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ABSTRACT

The behavior of a layered aquifer under the influence of a pumping well
is a problem of interest in the fields of hydrogeology, geothermal engineer-
ing, and petroleum engineering. Numerous papers have been written on various
aspects of this problem. Hantush and Jacob (1955) have presented solutions
for steady state flow to a well draining one of the layers of a two-layered
bounded aquifer. Lefkovits et al. (1961) studied the transient performance
of a stratified bounded reservoir where the producing well is completely pen-
etrating and there is no crossflow. Papadopulos (1966) has studied the same
problem for only two layers of infinite areal extent. A similar problem, but
with crossflow between adjacent layers, has also been investigated by Katz
(1960) and Russell and Prats (1962) for the case of constant head at the well-
bore, and by Jacquard (1960) for constant flow rate.

In addition to the above works, which are all based on the analytical
approach, many authors have applied numerical as well as analog models to
handle problems of flow in layered aquifers (Vacher and Cazbat, 1961; Pizzi
et al., 1965; Javandel and Witherspoon, 1968, 1969; Neuman and Witherspoon,
1969; Kazemi and Seth, 1969). Recently, Javandel and Witherspoon (1979)
studied the problem of flow to a partially penetrating well in a two-layered
aquifer where the well is open in the top layer and the lower layer is consi-
dered to be infinitely thick.

In this paper we shall present an analytic solution to the problem of
transient flow to a partially penetrating well that is open in either layer
of finite thickness in a two-layered system. Crossflow is permitted at the
interface between the two layers. Closed form solutions have been obtained
which can easily be evaluated numerically. Simplified forms of the solutions
for small and large values of time have been developed from the main solution.
It has also been shown that the solution reduces to the case of single layer
partial penetration once we allow the permeability of the nonperforated layer
to vanish. The approach here is to start with the problem when the pumping
well is open only in the top layer. A second solution is also developed when
the well is partially penetrating only in the lower layer. A numerical eval-
uation of these solutions and the application of the results to the interpre-
tation of field problems will be presented in a subsequent paper.




INTRODUCTION

The behavior of a layered aquifer under the influence of a pumping well
is a problem of interest in the fields of hydrogeology, geothermal engineer-
ing, and petroleum engineering. Numerous papers have béen written on various
aspects of this problem. Hantush and Jacob (1955) have presented solutions
for steady state flow to a well draining one of the.layers of a twb-layered
bounded aquifer. Lefkovits et al. (1961) studied the transient performance
of a stratified bounded reservoir where the producing well is completely pen-
etrating and there is no crossflow. Papadopulos (1966) has studied the same
problem for only two layers of infinite areal extent. A similar problem, but
with crossflow between adjacent layers, has also been investigated by Katz
(1960) and Russell and Prats (1962) for the case of constant head at the well-

bore, and by Jacquard (1960) for constant flow rate.

In addition to the above works, which are all based on the analytical
approach, many authors have applied numerical as well as analog models to
handle problems of flow in layered aquifers (Vacher and Cazbat, 1961; Pizzi
et al., 1965; Javandel and Witherspoon, 1968, 1969; Neuman and Witherspoon,
1969; Kazemi and Seth, 1969). Recently, Javandel and Witherspoon (1979)
studied the problem of flow to a partially penetrating well in a two-layered
aquifer where the wgll is 6pen in ?h? topklayerkagq the ;qwgr layer is consi=-

dered to be infinitely thick.

In this paper we shall present an analytic solution to the problem of

transient flow to a partially penetrating well that is open in either layer




of finite thickness in a two-laye;ed system. Crossflow is permitted at the
interface between the two layers. Closed form solutions have been obtained
which can easily be evaluated numérically. Simplified forms of the solutions
for small apd large values of time have been developed from the main solution.
The approach here is to start with the problem when the pumping well is open
only in the top layer. A second solution 1is also developed when the well is
partially penetrating only in the lower layer. A numerical eyaluation of
these solutions and the application of the results to the interpretation of

field problems will be presented in a subsequent paper.
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Figure 1. Schematic diagram of a two-layered aquifer with
a partially penetrating well in the upper layer.



WELL OPEN IN THE TOP LAYER

Let us consider an aquifer consisting of two layers that is contained
above and below by impervious layers as illustrated on Eigufe 1. Each layer
has its own flow properties, is finite in thickness, and extends radially to
infinity. The interface between the two layers isvan'open'boundary, meaning
that no discontinuity of potential or its gradient is allbwed across this
surface. The top layer of the system is partially penefréted by a well of
infinitesimal radius for a léngth £ from the top of the aquifer. If the well
is pumped at a constant rate, Q, we are interested in aetermining the wvalue
of drawdown, s(r, z, t), at any point after pumpingvstafts; The differential
equations and initial and boundary conditions ﬁo describe this problem can be

written as: ®

dzsl 1 asi sti 1 asi
2 + - + > = — — i=1, 2 : (1)
ar r 8r 9z oy ot
si(r, z, 0) =0 . (2)
851 : .
s_z— (rl h1l t) =0 (3)
9s ‘
3z (r, -h2, t) =0 (4)
lim s;(r, 2z, t) = 0 (5)
Y >
sy (r, o, t) = 85 (r, o, t) (6)
as1 352
Kq a—z'—' (r, o, t) = K2 -az— (r, o, t) (7)

* Note: Explanation of all terms is given in the Notation.




as1 0
lim <r E—) = = 27K for (h4 - L) <z < hy (8)
r+0
dsi
lim </r — = 0 for =h_ < z < (h, - 2) (9)
Jor 2 1
r+0

In order to handle the nonuniform boundary condition along the axis of the
well, one can arbitrarily divide the top layer of the aquifer into two sepa-
rate layers by considering an imaginary interface at the elevation of

z = h1 - %+ The system is then made of three layers, two of them having the
same flow properties. Let us then designate three different symbols for draw-
down: s, for the top layer in the zone between the top of the aquifer and an

imaginary plane passing through the elevation at the bottom of the well; 52
for the bottom layer; and 53 for the zone between the elevation at the bottom
of the well and the top of the lower layer.

The solution of the problem can be obtained by successive application of
Laplace and Hankel transformations over t and r, respectively. If>we indi-

cate the Laplace transform of s;(r, t) by §;(r, p) and the Hankel transform

of gi(r, p) by ;i(é, P), then equations 1 through 9 become:

4%
1 = _ _ =9

> w1s1 = ImIK 5 for (h1 £2) <z < h1 (10)
dz 1
a%s ) _ _

- w._.s = 0 for -h < 2z < 0 (11)
22 2

dz
. |

2 - w1s3 = 0 for 0 < z < (h1 - 1) (12)



where w1 =

Equations

ds
= (&, h1, p) = 0O
ds
az (%, h2, p) = 0
51(6, h, - % p) = 53(5, h,- £, p)
s,(& 0, p) = §2<€, 0, p)
d§1 d§3
- h o - = —2 -2
dz (E—‘I h1 y’l P) az (gl h1 ’ P)
K is—z (€, 0, p) = K E5—3(&5 0, p)
2 dz e 1 dz v
_ 1 1
b_ 22\ = _[ B 2 %
< a1 + & ) 2 and ub = <a2 + £ )

(13)

(14)

(15)

(16)

(17)

(18)

10 through 12 are now simple, ordinary differential equations

whose solutions may be readily written as:

Note that

equations

§, = cycosh[w (z - h)] +—L—
2N2K1p91

= = w

s, C, cosh [ 2(z + hZ)J

S = i w w

S3 A sinh( 1z) + B cosh( 1z)

conditions 13 and 14 have already been considered in writing

19 and 20.

(19)

(20)

(21)




Constants A, B, C1, and C2 can be found through application of boundary
conditions 15 through 18. Substituting the expressions for the above constants
in equations 19 through 21 and performing the Hankel transform inversion, one

can obtain:

o

cosh[y. (z - h_ )]
S 7 E—QE_ ,/ﬂ 12 - : 2 :
hhad! 0 Pw Pw
: 1 1
. szz 51nh(w2h2)cosh[w1(h1- 2)] + K1w1cosh(w2h2)51nh[w1(h1 - 2)]
FF(w1: w2)
. Jolex)y dg (22)

-}

=z _ : / cosh[wz(z + hz)]

2 2
2wy 7y Poy
. K1w1 s1nh(m1g) . Jo(gr) £ dg
= ) (23)
0)11 w2
o
z 51nh(w1g)
3 214K
e 1 0 Pw1
. . +
. szz 51nh(w2h2)51nh(w1z) K1m1cosh(w2h2)cosh(w1z)
FF(w1, wz)
. Jolexrle dg : (24)
where
= i + i .
FF(w1, wz) = szzslnh(wzhz)cosh(w1h1) K1w1cosh(w2h2)51nh(w1h1)

Eguations 22 through 24 represent the Laplace transform solutions for drawdowns

in the aquifer.



To obtain the inverse solutions of equations 22 through 24, let us first

consider
_ P(p) cosh[w1(z - h1)]
G(p) = —— = (25)
2
g(p) pv,
. - . - 2
. K2N251nh(w2h2)cosh[w1(h1 £y + K1w1cosh(w2h2)51nh[w1(h1 )]

W w
FF( 1’ 2)

If the zeros of g(p) are shown by P, Py Pyr eees P «++ such that each of
them has a different value, provided that P(pn) # 0 and g'(pn) # 0, then the
inverse transform of é}p) may be obtained from the following formula,

Jaeger (1949):
o

P(pn)

p.t
Glt) = L Yap)t = Z e " (26)
: g'(pn)

n=1

Any of the summation terms in equation 26 may be replaced by

(p - pn)P(p)

epnt
g(p) _ )
P—Pn
. 2 .
The zeros of g(p), as defined in equation 25 are p =. 0, p.= -§ d1, (equivalent
2
to w1 = 0), as well as all zeros of
= i w W h_)sinh(®h,) = 0 (27
FF(w1, wz) K2w251nh(w2h2)cosh(w1h1) + K, 1cosh( 5 2)s1n ( 1 1) (27)

Depending on the nature of w1 and wz, four different cases should be considered.

Case 1. When both wl and wz are real. The left hand side of equation 27

is always greater than zero and, as a result, the equation has no zeros for

such a case.




Case 2. If both w1 and mz are purely imaginary, then we may introduce

the following change of variable,

= *if = +j
w1 _1¢/h1 and w2 _1y/h2,

where g and y are both real and positive. Equation 27 may now be written as

A + ;= . .
YntanYn |3ntanbn 0 » (28)
where
K. h o Y2
21 : ; 2{.'n :
A = = . and B = n| = —= +¢} -¢g2
K1h2 n 1 oy h;

Equation 28 has an infinite number of zeros such as Yqr Yor Ygr see Yoo eees

and the corresponding values of pn are given by:

p = =a | — + ¢2 ‘ (29)

Case 3. When m1 is real and w2 is purely imaginary, then one can set
= ' = +1i 3 2 44
w, _tsn/h1 and w, _1yn/h2 where again, Y, and Bn are real and positive

numbers. In this case equation 27 becomes:

Ayntanyn - ﬁntanhﬁn = 0 (30)

where

—_ o+ gZ

fquation 30 usually has a limited number of zeros.

Case 4. When w, is purely imaginary and w, is real, then let w, = iiﬁn/h1 and

w2 = IYn/hz, Qhere, yn and Sn are both real and positive. Here equation 27

may be written



AY tanhy - B tanB = 0 (31)
n n n n
where :
o vé
a 21 22 2 _.n ) _ g2
dn = h1 a1 £ h2 G
2

Equation 31 also has a limited number of zeros.

Depending on the parameters of the problem, zeros of either one or two of
the last three cases described above should be considered. Once the zeros are
found, corresponding terms in the summation in equation 26 can easily be cal-

culated. In equation 26 the term corresponding to p = 0 is

. (p - 0)B(0)
£(%) 570) (32)

cosh[&(z - h1)] K sinh(&hz)cosh[g(h1 - )] + K1cosh(€h2)sinh[5(h1 - )]

2
= . 2 - . :
& K251nh(€h2)cosh(§h1) + K1cosh(€h2)51nh(5h1)
and the term corresponding to p = -£2a1 is
-2
(p + C5¢R(R) g2 ¢ £%a ¢
1 1 1
) e / = -— e (33)
glp p = _gza £

Therefore, equation (26) may be written as:

-2
-£%a t P(p_ ) pt
Glt) = £() - — e L E —I e
.2 g'(p )
5 n
n=1

where pn are now only roots of equation 27.

Noting that

L A == 1 -e (35)
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the inverse Laplace transform of equation 22 may now be written

-1(~
s1(t) = L {51(9)}
; P(p_) p.t
= s _ - 0 n
T, / 3,(6r)& 2 £(€) Z 50 © at  (36)
0 n=1

Introducing the following dimensionless parameters: SD = 47K h _s/9Q,

2 ) '
= u = : —4 2 = Rf = —3
tD 1t/r p ry r/h1, z, z/h1, D /h1, H h2/h1, D G2/31,
A= K2h1/K1h2, and x = §h1, equation 36 becomes
@ o . 2 (37)
2 B1 Yn 2
s, T T f xJo(er) _- f1(x) + O 2 T + X DrDtD dx
1 D b4 H
0 ‘ n=1
where
cosh[x(1 - z )] AH tanh(Hx)cosh[x(1 - £_)] + sinh[x(1 - £ _)]
D D D
f1(x) = > (38)
X AH tanh(Hx)cosh(x) + sinh(x)

and the expressions for A' and B; depend on the nature of w1 and wz. If both

w1 and wz are imaginary, then

A2 B \2
1 By 2[ B . 2 2
A' =| — — + x B {D - H| — cosY sinP + B (BH® + D)cosY cosB
2 2 n Y n n n n n
H n
- 8% =2 +ap = |82 sinY _sin® (39)
Yn bn n n n

o
il

cos[b (z_ - 1)]{AY sinY cos[ﬁ (1 - % )] + B cosY sin[i5 (1 - 2 )]} (40)
1 n D n n n D n n n D
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If either w1 or mz becomes real, then Bn or Yn in equations 39 and 40 should

be replaced by (ibn) or (iYn), respectively.

One can find the inversion of s and s3 in a similar manner. In dimen-

sionless forms, the solutions become:

=]

[-+] 2
' Y
2 ’ 2 z + 2 D 2t dx (41)
SD xJO(er) fz(x) + IC exp > X oo
0

=l

2 D

n=1

-]
Bl

3 Yi
—_— - — t d 42
xJO(er) f3(x) + ZEI A exp 3 + x DrD D x (42)

N
N

2
s, =3

L
3 D

.

n=1
where,

1 cosh[x(zD + H)]sinh(xﬁD)
fz(x) = = (43)
X AH sinh(xH)cosh(x) + cosh(xH)sinh(x)

sinh(xlD) AH sinh(xH)sinh(xzD) + cosh(xH)cosh(xzD)

f3(x) = (44)
X2 AH sinh(xH)cosh(x) + cosh(xH)sinh(x)

and when w1 and w2 are both imaginary,

A
I
x|

z
- in(i (45)
5 5ns1n(3nlD)cos Yn <1 + >

] 2 ‘ N . - . P ‘_ e T 4
B3 Sln(dngD)-{AYn51nYn51n(anD)‘ VFnCOSYnCOS(anD)} ) (46)

Here, too, if either ®) or w,; becomes real, then Bn or Yn in equations 45 and

46 should be replaced by (iBn) of (iYn), respectively.
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Solution for single layer case

The solution for a single layer aquifer with a partially penetrating well

can be obtained from the two layer solution by letting the permeability of the

lower layer vanish. Letting K, = 0, equation 22 becomes

- )]

EJO(E:)dE

1 2meK, pw> sinh(w h,)

. i cosh{w.(z - h.)] sinh{w,(h
s - g “/” 12 _ 1 1 11
Uy 1
0 .

Using the table of the Laplace transformation, one can find

= { sinh[w (z - h )] sinhlw (h, = )] }=
w

1 s;nh(m1h1)

x© .
Ezl -a_t n2“2 + €2 sin iiii;ljlll sin nm
h. exp 1 2 * h _ h

n=1

Integrating equation 48 with respect to z gives

2

-1 { cosh[w,(z - h,)] sinhlw,(h, = 2)] }
w sinh(w1h1)

o0
- iﬁl ex -a t n2n2 +‘€2 - 1 sin nng cos Ejif_:_zll
- Ll B 2 n h h
h 1 1
n=1 1
Also,
-1 cosh[w1(z - h1)] s:.nh[w1(h1 - )] }
L > - =
pw1 smnh(w1h1)

t

1 1

(-] N
_ 3 gin B™ os 2zii_:_ill exol-o T n’n’ +£2) |ar
T n St TR ©° h i I 2
0

(47)

(48)

(49)

(50)
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By introducing the following change of variables:

2 2
r a = —X
4u1t an 4a1t

y:

and finally, the Laplace inversion of equation 47 may be written

2h

. ki) - ~ 2
1 1 . nmd nf(z = h,) (rn™)“ { dy
+ T — sin — cog — exp{-y - —= (51)

1 u 1

o
n=

Equation 51 is exactly the same as that given by Hantush (1957), and we have

been able to check the validity of the new solution for one special case.

Solution for small values of time

To find a solution for the early stages of pumping one has to look for
sufficiently large values of p corresponding to small values of t. Let us
consider the second part of the integrand in equation 22. Rearranging this

term one gets

i - 4 w w i w - 2
cosh[w1(z h1)] K_w 51nh(w2h2)cosh[w1(h1 )]+ K1 1cosh( 2hz)smh[ 1(h1 )]

2 2

W i ) w + w sh (W i w
pwi K2 2s:.nh( 2h2)cosh( 1h1) K1 1cosh( 2h2)51nh( 1h1)

cosh[w1(z - h1)] sinh[w1(h1 - )]

- 2 : .
w
pw1 sinh( 1h1)

w w - % + K W
K2 2tanh(w2h2)coth[ 1(h1 )] 1%

w w w + K W
K, 2tanh( 2h2)coth( 1h1) K,©,

(52)
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Noting that both tanh(x) and coth(x) are almost equai to unity for all values

of x greater than 3, the right hand side of equation (52) may be simplified to

cosh[m1(z - h1)] sinh[w1(h1 - )]

Pw? 51nh(w1h1)

provided that w,h, 3> 10 and w;(h, - &) > 10. As-a result, under this con-
dition, equation 22 may be written as

[- <}

Q f 1 cosh[m1(z - h1)] sinh[u.\1(h1 - )]

> - > gJO(gr) dg

;nzK1 pw, pw, smh(w1h1)

which is the same as equation 47 which leads to the solution for the single

layer partial penetration problem.

The above conditions may be expressed in terms of dimensionless time.

Recalling the definition of wz, we can write

2
n2(R+6%) 502 2 5 10 or =2
2 az 2 o, tuz

In terms of dimensionless parameters, this becomes:

2
6, < —— (53)
10DrD
Similarly, the corresponding condition for w1(h1 - %) » 10 leads to:
2
(1 - £D)
tD < T (54)
10r
D

Condition (53) or (54), whichever is smaller, gives an approximate value of tD.

At earlier times, the aquifer behaves as if the lower layer were absent.
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Solution for large values of time

To obtain a solution for large values of time, we shall examine the case
when p is small. One may note that at large values of time, provided rD >”1,
only small values of & make a major contribution. Since sinh x X x and

cosh x ® 1 when x < 0.01, for sufficiently large values of time and r > hy,

equation 22 may be simplified to:

2 2.
w- o+ w(h - %
- _ Q 1 1, DKy, + K0 by )
1 T o2mx i 3 3 J,(Er)€ ak (55)
w w w + w
PRy Py h KW,y + Ky09hy

After simplificatibn equation 55 becomes

-]

0 /- 1 Jo(ér)é dg
51 T 2m.nh. h K (56)

p
11 2 2 2 2
0 (KT><EE+€>+<EE+5>
171 2 1

Using the table of Laplace transformations one can easily find

h K + h K
1 -~ exp | - A1 22 €2¢
Q S 51+ 5
5, T WERIECTELD JO(Er)i ~ d& (57)
171 22 o , ‘ o S

Equation (57) may be written as (Javandel, 1979),

-]

-y
0 f e
s, = € &y (58)
T + .
1 4 (K1h1 K2h2) Y

v
where

2
+
r (S1 Sz)

V=
+
4t(T1 T2)
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In the form of dimensionless parameters we have

-y
1 e
s = —_—— — dy (59)
D1 T2 ‘/ﬁ Y

Since we are dealing with large values of time, equation 59 may be approxi-

mated by
. . +
s ~- 2.3 logt_ + log 2.2501 T2/T1) (60)
D1 1+ (TZ/T1) D 1 + S2/S1

This is a very interesting result because it indicates that a plot of dimen-

sionless drawdown, SD ;, versus dimensionless time on semilogarithmic paper
' 1
will become a straight line when the pumping time becomes sufficiently large.

The slope of this line is

2.3
m = ~———— . (61)
+ .
1 TZ/T1
and the value of tD corresponding to sD = 0 is
1
1+ 8S./8
2" 1
t = (62)
[ ] +
D0 2.25(1 T2/T1)

provided Ty > 1. Although equation 62 holds for Ty > 1, (61) is true for all
values of roe Another important result that one be drawn from equation 58 is
that, if we introduce a new set of dimensionless definitions for drawdown and

time in the following form:

- 4n(T1+ T2) .
sD1 = —g—= s, (63)
and
~ t(T, + T.)
£, = 12 (64)
r (S1 + Sz)

then plots of ;D versus ED for two-layer aquifers at large values of time
1
will be parallel to the Theis curve.
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WELL OPEN IN THE LOWER LAYER

When the pumping well is open along the length £ at the upper part of -
the lower layer (Fig. 2), then following the same approach as above, one can
easily find the solution in the Laplace transform domain of each of the three
divisions as given below.

[+ -]

_ Q s cosh[w,(z = h,)]
1 T 2mK ' 2

2% puw,

K. w {sinhw h2 - sinh[wz(h2 - 2)]}

2 2 2
. J r d 65)
FF((.«) r W ) O(E" ) é g (
1 2
[=-]
; = L —1 _—-—-1- .
2 214K 2 2
2 puw,  PW,

i - - i i + i h h +h
51nh[m2(h2 x)][KZm coshw1h1coshmzz K1w s1nhw2zs1nhw1h1] K1w151nhw1 cos [mz(z 2)]

2 1

FF(U)1I w2)

1

. I (Er) ¢ dg (66)

(2]

) Q cosh[wz(z + h2)]
3 2n4K 2

2% buw,

nli
|

- 3 i 3 + h :
. K1w151nhw1h1 + K1w1s1phw1h1coshw2£ szzcoshw1 151nhw22

FF(w1, w2)

© T, (Er) € & (67)
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Figure 2. Schematic diagram of a two-layered aquifer with
a partially penetrating well open only in the
lower layer.

It can be easily verified that equations 65 through 67 satisfy thg
appropriate boundary conditions of the problem. The Laplace inversion of the
above expressions can be readily obtained through the same procedure discussed
above. 1In regard to the inversion of §1, for example, note that the nonremov-
able zeros of the denominator of the integrand are p = 0 as well as all the
roots of FF(w1, wz) = 0, which have already been discussed above. Finally, the

solutions for s1, 52, and s3 in the nondimensional form are

8

-]

2 A an - 44 2 a2 A a2]) -
= + -
sD1 ; xJO(er) R1(x) s exp (yn + x )tDrD dax (68)

0 n=1



19

2 ~ AA 1 ~ z q2 2 A2 ~ A2 ~
sD = = / xJO(er) =5 - Rz(x) + T exp [—(Yn + x )tDrD] dx (69)
2 LD brd n=1
0 .
[ <] [+ ]
2 q
~ AA ~ 3 2 A2 ~ A2 ~
sD3 = ;' f xJo(er) =R3(x) + Z 5 ©xP [-(Yn + x )tDrD]}dx (70)
where
. cosh[x(z_ - H)] sinh(x) - sinh[x(1 - £ )]
D . D
R1(X) = A2 AA ~ A AA ~ (71)
X cosh(xH)sinh(x) + (H/A)sinh(xH)cosh(x)
) = 1. . .
R2(x) ;7 (72)

sinh[x(1 - ED)][cosh(Qﬁ)cosh(QED)-(ﬁ/A)sinh(QéD)sinh(Qﬁ)] + (ﬁ/A)sinh(;ﬁ)cosh[;(;D+1)]

cosh(xH)sinh(x) + (H/A)sinh(XH)cosh(x)

cosh[ﬁ(ED + 1)]

R3(x) ~5
X

—(H/A)sinh(xd) + (ﬁ/A)sinh(Qﬁ)eosh(QiD) + cosh(xH)sinh(x4_)

cosh(xH)sinh(x) + (A/A)sinh(xH)cosh(x)

and when w1 and w2 are both imaginary,

-

o .
q1 = -Yncos[ﬁn<—§ - 1)] {Sin'Yn - sin[YnH - R'D)]} (74)
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~

sin[Y (1 = 4] {Y cosB cos(y ; ) + (B /A)sin(Y ; )sinf }
n D n n n D n nD n

Q
It

2
+ (ﬁn/A)51nbncos[Yn(zD + 1)] (75)
_ (76)
a, = cos[yn(zD + 1)] {(ﬁn/A)51an - (Bn/A)31ndncos(Yn2D) - Yncoan51n(Yn2D)
A2 2 a2 8
- DH Y DH Y
0o = % (Yi + x2) bnsinﬂncosYn 2n - % - Yi siansinYn _ e
ag B AY
o n . n n
. A2
+ Yzcosp‘ cosY <1 + ﬁ-)} (77)
R n n n A

If either W) or Wy, becomes real then Bn or Yn in equations 74 through 77

should be replaced by (iﬁn) or (iYn), respectively.
Examination of equation 66 reveals that if we let the permeability of the
top layer vanish, the solution for s, converges to the one for single-layer

partial penetration. However, in this case, due to the direct contact with
the top layer, the solution at small values of time cannot be closely approxi-

mated with single layer solutions unless the ratio of K1/K2 is very small.
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CONCLUSIONS

Analytic solution to the problem of transient flow toward a partially
penetrating well in a two-layered aquifer has been presented. A solution has
been given for both cases: when the well is open in the upper layer as well
as the case when the well is open in the lower one. ‘These solutions easily
lend themselves to numerical evaluation. It has been sﬁown that the solutions
would reduce to the case of single layer partial penetration once we allow
the permeability of the nonperforated layer to vanish. Asymptotic solutions
for small and large values of time have been deduced from the transformed form

of solution. Furthermore, it was shown that:

(1) the behavior of the pumped layer at early times is exactly similar to the

behavior of a single-layer aquifer;
(2) for larger values of time the plot of dimensionless drawdown sD versus
1
dimensionless time tD on a semilogarithmic paper becomes a straight line

whose slope is only a function of the ratio of transmissibility of the

two layers.
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NOTATION

a2/a1

3

thickness of the top layer

thickness of the lower layer

h2/.h1

h1/h2

Bessel's function of the first kind and zero order
permeability of upper and lower layers, respectively

depth of penetration

%/n,

2/h2
Laplace transform inversion operator
Laplace transform parameter

rate of discharge

radial distance

r/h

r/h 2

1

drawdown of different layers

4ﬂK1h1si/Q, dimensionless drawdown

4ﬂK2hzsi/Q, dimensionless drawdown

Dimensions



4n(T1+ T2)s1/Q

storage coefficient of the upper and lower layer, respectively

Laplace transform of s

Hankel transform of é;

time

a1t/r2, dimensionless time

azt/rz, dimensionless time

t(T1 + ';‘2)/r2(s1 + Sz), dimensionless time

transmissibility of the upper and lower layer, respectively
gh1, dummy variable

ghz, dummy variable

vertical coordinate

z/h

1

z/h2
diffusivity of layer 1 and 2, respectively

2 2 2 2 214
h1[a2/a1(qn/h2 +u ) -u]

roots of characteristic equation 28
Hankel transform parameter
i‘;s/h1

1Y/h2
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