
LBL-9465 

(Loio>F- T ^ O M C C - - 1 

Lawrence Berkeley Laborator 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Presented at the International Workshop on Intrinsic 
Stochasticity in Plasmas, Cargese, Corsica, France, 
June 18-22, 1979 

RAY AND WAVE OPTICS OF INTEGRABLE AND STOCHASTIC SYSTEMS 

Steven W. McDonald and Allan N. Kaufman IAST 
July 1979 

Prepared for the U. S. Departnant of Energy 
under Contract H-7405-ENG-48 

a*- '*••• ' 



Ray and Wave Op tiers of Integrable and Stochastic Systems 

Steven W. McDonald and Allan N. Kaufman 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

___. --NOtir.E -

Julyl979 [,... „ . « .»;;-';•„"„.;:,:„::"•.. 

Abstract r.',:'™.;".'•"' ..-"'".*'' 

The generalization of WKB methods to more than one dimension Is dis­
cussed in terms of the lntegrability or non-lntegrability of the geometrical 
optics (ray Hamiltonian) system derived in the short-wave approxlmatlo7i. in 
the two-dimensional case the ray trajectories are either regular or stoch­
astic, and the qualitative differences between these types of motion are 
manifested in the characteristics of the spectra and eigenfunction; • We 
examine these for a model system which may be integrable or stochastic, 
depending on a single parameter. 
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The propagation of an electromagnetic or electrostatic wave in plasma 
can often be analyzed in terms of the VKB solution to the appropriate 
wave equaVion. This approximation requires the knowledge of the ray tra­
jectories governed by the Hamiltonian set of equations 

dk . _ 8m(k,&) da _ 8m(k,x.) ( 1 ) 

dt 3x ' dt 3k 
where u (k.2i) i s c h e local dispersion relation. If the wave is trapped 
in a region of the pla6ma, one is led to the determination of the eigen-
frequency spectrum and the normal modes. In order to extend the well-
known WKB methods to nonseparable geometries of more than one dimension, 
the general relation between the trajectories of the classical (geometrical 
optics) system (1) and the state6 of the wave mechanical (physical optics) 
system must be understood. This is the regime of eemlclassical mechanics, 
which has been studied extensively in the context of the correspondence 
between classical and quantum systems. 

The application of the WKB method to a time-independent, bound Ha­
miltonian system with N degrees of freedom is known as EBK quantization, 
and it relies on the structure of the classical phase space (k,jt). 

3 Quantization of integrable systems is well understood; it Is based on 
the fact that N analytic constants of the motion exist which constrain the 
motion to lie on N-dlmensional tori in phase space. In the non-lntegrable 
case, a complete set of N invariants does not exist and EBK quantization fails. 
In the limiting case there is only one constant, the value of the frequency 
<" • u)(k,it), so that the ray trajectory ergodlcally explores a 2N-1 dimensional 

3-7 frequency surface; only a few predictions have been made regarding the 
qualitative aspects of the spectra and elgenfunctlon6 of such systems. 
In the remainder of this paper we shall restrict ourselves to N-2 and then 
consider a model system whl:h, depending on the value of a single parameter, 
is either Integrable or non-lntegrable and ergodic. Ue Indicate how the 
characteristics of the different types of classical (ray trajectory) motion 
are reflected in the features of the (wave) apectrum and eigenmodes. 

We consider the ray system (1), for the canonlcally conjugate two-
dimensional variables jc and x, which has been derived in the short-wave 
(WKB-llke) approximation from an underlying wave equation. We also assume 
that (u (Jc,x) is a real-valued function. If this set of equations represents 
an Integrable system, the trajectories In the four-dimensional phase space 
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are constrained to lie on two-dimensional tori, due to the existence of 
two analytic constant-valued functions of k and jc. These functions are 
the two invariant actions^and are the new momenta in a canonical transfor­
mation from (k>2<) to new variables , such that the new Hamlltonlan u - u(_I) 

^ is independent of the new conjugate angles j>. The actions are determine 
by integrating around any two curves (not necessarily trajectories) that 
are deformable Into the two independent closed circuits _T on a particular 
torus 

(2) 
1 - II k • dx I 

Each torus in the continuum of tori is labelled by the values of the actions 
on that torus. If the system is non-integrable, then only the value of the 
Hamlltonian (the frequency) is constant and the motion covers a three dimen­
sional frequency surface in phase space; the tori and the corresponding 
actions do not exist. 

The method of EBK quantization stems from the requirement of the single-
valuedness of the mode and consists of restricting the actions to discrete 
values 

in " H + J 2. [m •= 0, 1, 2...] (3) 

where the Keller-Maslov indices J» are determined from the topology of the 
tori. The discrete set of actions represents a discrete set of tori which 
support the eigenfunctions, and the eigenfrequencies are now given by 

u * u>(I_) " ">(m + — a ) (4) 
TO —m — 4 — 

In the non-lncegrable case, there are no classical quantities analogous to 
the actions to which we can apply EBK quantization; one can simply label 
the modes n " 0, 1, 2... In contrast to integrable systems, where the 
classical analog of the eigenfunctlon is the family of orbits on the cor­
responding torus, there seems to be no such connection for non-integrable 
systems. 

The EBK eigenfunction is similar to that in the one-dimensional WKB 
form 

* (x) - 2 A4(x,I ) e * TS < 5 ) 

m j in 
Here, iMx) IS one component of an electromagnetic wave, for example, and 
Is written as a sum over the branches of k. at the point JC; Jt«(x) is a 
finitely multi-valued vector function in integrable systems. This form 
is inappropriate for non-1 rtegrable systems in the sense that for these 
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syetems 1c Is an Infinitely multi-valued function of JC. Einstein8 was the 
flr6t to recognize this difficulty. 

The phase In expression (5) Is the Indefinite action Integral 

J 2 J J B 
3S,(x,l ) (6) 

k,(x,I ) - J T ~j m ex 
and as such It Is the generator of the canonical transformation (k.jO-1-^1,9). 
The slowly varying amplitude Is 

1/2 
(7) A,(x,I) j m d e t IV-irJ T 

Examination of the quasi-classical eigenfunction reveals a feature re­
miniscent of WKB functions: the divergence of the node at classical turning 
points. The multidimensional generalization of a turning point Is termed 
a caustic which Is a surface on which the new angle variables are rapidly 
varying functions of the old position variables so that 

2 
A^.v'-'kHi] = d e t [If] — w 

- - \ - -
Naturally, the divergence signals the fact that the assumed form of the 
£BK solution (5) is not applicable near the caustic, but one nonetheless 
expects a peak in the amplitude of the mode In those regions. However, the 
existence of r.aw*tics is a property only of integrable systems; modes of 
non-integrable systems will not exhibit this enhanced "turning point" struc­
ture. 

The »av» mechanical analog of the classical LiouviJle phase-space density 
is the Wigi.er function, defined as 

/ ; 1 * 1 -ik-s (') 
W <k,x) - d s * (x-f s) ^*(x + -f s)e -± 

which produces a local wave vector spectrum for each value of x. Sub­
stitution of (5) into (9) yields, after averaging over many oscillations of 
the wave function, the result for Integrable systems 

W <k,x) - (2it)"2 62(I(k,x) - I ) < 1 0> 
m — -in 

The delta function on the torus Is In agreement with Che classical analogy 
and implies that the Wigner function exhibits a discrete anisotropic dis­
tribution of local wave vectors ot a point x Flnce Js(jJS,I-) is finitely 
multi-valued. For non-lntegrable systems, where the Liouvllle density 
ultimately spreads over the entire frequency surface, one has 
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W n(k,x) • 6(oj(k,x) - uJn), (11) 

which is an isotropic local wave vector spectrum. 
Features of the elgenfrequency spectrum may also be deduced by con­

sidering the classical orbits. The eigenvalue density 

n((u) * X &(ui-bi ); oi = u(I ) 
m tn -TO 

m — — — 
for Integrable systems may be transformed, using the Poi6Son summation for­
mula, to -iito/H/2 

n(u) = T e 
M 

2iriM-I_ 
d I 6(u-u(I.)) e (13) 

where we have used (4). Evaluation of the Integral by the stationary phase 
method leads to the result that each term H in the sum is dominated by the 
contribution from the torus jt which contains closed periodic orbits with 
classical frequencies in the commensurable ratio 

V n 2 " V M2' £ = dt ~31 
Therefore, periodicities in the spectrum of integrable systems (regular 
spectra) are due to the existence of closed orbits. Further investigation 
of (13) also predicts a generic clustering of the eigenvalues u^ charac­
terized by an exponential distribution for the probability density F( Au ) 
of finding a separation Aw between neighboring eigenfrequencles 

P(4 U) •» e-at"" U 5 ) 

The preceding analysis is inapplicable to non-integrable systems in 
which closed orbits are unstable. Predictions have been made, however, 
regarding the characteristics of the (irregular) spectra in this case. 
In contrast to the clustering found in the regular spectrum, Zaslavskii 
and Berry expect level "repulsion", or a more even spacing: 

(16) 
P(4io) •* 0 as Aw •* 0, 

the maximum of P(flw) occurring at a finite value of Aw. This is reminiscent 
of the behavior of P(Au) for a random matrix. 

In order to demonstrate these ideas, we consider the Heloholtz equation 
2 2 (V + k ) ip(x) " 0 within a two-dimensional stadium boundary adjusted by 

the parameter y = a/R (a - half length of straight side, R - radius of 
semicircle, constant area • n) and on which*- 0. The ray approximation 
produces trajectories governed by ID - u>(k.,>[) - k with specular reflection 
at the walls: a classical billiard system which Is integrable forY- 0 
(the circle) and non-integrable for all Y > 0 (the stadium). 1 1 
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Flgures I and 2 are examples of trajectories for Y" 0 and 1 respectively. 
Orbits In the lntegrable circle conserve angular momentum I_, so that the 

u 
motion Is within an annular region, the Inner edge of which Is a caustic. The 
radial action Irmay also be determined so that one can write ui " u)(Ir,I ). 
This Is Impossible for the non-lntegrable stadium, where the only constant 

2 is the value of w« k ; the motion covers the entire configuration space 
(as well as all orientations of Jc), and no caustics exist. 

Since the circle Is a separable geometry, the wave equation may be 
solved by one dimensional WKB methods, the resulting quantization of the 
actions yielding elgenfrequencles and modes which are indeed asymptotic to 
the exact solutions. An example of the exact Bessel function structure 
(Fig. 3) exhibits a regular nodal pattern and a peak in the amplitude In 
the region of the classical caustic. 

17 We have used a method due toRiddell and Lepore to solve the Helmholtz 
equation numerically, and have concentrated on high mode numbers, which 
should correspond to the geometrical optics limit. A typical mode for the 
case K ' l l s shown in Fig. •'*; It is of odd-odd parity so that there are 
nodal lines along the x and y axis which bound the quadrant of the stadium. 
In marked contrast to circular modes, this elgenfunction exhibits a quite 
irregular nodal structure (with no nodal crossings) and an apparently isotropic 
distribution of local wave vector orientation. The amplitude is fairly 
constant throughout the region indicating the absence of caustics. These 
observations demonstrate the spreading of the Wlgner function over the 
entire frequency surface in phase space, In accordance with Eq. (11). 

A segment of the elgenfrequency spectrum for odd-odd parity modes in 
both the circular and stadium cases is shown In Fig. 5. The eigenvalues 
for Y •• 0 clearly exhibit clustering, and there is a tendency toward periodicity 
in the asymptotic spectrum of Bessel function zeroes. The eigenvalues 
forY* 1 are more evenly spaced, as has been conjectured. The statistics 
cf neighboring eigenvalue spaclngs has been studied and the predictions 
of Zaslavskii and Berry seem to be verified. 

We have also studied the Y -dependence of these modes and elgenfre-
quencles, and have found a wide range of sensitivity. For small values 
of Y , modes corresponding to low angular momentum ("bouncing ball" modes) 
are extremely sensitive, as are their eigenvalues (Figures 6 and 7); high 
angular momentum ("whispering gallery") modes are very Insensitive. In the 
regime near Y » 1 auch classification of modes Is not possible and all 
modes appear to be relatively Insensitive to changes in Y. 

The change In the low angular momentum (m-2) mode In Fig. 7 may be 
Interpreted as follows: as Y Increases, so does the probability of finding 
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the classical blllard bouncing between the straight sides of the stadium, 
corresponding to the least unstable family of trajectories for Y>0. Indeed, 
this almost one-dimensional motion may be quantized in the usual fashion 
with 

L ( Y ) - L F 7 I«-I,2.... ( 1 7 ) 

with L ( Y ) " 2 R ( Y ) , since the semicircle radius is Y -dependent if the stadium 
area is constant. When (17) is linearized for small Y, good agreement is 
obtained with the slope of the m*2 curve In Fig. 6, with a value of n that 
corresponds to the actual number of radial modes of the given eigenfunction. 

In conclusion, we have demonstrated how properties of ray trajectories 
are reflected in the structure of trie corresponding modes and eigenvalues. 
The integrability or non-integrability of the ray system Is manifested by 
major qualitative differences in the elgenfunctions and spectra obtained. 

We thank Profs. M. Berry and I. Perclval for stimulating discussions 
and correspondence. We are grateful to J. Meiss for supplying Figures 
1 and 2, and we have benefitted from discussions with R. Littlejobn and 
K. Pomphrey. This work was supported by the Fusion Energy Division of 
the U.S. Department of Energy under contract No. W-7405-ENG-4b. 

References 

1. I.C. Perclval, Semi classical Theory of Bound States, in Advances 
In Chemical Physics 36, 1 (1977) 

2. J. Keller and S. Rubinow, Ann. Phys. (NY) 9, 24 (1960). 
3. M. V. Berry, Phil. Trans. Roy. Soc. (London) A ̂ 87, 237 (1977). 
4. M. V. Berry, J. Phys. A 10, 2083 (1977). 
5. M. V. Berry and M. Tabor, Proc. Roy. Soc. (London) A 349, 101 (1976). 
6. M. V. Berry and M. Tabor, Proc. Roy. Soc. (London) A 355, 375 (1977). 
7 G. M. Zaslavskii, Zh. Eksp. Teor. Fiz. 73, 2089 (1977), [Sov. Phys. 

J.E.T.P. 46, 1094 (1977)]. 
8. A. Einstein, Verhandl. Deut. Phys. Ges. 13, 82 (1917). 
9. A. Voros, Ann. Inst. H. Poincare 24̂  A, 31 (197o). 
10. A. Bohr and B. Mottelson, Nuclear Structure, (Benjamin, Nev York, 

1969), Appendix 2C. 
11. G. Benettin and J.-M. Strelcyn, Phys. Rev. A _17, 773 (1978). 
12. J. V. Lepore and R. J. Riddell, Jr., Univ. of California Report 

LBL-3036 (1974). 
13. S. W. McDona.d and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979). 



* Figure 1 
Single trajectory inside a circle 
If '0). Note interior caustic which 
is an envelope of the trajectory. 

Figure 2 •* 

Single trajectory in a stadium 
( Y = 1 ) ; a = half length of 
straight side, R = radius of 
semicircle. 

Figure 3 

Left: Regular nodal structure of J,g(kr}sin 2S"9 , with eigenvalue k,g ^-
65.38142. Non-crossing of nodal lines is due to computer-graphics. ' 
Right: Amplitude in perspective, looking along positive y axi&. 
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* Figure 4 

Top: Irregular nodal struc­
ture of eigenfunction for y -
1, with eigenvalue k=65.036. 
Closer analysis reveals no 
nodal line crossings. 
Bottom: Amplitude in per­
spective indicates uniform 
amplitude throughout interior 
of stadium. 

/ 

/ 

Figure 5 

Left: Segment of eigenvalue 
spectrum for -y=0. Note clus­
tering, with minimum separa­
tion indicated. 
Right: Same range of spec­
trum with Y"*» exhibiting a 
more even spacing of eigen­
values. 

Figure 6 

Variation of eigenvalues with y. Num­
ber in parentheses refers to angular 
momentum of a level. The large curva­
ture and reversal of direction of the 
m=2 and m=4 eigenvalues is not predicted 
by Rayleigh perturbation theory. Only 
eigenvalues with 65.0<k<65.5 at Y=0 
are plotted. 
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Figure 7 

Sensitive v^rirtion of the m * 2 eigenfunction of Figure 6: (a) Y = 0 , 
Jj(kr)sin 28 , k*65.159; ( D ) Y » . 0 1 ; ( C } Y ' . 0 2 ; (d)Y*.03; Ce)Y=.04; 
Cf)Y--05. 


