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Abstract

A Hamiltonian formalism is presented for the study of charged-
particle trajectories in the self-consistent field of the particles.
The intention is to develop a general approach to plasma dynamics.
Transformations of phase-space variables are used to separate out
the regular, adiabatic motion from the irregular, stochastic tra-
jectories. Several new techniques are incliuded in this presentation.



A. Introduction

In dealing with plasma dynamics, one has the choice of several points
of view. A first-principles approach[ 1 1eads to an N-body problem (N +>»)
for charged particles interacting with their electromagnetic field, which
.has singularities at the particle positions. The discrete-particle dis-—
tribution, in six-dimensional'phase-space z=(r,v), 1s represented by the
Klimontovich functions, F (z t) = 2? 66(z-gi(t)), one fdr each species (s).
Each. particle(i) produces a current density (in three-dimensional physical
space), .
| d(x52) = ez<53(3t_—_1;) , : (1)
depending on its phase point z; the total plasma current density

. 6 ... |

ix,t) = 2 fd'z J(x;2)F (z;0), 2)
is thus siﬁgular: o . ‘
ixe) = F e vi) 63x - o). 3)
Consequently,the electromagneticfield, obtained from the Maxwell equations,
with (2) or (3) plus external sources, is so irregular that adescription of
the particle motion g(t) appears hopéless.

One is thus led to appreciate the Vlasov model, wherein the singular dis-
tribution F.(z;t) is replaced by a smooth (Vlasov) function £,(z;t). (The

term '"smooth" means "everywhere differentiable as many times as needed to
validate the quasi-mathematical procedures to be_emplbyed".) The smoothing
technique will not concern us here.

We now replace (2) by the Vlasov current density.

) =S b2 j(x;2)E(zs0) (4)
(we omit species symbols from now on). The smoothness of ] guarantees
the smoothness of the Vlasov electromagnetic field B,E. Typically, this
field consists of a quasistatic confining magnetostatic field B (x), and
weak time-dependent electromagnetic perturbations 6§(§,t),6§ﬁ5,t),repre-
senting'(e}g.).instabilities, or radiationbinjected to heat the plasma{

A particle trajectory satisfies a deterministic equation of motion[zl

-z =V(zt), : (5)
where V is now a given smooth vector field. Explicitly, for nonrelativistic
dynamics, (5) reads [c=1] ' ' v
= v,

= (e/mEGer,D) + v x BG=r,01. (6)

<o |rte



In (6), E(x,t) includes thefield induced by slow variations of v§°, and that
due to the ambipolar potential, as well as the perturbations; B(x,t) includes
the confining field as well as that of perturbations (given by V x SE).
- The family of solutions of (5) is formally expressed as
| 2(t;z,), C)
where 5)isaninitialcondition'(atsdmereference time to). We aim at both
qualitative and quantitative knowledge of these solutions (7). For example,
is thetrajectofyregularorirregular?[3] How sensitive is it to the initial
condition? Is there a émgoth manifold (ofl what dimensonality) on which
it lies? Doeséismallinitialvolumed6zoéVOIVe ergodically, in some sense?;
does it exhibit mixing? In short, is‘thé particle motion'intrinsically
stochastic? ‘ . ,
Let the particledistribution at t, bebgivenbythe phase-space density
f(g ). Weaskhowthephase-spacedensityf(z t)evolvesintime.Bydefinition,

£(z;t)=f d®2 (2, y6°0 ¢ - z(tsz I » (8)
so f evolves according to the continuity equation
| @) = - 5 NE@DEED]. (9)
If the phase-flow vector field V(z, t) 1is Liouvillean, i.e., :
.—a_. . = ' 10
5% v(z,t) =0, (10)

then (9) becomes the Liouville equation
[ait'+ Y(g,t)-%]f(g;t) =0, . (L
expressing invariance of f alonga trajectory (7). The Newton-Lorentz equation
(6) satisfies (10), so we may use (l1). An alternate expression of (l1) is
£(z;t) = £lz,(z;t)], 12)
where gd(g;t) is the inverse of (7), expressing the initial condition as a
function of position z at time t.
In the course of time, f(z;t) may become less smooth, due to mixing.
It may then be desirable, as well as physically realistic, to add Fokker-
Planck terms to the evolution equation (11); these would represent collisions,
i.e., departures fromthe Vlasov model, and may be termed "extrinsic stoch-
asticity". Since the diffus_ivity thus introduced is itself a smooth function,
it has the effect (characteristic of diffusion equations) of‘smoothing out
irregularities of f.
The Vlasov (or Fokker-Planck) equation and the Maxwell equations can
be written in a symbolic form[ ] analogous to (5):
F = V(F,t), (13)
where Fé[f(;),E(E),g(i)]iszapointin inf inite~dimensional function space.
One can ask questions about the solutions to (13), similar to those asked

about the solutions (7) of equation (5). The instability of solutionms to (13)



is called "collective instability", and has been a major consideration of
plasma physicists for many 'years; It should not be confused with the
particle-orbit instabilities of (5), which are the major concern of this
conference. ' _ , | '
The relation between the two kinds of instability is an intriguing ques—
tion. It isgenerally belie\}ed that a collective instability arises froma free
energy assoclated with F. As the amplitude of the electromagnetic per-
turbationgrows,itproducesorbitinstability; The consequent redistribution

of f leads to saturation of the collective instability. This redistribution

general_iy is characterized by aflatteningof f in velocity space, and enhanced
transport in position Spece. For purposes of collisionless plasma heating,
the effect of orbit instabiiity is an irreversible transfer of energy (and
momentum) from externally applied electromagnetic radiation to the plasma.

The evolution of electromagnetic perturbations can often be studied by
. means of the linear susceptibility, i.e., the linear current responseto
a smallelectromagneticfield. -1f the unperturbed phase-spacedensityf (2)

is quasi-static, then the. linear. response is[ ]
6j(x,t) = {)wdr }vfd.3X'} g (x,x'37) *8E(x',t = 1) s

with : .
n (x)e
o(x,x't) = f d z f (z ){l(x z(t;z )) ' 32, )} - ———Er——o(x—x )G(T) (15)

Here { , }represents the Poisson brackets with respect to the phase space
z, to be discussed in 1ater sections._

The relation (14) can be immediately transformed to frequency:

8j(x,w) = dek',g (x,x";w) " 6E(x",w), (16)
with ' ' '

o(x,x";w0) Eofmdr e+lmT

g(x,x';1)

(17)
a complex analyticfunction of w. Less immediate[sl is the conversion of
(16) to a local relation:in ‘terms of an eikonal representation. With the
assumed form (we omit c.c.):

SE(x,t) = B(x) exp i[SG0) - wt], (18)

[}

§3(x,t) = J(x) exp i[S(x) - wt],

Vi



we aim at a relation , _
| 1@ = g(x ks w *E@, | (19)
with - |

k(x) =35(x)/3x and - (20)

-i_lsn'z

g(ﬁ,lg;w)zfd3y e Q(5+%1,§_~%_-1;w)- | (21)

Using (18) and (21) in the Maxwell equations, we obtain a local dispersion

relation
‘ D(x,k;w) =0, ' | C(22)
where D is the determinant of the dispersion tensor:
Dix,kiw) = I+ 4o (x50 - L alr - k. (23)
: w?

The local polarization £ is determined by
D(x,k; w) *E=0. . S (24)

The eikonal S(x) 1is constructed'on the ray trajectories:

dx _ 9D 4k _ _ 2D (232)
s - 3k ' A X |
Here d ¢ measures ''distance" along the rays, and is related to time by
ar ( -1 (25b)
dat ’

The ray equations have the same form as (5), with z = (x,k) now representing -
ray phase-space. However, since D is usually complex, the ray phase-space
is not real, but complex. (6l Nevertheless, one can still investigate the
regularity or stochasticity of ray orbits, and can attempt to construct
the eikonal S(x)= f"k(x') dx'. In the integrable case, at least, the varia-

tion of amplitude can then be found from S(x).

g. Small parameter expansions

The confining magnetic field B (x) has spatial variation which may be
slow (small parameter € ) in all directions, or quite different in the
three directions. In the former case, one constructs[7] successively 3
adiabatic invariants, associated with gyration, bounce, and drift; In the
latter case,[8] a rapid variation of §°'in only one direction still allows
for a generalized gyro-invariant (magnetic moment), even if the motion is
quite non-circular; such situations arise in magnetic sheaths, rings, and

in reverse-field and strong-shear geometries. Elimination of the gyration,



through construction of its invariant, reduces the motion to that of the guiding
center, with two degrees of freedox_n (bounce and_drift). If the magnetic
field has a spatial symmetry (say about some axis), the corresponding canonical
momentum is an invariant, and the remaining degree of freedomis integrable.
"More generally, one constructs Successively the bounce action and the drift
f lux. These three actions are'adiabatic invariants, in that they are
conserved under slow time variation of (x), while the energy is not..

The perturbing field SE (x,t) typically has rapid phase variation in x

(with wave-vectork) and int (withfrequency w). Thus one uses the smallness

parameters X ( magnitudeof SE) and n (rateof variationof amplitude,
wave~vector and frequency). This enables one to generalize the adiabatic
invariants of theunperturbedﬁotion,byqonétructingaiformalpower series in
A and n(as well as in €.). In the absence of resonance (see Sec. C), tﬁe
correction terms are smail; when resonance occurs, the potentiality exists
for stochasticity.

Thelsituation.is actually more compliéated than outlined above. Typ—
ically, for given uw, fhere may be several k, due to reflection; and the
components of k may be of different order. Further, the spectrum in w may
be discrete or gontinuous, with narrow or broad distribution inw. Most
intrinsic stochasticity studies ppsfulate a sharp spectrum, since a spread

in w may be interpreted as extrinsic stochasticity, in some sense.

C. Standard Hamiltonian Formalism

[3]

The use of action-angle variables allows for a formalism ofconsider-
able beauty[ ] and generality, as we shall see, but it is by no means
easy to express a given real physical problem in that form. We begin by
postulating such a form, and discuss its interpretation and consequénces.
Later we shall examine the possibility of obtaining that form explicitly.
We postulate that the particle motion can be derived from a Hamiltonian
function H(I,9;t), where_LE(Il, I5, I3) is a set of 3 action variables, with
conjugate angle variables 25(61, 87, ©3). To be specific, we have a mirror
geometfy ih mind, where I represents gyro-action (magnetic momentu),bounée-
action(Jb),and drift-action(magneticflux %4 enc10§ed by the drift surface).
The conJugateanglesareassociatedwithgyro-phase,bounce—phase, and drift—

phase, in a manner to be discussed shortly.

XY



We further assume that the Hamiltonian is "near-integrable", i.e., that
it can be expressed as a sum of an "unperturbed" part ﬁ(l), independent of
6 and time, and a small (in some sense) "perturbation" &H(IL,6;t).

Under _Fl(l) alone, the angle-variables evolve as )

| 8 = w(D) = 3H/3L , | (1)
while the actions are invariant: |

I=-0H/30=0
Hence the 3 particle frequencies 9_5((»1, W, 'w3) are also invariant. Typically,

these frequencies are in the ratio

622 e: 1, v (2)

Wy (rate of traversing the drift-

M A
and represent the drift-frequency w; =

w

surface the slow way, f.e., bydrifting across f ield lines), the drift-averaged
bmlmce--frequencym2 E 75'5 (wb 18 the rate of traversing t_he drift-surface
the fast way, 1i.e., along a field line; it 1is then time-averaged over
the drift period Y =221/ ), and the drift-and bounce-averaged gyrof requency
wy = = T (the local gyro-frequency (R) depends on guiding-center position

- R; it is to be averaged over the drift surface).

Af ter T{(l) is constructed, what is "left over" is SH(IL,0;t). (To my know-
ledge, this has not yet been explicitly carried through.) We require that
6H is periodic in 6, since these are defined modulo -2T; and in this section

we shall suppress the time-dependence. We expand SH(I,6 ) into a Fourier

series: v
SH(L,0) = I H, (I)el-l~g (3)
%
with -
3 .
H (D = § <2 T su(,0)

= (2w) , (3a)
(The? = 0 term is omitted, since it is Ti(_];).)
Under -ﬁ(}_), SH has the implicit time~dependence

.- 12wt + 2£°6°]
SH(E) = 5 8, De ()

with respect to an initial state I,@_c_). Its effect is quite different,

depending on whether %°w (I) is near zero. To see this, we return to (3),

and evaluate the evolution of I(t):

I = - 0H/30 = - 38H/30 = 2 (-iLH (el (3)
: i[2ra(Dt + £-8°] (5a)

2 (18, (De
) L

This equation is easily integrated, so long as 2°w(I) # 0, to obtain

L2 i2-9(t)_ _12:8(0)
2e0(D)

Tow(D) Hy (I)[ 1. (6)

I(t) - I(0) = - Z
- B %



The excursion in action space 1s thus small, if Hgis small and 2°w is
not smalll '
.The "dangerdus"regionsaretheresonancélayers, i.e., the neighborhoods
of the surfaces |
LoD =0 | )
in action space. These two-dimensional surfaces, ﬁérameterized by the 3
integers £, 2,, %3: ' '
. wl(L) + 22w2(£) + 23w3(£) =0 (7a)
represent values of I = (u, Jb,¢ d) for which the corresponding frequencies
have a commensurable relation
(7b)

llQ .+ R,Zw + Z3wd = 0.

The surfaces have zero thickness, and thus zero measure, but their domain
of influence 1is what matters. Under the perturbation, the evolution of
I, f>rom the £Lth term alone, is (61)2 ~ QH /2 ‘W « ‘So the £ th resonance
denominator has the variation,

5(Low) ~ 6(R+aw/9L-61) ~ (L+du/dL-L)H, /L+w

Since sw/dI = 3%H/3I 01 = X, - (8a)

§(Rew) ~ |u2 Hzll/z_, ' (9)
where ' ug = & JCQ o (8b)
As an estimate of the domain of influence of a resonance, we may use 9),

we obtain

and say that

20D </, 1 |22

xluy By | 1o
defines the thickness of the 2 th resonance. Now we must appeal to the
smoothness of the Hamiltonian, to guarantee that the Fourier coefficients
Hl fall off sufficiently fast with .

| 2] = [ag] + [a,] + [2g]- | (11)
If, e.g., HQ falls off as e I-!L—I, and if My is O(I_lz), then the high-order
resonances can be ignored; while the low-order resonances occupy only a
small (but finite) measure of the action-space, for §H sufficiently small. -
‘Even the lowest-order resonances may Be negligible, if we appeal to the
ordering (2); using (2) in (7b), we see that thelminimum I&J is of order

~

e-l, whereupon smoothness of SH yields H2 e-e— » -and an exponentially
small resonance width (10). This is to be expected, for if resonance effects
were appreclable, particles would not be confined effectively.

Let us then, for awhile, limit our attention to the non-resonant part
of I-space, which, fore<<1,is its major part. The §-dependent perturbation
in the Hamiltonian can be transformed away (to higher order) by a canonical

transformation. We choose to use Lie transforms, as the most expeditious



. transformation technique[lol.

and define the Lie operator

o

Hl
ln)
E
[

14
@
£

lw
@
]

With the Fourier series

we have ii'eb _
Lw = % e —-—(wﬁig-a/al - awz/a;-a/ag).

Let w(I,8) be an arbitrary smooth funétion,

(12)

(12a)

It is a general property of Lietransformsthatcanonicity of the‘phase4space‘

variables is preserved under the operation z -+ z' = T z, where
1.2
T=expL, =1+L +357L; + e
Then ' o
I'=(expL) I=1+2Z R 2 Wy + 0(w?)
and

9 =0-2e i2-8 aw /31 + O(w )

The Hamiltonian transforms under T =l exp (-Lw).

H > H' = T'lu =H-LH+ %I.ZH + .o

On substituting H = H+ SH, and treating w as of order OH, we have

H' = E+[GH-LH1+[— 2H-L6H]+...

(14)

(15a)

(15b)

(16)

(16a)

So far w(I, 6) has been arbitrary, we now choose it to eliminate the

first order term of H':
Lw‘“ﬁ = §H.
Using (l12a), we obtain H (1)
(1) = A=
"= T 2@

(17a)

(17b)

Now that w 1is determined, we proceed with the evaluation of the new

Hamiltonian H', finding

(18)

We break thisup, as with H, into an angle-independentpart'ﬁ'andan angie—

‘dependent part §H' (we drop the primes on the variables, but they should

be kept in mind):
| H'(I,0) = H'(I) + SH'(L,H)

From (18), we see that

— — 1 v
H'(I) = (1) - 5 LsH + 0(sH)3
with the second-order term, from (17b):

-1 N
2 2 31

L §H = -
W

(19)

(20a)

(20b)



The new HamiltonianH' (19) can now be subjected to a second Lie :réns-

formation, with the same form (17b) for.t:he new generator w':

H' |
o = "o (21)
Lo’
“Here HJ'L is a Fourler coefficient of 6H', as read off from (18), while
= o R } |u_|2
Lro'(D) = L-3HT/3L = Lw(D - Syt ARGt e

1

is the new resonance denominator.

The second transformation T' serves to eliminate the lowest-order 6 -
dependence from H', which is O(GH)Z, from (18). The next Hamiltonian
H'' = o lgr i given by the analog of (18):. '

o S on
H'' = H 4z, LR P
n=1l (n+l)! W' ’

and its p-dependence 1is 0(6H')2 ~ O(GH)A‘.' Each step raises the order

of the g-dependence, in the sequence 1, 2, 4, 8, ... The consequence is '

a "supercpnvergent" series of transformations to prodﬁce integrability for .

the nonresonant portion of I-space. Acareful statement of thié constitutes
the famous KAM theorem.[3’ 11]

We now turn to the ‘r.esonant regions of I-space, i.e., thosefor which the
resonance c.onditi'on 1/2 : '
o ‘&'E(l)iilu&(l)}{&l (10)
is .satisfie‘d for some g¢. We begin by supposing that only one & satisfies
(10) in some small I-region, and we examine the neighborhood of the resonance
surface g * w(I). = 0. We select some.point lo on that surface, and expand
the unperturbed Hamiltonian H(I) about that point:

H(D) = H(I ) + (I-I )+w(l ) + %(_1;-_1_;0) (I-I): azﬁ/a; a_I_i.I +o.n 22)
-0

From the perturbation§H, we select only the resonant term (and its complex
conjugate): ' ‘

29 R 2 R |
H&(l)e = =+ c.c. = H&(lo)e + c.c. = ZIH&(_Iﬂ)Icosw&(ZB)

where

b, = %8 + arg H&_(lo) | (24)

is the relative phase of the resonance. The non-resonant terms of J&H can
be ignored. '

Thus the selected terms (22) and (23) yield the evolution equations:

I=- a[2[H, | coswi]/ag= 22]H, | siny, (25a)
w&.= _9_'_'2 = &'BH/G_I_ = (l - lo).z(.&_ . (25b)
wl = 133 = ZUE}H&l sinw&f by (8b). ‘ (25¢)

10



Linearizing (25c¢) about the stable fixed point (Y, =T for'ul>0 » ¥, =0

for u2<0), we haye

or a phase oscillation at frequency
1
= |28, u,| /2 (26)

The evolution of I is along 2 L, which is tangent to the unperturbed
energy surface H(I) since £ w(I )=’ 3H/3I|I = 0. The amplitude of the

excursion in I, along g, is deduced from the "pendulum" equations (25)

to be
_ 1/2
AL = i_&ISH&/uzl

’ ‘ . . (27)
for the separatrix orbit through the unstable fixed point.

Expression (27) leads to a resonance half-width

§(Low) ~ £+3w/dI+AL = |8H, uzll/z

(27a)
consistent with the estimate (9) from examining Ehe nonresonant terms. We
may now fit out each resonant surface % with the width (27a), which varies
along the surface with the choice of I . '

Our considerations so far make sense only if these resonant regions do
not overlap. If they do, one must keep both (overlapping) resonant per-
turbations. In general, the motion is then stqchastic throughout the over-
lapping resonances.[11]

The introduction of a phase frequency (26) for each resonance leads to
the appearance of secondary resonances, and in fact to a hierarchy of such
resonancese. These serve to broaden the structure of the separatrices
and to expand the domain of influence of the resonances.

These refinements are not needed to identify the location (in I-space)
of the stochastic regiéns. Our procedure is as follows:

(a) Find IE(L) ("First catch your hare").
(b) Calculate the set of resonance surfaces & ‘w(I) = O.
(c) Find the perturbation SH(I,®) and calculate the
Fourier coefficients Hi .
(d) Calculate the width of each surface.
(e) Locate the regions of resonance overlap.
(f) Examine the topology of the stochastic regionms.
It remains to discuss the consequences of stochasticity; we defer that

to Sec. F.

11



D.. Non-canonical Variables in Hamiltonian Dynamics

The formal developments of plasma kinetic theory have, in the past,
followed one of two paths. The majority of plasma theoristsAhavé utilized
physital,non—danonicaivariables,andignOred theadvantagesof}aHamiltonian
approach, which expresses the vector flow in phase space in terms of a
singie scalar function, and which makeé use of canonical transformations.
A minorityhasirecognized the utility of the Hamiltohian methods, but has

been plagued by the non—physical, gauge—dependent nature of the canonical

variables. Only recently has the realization come that a Hamiltonian formalism

(12]

can be effectively utilized in terms of non-canonical variables.
We begin by considering motion in a given magnetostatic field B (x)

The standard approach is to choose a vector potential (%), form a Lagrangian

L(rv)-—%—vz+—VA(r), _ (1)

(differing from the usual only by the factor m), define the canonical
momentum g : ' . '
p(r,¥) = AL/dy = v + %éo(_) , ‘ (2)

and proceed to the Hamiltonian

- . 1.2 _ 1. ey o1 :2
CH(Zp) 2vep-L=3v =35lp- A @] -
For any phase functioh g(r,p), its.evolution equation is
| g = r.9g/3r + p-ag/op . (4)
The Hamiltonian equations: .- o »
' - r = 3H/3p, p = - W/3r , (5)
then convert (4) to
_ g = {&H}, . ' (6)
where v ,
3g . 3f _3g . 3f 7
{g,f} = a >t

r 93p 9dp

With the use of Poisson Brackets for the physical, but non-canonical,
variable v, we candispose of the non-physical canonical momentum p. Thus,

to obtain the equation of motion, we calculate

v = {v,H} = {y_,% v2} = {v,vl-v . (8)
We then evaluate the Fundamental Poisson Bracket {v,v} from (7), and obtain
s b= g6 %0 (9)

where 9(x)= (e/m)B_ (x) is the local gyrofrequency. (Note that (9) 1is exact;
no small-e expansion has yet been made.) On substituting (9) into (8), we
obtain the Lorentz equation_i =_g'x€l(£), without the explicit appearance

of p and A

12



The relation (9) establishes (with V- B = 0) the requirements for a
symplectic manifold, [13]_ and leads to the use of the Darboux algorithm for
constructing a guiding-center (g.c.) formalism. We begin with the physical
variables r,v, and work toward the 2 gyro-#ariables.(egﬂJ), which are
canonically conjugate, plus a set of 4 g.c. variables R, P (g.c. position
and parallel momentum) which are not conjugate with respect to each other.
The method requires slow spatial variation of (x), and so the smoothness
requirements mentioned earlier come into play again.

The g.c. position is defined in the usual way (b is the unit vector

of _I}o):
R=r+e xx%(z)/fz(_x;) + 0(e?), (10)
and the g.c. Hamiltonian takes on the familiar form
H(uiR,P) = 3 L p2 4 uB (R) +0(c?). o

To obtain the equations of motion, we need the new Fundamental Poisson
Brackets:

{RR} =D(R)xI/B*(R), » (12a)

(BB =b(®) +kp/B ®Ibx(bv,  (2b)

which are again exact relations. Here B* E‘Bo + ¢ Pb*'Uxb;, and I is the
identity matrix. The evolution equations:
R= (R, H} = (R,P}P +{R,R}uvB_(R), (13a)
P = {PH} =-{R,P}:pu7B,(R) | (13b)
then yield the classic drifts and the mirror force.

Now, if the system is pertdrbed by a field § B(x), which is not slowly
varying over a gyroradius, but which is small in amplitude, the Lie technique
of the preceding section can be used. Similarly, a time—dependent perturbation
§E(x,t), weak but rapidly varying, can be treated by Lie techniques. We

discuss such perturbations in the following section.

13
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E. Oscillatory Perturbations -

So far we have treated the Hamiltonian as time-independent, whéreupon
energy is conserVed.‘ We now consider the perturbing effect of an electro-
magnetic wave, and we begin by requiring it to be periodic' 1n time, with .
fixed: fun’dafnental frequency w, but not necesséfily sinusoidal. -The Hamil-
‘tonian then is. _pérturbéd by a term of the form
-ei_z_~_(_9_ + imwt

z H&,m(—l-)

’ ' (1
e}tpteséing periodicity' in 6 and t, and using the global variables l, 8 of
part C. _ o

The time-independent formalism of (C) canbetaken over directly, if we
extend the phase-space (I,9) to include the fourth degree of freedom (h,t),
with T

wt and {t,h} = 1; and take as the ektended Hamiltonian

3=, n) + 8K (138,71 , @
with . X=EHQ@ +he, | (3)
§3C = E‘EL(D ei;~9 - W

Here L = (2,m), 0 = (8,7). As a phase variable, t=1{1,5 = {t,hlw = w,
as requiréd; and h = {(h,J} = {h,t}¥H/o7= ~ w‘lan/at I 1:1, )
¥ = 0, as expecte&. ’

We now follow C, obtaining, in analogy to (C.l),

b= = @6, D= (o). B (5)
A resonance surface (4,m) is now defined by
L@ = Lew(@) +mw =0, ’ (6)
i.e., the wave frequency w is a rational combination of the 3 particle
fréquenéies: 1. '
w = = E(Qlwl + szz + 23w3) (6a)

For I not within a resonance layer, we can again eliminate the per-
~turbation (1), by the analog of (C. 17 b):
' H, (1)

_2'_Lm )
v (1) = {(Lw(@ +m) ° (D

obtaining the second-order static term in the new Hamiltonian [see (C.20 b)]:

2
22 _ 13 .5 , Ha®
231 L,m Lew(D) + mw (8)



To put some flesh on this skeleton, we need the Fourier coefficients

Hz'm of (1) for Egs. (7) and (8). Formally, we have

d39 -~ig*06 .27 dr -imt
2pem L,
0

o iL
(21r)3

B (D) =¥

2 H(Iy_e_;t)’ (9)

where H is the sum of the Hamiltonian H, in the absence of the wave, plus

a perturbation ¢H, which, to lowest order in ;he field §§; is

SH(L,05€) = fd x 6A(x,t) 1(x;1,8) , (10)

with j given by (A.l): _
§(x;1,8) = ev(I,0)8[x~£(L,0)]. 11

We now introduce the eikonal form (A.18) for §A into (10):

GH(_’E,; t) e-iwt_: f d3x eis (35) Z(ﬁ) '1(53.1_’9_) 4 (12)

and then use (11):

SH(L05E) = e e MF y(1,8)-A(x(1,00)eSEEE) (5
From Eq. (D.10) (suppressing £),
r=R+bxy/a® =R+p , (14)
introducing the gyroradius, we expand the eikonal:
S(x) = S(R+p) = S(R) +pVSR) + ... = s(§$‘+'g_l(g).g+... (15)

For the slowly varying amplitude, we can set EK£)==§KB). For the velocity,
we have, from (14),
v=R+p=v,b+y, , (16)

neglecting drifts. Thus (13) becomes

SH = e o 0t F iS(R) elki(g){g

AR)* (vib + x,). (17)
Now (17) is to be inserted into (9), to yield the coefficients Hl m=_l(£);
but this calculation has not yet been performed. 1In its place, we have a
local result, to which we shall refer later [Eq. (21)].

Let us now examine the transformation of action I induced by the Lie

generator (7). From (C 15a), we have (by analogy)

15



j.'-&wﬂ,,m(l) + e
> - (18)

£ . '
I i(_ﬂ;g+mwt)+...

It is _1;', not I, whichis invariant under the perturbation; the variation of
I is quite evident from (18), or its equivalent, the analog of (C.6). ‘

Next, let us look at the question of invariance under slow (n) variation

(in time) of parameters, i.e., the magnetostatic field: §°(§)+ §_o(§;nt), and

the parameters of the perturbation: 5(3‘.)"5(55 nt), k(x)>k(x,nt),w>w(nt).

So long as the actions I are non-resonant, i.e., are not within a resonance

layer N ‘ :
. 1/2 - :

L@ +mo | 5 [uy 8 77, (19)

we expect the actions to remain invariant, from the general principles of

dynamics. However, ﬁ(_I_; nt) implies w(Imt) so the resonances L°'w(I;nt) =

and 2 *w(I;nt) + mw (nt) = 0 are slowly moving surfaces. In general, para-

meters may vary by an appreciable -amount, and hence abpoint I may find
itself érossed by a resonanée layer, or by a stochastic region (repre'sentiné
overlapping resonance 1ayers_). A general procedure for treating such a
crossing appears not yet to be available.
. We now return to the locai semi-canonical variables of Sec. D, for
which an explicit expression for  the perturbation Fourier amplitudes has
recently been obtained.“b’] Locally, the analog of w = BHIBL is (6 R)
(Q(R), Pl; (g)) to lowest order inh ¢; i.e., the g.c. dx;ifts and the mirrorir_xg
force are higher order. The resonance condition (6) 1s replaced by the
local gyroresonance condition ' |
2QR) + k, (R)P + mw =.0 " : (20)
with the eikonal representation (A.18) defining k (x) = ’t;(gt_)'VS(ﬁ)- The
Fourier amplitude (in 8) is found to bé (form = ~-1): '

H, = -A(R) igggg Ik, + —gl—li b><k+PJb expl[S(R)-u)t + z(e+ 1,
.L

(21)

to lowest order in e. After Lie—transforﬁli_ng away the first-order (in wave--

amplitude) perturbation, it re-appears in éecond—order, in the analog of (8):

Aw - NEAECR AN |
Bu - =R w - 2R - k, (RP T (22a)

16



To (22a) must be added a second~order perturbation term appearing already
in 3&; before the Lie transform: '
+A®I2. (22b)
The consequence of these second-order (in g} terms in.EE'is to produce
modifications in the g.c. evolution. Thus the mirroring equation (D. 13b)
receives the perturbation contribution
BB e, TP - b WP wep, 23)
which 1s denoted "ponderomotive force". The other derivatives onK(Z)(ZZ)
yield ponderomotive cross-field drifts, nonlinear gyrofrequency shift, and
a difference between g.c. momentum and parallel velocity:
Bk = P + o302 /3p (24)
To interpret this quadratic difference, we imagine that the wave is turned
on adiabaticaily in time. Since parallel momentum P is not affected by
time-variation of the amplitude, but only by its spatial variation [see
(23)], the invariande of P implies, by (24), that the wave creates a change
in the g.c. velocity. This adiabatic change in velocity, when summed over
all the nonresonant g.c., 1s to be interpreted as the plasma component of
wave parallel-momentum density. A
We have, in this section, paid little attention so far to the resonant

particles, i.e., those for which (we set m = -1)

~ (25)

0 F R (D) + 2,0, (1) + 2,0,(D).

Since the actions I may be appreciably modified in the case of resonance,
these are the particles for which irreversible energy transfer from the
wave is possible. We begin by supposing that only a single resonance (25)
affects some given I; to be specific, we have the finite-width condition
(see C. 27a):

|20, (@ + L0, (D +ﬂ3w3(1)-wl < ISJfél;nt)ug 12, (26)

whereJ&‘ of.(4) has a slow time-dependence because of growth (say) of the
wave amplitude. If the wave amplitude grows as expft y (£')dt', the
resonance width grows (half as fast), and traps more and more particles.
As a particle, initially non-resonant at some ;L', sees (so to speak) the
resonance getting ever closer, it becbmes ever more agitated, as we see
from (18), with Hﬁ growing in time, and I' invariant. At some time (de-
pending not only on I', but also on its angle 6'), the particle crosses
the separatrix between the non-resonant and resonant regions of I'-space.
This separatrix is itself a fuzzy region, because of secondéry resonances.

Within this stochastic layer, the instability of the orbit produces a

17
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partial amnesia. After an uncertain sojourn in the stochastic layer, the
particle enters the interior of the resonance, where it undergoes regular
phase oscillations, with gradually growing frequency [see Eq. (C. 26)1.
Inthis process, the particle has changed its energy, by interacting with
the wave; the wave energy must thus change, as a result of this resonant
capture of particles. | ' -

Before proceediﬁg to co_nsidering resonance overlap, we shall examine '
more closely the invariants under a single resonance. We take

' H(IL,05t) = H(I) + H sin(2+8 - wt), C27)
where all the non-resonant terms ha\_l;. been transformed away, and we have
dropped the primes. The one resonant term satisfies

9D ¥ o (28)

for I in Ehe region of present interest. From (27), we have (with .

v, = 26 - .wt) : .

= .H =  QJH/3t = - w H.L COS‘,U& ’ : (29)
I = - 3H/38 = -&HLCOSID&-
We see immediately that the combinétions
s o how . B
= - = = - - ), = T =, .
1 Sll S’ 2 22 w 3 23 w» (30)

are exact invariants. Thus, even at resonance and with time dependence, the
Hamiltonian has a complete set of invariants, and thus is integrable.
Next we allow for two (overlapping) resonances, % andn; i.e., for some

region in I-space,

O Jra@-ul < [, w2 '
and : - = (31)
1/2
| lncw(D-u | <|8H ul :
We take as the Hamiltonian _
H(I, p;t) = H(I) + HQ sin(2+6 - wt) + H sin(n°6 - wt). (32)
Now L . '
H= - w H& cosw& - W HE cos»xpp. _ (33)
I=-2 H2 coswz - 1 HP_ _cos‘pn

"

Since I is varying inthe (2,n) plane, its perpendicular component J,  &xn-1
is one invariant. To find a second invariant, we look for some combination
"of Iand H; after a bit of algebra, we obtain

H
o_I_“Z;

’ _ (34)

as a second invariant under (33). Hence the overlap of 2 resonances causes
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the loss of only invariant; the stochasticity is limited to the overlap region
and in addition must lie onthe intersection of the two invariant surfaces.
If the perturbation is time-independent (w-+0), the second invariant Jy can
be replaced by H.

Another case of invariance preservation uﬁder resonance -overlap is the
"multiplet overlap", i.e., the set of mutually overlapping resonances (21,
%5, 23) with two integers (say 2; and #,) fixed, while the third runs

over a set of three or more values. Here the model Hamiltonian is

i(2,6, + 2.6, - wt) ig. 6
. =9 11 272 373 + c.c.
H(L,85t) = H(I) + e Ea e T TH, o 35)
= H+ 6H + c.c.
with the resonances /
, 1/2
|20, @ + 2y0,(D) + 20, (D) - w| <] 8 Hg3u&J , (36)

overlapping in pairs of successive 23 values. We form

H =-1iw 6H + c.c.,
t (37)
I1 121 §H + c.c.,
12 = - 122 SH 4+ c.c.; .
thus the two combinations
P TS N B (38)
= . =
1 ll w 2 %2 w

are invariant under the multipletqverlap. In the case w>0, we would use H

and ‘ ;- El
R

)
b'e [}

1 2 . (39)
Next on the agenda is the case of several discrete frequencies in the
time-dependence of the perturbation: SE(x,t) = X E?(g) exp(—iwjt).
J

Accordingly, we now have a set of primary resonance layers at

0y = LoD (40)
as well as beat resonances of the form
Zmow, = 2wl . (41
2 meJ 2ew(I) )

J
.The earlier formulas in this section are to be generalized in more or less

obvious ways. With an increase in the number of effective resonances, the
portion of action-space which is stochastic increases rapidly.

- Finally, we must make the transition to a continuous frequency spectrum,
corresponding to a perturbation occurring in a finite time-interval. Let

f(t) be a smooth function, nonzero only over the interval 0<t<T. Then

£(t) = J %% Yy e, wich ¥y = £ de e 9%y,



having a spread Aw'\:T-l. Let %‘(w) be approximated by a sum of N delta-
functions: ’ N ' ' :
WY
YW N ZEw-w,) ,
j=1 3 hj

of separation &Sw ~ Aw/N, with fj '\:f(wj)Sm. If £(t) represents the amplitude

of the perturbation, we have a set of N resonances at

BT Lew(@), = 1,...,N:
for each £. The separations of the resonances are Swv o(N"l), while their
widths are O(fjl/z)wo(N-l/z).v Hence, in the continuum limit (N> « ),
resonance overlap always occurs. This argument seems to imply that a
perturbation over a finite time interval necessérily producgs stochastic

particle motion.

F. Kinetic Description

As seen in the Introduction, the family of particle orbits under a
Hamiltonian H(I,8;t) is equivalent to the evolution in time of the phase
space density}f(},g;tfin the Vlasov description. The advantages of using
f include the possibilities of coarse-graining and of adding collisional
effects in a simple way; in addition, f is needed to determine the self-
consistent fields which enter the Hamiltonian.

Retaining the Vlasov model for a whiie, we have

of

2 . = (1)
o(L,85t) + {f,H} =0,

the Liouville equation in terms of Poisson brackets. Note that the set
of variables (I, 8) is not unique; in Secs. C and E we have discussed
transformations among such sets. For different (I, sets, wehavedifferent
Hamiltonian functions H, different phase—space-density functions (although
their values are the same at corresponding_points), and different‘current

densities j(x;I,0) (again as functions, not values). To be more precise,

for a transformation (using z = (I,6))

z »2'@),
we have - H(z) ~ H'(z');
and f »~ £
with f(z;t) = £'(2';t); _ (2)

as well as

(x3z) > j'(x5z') = j(x;2). ' (3)
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For the Maxwell equations, we need [see (A. 4)]
16t = % JGs2)E(ze) = fd82'1" (k2" )€ (2'5e) (%)

where
1" (x52") = ev(z")6(x - x(z")). (5)

In (4), since z' is a dummy variable, the prime can be dropped, but the
functions j' and _i(as well asf' and f) are different. For a Lie transform,

we can be more explicit.[m] The functions are t.ransformed‘by the operator

77! of Sec. C; thus

]

3'(x32) 771 i(x32)

(6)

iG2) - (wz), 102l + 0 .

In any representation, we can separate phase-space functions A(I,0)

into 8-independent and 8-dependent parts: A ='K + SA, {f.e.,

ALY =ED +2 4@ I8 )
For two such funét:ions A and B
AB=AB+ZA B 4 (8)
' g L2
Using (8) in (4), we have -
i = @03 EPUIEDEEGY + 2 1, @DE_, G0
- . - - [ T A . (9)
With this breakup in (1), we have
3 : e = cryige -0 F(T- Oy
(e + 1 20@E, Le) = B EG0ig 35 TG +0(EmsD.  (10)

Now, if we transformto a new representation, for which SH~>0, the right side
of (10) vanishes, and only "ballistic'" solutions remain:
-igew(l)t
£,(L;e) = £,(1;0) e EaDE (1)
For non-resonant particles, this transformation can be accomplished, at
least in principle. After elimination of &H, to all orders, we turn to

the evolution of £

o
3¢ £(T;t) = 0 a2

from (1); therefore
£(I; t) = £(I; 0).
v If, in addition, we suppose that fz(li 0) vanishes, i.e., that f is iriitially
b-independent, then (11) tells us that f, (I) vanishes for all time. The
current equation (9) then takes on a very simple form, for the contribution
of the non-resonant (NR) I:
1o = @n® fo 1 IwDIwo. (13)

(The contribution of the resonant-I particles must still be considered;
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since that is more difficult, we shall deal with their effect by other
means, below.) In (13), I(.’Ei_l.) means the 6-independent part of the current-
density function, in a representation where §H vanishes. Thus, from (6),

we have 3

i'(x I) =301 - §

{w(I 8), J_(x I,8)} + 0(w ). (14)
(ZW) _
The second’tem of (l4) is, in the representation (7),
+1i —Qf %w Di, (x 1) . - (14a)

If we use (E.7), with m = -1, (l4a) becomes

2 Ly gpeny DI, @D (14b)
oL o@D - o »
For the coefficient H , we use (E.10) with 6A(x, t) = SA(x) exp (-iwt):
_,m
430 STy, s ',

and substitute into (14b), with SA(x) = (i)} SE(x), obtaining

& QNR(E,_&';L;w)-Gg(gc_') , (16)
ith
i NR 3 i, D1, "D )
LA = e e - .
g (2{_9_}_( 9_]_:_,(1)) = 3_1_ % 1w (;Q'_.(_*)_,(_I;)-w) (17)

as the contribution of a particleb at (unperturbed) I to the 2-point con-
ductivity tensor, at frequencyw. This equation is consistent with, but
more restricted than, formula (A.13). We note that the matrix (17) 1is
anti-Hermitian, representing the adiabaticity of the non-resonjant particles,
i.e., their inability to exchange energy irréversibly with the field. On

integrating over the non-resonant distribution (13), we obtain

MR x's0) = 2n3 1 a1 T@;0) Mx' ). (18)
. NR ,
Having examined the second term of (l4), we returntothe first. Since
v =p - (e/mA(x,t), a perturbation SA(x, t) 1nduces a.change in velocity (at
fixed momentum): § v = - (e/m)§A(x,t). Thus, from (E. 11), the current

develops a first order (in265\._) term
- == 8(x-1) SA(x,t) . , a9
On integrating over f, as in (4), we obtain the local countribution to

_1(5: t): 2 -1

| -(no(z)e /m) SE(x,t)(iw) ~ , (20)

that is, a susceptibility contribution [y = 41rig/w]_=
x(x,x'50) = - (wf)(gg)/wz)d(z -x'), 21)

characterizing a ¢old unmagnetized plasma. Thus the additional contribution



(17) represents the effect of finite "“temperature” and finite magnetic fleldl
The non-resonant susceptibility [(21) plus (18)] can be used for (at
least) two purposes, besides the obvious one of determining the wave pro-

pagation. Let us form the expression

e @ ax"SEX(x) ' (5,x'30) -SE(x') = Us

(22)
x' is the hermitian part of the total linear susceptibility. Using (18)
and (21), we evaluate U: ' '
U= -t xR | w-ﬁ@/wz
\ 2
Jadxi, (x;1)8E(x) |
=20 46 % (1:0)=2 | 2 = T (23)
*u fd e (100572 Lw(D - o
We note that : - = -
2 6 = 41Te2
W (@) = [d72E(1;0) T 8 (xr(e)); (24)

so U is a linear functional of £(I), and is quadratic in §E(x).
We now use the theorem!l5] relating U to the second~order (in S§E)

Hamiltonian:

— .
- 2
fdGZf(_I_)JC ( )(l) = - U, (25)
from which the "pondermotive Hamiltonian" is
- 2 3
T () = - = = & ool L 6o 2@
SE£(I) (2m) mg 2(2n) }
L2 g MR, @D CE®) (26)
| R T Lu(@ - v ’
in agreement with (E.8) and a generalization of (E.22b). Note that, as
w > ® | the second term of (26), the "kinetic" term, falls off as w'3,

while the "cold" first term falls off only as w2,

The wave energy consists of the vacuum contribution, (Aﬂ)_ldex(|6§_|2
+[ 6_@[2),plus the adiabatic response of the nonresonant particles, 9 (wU)/dw. We
thus expect a conservation lawfor the sum of the wave energy and the resonant-
particle energy.[4’16] The time dependence of the wave amplitude can thus be
determined froma study of the resonant particles' motion, and in particular
from their total energy. The latter is much easier to calculate than the
current-density of the resonant particles'. Other conservation laws (momentum,
action) are often helpful also. ' _

We now turn to the resonant particles, recognizing that our classification
system for particles isfuzzy. For particles where | gew(I) = w|1s so small
that the 60-dependence cannot be transformed away by perturbation methods,
we. may still distinguish between regular and stochastic orbits (although
that distinction, in turn, is fuzzy). For the regular orbits, well-trapped
in a resonance, a non-perturbative transformation, representing a different

topology, 1s possible to new I', 6', whereupon the previous discussion
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applies, so long as an orbit remains in a regular region. For stochastic

orbits, a statistiéal description would seem ap'propriate. The aim is to

derive a Fokker-Planck equation, valid in some region of I-space, of the -

form v .
A rieye 2. E | (27)

where the diffusion tensor has the standard form
DD = fTdr < IO+ >, (28)
the averaging being over §-space, or equivalently over time t. We note
that the averaging 1is not over any randomness of the Hamiltonian; that
would be extrinsic stochasticity, and would pertain to a different class
of problems, e.g. collisional effects. The evaluation of D(I) isdifficult,
~ but considerable progress has been made.[“] .‘
As the parameters of the problem (say B,(x)) vary in time, so does the
diffusivity E(_I_). We ﬁay expect it to be smooth in I, but to vary by orders
of magnitude over I-space, being effectively zero in the adiabatic regionms.
These regions themselves are then slowly moving in time.
Only inthe stochastic regions, where D # O, 1s I-entropy created. We
def ine the latter, following Boltzmann, as |
5,(t) = - ra31 T wm T, (29)
From (27), we obtain:
as. (1)
dt :
this is positive (or zero), since D 1is a positive-definite matrix. The

3 (30)
= [d”I D(I;t):

P
Pt

.
b

usual arguments then lead to the tendency for f(I) to become flat over the
stochastic region. The rate of flattening may of course be quite different

along the non-trivial principal axes of D.

G. Ray trajectories

Because the dynamics of a ray is formally the same as that of a pafticle,
with the dispersion relation (A.22) playing the part of the Hamiltonian, we
can take over much of the preceding discussion, making allowance for the non-
reality of the Hamiltonian.

' Here we give a simple Iimmediate appliéation of the second-order per=
turbation formula (C.20): '

3 D, (L;w)D_y (L3w) (1)

3L

D' (I;w) = D(I;w) -% -z =
) 2. 22 (130)
oy aI —3
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To interpret this, we begin with D(x, k; w), and break it up into two parts:

D=D+ 6D, : ‘ (2)
such that D is integrable; i.e., we can find, for D, a complete set of
action-invariants I(x, k;w), such that I = (Zn)_lf k.dx, where the line
integral is over any of the topologicelly distinct tlosed curves (not ray
paths) on the‘invariant tori in (k,x)-space of the rays of D. For example,
if the magnetostatic geometry leading to D(x,k;w) is that of a tokamak,
D may be a cylindrical model, which is integrable, since it has two symmetry
directions. The '"perturbation" 6D, representing physical toricity, is
now Fourier ' analyzed in the angle variables conjugate to I, yielding the
coefficients DSZ, (I;w), whichnowdo not satisfy the reality condition [D #D 2]

[17]of the waves represented by the rays,

We determine the eigenvalues
through the EBK quantization I = N (a set of three integers), ignoring the
Keller-Maslov index for simplicity here; and set iﬁ(}fﬁ;w) =0 todetermine
w(N): ' '

D&(N'w)D 2 s0)

DN 129
PA) = 7 5% f& 222 ;0 | )

1f wo(ﬁ) is the set of eigenvalues for the "unperturbed" problem
D(N;w) = 0, we letéu(N) = w(N) - w (N), and
BD(N w ) D, (E;wo)D_R(ﬁ;wo)

1 93 2
6w(N)———~————- S N = (3a)
Yo 2 9N L JL-%—% (g;wo)

for the frequency shift Sw(N). This is equivalent to standard second
order perturbation theory, but we stress that the functions.B, D, and
the eigenvalues Wys @ are in general complex. No assumption of —hear—

reality is needed.
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