0(1) number because Ye is considered 

small. If for instance we consider R = 10 3 and L' = 2km then Ye' = 63.2y 

meters, indicating that reasonable fault zone thicknesses can be incorporated 

in the theory. In the mathematical analysis solutions are sought in the limit 

of large R with y = 0(1) implying, of course that Ye is small. 

The cooling effect of the surface is confined to a thin thermal boundary 

layer near the top of the fault for a high Rayleigh number flow. The boundary 

layer grows as the fluid moves away from the fault and virtually occupies the 

whole depth of the aquifer in the far field. Thus, the flow outside the 

boundary layer is an isothermal flow. 

It can be noted from (22) that the horizontal pressure gradient in the 

fault is very small, O(ye 2
). Thus, the basic fault pressure is· only a func

tion of depth and can be calculated in terms of W and v. The horizontal · 

aquifer velocity v(z) can then be calculated explicitly from (33) because the 

far field pressure is known once (39) is specified. Upon decoupling the fluid 

mechanics from the thermal problem, the energy equation (34) can then be solved 

for the temperatures in the aquifer. 

4. Fault Zone Solution 

The water in the fault zone rises adiabatically because the convection 

Rayleigh number is considered to be large. Even the liquid in the aquifer just 

adjacent to the fault remains at the supply temperature. Cooling in the fault 

itself can take place only in a thin boundary layer just below the cold upper 

surface. The uppermost portion of the neighboring aquifer is similarly 

effected. 

The basic solutions in the isothermal portions of the fault and aquifer 

system are: 

T = 1 + -r (40) 



v = y 

w 

12 

{a cosh z//d + b sinh z//ci- l} + O(y 2) 
1 1 e 

a /ci sinh z//ci- cosh z/,/d + z+l + O(ye2) 
1 

p d{a cosh z//d + b sinh z/.fd -1}- zZ/2 + O(y 2) 
1 · 1 e 

v(z5 =a cosh z//d + b sinh z//d- 1 + O(y 2) 
1 1 e 

p = v (z)d (1-y) - z 2 /2 + O(y 2) e 

where 

M + cosh 1//d 
a b 1//d 

1 /ci sinh 1/ /d 1 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46a,b) 

It can be noted that (-z 2/2) is the pressure at the far field 

boundary of the aquifer and is consistent with the specified temp

erature field(39). 

According to (29), the nondimensional temperature at the top 

of the fault is 1. There should be a boundary layer to accomodate 

the temperature drop from 1 + ~ to 1. If the appropriately scaled 

variables 

z = z/y and W = W/'y 
·e e 

(47a,b) 

are used in the basic fault-zone equations then the lowest order 

boundary layer system has the form: 

v - + w - = 0 oy oz 

p -
ly 

T - 1 
0 

0 

0 

y 2 (V T- + W T -) = T -- + T --o oy o oz oyy ozz 

(48) 

(49) 

(50) 

(51) 
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However, it can easily be seen that the lowest order fault pressure 

p is a constant and when matched with the outer solution (43) one 
0 

finds that 

P = d(a 1 - 1) 
0 

(52) 

The solution to the system of equations (48) to (51) is subjected 

to the following boundary, matching and continuity conditions. 

T (y, 0) = 1 
0 

w (y, z + 0) = 0 
0 

w (y, z + - 00 ) - z(a - 1) 
0 1 

P
1
Cf, z+-OO) = z 

(53) 

(54) 

(55) 

(56) 

(57) 

It can be noted that the matching conditions (z + .-oo) are obtained 
I 

from the outer solutions (40) - (43). The boundary layer solutions 

can be written as: 

where 

T = 1 - • erf(Az) + O(y ) 
e 

p 
1 - A zzz 

d( 1) {- f (A-) + · =- e } + O(y z) a 1 - - y e z er z Aln e 

(58) 

(59) 

(60) 

(61) 

(62) 
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The thermal boundary layer initiated at the top of the fault con

tinues into the adjacent aquifer over a horizontal distance of 

scale y '• In this initial aquifer zone of water cooling, the 
e 

relevant equations for the velocity and pressure field are 

v 
0 

(z) = - p "/d oy (63) 

The appropriate matching and continuity conditions are expressed as: 

v ( ±1 , Z) = ± v (Z) 
0 0 

(64) 

v (Z +-ao) = a - 1 
0 1 

(65) 

(66) 

The solution forms are given by 

(67) 

p(y, Z) = d(a
1 

- 1) (1 - y) + O(y ) . e 
(68) 

4. Temperature Distributions in the Aquifer 

Once the velocity field in the aquifer is known the temperature can be 

calculated from the energy equation. This must be done for five different 

regions shown in Figure 2. In ·the near field, the aquifer energy equation 

(region 1) can be written as follows: 

y 2v(z) 9- = 9-- + 9--
Y YY zz 

(69) 

The equation, describing the thermal boundary layer in the region 3 is: 

Y2 v(z*) 9 - y 9 + 9 9 y - e yy z*z* 
(70) 

where 

(71a,b) 

• 
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Since the effect of the surface cooling is limited to the boundary \ 

layer regions 1 and 3, the flow in regions 2 and 4 is isothermal. The energy 

equation in the far field where the full depth of the aquifer is affected by 

the surface cooling is expressed in terms of y and z and is given by (34). 

Equation (69) is subjected to the following boundary conditions. 

e(1, z) T(1, z) 1 - -r erf (Az) (72a) 

e CY • Q), Z> bounded (72b). 

e(y, o) 1 (72c) 

e(y, z • -a>) = 1 + -r (7 2d) 

Equation (72a) represents the continuity of the temperature at the inter

face between the fault and the aquifer. The solution in region 1 can be 

written as 

0 

fe w2 
/A~ e(y,Z) 1 2-r { - - A2 + + wz 

1T 4A 2 

-a> 
(73) 

+ (A2 - /A~ + wz) 
y } sin wz 

dw· 
w 

by using the Fourier sine integral transform of e with respect to z. 

When y + Q)' the asymptotic form of (73) is 

eCY, z) (7 4) 

which indicates that a similarity variable zfY
1

/
2 will be significant 

in region 3. The thermal boundary layer in the latter region is born in 

the preceding elliptic region as described formally by Eckhaus [1973]. 

• 
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A similarity solution, compatible with the solution in region 1 can be 

obtained in the region 3. Elementary methods yield 

A 
e(y,z*) = 1 - T erf (--- n), n = z*/y

1 12 (75a,b) 
0 

It is possible to obtain an analytical solution of (34) in region 5, when 
" 1/2 ' 
y << 1 and z << 1, such that z/y = 0(1), which can be matched with (75a) 

We find the form 

] + 0 (y) 

z 
[-
t"zdy 

Az 
{ 1 + erf ( ) } 

0dY 
(76) 

by using coordinate expansion methods. This solution provides the transition 

between the incompatable conditions e(y,o) 1, S(y+O,z) = 1 + T for lzl > 0 in 

the vicinity of the singular corner y= z = 0. 

The energy equation in (34), parabolic to the lowest order, must be solved 

subject to the boundary conditions in (36) and (37) and the initial condition 

S(y+O,z) = 1 + T for lzl > 0 obtained from matching with region 4. The last 

formal condition at the far end of the aquifer, (39), is used to determine a 

value for d. Numerical integration by standard finite difference methods is 

carried out for assumed values of d until the solution at the far edge is 

within 1% of the real condition. This approximation provides an engineering

type estimate of the boundary location. At that point convection of energy 

associated with the By- term in (34) is very small compared to the conduction 

term. Of course in the formal mathematical sense, the purely conductive 

profile can be found only for y+~. 

It is found that d is different for different sets of parameters as listed 

in Table 1. It can be observed from this table that an increase in M, R, T, or 

Ye increases d; which means that a larger aquifer is needed for the transition 

to the conduction temperature profile when the parameter is increased. In 

physical terms this result implies that the hot isothermal portions of the 

aquifer, maintained by horizontal convection effects will be more extensive in 
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Table 1 

d M R T E. 

<. 12 <1 500 1 .025 

. 12 1 500 .025 

.3 2 500 1 .025 

.47 3 500 1 .025 

.64 4 500 1 .025 
J 

.47 2 750 1 .025 

.64 2 1000 .025 

.35 2 500 2 .025 

1.34 2 500 .05 

• 
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systems of relatively larger mass flow, permeability, temperature difference 

and fault size. It can also be seen that M < 1 gives rise to H'/L' = 0(1) for 

which this analysis is not valid (35). The solutions for cases M < 1 and d <•12 

were such that at a given location y' the liquid moved away from the fault at 

some levels and towards it at others. 

5. Results 

Based on seismic refraction and temperature studies, Combs [1977] predicted 

the depth of the basement in the East Mesa area to be about 4.15 km and base

ment-sediment interface temperature of 325°C to 365°C. The thickness of the 

shaley sediments capping the reservoir is about .8 km [Bailey 1977]. According 

to this information, the thickness of the reservoir (L') is about 3.35 km. For 

a temperature difference (~T') of about 300°C across the system and an assumed 

permeability (K') of 10-9 cm2
, we find that 

R == 580 

'r == 1 

Thus the values of R and T used in the following figures are representative 

of a typical geothermal system. The value of Ye is a guess but for reason-

able fault depth it implies a reasonably thin shear zones. The actual mass flow 

rate forM = 1, is estimated to 12.35 x 10 5 kg per day per km length of the 

fault for this set of data. The dimensional mass flow rate for U = 2 is equal 

to 24.7 x 10 5 kg/day- km. 

The dependence of various parameters on the velocity, pressure, temperature, 

and surface heat flux in the fault and the aquifer is given in figures (3-6). 

The value of d used in these figures is for the parameters shown. 

Figure 3 shows the plots of the vertical velocity and the over-pressure in 

the fault at various depths for different mass flow rates. Vertical velocity 

(W) increases with the increase of M, as should be expe~ted. It vanishes at 

the top of the fault because of the impermeable boundary assumption. All the 

"t<mter is pushed into the aquifer by the time it reaches the top surface of the 

fault. Overall magnitudes of the overpressure increase with increasing mass 

flow rate. For high mass flow rates (M > 2) over-pressures are highest at the 

inlet of the fault, decreasing upwards and then again increasing towards the 

top of the fault. The pressure increase towards the top of the fault is caused 
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by the stagnation point at z = 0. The magnitude of the pressures associated 

with the flow field can be obtained by multiplying the nondimensional pressures 

of Figure 3 by 25 x 10 5 Pascals. 

Figure 4 shows the fault boundary-layer temperatures for several Rayleigh 

numbers. It can be noted that the boundary layer thickness decreases with 

increasing R. This is caused by the increasing effectiveness of convection as 

R increases. Similar effects are also se~n with the increasing mass flow 

rate. 

The horizontal velocity (v) in the aquifer at different depths for several 

mass flow rates is shown in Figure 5. The trend of curves is similar to the 

overpressure curves in the Figure 3. The larger velocities at the top of the 

aquifer are associated with the relatively horizontal higher pressure gradients 

there. 

Figure 6 shows the variation of the aquifer temperature with depth at seve

ral horizontal locations. The value y = 1 represents the far end of the aqui

fer, which is located at d/ye times its dpeth. The temperature decrease with 

the increasing distance from the fault can be seen in the aquifer which is 

affected by the heat loss to the cold upper boundary. It can be noted that at 

y = 0.1 half the aquifer is at least within 80% of the high temperature value. 

The corresponding isotherm map is shown in Figure 7. It is apparent that the 

horizontal temperature gradient decreases as the liquid moves away from the 

fault and becomes negligibly small near the far end. Near fault isotherms, 

also shown in this figure, are calculated from the boundary layer solutions of 

region 1 and 3. 

Figure 8 shows the effect of mass flow rate on the surface temperature gradi

ents both for the fault and the aquifer. Heat transfer at the surface increases 

with increasing mass flow rate, as expected. Matching of the three regions is 

shown for M = 2. It can be noted that the length of the aquifer is different for 

each M. This is because of the different value of d associated with a different 

mass flow rate. It is found that an increase in R, T, and ye enhances the 

temperature grandients at the surface, as expected. The results imply that the 

fault zone convection process enhances the surface heat flux by a factor of 

about 30 above the background conductive value. 

This value is the right order of magnitude for geothermal systems with 

vigorous surface manifestations where heated water is present in an extensive 

region just below the surface. It is rather large for systems exemplified by 

East Mesa, Imperial Valley, California where the reservoir is separated from 
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the surface by an extensive region of clay rich sediments. A model of the 

latter system given in Goyal (1978] will be the subject of a separate paper. 

6. Application to a Typical Geothermal System 

This theory can be used to predict the velocities, pressures, tempera

tures, and heat flux at different locations in the fault and the aquifer in 

undeveloped systems. Let us consider a geothermal system with the following 

typical data: 

Ye' = 100 m 

L' = 4km 

T' 
0 298 oK. 

AT' 298 OK 

M' = 11.72 X 10 5 kg/day-km length of the fault 

K' • 4 X 10-9 cm2 

The thermal conductivity of a geothermal reservoir depends on its porosity, 

grain size, size distribution, physical properties of rocks and fluids, fluid 

saturation, temperature, and pressure etc ,(Martinez-Baez, L.F. 1978]. For a 

reservoir, associated with the interbedded shaley layers, the assumed thermal 

conductivity value is as follows. 

A'm = 11.3 x 10~ gm- cm/sec 3 
- °K 

using the physical properties of the water at 25°C, the following reference 

values can be calculated: 

q~ 2.94 mm/day 

~ = 5.86 x 10 5 kg/day-km length of the fault. 

The corresponding nondimensional numbers are: 

Ye = .025 

R - 500 -
M - 2 -
1: = 1 

d • 3 (Table 1), which gives H' = 48 km • 

The plots of the horizontal velocity (mm/day) in the aquifer and the heat 

flux (HFU) are shown in Figures 9 and 10, repectively. The overpressure 

(Pascals) associated with fluid motion at fault-aquifer interface is shown in 

Figure 11. 
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7. Conclusions 

Solutions are obtained for the velocities, pressures, temperatures, and 

temperature gradients in a liquid-dominated geothermal system, charged by a 

fault zone. Effects of various parameters such as mass flow rate, Rayleigh 

number, fault width is also studied on these solutions. The horizontal temp

erature gradients, in the near fault regions, are found to be zero, although 

the flow in the aquifer is purely horizontal. This idea is in contrast with 

the conventional wisdom that zero gradients imply upflow. Additional results 

for other parameter values can be found in Goyal (1978]. 

The concepts used to generate the model described here can be tested 

directly by comparison of the field data and theoretical prediction. Current 

measurement techniques provide surface heat flux distributions and downhole 

temperature distributions which can be compared with values obtained in a 

given model. In addition, the predicted formation pressure-depth variations 

.could be used if accurate downhole measurements in a field were available. In 

this sense, three distinct measurements could be used in a variety of ways to 

obtain both indirect data and model verification. 
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