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Abstract

A Hamiltonian formalism is presented for the study of charged­
particle trajectories in the self-consistent field of the particles.
The intention is to develop a general approach to plasma dynamics.
Transformations of phase-space variables are used to separate out
the regular, adiabatic motion from the irregular, stochastic tra­
jectories. Several new techniques are included in this presentation.



A. Introduction

(2)

j(.!, t) = r ei .!.i(t) o3(.! - Ei(t». (3)

Consequently, the electromagnetic field, obtained from the Maxwell equations,

with (2) or (3) plus external sources, is so irregular that a description of

the particle motion ~(t) appears hopeless.

One is thus led to appreciate the Vlasov model, wherein the singular dis­

tribution Fs(~;t) is replaced by a smooth (Vlasov) function fs(~)t). (The

term "smooth" means "everywhere diff erentiable as many times as needed to

validate the quasi-mathematical procedures to be employed".) The smoothing

technique will not concern us here.

We now replace (2) by the Vlasov current density

j (.!' t) =J d6z j (.!; ~) f ( ~ ; t) ( 4)

(we omit species symbols from now on). The smoothness of j guarantees

the smoothness of the Vlasov electromagnetic field .!!,!. Typically, this

field consists of a quasistatic confining magnetostatic field.!!o(.!), and

weak time-dependent electromagnetic perturbations 0!(.!, t), <5 .!!(.!, t), repre­

senting (e.g.) instabilities,or radiation injected to heat the plasma.

A particle trajectory satisfies a deterministic equation of motion[2]

~ = y(~, t), (5)

where y is now a given smooth vector field. Explicitly, for nonrelativistic

dynamics, (5) reads [c=l]

r • ;i,

2

(6)



..

•

In (6), !(~, t) includes the field induced by slow variations of .!!o, and that

due to the ambipolar potential, as well as the perturbationsj B(~, t) includes

the conf iiling field as well as that of perturbations (given by 'i1 x <5!).

The family of solutions of (5) is formally expressed as

~(tj~o)' (7)

where g;o is an initial condition (at some reference time to). We aim at both

quali tative and quantitative knowledge of these solutions (7). For example,

is the trajectory regular or irregular? [3] How sensitive is it to the initial

condition? Is there a smooth manifold (of what dimensonality) on which

it lies? Does a small initial volume d6zo evolve ergodically, in some sense?;

does it exhibit mixing? In short, is the particle motion intrinsically

stochastic?

Let the particle distribution at to be given by the phase-space density

f (~ ). We ask how the pha se-space densi ty f ( z; t ) evolvesin time. By defini tion,o . 6 ~

f(g;jt)==f d6zof(~0)<5 [(; - ~(t;~o)]; (8)

so f evolves according to the continuity equation
a aat f(g;;t) = - a~ 0 [Y(g;,t)f(~;t)]o (9)

If the phase-flow vector field .Y(~, t) is Liouvillean, i.e.,

-aa 0 V(z,t) == 0, (10)
~ . ~ ~

then (9) becomes the Liouville equation

3

[-aa '+V(z,t)o-aa ]f(z;t) = 0,
t ~ ~ ~ ~

(11)

expressing invariance of f along a trajectory (7). The Newton-Lorentz equation

(6) satisf!es(lO), so we may use(l1). An alternate expression of (11) is

f(~;t) = f[~o(~jt)], (12),

where ~o(~; t) is the inverse of (7), expressing the initial condition as a

function of position ~ at time t.

In the course of time, f(~jt) may become less smooth, due to mixing.

It may then be desirable, as well as physically realistic, to add Fokker­

Planck terms to the evolution equation (11); these would represent collisions,

Le •• departures from the Vlasov model. and may be termed "extrinsic stoch­

asticity". Since the diffusivity thus introduced is itself a smooth function,

it has the effect (characteristic of diffusion equations) of smoothing out

irregularities of f.

The Vlasov (or Fokker-Planck) equation and the Maxwell equations can

be written in a symbolic form[l] analogous to (5):.
F=V(F,t), (13)

where F~[f(~). E(~), !(~)] is a point in infinite-dimensional function space.

One can ask questions about the solutions to (13), similar to those asked

about the solutions (7) of equation (5). The instability of solutions to (13)



is called "collective instability", and has been a major consideration of

plasma physicists for many years. It should not be confused with the

particle-orbit instabilities of (5), . which are the major concern of this

conf erence •

The relation between the two kinds of instability is an intriguing ques­

tion. It is generally b~lieved that a collective instability arises from a free

energy associated with F. As the amplitude of the electromagnetic per­

turbation grows, it produces orbit instability. The consequent redistribution

of f leads to saturation of the collective instability. This redistribution

generally is characterized bya flattening of f in velocity space, and enhanced

transport in position space. For purposes of collisionless plasma heating,

the effect of orbit instability is an irreversible transfer of energy (and

momentum) from externally applied electromagnetic radiation to the plasma.

The evolution of electromagnetic perturbations can often be studied by

means of the iinear susceptibility, iee., the linear current response to

a small electromagnetic field. If the unperturbed phase-space densityfo(~)

is quasi-static, then the linear response is[4] .

4

(14)

with 2. n (x)e
a(x,x"T) =f d

6
z f (z ){i(x;Z(T,'Z», i(x",z)} - o-o(_x-_X')O(T). (.15)

- - -' 0 0 -0 .>L - - -0 .>L - -0 m

Here { , }represents the Poisson brackets with respect to the phase space

Z , to be discussed in later sections.
~o

The relation (14) can be immediately transformed to frequency:

with

. 3
0i(x,w) = f d x'a (x,x' ;w)· oE(x' ,w),- - -.- -- (16)

( , ) - food +iwT ( , )a X,x;w = T e ax,x ;T (17)--- 0 ---

a complex analytic function of W.Less 'immediate[5] is the conversion of

(16) to a local relation in terms of an eikonal representation. With the '"

assumed form (we omit c.c.):

O!(,!., t) = !(,!.) exp i[S(,!.) - wt], (18)

0i(,!., t) = I(,!.) exp i[S(,!.) - wt],



we aim at a relation

with

.~

..1(,!) • 2' (,!,.!; w) • ! (,!) , (19)

(20)

5

(21)

Using (18) and (21) in the Maxwell equations, we obtain a local dispersion

relation

O(,!,.!; w) • 0,

where 0 is the determinant of the dispersion tensor:

4~i. 1 2
P(,!,.!;w) .. ! + -;- g (,!,.!;w) - 2" (k !- k.!).

. w

The local polarization Eis determined by

O(x,k; w)· E-O.
~ -- .

The eikonal S(,!) is constructed on the ray trajectories: .

(22)

(23)

(24)

dk ao--==- = - _.
dR. ax

(25a)

Here d R. measures "distance" along the rays, and is related to time by
-1

dR. (ao) (25b)
dt = - aw

The ray equations have the same form as (5), with ~ :: (,!'.!) now representing

ray phase-space. However, since 0 is usually complex, the ray phase-space

is not real, but complex. [6) Nevertheless, one can still investigate the

regularity or stochasticity of ray orbits, and can attempt to construct
x

the eikonal S(,!)= r.!(,!')· d~'. In the integrable case, at least, the varia-

tion of amplitude can then be found from S(,!).

B. Small parameter expansions

The confining magnetic field ~(,!) has spatial variation which may be

slow (small parameter e:) in all directions, or quite different in the

three directions. In the former case, one constructs (7 ) successively 3

adiabatic invariants,associated with gyration, bounce, and drift. In the

latter case, [8) a rapid variation of ~ 'in only one direction still allows

for a generalized gyro-invariant (magnetic moment), even if the motion is

quite non-circular; such situations arise in magnetic sheaths, rings, and

in reverse-field and strong-shear geometries. Elimination of the gyration,



through construction of its invariant, reduces the motion to that of the guiding

center, with two degrees of freedom Cbounce and drift). If the magnetic

field has a spatial symmetry (say about some axis), the corresponding canonical

momentum is an invariant, and the remaining degree of freedom is integrable.

More generally, one constructs successively the bounce action and the drift

f lux. These three actions are adiabatic invariants, in that they are

conserved under slow time variation of ~(.!), while the energy is not.

The perturbing fieldo! (~,t) typically has rapid phase variation in x

(wi th wave-vector~)and in t (with frequency w). Thus one uses the smallness

parameters A (magnitude of ~) and n (rate of variation of amplitude,

wave-vector and frequency). This enables one to generalize the adiabatic

invariants of the unperturbed motion, by constructing a formal power series in

A and n (as well as in e:). In the absence of resonance (see Sec • C), the

correction terms are small; when resonance occurs, the potentiality exists

for stochasticity.

The 'situation is actually more complicated than outlined above. Typ­

ically, for given U),there may be several~, due to reflection; and the

components of ~ may be of different order. Further, the spectrum in w may

be discrete or continuous, with narrow or broad distribution in w. Most

intrinsicstochastic1ty studies postulate a sharp spectrum, since a spread

in w maybe interpreted as extrinsic stochasticity, :tn some sense.

C. Standard Hamiltonian Formalism

The use of action.-angle variables[3] allows for a formalism of consider­

able beauty[9] and generality, as we shall see; but it is by no means

easy to express a given real physical problem in that form. We begin by

postulating such a form, and discuss its interpretation and consequences.

Later we shall examine the possibility of obtaining that form explici tly.

We postulate that the particle motion can be derived from a Hamiltonian

function H(,!"Q.;t), where.!.==(Il' 12' 13) is a set of 3 action variables, with

conjugate angle variables! == (8 1, 82, 83). To be specif ie, we have a mirror

geometry in mind, where I represents gyro-action (magnetic moment1-l), bounce­

action (Jb ), and drift-action (magnetic flux <I>d enclosed by the drift surf ace).

The conjugate angles are associated with gyro-phase, bounce-phase, and drift­

phase, in a manner to be discussed shortly.

6
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(1)

•

We further assume that the Hamiltonian is "near-integrable", i.e., that

it can be expressed as a sum of an "unperturbed" part R(!.>, independent of

~ and time, and a small (in some sense) "perturbation" oH(!.,!jt).

Under H(l) alone, the angle-variables evolve as

i :: ~(l) = aR/al ,

while the actions are invariant:

i = - aR/a! = °
Hence the 3 particle frequencies .!!!.::(w.J,,~, w3 ) are also invariant. Typically,

these frequencies are in the ratio

- e:
2.. I ( )w3 : w2 : wI e: : , 2

and represent the drift-frequency w3 :: wd (rate of traversing the drift­

surface the slow way, i.e., by drifting across field lines), the drift-averaged

bounce-frequencyw2 :: wb (wb is the rate of traversing the drift-surface

the fast way, Le., along a fieldlinej it is then time-averaged over

the drift period "Cd .. 21T / wd), and the. drift-and bounce-averaged gyrofrequency

wI ::TI' (the local gyro-frequency n (!) depends on guiding-center position

!j it is to be averaged over the drift surface).

After H(l) is constructed, what is "left over" is OH(l,~.)t). (To my know­

ledge, this has not yet been explicitly carried through.) We require that

o H is periodic in~, since these are defined modulo 21T j and in this section

we shall suppress the time-dependence. We expand oH(ld~.) into a Fourier

series:

7

with

~ H (I)e i .&:!
Q, Q,-

H (I) 1 d
3

S e-i!:!OH(_I,_S) •
Q, _:: (21T)3

(3)

(3a)

..

(The~ = ° term is omitted, since it is H(l).)

Under H(l), oH has the implicit time-dependence

oH(t) = ~ H (I)ei[!:~(l)t + !.!o]
Q, Q, - (4)
- 0

with respect to an initial state I,!.. Its effect is quite different»

depending on whether ..&..~ (!) is near zero. To see this, we return to (3)>>

and evaluate the evolution of let):

I = - aH/a! = - aoH/a! = ~ (-iQ,)H (I)ei!.! (5)Q, - Q,-

(Sa)

This equation is easily integrated, so long as -!:...~(1) .; 0, to obtain

= - (6)
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The excursion in action space is thus small, if H,Q,is small and ,Q,·wiS

not small!

The "dangerous" regions are the resonance layers, Le., the neighborhoods

of the surfaces

~.~(.!.) ::0 0 (7)

in action space. These two-dimensional surf aces, parameterized by the 3

integers ,Q,I' ,Q,2' ,Q,3:

(7a)

represent values of .!. =(lJ, J b, ~ d) for which the corresponding frequencies

have a commensurable relation

(7b)

The surfaces have zero thickness, and thus zero measure, but their domain

(8a)

(9)

(8b)

(9) ,

Since

we obtain

of influence is what matters. Under. the perturbation, the evolution of

.!., from the ,Q,th term alone, is (o!.),Q, - !H,Q,/!:~ .So the ,Q,th resonance

denominator has the variation,

o(!·~) - o(,Q,·aw/al·o:D '" (~.. a~/ar.!)H,Q,/!.~

aw/dI :: a2'Hhr aI :: j( ,

- - o (!:.:iE..)-- IlJ,Q, H~ll/2

where lJ,Q, - !.JS.!
As an estim~te of the domain Of influence of a resonance, we may use

and say that

1!.~(.!.)I~llJ,Q, H.Q,l
l

/
2

(10)

def ines the thickness of the ,Q, th resonance. Now we must appeal to the

smoothness of the Hamiltonian, to guarantee that the Fourier coefficients

H,Q, fall off sufficiently fast with

I!I :: 1,Q,11 + 1,Q,2 1 + 1.Q,31· (11)

If, e.g., H,Q,fallsoff ase-I!l, and iflJ,Q, isO(I!l~, then the high-order

resonances can be ignored; while the low-order resonances occupy only a

small (but finite) measure of the action-space, for oH sufficiently small.

Even the lowest-order resonances may be negligible, if we appeal to the

ordering (2); using (2) in (7b), we see that the minimum I!I isof order
-1 . -8-1

8 whereupon smoothness of oR yields R,Q, -- e ,and an exponentially

small resonance width (10). This is to be expected, for if resonance effects

were appreciable, particles would not be confined effectively.

Let us then, for awhile, lim! t our attention to. the non-resonant part

of .!.-space, which, for 8« l,is its major part. The !-dependent perturbation

in the Hamiltonian can be t1;'ansformed away (to higher order) by a canonical

transformation. We choose to use Lie transforms, as the most expeditious



transformation technique [10]. Let wn,!) be an arbitrary smooth function,

and def ine the Lie operator

9

L - {w,
w

aw- .- ae

}

(12)

With the Fourier series
(.8:,;&0)

:,)

we have

It is a

w = ~ e i .8:,·! w (I)
Q, Q, -

H·e ..
Lw =r e - -(wt i.8:,.a/a.!. - aWQ,/a.!..a/d§). (12a)

general property of Lie transforms that canonicity of the phase-space

variables is preserved under the operation z -+- zt .. T ~, where

T • exp Lw = I + Lw + 2~ Lw'2 + ~.. (14 )

Then

and

The

e' = e - ~ e i .8:,'! aw laI + 0(w2)
- - Q, -

Hamiltonian transforms under T- 1 .. exp (-Lw):
-1 1 L 2H +H -+- Ht .. T H= H - L H + - .••
_w 2 w

On substituting H = H + oH, and treating w as of order oH,

H' = H + [oH - LwH] + [t Lw2ii - LwoH] + •••

So f ar w(.!.,~) has been arbitrary; we now choose it to

first order term of H':

(15a)

(15b)

(16)

we have

(16a)

eliminate the

Using (12a), we obtain

~H = oH·

HQ,(.!.)

wQ,(.!.) = i .8:,'~(.!.)

(17a)

(17b)

Now that w is determined, we proceed with the evaluation of the new

Hamiltonian H', finding

H' = H +; (_)n n n oH
n=1 (n+1)! Lw

(18)

We break this up, as with H, into an angle-independent part H' and an angle­

dependent part oH ' (we drop the primes on the variables, but they should

be kept in mind):

From (18), we see that

"if' (.!.) = H(.!.) - t ~oH + 0(oH)3

with the second-order term, from (l7b):

1-- 1 a
- 2" LwoH = - 2" ar .

(19)

(20a)

(20b)
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(21)

The new Hamiltonian H' (19) can now be subjected to a second Lie trans­

formation, with the same form (17b) for the new generator w':
H'

w' = l
Q, H,·w'

. Here H' is a Fourier coefficient of
Q,

oH', as read off from

1 a2 IH.nJ2
- 2" dIdI: Q, ~ n n.w +

n

(18), while

is the new resonance denominator.

to eliminate the lowest-order e -

(18) :
n(-) n

(n+1)l
L noH'w' ,

The second transformation T' serves

dependence from H', which is O(oH)2,

H" = T,-IH, is given by ~he analog of
00

H" = H' +:k
n=l

from (18) • The next Hamiltonian

and its .Q-dependence is O(oHI)2 O(oH)4. Each step raiSes the order

of the ~-dependence, in the sequence 1, 2, 4, 8, ••• The consequence is

a "superconvergent" series 'of transformations to produce integrability for

the nonresonant portion of .!.-space. A careful statement of this constitutes

the famous KAM theorem. [3, 11]

We now turn to the resonant regions of .!.-space, I.e., those for which the

resonance condition

(10)

is satisf ied for some Q,. We begin by supposing that only one &. satisf ies

(10) in some small .!- region, and we examine the neighborhood of the resonance

surface &.. .~.!.) = O. We select some point .!.o on that surface, and expand

the unperturbed Hamiltonian H(.!.) about that point:

c.c.c.c.

H(.!.) = H(.!.a) + (1.-.\,)'~(.!.a) _+ t(.!.-.1o) G_-la): a
2ii/81 311 rO +...

-0 (22)

term (and its complexFrom the perturbationoH, we select only the resonant

conjugate):

where

(24 )

is the relative phase of the resonance. The non-resonant terms of oH can

be ignored.

Thus the selected terms (22) and (23) yield the evolution equations:

r = - a [21 HQ, I cos1)JQ,] fa§.. = 2~J H.B:. 1 sin1)JQ,

WQ, = Q,·e = .B:.·aHfa.!. = (.!. - !o)<lj'.~

~ .. = i.x.Q, = 211 IH I sin1)Jn' by (8b).
Q, ~-- .B:..B:. lv

(25a)

(25b)

(25c)



Linearizing (25c) about the stable fixed point (lj/JI..

for llJl.. < 0), woe have

• 1T for llJl..>O , lj/JI.. • 0

(25d)

11

(26)

or a phase oscillation at frequency

I 1
1/2

wJI.. = 2HJI.. llJl..
- --

The evolution of I is along L, which is tangent to the unperturbed

energy surface H(I) , since!.·~(.!o)=~·aH/allr = O. The amplitude of the
~

excursion in I, along!., is deduced from the "pendulum" equations (25)

to be

(27)

for the separatrix orbit through the unstable fixed point.

Expression (27) leads to a resonance half-width

I 1
1/2c5(!..~) - !.·a~/al·L\1 = 8HJI.. llJl.. (27a)

consistent with the estimate (9) from examining the nonresonant terms. We

may now fit out each resonant surface ~with the width (27a), which varies

along the surface with the choice of .!o.
Our considerations so far make sense only if these resonant regions do

not overlap. If they do, orie must keep both (overlapping) resonant per­

turbations. In general, the motion is then stochastic throughout the over­

lapping resonances.[ll]

The introduction of a phase frequency (26) for each resonance leads to

the appearance of secondary resonances, and in fact to a hierarchy of such

resonances. These serve to broaden the structure of the separatrices

and to expand the domain of influence of the resonances.

These refinements are not needed to identify the location (in I-space)

of the stochastic regions. Our procedure is as follows:

(a) Find H(l) ("First catch your hare").

(b) Calculate the set of resonance surfaces ~·~(I) = O.

(c) Find the perturbation OH(I,~) and calculate the

Fourier coefficients HJI.. •

(d) Calculate the width of each surface.

(e) Locate the regions of resonance overlap.

(f) Examine the topology of the stochastic regions.

It remains to discuss the consequences of stochasticity; we defer that

to Sec. F.



D.· Non-canonical Variables in Hamiltonian Dynamics

The formal developments of plasma kinetic theory have, in the past,

followed one of two paths. The majority of plasma theorists have utilized

physical, non-c.anonical variables, and ignored the advantages of a Hamiltonian

approach, which e](presses the vector flow in phase space in terms ofa

single scalar function, and which makes use of canonical transformations.

A minority has recognized the utility of the Hamiltonian methods, but has

been plagued by the non-physical, gauge-dependent nature of the canonical

variables. Only recently has the realization come that a Hamiltonian formalism

can be effectively utilized in terms of non-canonical variables. [12]

We begin by considering motion in a given magnetostatic field 1,(.!).

The standard approach is to choose a vector potential A, (x), form a Lagrangian
.. () 12 e () -Lr,v =-2v +-v'A r , (1)-- . m----o-

(differing from the usual only by the factor m), define the canonical

momentum

12

. e
.E.(!.,y) :: aL/ay:; y + hi: ~ (r) ,

and proceed to the Hamiltonian

For any phase function g(.!,.E.), its .evolution equation is

g:: E: ag/a!. + i!: ag/a.E. •

The Hamiltonian equations:

r = aH/a.E., i = - aH/a!. ,

then convert (4) to

g = {g, HL
where

(2)

(3)

(4) .

(5)

(6)

{g, f} ~ . 1£ _~ . af
- dr dE dE ar

(7)

With the use of Poisson Brackets for the physical, but non-canonical,

variable y, we can dispose of the non-physical canonical momentum.E.. Thus,

to obtain the equation of motion, we calculate

• 1 2 ( )
Y = {y,H} = {Y'2 v } = {y,y}.y 8

We then evaluate the Fundamental Poisson Bracket {y,y} from (7), and obtain

{v , v,} = E, Q (r) , (9)
~ A ~Aa a-

where ~(~):: (e/m)1,(~) is the local gyrofrequency. (Note that (9) is exact;

no small-E expansion has yet been made.) On substituting (9) into (8), we

obtain the Lorentz equation i "" v x ~(.!), without the explicit appearance

of ..E and ~.



The relation (9) establishes (with V· B .. 0) the requirements for a
-0

symplectic manifold, [13] and leads to the use of the Darboux algorithm for

constructing a guiding-center (g.c.) formaiism. We begin with the physical

variables .!"y, and work toward the 2 gyro-variables (6 g' \.I), which are

canonically conjugate, plus a set of 4 g.c. variables !, P (g.c. position

and parallel momentum) which are not conjugate with respect to each other.

The method requires slow spatial variation of ~(~), and so the smoothness

requirements mentioned earlier come into play again.

The g.c. position is defined in the usual way (1) is the unit vector

of ~):

! .. .,E + e: y xb(.,E)/Q(.,E) + 0(e:2 ), (10)

and the g.c. Hamiltonian takes on the familiar· form

H(\.l;!, P) .. t p2 + \.I Bo(!) + 0,(e: 2 ). (11)

To obtain the equations of motion, we need the new Fundamental Poisson

Brackets:
. A. *

{ R, R} =b(R) x riB (R), (12a)-- - - -

{R,P} =b(R) + [e:P/B*(R)Jbx(b·v)b, (12b)- - * A A

which are again exact relations. Here B :: Bo + e: Pb·Vx b, and I is the

identity matrix. The evolution equations:.
R = {!' H} = {!' P} p + (!~:,B:.}.\.lVBo <.!~), (13a)

P = {P,H} = -{!,P}- \.IV Bo (!) (13b)

then yield the classic drifts and the mirror force.

Now, if the system is perturbed by a field 15 !(~), which is not slowly

varying over a gyroradius, but which is small in amplitude, the Lie technique

of the preceding section can be,used. Similarly, a time-dependent perturbation

15!(~, t), weak but rapidly varying, can be treated by Lie techniques. We

discuss such perturbations in the following section.

13



E. Oscillatory Perturbations

So far we have treated the Hamiltonian as time-independent, whereupon

energy is conserved. We now consider the perturbing effect of an electro­

magnetic wave, and we begin by requiring it to be periodic in time, with

fixed fundamental frequency w, but not necessarily sinusoidal. The Haniil­

tonian then is perturbed by a term of the form

14

}; HQ, (I)
Q, m _,m"""
~,

H·e + imwte-- (1)

expressing periodicity in e and t, and using the global variables .!., e of

part .Q.

The time-independent formalism of (.Q) can be taken over directly, if we

extend the phase-space (.!.,e) to include the fourth degree of freedom (h,T),

with T = wt and {t,h} = 1; and take as the extended Hamiltonian

with

J<: = J( (.!., h) + <5 J<: (.!.;~,T) ,

'X =H(.!.} + hw,

<5;Ie = };;J{' (1) e i 1:'~.. L'l ~ .

(2)

(3)

(4)

Asa phase variable, ~ = h ,J(} = {T, h}w = w,

{h, T}aJ<:/aT = - w-laH/dt = - w- l it, so

Here 1: = (~, m), ~ = <,~, T)..
as required; and h = {h,J(} =
X= 0, as expected.

We now follow.Q, obtaining, in analogy to (C.l),

e = ~l<.!.) = (8, ~) = (w,w).

A resonance surface (!,m) is now defined by

L·Q = !.~(.!.) + mw = 0,

(5)

(6)

i.e., the wave frequency w is a rational combination of the 3 particle

frequencies:

(6a)

(7)

For I not within a resonance layer, we can again eliminate the per­

turbation (1), by the analog of (C. 17 b):

HL m(f)
wL (1) = i (Q, • w(r) + mw)

--- .

obtaining the second-order static term in the new Hamiltonian [see (C.20 b)]:

./

j(2) =
(8)



To put some flesh on this skeleton, we need the Fourier coefficients

H of (1) for Eqs. (7) and (8). Formally, we have
!;m
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3
H (I) ::.~ d e e-i!'!f 27T d-r e-im-r ( e )

3 2 H !,_;t ,
!.,m - (27T) 0 7T

(9)

where H is the sum of the Hamiltonian Ho in the absence of the wave, plus

a perturbation oH, which, to lowest order in the field o!, is

3
oH(!,~) t) = f d x o!(1£, t) 'i(1£;!,!) ,

with 1 given by (A.1):

i (1£;!,!) = ey(!,!)°[1£ -!.(!,!) ] •

We now introduce the eikonalform(A.18) for o! into (10):

-ioot 3 is(x)-
oH(!,!;t) = e f d x e - !(x)·i(1£;,!.,!),

and then use (11):

(10)

(11 )

(12)

From Eq. (0.10) (suppressing E),

introducing the gyroradius, we expand the eikonal:

(14)

= S (R) +'·k (R)' P + , •.
- -1. - -

(15)

For the slowly varying amplitude, we can set !(!..) = A(R.). For the velocity,

we have, from (14), . .. '"
v = R + P = VII b + V-1.

neglecting drifts. Thus (13) becomes

.rH -ioot + is (R) . ik, (R) • P A;""(R) ( bA + )
u = e e - e - - - _ _ • VII Y1.'

(16)

(17)

Now (17) is to be inserted into (9), to yield the coefficients H~ m=-l(l);
-'

but this calculation has not yet been performed. In its place, we have a

local result, to which we shall refer later [Eq. (21)].

Let us now examine the transformation of action I induced by the Lie

generator (7). From (C 15a), we have (by analogy)



I' = I +~ ei(~:! + mwt) i!\V~ m(1.) + ...
_2,m -' (18)

= I + ~ .&. Hn m(1.) ei (~:~ + mwt)+ ...
2m !·~(I) + row Z-'
-'

It is I', not I, which is invariant under the perturbation; the variation of

I is quite evident from (18), or its equivalent, the analog of (~.6).

Next, let us look at the question of invariance under slow (n) variation

(in time) of parameters, Le., the magnetostatic field: ~(3.)+ !o(3.;nt), and

the parameters of the perturbation: E(~)+!(3.;nt), ~(x)+~(3.,nt),w+w(nt).

So long as the actions I are non-resonant, Le., are not within a resonance

layer
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(19)

we expect the actions to remain invariant, from the general principles of

dynamics. However, H"(I; nt) implies ~(I;nt) so the resonances !·~(1.;nt) = 0

and !.·~(I;nt) + mw (nt) = 0 are slowly moving surfaces. In general, para­

meters may vary by an appreciable amount, and hence a point I may find

itself crossed by a resonance layer, or by a stochastic region (representing

overlapping resonance layers). A general procedure f or treating such a

crossing appears not yet to be available.

We now return to the local, semi-canonical variables of Sec • .Q, for

which an explicit expression for the perturbation Fourier amplitudes has

recently been obtained. [14 ] Locally, the analog of ~:: ail/a1. is (S, i) =

(Q(~), Pb (~» to lowestorderiil E:; i.e., the g.c.drifts and the mirroring

force are higher order. The resonance condition. (6) is replaced by the

local gyroresonance condition

2Q (R) + k,r<.~) P + mw

with the eikonal representation (!.18) defining

Fourier amplitude (in 6) is found to be (for m =

=0

k (x)
" -

-1):

A

- b(3.)·VS(3.).

(20)

The

to lowest order in E:. After Lie-transforming awaythefirst-otder (in wave-·

amplitude) perturbation, it re-appears in second-order, in the analog of (8):

JC ,(2)
(22a)



To (22a) must be added a second-order perturbation term appearing already

in J(, before the Lie transform:

+ 11<'!91 2
• (22b)-- ,The consequence of these second-order (in!) terms in J( is to produce

modifications in the g.c. evolution. Thus the mirroring equation (D. 13b)

receives the perturbation contribution

p,(2) = {P' "j(2)} = _ b(R).'i/J(,(2)(R P].I)
, - -'" (23)

1(2)
which is denoted "ponderomotive force". The other derivatives of J( (22)

yield ponderomotive cross-field drifts, nonlinear gyrofrequency shift, and

a difference between g.c. momentum and parallel velocity:

b'! = P + aX' (2) lap (24)

To interpret this quadratic difference, we imagine that the wave is turned

on adiabatically in time. Since parallel momentum P is not affected by

time-variation of the amplitude, but only by its spatial variation [see

(23)], the invariance of P implies, by (24), that the wave creates a change

in the g.c. velocity. This adiabatic change in velocity, when summed over

all the nonresonant g.c., is to be interpreted as the plasma component of

wave parallel-momentum density.

We have, in this section, paid little attention so far to the resonant

particles, i.e., those for which (we set m = -1)

17

(25)

Since the actions I may be appreciably modif ied in the case of resonance,

these are the particles for W'hich irreversible energy transfer f rom the

wave is possible. We begin by ~upposing that only a single resonance (25)

affects some given..!.; to be specific, we have the finite-width condition

(see f. 27a):

where Jt of. (4) has a slow time-dependence because of growth (say) of the
- Jtwave amplitude. If the wave amplitude grows as exp y (t')dt', the

resonance width grows (half as fast), and traps more and more particles.

As a particle, initially non-resonant at some ..!.', sees (so to speak) the

resonance getting ever closer, it becomes ever more agitated, as we see

from (18), with Hr. growing in time, and I' invariant. At some time (de­

pending not only on .!.', but also on its angle ~'), the particle crosses

the separatrix between the non-resonant and resonant regions of ..!.'-space.

This separatrix is itself a fuzzy region, because of secondary resonances.

Within this stochastic layer, the instability of the orbit produces a
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(28)

partial amnesia. After an uncertain sojourn in the stochastic layer, the

particle enters the interior of the resonance, where it undergoes regular

phase oscillations, with gradually growing frequency [see Eqo (.Qo 26)] °

In this process, the particle has changed its energy, by interacting with

the wave; the wave energy must thus change, as a result of this resonant

capture of particles.

Before proceeding to considering resonance overlap, we shall examine

more closely the invariants under a single resonance. We take

H(l,!; t) = H(l) + I1. sin(~:!2. - wt), (27)

where all the non-resonant terms have been transformed away, and we have

dropped the primes. The one resonant term satisfies

!·~(l) ~ w

(29)

From (27), we have (with

- w I1. COSWQ,aH/at =-H =

for 1 in the region of present interest.

W
t

- toe - wt)

(30)

the combinations

12 H 13 H
J=--- J=---2- t w' 3- Q, w'

2· 3

immediately that

II H
J l :: ~ - ;,

We see

are exact invariants. Thus, even at resonance and with time dependence, the

Hamiltonian has a complete set of inva:riants, and thus is integrable_

Next we allow for two (overlapping) resonances, ! and.!!,.; Le., for some

region in I-space,

and
<ISH 1

1
/

2
Q, llt

< ISH II 1
1

/
2

n n

(31)

We take as the Hamiltonian

H . sin(t-e - wt) + H sin(n-e - wt)_t -- n--
(32)

Now
w H cos1/!

n n (33)

n H cosw
- n n

/

Since I is varying in the (!'.!!.) plane, its perpendicular component J.!. :: !x.!!.°l

is one invariant. To find a second invariant, we look for some combination

of I and H; after a bit of algebra, we obtain

J
x

.!!.-.!!. ! + ! -! .!!. - (!-.!!.)(! + .!!.) - I - !!
!_!.!!.o.!!._(!o.!!.)2 - w (34)

as a second invariant tinder (33). Hence the overlap of 2 resonances causes



(35 ))

the loss of only invariant; the stochasticity is limited to the overlap region

and in addition must lie on the intersection of the two invariant surfaces.

If the perturbation is time-independent (w+O), the second invariantJx can

be replaced by H.

Another case of invariance preservation under resonance overlap is the

"multiplet overlap", i.e., the set of mutually overlapping resonances (,Q,1'

i 2 , i 3) with two integers (say i l and i 2 ) fixed, while the third runs

over a set of three or more values. Here the model Hamiltonian is

i(i e + i
2

62 - wt) ii
3

6
3H(..!.,~;t)=H(..!.)+e 11 r e Hi +CoCo

3 3
:: H + oH + coco

with the resonances
1/2

lilWl (!) + i 2w2 (..!.) + i 3w3 (1) - wi < 18 Hi3 U!.1 ,(36)

overlapping in pairs of successive i 3 values. We form.
H =- iw oH + CoCo,
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(37)

thus the two

.
12 =

combinations
I

J::-!. H
1 i

l
w

- H 2 oH + co Co;

(38)

are invariant under the multiplet overlap. In the case w+O, we would use H

and II 12
J ::x i

l
i

2
(39)

Next on the agenda is the case of several discrete frequencies in the

time-dependence of the perturbation: o~(~, t) = rE
j

(x) exp (-iwj t) 0

Accordingly, we now have a set of primary resonance layers at

w. = !.·~(l) (40)
J

as well as beat resonances of the form

:E m.w. = i·w(I) (41)
j J J - --

The earlier formulas in this section are to be generalized in more or less

obvious ways. With an increase in'the number of effective resonances, the

portion of action-space which is stochastic increases rapidly.

Finally, we must make the transition to a continuous frequency spectrum,

corresponding to a perturbation occurring in a finite time-interval. Let

f(t) be a smooth function, nonzero only over the interval O<t<T. Then

dw ~ -iwt ~ +iwt
f(t) = f 2n t(w) e ,with t(w) = f dt e f(t),



having a spread 6w'V T- I • Let f (w) be approximated by a sum of N delta-

functions: N

f (w) :t ~ f
j

0 (w - w.) ,
j=l J

of separation ow 'V6w/N, with f. 'V f(w.)ow. If f(t) represents the amplitude
J J

of the perturbation, we have a set of N resonances at

w. = !..~(..!.), j = l,..., N.
]

for each Q,. The separations of the resonances are oW'V O(N- I ), while their

widths are O(f //2)'V0(N- I / 2). Hence, in the continuum limit (N+ co ),

resonance overlap always occurs. This argument seems to imply that a

perturbation over a finite time interval necessarily produces stochastic

particle motion.

F. Kinetic Description

As seen in the Introduction, the family of particle orbits under a

Hamiltonian H(..!.,~)t) is equivalent to the· evolution in time of the phase

space densityf(.!.,.SUt) in the Vlasov description. The advantages of using

f include the possibilities of coarse-graining and of adding collisional

effects in a simple .way; in addition, f is needed to determine the self­

consistent fields which enter the Hamiltonian.

Retaining the Vlasov model for a while, we have

af (l)
at(..!.,~;t) + {f,H} =0,

the Liouville equation in terms of Poisson brackets. Note that the set

of variables (.!.,~)is not unique; in Sees. C and E we have discussed

transformations among such sets. For different (.!.,~ sets, we have different

Hamiltonian functions H, different phase-space~densityfunctions (although

their values are the same at corresponding points), and different current

densities l(~;.!.,~) (again as functions, not values). To be more precise,

for a transformation (using ~ = (.!.'~»

~ + -!' ~),

we have H<,~) + H' (e');

and f + f'
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with

as well as

f(e;t) ::0 f'~';t); (2)

(3)



For the Maxwell equations, we need [see (A. 4)]
6 "6

i(~,t) = fd z i(~;!)f(!;t) = fd z'l'(~;~')f'(~';t)

where

i'(x;~') = e'y'(~')o(x - .!'.(~'».

(4)

(5)
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In (4), since z' is a dummy variable, the prime can be dropped, but the--
functions l' and 1 (as well as f' and f) are different. For a Lie transform,

we can be more explicit. [10] The functions are transformed by the operator

T- 1 of Sec • .f.; thus

)
-1

= T j (x;~)

= j (~;!) - {w(!) , i(~;~)} + 0(w)2
(6)

In any representation, we can separate phase-space functions A(.!.,~)

into ~-independent and ~-dependent parts: A = A + oA, i.e.,

H·ee-- (7)

For two such functions A and B

AB = AB+ .~ A B_ nt t )(,
Using (8) in (4), we have

l(~,t) = (21r)3 fd3I[I(~;.!.)f(.!.;t) + ~ it(~;.!.)Lt(l.;t)] •
t - -

With this breakup in (1), we have

(8)

(9)

Now, if we transform to a new representation, for which oH+O, the right side

of (10) vanishes, and only "ballistic" solutions remain:

ft(.!.;t) = f£,(l.;O) e-i!:~(l.)t (11)

For non-resonant particles, this transformation can be accomplished, at

least in principle. After elimination of oH, to all orders, we turn to

the evolution of f:

from (1); therefore

ddt f (!.; t) = 0 (12)

f(.!.; t) = f (.!.; 0).

If, in addi tion, we suppose that f £, (.!.; 0) vanishes, i.e., that f is initially

!-independent, then (11) tells us that f£, (.!.) vanishes for all time. The

current equation (9) then takes ona very simple form, for the contribution

of the non-resonant (NR) I:
- 3 3 -;- -

~R(~,t) = (21r) INRd I ~(~;.!.)f(I;O). (13)

(The contribution of the resonant-I particles must still be considered;



since that is more difficult, we shall deal with their effect by other

means, below.) In (13), I(..!;..!.) means the ~-independent part of the current­

density function, in a representation where oH vanishes. Thus, from (6),
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we have

(14)

The second term of (14) is, in the representation (7),

+ i a~ 01w!(..!.)l_l (..!;l) (14a)

(14b)

For the coefficient H , we use (!.10) with oA(x, t) = o!(~) exp (-iwt):
!,m

H (I) = fd3x'8A(~')01 (x';1) , (15)
!,m=-l - --! - -

and substitute into (14b), with 8!(~) :: (iw)-l 8!(~), obtaining

3 NR ( )fd x' SL (~,~';..!.;w)08~(x') , 16

with

(17)

as the contribution of a particle at (unperturbed) ..!. to the 2-point con­

ductivity tensor, at frequency w. This equation is consistent with, but

more restricted than, formula (!.13). We note that tlle matrix (17) is

anti-Hermitian, representing the adiabaticity of the non-resonant particles,

Le., their inability to exchange energy irreversibly with the field. On

integrating over the non-resonant distribution (13), we obtain

NR 3 3 - NR (18)
SL (2£,x' ;w) = (27T) f d I f (DO) £ (~,~' ;l;w) 0

NR

}laving examined the second term of (14), we return to the first. Since

Y.. = .E. - (e/m)!(.!:; t), a perturbation 8!(~, t) induc,esa change in velocity (at

fixed momentum): 8 v = -. (e/m)8!(.!:,t). Thus, froin (E. 11), the current

develops a first order (in 8A) term
2-

- ~ o(x-r) 8A(x,t) 0 (19)
m -- --

On integrating over f, as in (4), we obtain the local contribution to

"

that is, a

2 -1
-en (x)e 1m) 8E(x,t)(iw) ,

0- -

susceptibility contribution [X :: 47Ticr/w]:-- --
2 2

r(x,~';~) = - (wp(x)/w )8(~ - x'),

(20)

(21 )

characterizing a cold unmagnetized plasma. Thus the additional contribution
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(17) represents the eff ect of finite "temperature" and finite magnetic field i
The non-resonant susceptibility [(21) plus (18)] can be used for (at

least) two purposes, besides the obvious one of determining the wave pro­

pagation. Let us form the expression

(24)

(22)

~' is the hermitian part of the total linear susceptibility. Using (I8)

and (21), we evaluate U: 1 3 I 12 2 2 .
U = - - I d x <5E (x) w· (x) / W41T - ....., P -

-2 6 -d II d3xiQ, (.!.;I)· <5!(.!.) 1
2

+ w Id zf(I;O)dI·r .&.. ~(.!.) _ w (23)

2
w2(x) = Id6zf(_I;O)41Te <5(x-r(z»;
p- m ---

We note that

so U is a linear functional of f (I), and is quadratic in <5!(.!.) •

We now use the theorem [15] relating U to the second-order (in <5!)

Hamiltonian:

(25)

from which the "pondermotive Hamiltonian" is

(26)

in agreement with (!.8) and a generalization of (!.22b). Note that, as
-3w + 00 , the second term of (26), the "kinetic" term, falls off as w •

while the "cold" first term falls off only as w-2.

-1 3 I 12
The wave energy consists of the vacuum contribution, (41T) Id x( <5!

+1<5.~P),pluS the adiabatic response of the nonresonant particles, d (wU)/dw. We

thus expect a conservation law for the sum of the wave energy and the resonant­

particle energy. [4, 16] The time dependence of the wave ampli tude can thus be

determined from a study of the resonant particles' motion, and in particular

from their total energy. The latter is much easier to calculate than the

current-density of the resonant particles. Other conservation laws (momentum,

action) are often helpful also.

We now turn to the resonant particles, recognizing that our classification

system for particles is fuzzy. For particles where I.&..~(I) - wi is so small

that the ~-dependence cannot be transformed away by perturbation methods,

we may still distinguish between regular and stochastic orbits (although

that distinction, in turn, is fuzzy). For the regular orbits, well-trapped

in a resonance, a non-perturbative transformation, representing a different

topology, is possible to new I', ~', whereupon the previous discussion



applies, so long as an orbit remains in a regular region. For stochastic

orbits, a statistical description would s'eem appropriate. The aim is to

derive a Fokker-Planck equation, valid in some region of .!-space, of the

form

~ (I;t) = .1... . [D(I). ~] (27)at - dI "'" - dI

where the diffusion tensor has the standard form
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(28)

(30)

(1)

the averaging being over ! -space, or equivalently over time t. We note

that the averaging is not over any randomness of the Hamiltonian; that

would be extrinsic stochasticity, and would pertain to a diff erent class

of problems, e.g. collisional effects. The evaluation of ,Q<.!) is difficult,

but considerable progress has been made.[ll]

As the parameters of the problem (say ~(.!» vary in time, so does the

diffusivity D(.!). We may expect it to be smooth in l, but to vary by orders

of magnitude over.!-space, being effectively zero in the adiabatic regions.

These regions themselves are then slowly moving in time.

Only in the stochastic regions, where Q::J: 0, is l-entropy created. We

define the latter, following Boltzmann, as
3 -

51 (t) - f d I £(l; t) Q.n f (.!; t). (29)

From (27), we obtain

d5r (t) 3 af af
d t = f d r 1? (D t): ar li

this is positive (or zero), since ,Q is a positive-def inite matrix. The

usual arguments then lead to the tendency for f (l) to become flat over the

stochastic region. The rate of flattening may of course be quite different

along the non-trivial principal axes of 1?

G. Rat trajectories

Because the dynamics of a ray is formally the same as that of a particle,

with the dispersion relation (!.22) playing the part of the Hamiltonian, we

can take over much of the preceding discussion, making allowance for the non­

reality of the Hamiltonian.

Here we give a simple immediate application of the second-order per­

turbation formula (~.20):

- - 1 a
D' (l; w) D(l; w) - 2" ar



To interpret this, we begin with D(.!, ~; w), and break it up into two parts:

D = 0 + OD, (2)

such that D is integrable; i.e., we can find, for 0, a complete set of

action-invariants..!. (.!, ~; w), such that I~ = (21T )-l~ ~ ~.d.!, where the line

integral is over any of the topologic,ally distinct closed curves (not ray

paths) on the invariant tori in (~,.!)-space of the rays of O. For example,

if the magnetostatic geometry leading to D(.!,~; w) is that of a tokamak,

D may be a cylindrical model, which is integrable, since it has two symmetry

directions. The "perturbation" 0 D, representing physical toricity, is

now Fourier analyzed in the angle variables conjugate to .!, yielding the

coeff icients DQ, (..!.;w), which now do not satisfy the reality condition [D~ "D_Q,].

We determ~e the eigenvalues[17] of the waves represented by the rays,

through the EBK quantization..!. = ! (a set of three integers), ignoring the

Keller-Maslov index for simplicity here; and set D' (..!.=!; w) = 0 to determine

w(~) :
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If wo (!) is the set of eigenvalues for the "unperturbed" probiem

D(!!;w) = 0, we let ow(!!) = w(!) - wo(.!i) , and

(3)

I a
= "2 aN • :E

Q,
(3a)

for the frequency shift ow(!!). This is equivalent to standard second

order perturbation theory, but we stress that the functions D, DQ, and

the eigenvalues wo ' ware in general complex. No assumption of near­

reality is needed.
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