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Ronald S. LongacreT
Lawrence Berkeley-Léboratory

. University of California
Berkeley, California 94720

October 1973
ABSTRACT

Sfarting with partial wave amplitudes for N- Nr and tN - sev-
eral isobar mpdel states of Nwm, we are-able to apply the constraint of -
unitarity (using the K-matrix). This permits the removal of the overall
phase ambiguity of the isobar amplitudes at each energy. The K-
matrix fits generated a smooth preécriptior_x for the T-matrix amplitudes,
enabling us to search the complex energy plane for poles. The uniquen-
ness of these polesv was demonstrated by doing Breit-Wigner refits to
the fitted T-matrix amplitudes. The suc;cess of the refits and the ob-
vious intérpretation ‘justified a éimple determination of coupling signs
for which there can be checks with theory. This thesis‘ corresponds
closely to a forthcoming’paper submitted to Physical Review except
that hefe the K-matrix is based on a 1972 solution "A" isobar-model

fits to Nnw data, and in the final paper we use solution "B, "

TPresent address: D, Ph, P. E., CEN Saclay, 91 Gif-Sur-Yvette, France.



" elastic amplitudes,
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L ’ 1. INTRODUCTION

. +
1.1 Recently partial wave amplitudes in the context of the isobar

model have become available for the reaction TN -~ Nuw. 1 Here we
ﬁresent the results of a K-matrix fit to both these amplif|'udes and the
2’;3 oN - wN. In addition we ext_raét from the ampli-

tudes of the K-matrix fit resonance parameters (mass, widths,

" couplings, poles). -

Nuw partial wave a.nalysis1 spans thevc_enter\—of—maqs (c.rﬁ. )
energy range 1300 < E < 2000 MeV, e;;cept for a 100-MeV gap
1540. < E < 1650 ivieV, where the data are not yet available to.us. We
utilize the data in the‘_most. efficient manner, making simultaneous
maximum likelihood fits4 to the three major channels at each _enérgy:
| T p - 1r+1r'n, |
Tp > m w0,
T p—+ 1r+1r°p . -
T1.1e\ine1astic partial wave cross sections we. obtain are in excellent
agreement with the predictions from elastic phase shift analyses
(EPSA). 273
The isobar final s_t‘ates that we have specifically considefed are
| 1rN - T .-
- p. N
- eN. b ~
The subscript s refers to the spir; of the pN systém (s =1/2 or 3/2),

referred to‘ as py or p,. Since between the energies 1.3 to 2.0 GeV Nrm

is the most important inelastic reaction, it is fruitful to use unitarity

to describe both elastic and inelastic processes together. For this

purpose a coupled channel K-matrix equation was used. We assumed

one could describe the resonant states as f)oles in the K-matrix and

-2 -
then fit for the pole position and residues. Where the data indicated,
the need for large additiona]'coxltributions, we added the appfopriate‘ )
poles, thus providing additional evidence for poorly established reso-
nance stat,.es.

Another motivation for doing the K-'matfix fits was to det;ermiﬁe

the one overall phase at each energy of the isobar amplitudes. Once

this phase is‘determined, Argand diagrams are then possible.and we

" can establish the relative signs of the couplings for different channels

and resonances from resonance region to resonance region.
i Finally the problem of determing relia/ble re;onance parameters
from the amplitﬁdes of the K-matrix fit is discussed. Several different
ways of éstimating resonance parameters, notably the widths, 'are con-
sidered. »

1.2 Relation between this. thesis and a forthcoming paper:
This thesis is the same as the Physical Review paper except for input
isobar amplitudes, some tables, and appendices. The input-isobar

7

amplitudes for this thesis come from unpublished LBL/SLAC partiai
wave analysis rke/:ferences. 1.4,5 ‘
' 2. K-MATRIX FORMALISM
In this section we wili_ discuss how three-particle cross sections
can b‘.e descz;ibed in terx;ls of the isobar model amplitudes., We also
discuss how an inte‘gra] K-matrix equation can be reduced to an alge-
- bratic equation. Furthermore we introduce th¢ parametrization of our )
' K-matrix which is used to describe simultaneousiy Nm - Nn and
Nnw - Nmww partial wave arﬁplitudes.

The cross section for 2 - 3 particle processes-in our normaliza-

tion is
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. &g dzq’ &4 ,
I T IZ 4 (P- Zq ) 1 1 7122 3 1
_ 23 )9 2e 2e2 Ze3 ! . ( )

where P is overall four-momentum and 9 is the four -momentum of
the ith particle in the final state:

q; = (epr q;) ‘ (2)
F is the M;‘lle’r invariant flux factor:

F=|Q|Vs. | - (3)

Here. Q1 is the ¢. m. momentum of the beam particle and Ns is the
c.m. energy of the system. Finaliy _T23 is the invariant matfix ele-
ment for the 2 -~ 3 particle process. -

We are interested in the cross section of an incoming angular ﬁ)o-
meﬁtum state and want to use the isobar model amplitudes determined
in Ref. 1. We -foliow the notation of Ref. 1.‘ The three-particle final
state has four independent varia_bies at each value of s. Leﬁ us choose
them to be two diparticle masses (squared) (sn and sm) and ;two angles

(6 and $). We will denote'these variables as a vector ®. We then
assume T23(3) to be a sﬁm‘of contributions from isobar partiél Qave
amplitudes, | . : : , v

T,3@) = Z ¢ @), N 25

k .

where the subscrlpts include both isobars (A p.€) ar’xd. partial wave

(J' ) 1nd1ces. For details see Ref. 5. Lnsertlng this partlal wave

decomposition into Eq. (1) and integrating over the angles 0, ¢, we find

Q q ds
o = (J+1/2) | (s ,s)1 -2a -
ws s

3 .
%* J J
T n(sn’ s) énm im

(sm.s)dsndsm] s (5)

vTif(Pia'qu) K; 1P ’qu) '? oz e Ty (P P )

-4

where n is the value of k which is fed by a s‘ingle incoming wave J,

Q

1 'is the beam momentum, Qn the isobar momentum, and qn the
momentum of the isobar decay prodﬁcts. (Qi’ Qn. are in the center of
mass, but a, is evaluated in the isobar rest frame). Finally the ¢im

are the usual recoupling coefficients (Ref. 6 and Apbendix C in Ref. 13).

We have completely changed the subscripts and introduced the following &
notation: Tin repreéents the partial wave amplitude from the N state
(labeled 1) to a final state n, formed by an isobar (the nth isobar) and | '

remaining particle. Notice that we have not yet integrated over the
diparticler mass (Dailitz plot) S, S

We now introduce a K-matrix represenl.:at'ion for T. Graves Morris7
has shown that_given' an amplitude Ti f(Pi » 9 ), where .i is the in-.
coming state of up to three particles (& 503); f is the outgoing state of
up to three particles (B =< 3),' and p,q are th'é four-momenta of the

particles, one can write a function K, f(p ',qf ) which is free from all
B

two particle cuts and is related to T, f(p LP ) by an integral equatmn.

—

3 . N

-

k=1 k - “a (o

‘ g
4 .
o B j ¥
If Ki f(pia, qf ) is Hern}itian then Ti f(pia,qfﬁ) is unitary. [ This is shown
from Eq. (13)]. If we expand Tif in a partial wave decomposition as :

we did above, we obtai‘nk(y = two-body; ‘j,k = three-body states;

i > several n isobar; and f —» several m isobar for a given JP state)

N Q
TJm_KI{mz.lZ z Trf . J'rn
n y Y 45 Y
J J .
T . Q.q.K" .
- i nj j7j jm J . J .. T
+ = = ds. + ZZ T .8 K ds.ds
2 J 4\s 4'\/sj 2 ik jk km k

(7)
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If we include the sta.Ble two-body states and also the diagonal elements

of the three-body states in @;{TX we may rewrite Eq. (7) as

v

JF oI _ i J T . J . _
T = Bom = 2 ;z)\ anY Qﬂ K)\mdsyds)\ ; (8)
here the stable two-body <I>YJ)‘ are -
Q : )
J A
&Y, = —— 6 , 8(s -8) &(s,-8). 9
, 2y Ns-yx(y)fx,) .o

For the dia.gonarl three-body states we will still use the subscript vy,

and they becote '
3 A9 8y 8eymsy)

v as 4 5, _

Henceforth we shall discuss a single partial wave, .80 we will drop the

(10)

@

supers.cript J.

As it stands, Eq. (8) is.an integrai equation. We shall now make
certain factorization assumptions that will reduce Eq. (8) to a matrix
equation. It is clear that a matrix équétion.w.ill be easier for practical
calculations (1 e., fitting the isbbax amplitudes). Indeed. the factoriza-

tion assumptions we make ar’eAa.lready inherent in the isobar model. As

in the isobar model,b we assume Taﬁ to factor,

: * :
Tap = Tap fa f3° (11)

where foz depends on barrier factors and final state factors of the iso-
bar decay and T‘;Yﬁ is only a function of s.

In addition we assume Kozﬁ can be factored in the same way:

- 3*
- Ko43 = kap fufﬁ , (12)

'

where .kaﬁ depends only upon s and is free from all branch points. In

' the spirit that the isobar model is describing particle states, we shall

take kaﬁ to be a real function of s (or W= n8). If the several final i

-6~

'

state resonance bands did not overlap‘, ‘theén a'real k-matrix implies a

_symmetric T-matrix. _ . “

We can reduce the integral Eq. (8) to a matrix equation by substitu-

tion of K . and T _; we thus obtain
_ ap ap

=4 ‘
'Ta‘3 - kap =3 \Z{})\ TQY AY)‘ k)\‘3 s (13)
E - ~
where for stable two-body states
N 2
A Q,6_ . |f |
_ Ay ‘ _
Ay, = , (14)
) 4s

i. e., diagonal with value proportional to Q times barrier, and for three-

<

body states

‘*
a0 =j§\‘)‘ £ fyds, ds, . . (15)

one easily shows that Eq. (13) implies the usual unitarity relation .
T - 'r+ = i'r+A'r; see Appendix L.

We now discuss the barrier factor f,. For the terms which only

involve stable particles, we assume tixaf |fx|2 is the Blatt{Weisskopf8
barrier factor. Our confidence in these factors has recently been in-
creased byVVon Hippel and Quiqq, 8 who showed that they can be derived

from general properties of spherical harmonics and are not limited to

square wells. But since our isobar does not have a fixed mass, we have

¢

to’take its production barrier B, (Qa’ L) weighted over the Dalitz plot.
To be consistent with the isobar model used to obtain the amplitudes,

we describe the final state interaction by the Watson final state interac-

ib 241/2

tion (e ¢ sin 6a/qa )W, The 60: is the phase shift for the elastic

scattering amplitude A, ‘representing the « isobar (tN—+ #N or ww - mr),»

where qi+1/2 is approxima}te_ly the square root of:. q, ‘times the barrier

for the elastic scattering. For a complete s-channel diagram showing

all important factors see Fig. 1. Therefore, the form of fa becomes
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N -8~

£ =W B (Q, L) | o 6) ¢ - LalBy) BylQy L) 2

© e s - a7 E-m, 1/2 - (20)
where B _ is the square root of the Blatt-Weisskopf barrier, L _the / q

: ¢ { ' i Ta(Ea/) IZ 2—01 dE
production angular momentum of the isobar, and Q the c.m. production . _
. A
-~ ) ) S + . -

momentum of the isobar. my T, : .

For the stable two body, fa is equal to Ba and Wa is equal to one. In our Breit-Wigner form [Eq (18)] Era and Y, are constants given in / o

’

In the case of the i‘s‘oba.r,-Wa becomes units of pion masses. See Table I for a list of values used.

' ' The diagonal terms of the A matrix become for isobar a,
A (s ) - ‘ e R .
a'a Ns-m
1/2 3 o
q/“B_(qa,.2,) - ' 2 99 2
- _ o a'ta : N _ : e a -
wo-Aea e, | (17) T, B)I" —7— B, dE,
2 ] , /m,+m
Aoz' ds, : Boa ~ :}—- :/— 2 ) ’ (1)
] A : : 4N's s=m -
Ba(qa’za) Ws, R ; . ) 3 q .
2 T (€)% & 4E
(m,+m,) @ «a 2 @

rr§1+m2

\

where A is the elastic scattering Argand amplitude [0< | A, |<1]. '

Ba(qa,Ea) is the square root of the Blatt-Weisskopf barrier for forma-

We see that the normalization was chosen so that Aaa is essentially an
tion, q, is the c.m. momentum of particles that make up the isobar, and : ;

‘ ‘ ~average of,QaBz/(4'\/_§), which is a dimensionless quantity. Therefore
ﬁa is the angular momentum-of the particles that make up the isobar. '

. Kaﬁ in Eq. (13) is a dimensionless number, and in fact the whole
The normalization is done because we treat W _ as a weighting function. : '
_ ' o _ : a - Eq. (13) is dimensionless.
For the A we take a Breit-Wigner form, : ) : . _ ‘
« ' In this paragraph we give an alternative prescription for 'Aaa which .'
qa.y BZ (@..2) o we did not use. This prescription will only change the K-matrix pa-
Aglsg) = a,/—a Y ) ‘ 8 t d not the T-matrix which we. fi i
Era_ Sy —waana(qa’la) rameters and no e T-matrix which we fit to. One can think of the '
) ) . ) isobar being described by a relativistic Breit-Wigner resonance where
If we define ‘ ] ‘ . -
A (E) ) : . the "'typical” /rnomenturn of the isobar is given by /
a .
T (E ) == s (19 S : ‘
a' T« 172B (q L) :
: q 'Y ‘ : \/—s'-m3
where Ea = W Sy then fQ becomes . \ _ 1 F’el Qa qa _
‘ . ‘ : : Q = = dE . (22)
N . o N ( -E2)2+ 1.2 2 a
, ! SR™"a “total
’ rn,1+rn2 , .
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’

The Breit-Wigner is normalized all the way out to s = © such that

bt . ’
r q
el o _
. _EZ_)Z . 1"2 =3 dEa = N. . .(23)
R 7o, total
/
m1+m2
.In this case, Aoza would become
Ns-m, .
-4 1 rel Qaqa 2
A = = ———— —=— B dE .
aa N N (s —E2)2+ I‘Z' 2 a e«
R "a total
m1+rn2
{(24)

In making this assumption one is relying on the fact that as the width of
the Breit-Wigner goes to zero it becomes a delta function. We have
chosen our particular definition of Ada’ Eq. (21), because it depends

on the measured Argand amplitudes and is indepéndent of model assump-

s

tions, unlike Eq. (24).

We assume that kaﬁ is rea}l with no branch points and can be des-
cribed by siﬁlple factorizable poles (which reApresent the formation of -
”N* resonance) plus nonfactorizable baékgrocind terms which are poly-
nomials in '\/—s The K-matrix program Kanal which was Written.té do

the fits had the possibility for three regular poles and a background -

linear in Ns (which from now on we will call W). That is,

(25)

pa

3 -,,Yr Yr ‘
= % B
kaﬁ /) Er-W + Cm‘3 + W» Bo43 -
. r=1 :

-410-

We may express thé cross section in terms of the reduced ampli-

tudes Tin' Starting with Eq. (5) and taking only one partial wave and '
n . .

~

isobar, we obtain

ann dEn

i 2
oin(w) = 451W (J+ %)j lTin(W’En)l 8w

(26)

By substitution of Eq. (11) and (20) into Eq. (26), we get

__m 1

16 1 v ,

n
JIERCRIGE S
~
Noting that 'rh_'l(W)‘ and Bi are independent of En’ this becomes
o, =2 @3+ Lyr,.wmFa,, s . (28)
An ~ 2 2 in 14 “nn .
401 :

I

If the partial-wave S-matrix is defined by

g s ) _ _ 5
Sep = Gup * ZiAgg , (29)
the cross section is given by
an(r+ 3| a,_|? ’
2 in
O4n = 5 . (30)
n 9
' 1
Therefore,
'Aii 'AnnTin ) :
A= > (31)

The A1n amplitudes are the results of the isobar-model fit to NTrﬂ',»1

and the A, , amplitudes dome from '"EPSA" (elastic phases shift

'analysis).\z’ 3 The program Kanal was written to fit the A's by a x

s -
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method, using the K-matrix parametrization of Eq. (25).

Bekore leaving the K-matrix formalism we indicate how we dealt
“with the fact that there are two delta isobars in the Nww final state
(Nninz = AT, + AT <We treated them as separate channels with the
same coupling. This coupling was YA/'J—Z where Ya is the total delta

coupling. Once we calculated the T's for the individual delta's, we

added the amplitudes together as

Tay  Ta,

—— o —

T (32)
N T

- 3. DETERMINATION OF THiE OVERALL PHASE AND
SCALING OF ERRORS

In this section we discuss how we use the K-matrix to scale our
statistical errors to more reasonable values. We also show how the
intrinsic overall arbitrary phase of our isobar model amplitudes at a

given energy can be removed by the K-matrix.

3.1 Scaling of Errors

’

In order to use the K-matrix, we needed to supplement our Nwuw
amplitudes A, with elastic amplitudes A,,. Two sets were available,
in ) 11 4

2

those of CERN™ and thqse of Saclay. 3 We made two séparate fits, one

using A1'i (CERN) anci ohe using A“ (Sa)clay). -However, it is well
known that the deviation between the two solutions are greater than the
statistical errors; so we ;.1$ed larger errors in these fits. The errors,
5 Aii)’ were calculated by taking the rms (root mean sqﬁare) deviation
between the two Aii solutions. For a few waves at some energies this
external error was too small, so the statistical error claimed by Saclay
an'alysis was used [no statistical error is quoted by CER‘NZ]. For the

inelastic errors it would be nice to again use external errors. However,

our analysis is the only existing inelastic analysis available. Instead of

-12-

using our statistical errors which we felt were too small, we decided -
to kcale our errors so that the inelastic and elastic data would con-
tribute equally to the overall multichannel XZ. For the purpose of
s‘caling, e‘rrors we wanted té select a wave (or waves) that has one‘_clear
resonance in the elastic phase éhift and where our inelastic fit is iz}'_
good agreement with the elasti‘c phase shift prediction. Resonances in _
the 1500-MeV region are not good céndidates, because we are missing
inelastic data frorﬁ 1540 - 1650 MeV.* Resonances in the 1900 MeV are '
also poor candidatés, since we have limited ourself to F waves in our

model. This means we were unable to satisfactorily describe the

peripheral production of pions.that become important in this energy

region. 1 The 1700-MeV resonance region seems ideal. In this region

there are four resonances that are clearly seen in the EPSA: the S31,

D33, D15, and F15. Since S31 and D33 resonate .near'1650, they cannot
7/

be used because of the energy gap (see footnote). The D15 is not in as

good agreement with EPSA as the F15. For this reason we only took the
F15 wave to scale xz-elastlc with xz-xnelastlc 1r.1 our K-matrix fits.

The procedure was to adJust the errors on the inelastic amphtudes :
for the F15 until the XZ per energy bin was equal for the elastic and the
inelastic contributions. 'Wé usedv\only one pole and a ‘conﬂant background
as par;meters in the K-mafrix and fit in the F15 partial wave energy
region from 1585 to 1810 MeV with the inelastic amélitudes have one
free phase at each ene.rgy. Notice that at this(point we are only using the

K-matrix to describe the moduli of the inelastic amplitudes..

:;In our isobar model fits, we had a complete set of Nvw data from

1310 - 1970 MeV except for a gap of data from 1540 - 1650 MeV. -
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| When we first fit with external errors on the elastic and raw sta-
tistical error on the inelastic, by .far the greatest contribution to yx
the inelastic ;:hannels. As we scaled up the statistical errors on the
inelastic amplitudes, the XZ began to shift to the elastic channel. At a
scaling of three on Vthe ‘inelaé.tic errors the xz per bin of energy became
equal for th_e elastic and inelastic contribu';"ions.. Thrée seems, like a

large factor. However, if one looks at the statistical errors quoted by

PRI I . a1 e
Bareyre at Batavia™ and compares them with the external errors, one

also finds a factor of from 2 to 4. So for the rest of the partial wave fits,

we used three times the statistical errors for the irelastic amplitude
and the exterhél errors for the elastic. A \
3.2 Overall Phase |

- At each eﬁergy' all the inelastic‘ amplitudes are wél} determined
with respect to each other but have an overall arbitrary pha.s‘e. With
the unitarf constraint relating the elastic amplitudes to the inelastic
amplitudes, we are now in a position to determine this phase at each
energy. For this purpose we only consider dominant partial waves.

See Flg 2, which shows (1 -nz) for the dominant waves. The D15 and

the F15 which are two such, d¢minate partial waves in the energy

© region from 1585 - 1810 MeV; they show good resonant motion in the

~

elastic channel, so we expect to see-motion 1n the inelastic channel.
This was our starting poin‘t for déterfnination of the overall arbitrary
‘phases in‘ this energy region.

Our fitting program (Kanal) had the ability to fit with an unknown _
overall phase ¢, at the ith ene’rgy bin for the inelastic data. First we
obtained a solution for F15, and .D'15 from 1585 to 1810 MéeV (8 elasti'c

+ 5 inelastic bins).. Here we used a single pole and. a constant back-

ground as parameters in the K-matrix, with a free phase at each energy.

-14-

This fit was performed éeparately for both CERN and Saclay EPSA
sp‘lutions-for the elastic channel. This gave us five phases for CERN
D15 and five phases for Saclay D15; we also had the same number of
phases for F15. At this point we have féur sets of,ﬁha,ses at each

energy. We want to reduce these four sets to only one set of phases

‘ that will equally describe the data for the different inputs: D15 (Saclay),

F15 (Saclay), D15 (CERN), F15 (CERN). We accomplished this goal

-
\

through an iterative .process. ‘
First we minimized the total D15 CERN and D15 Saclay )-(2 by in-
tro&ucing a single parameter Y. It had the property that if Y = 0, the
phases aré equal to D15 CERN phases, and if Y = 1, the phases are
-equal to D15 Saciay'phases. ‘The specific parametrization of the &;

in terms of Y was

N

;= $(D15 CERN)i + Y ($(D15 Sa’.cla.y)i - $(D15 CERN)i). (33)
We éssumed that thotal (sum of two XZ) is a quadratic function of Y:

: 2 2, , .2 2
Xiay = X2 @YE-v) + 4x2/2) (v-¥P) + xP0) (2v®-3v+1),
. : » _ (34)
2, . 2 _ 2 ‘ : 2
where x (1) is the true total x at Y = 1‘, X ._(1/2) is the true total y ~ at
Y =1/2 and XZ(O) is the true total XZ at Y = 0. The sclution to the

quadratic equation”(34) that minimizes total XZ is

¢ oxT1) - 41/ + 3x%0)  38)
ax21) - 8x2(1/2) + 4x2(0)

By going through this procedure we arrived at one set of .phases
that minimized XZ for D15 CERN and D15 Saclay. The same procedure
was repeated for the two sets of F'15 phases' (CERN and Saclay). We

thus reduced the four sets of phases to only two. A final iteration using
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\

Egs. (33) and (35) yielded one set of phases. See Fig. 3, which give’s
a flow diagram of this iterative process.

Ne);:t wellooked at the F35 and F37 waves which went from 1730 to
1970"in energy. In the overlap region (1730 - 1810) we minimized all
four waves, each with two combinations, leaving the 1850 - 1970 phases
free for the F35 and F37. However, this procedure did not change the
ovérlap pha;seé very much from the valves obtained by just considering
D15 and‘ F15.

After finally arriving at a set of i)hases from 1650 to 1810 we de-
termined l;he phases from 1850 to 1970 just using F35 and F37, where

one pole and constant background were again used in the K-matrix.

Thus, we were able to arrive at nine phases for our nine upper energies.

We then turned to the lower energies from 1310 to 1540. In this

region the D13 and P14 are dominant waves and are ideal for determining

the phases. The problem here, however, was to find a solution that
would c.ontinue across the energy gap. The D13 at 1540 is very in-
elastic, but by 1650 it is no loilger very inelastic. On the other hand,
the P11 stays very inelastic all the way through the energy region! For
this reason 'the Pi1 was the only partial wave that could be used to make
the connection across the gap. Once we continue across the gap we may
use, as above, bqth D13 and P11 to determine phases Below the gap.
With the upper eneréy phases fixed on the values determined above,
we parametrized the K-matrix by two poles and a constant background.
The pole posit;ons in the K-matrix were initially set and held at 1490.
and 1770 MéV (nominal positions of P11 resonances), and the lower
phases where left free to vary. We fit over the entire energy range
_from 1370 to 2010 MeV in order to continue across the gap. This géve

B . J .
us a solution which was almost the same solution as the final one for the

flexibility to our simple model of minimizing total XZ

16-
P11 given in this paper. We later added a linear term to the back-
ground and let the pole positions in the K-matrix vary.

At the 1972 Batavia conference, Bareye3 announced that there may
be two P11 resonances, one at 1390 and another at 1540. This possi-
bility could spoil our ability to bridge the gap.

If we assumed another resonance at 1540; ° 11: might create an addi-

tional 180 rotation across the gap in our Argand diagram.. To test this

. we added another pole and rotated the upper energies by 180°. The re-

" sults of the fits are shown in Table II. We see that XZ per degree of

freedom is worse with the extra pole. Also the xz of the elastic chan-
nel alone is worse. In fact the increase in XZ for the elastic channel

comes from the energy region, where we are missing inelastic- data.

For these reasons we have rejected the 1540 resonance of the P11 if we

consider it would cause a 180° flip of our upper energy solution with re-
spect to our lower energy solution. When more inelastic data become
available, a more precise staternent can be made about the second P11 -

resonance.

Having provided a continuation across the gap, we turn to the D13

solution which was also fitted in the same range (1310 to 2010) as the -

P11, —For the D13 we used three poles and a _éonstant and linear back-
gro-und. At this point the léwer phases were determined with essentially
the same procedure as was used in the upper energiés [Eqgs. (33) and (35)].
However, we broke the lower region up into two.regions to give/ more

‘ (Noticé that there
aré niné energies below the gap and nine above. )

4. K-MATRIX FITS |
In this section we give the results of the K-matrix fits.

In order to fit the K-matrix to the elastic.and inelastic amplitudes,

'
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we used two differentwmi.nimizing methods, one due to Rosenbi-ock9 and

10 When the fit was far away from solution we

the other to Davidon.
used the Rosenbrock me@hod, which was more économical. As the xz
came close to a minimum the Davidon method was used. This method
cohver‘ges simultaneously toward thebminimum and toward the true
variance matrix (error matrix).-

For a summary of the results bf the K-matrix fitting, see Table III,
';:vhere thé XZ’ energy range, K-matrix pararﬁeters, pole position, and.
partial widths.are listed for each wave fitted by the K-matrix. In
1_7‘ig. 4 we display Argand diagrams and partial wave cross sections for
the elastic and inelastic channels. The smooth curve on th.e‘Argand
diagrams is the arnplitﬁ»de obtai'ried from the K-matrix when the de-
scfiption was possible. For the P31 and the P33, we did not try to
make a K-matrix fit, ,b\ecause.there was no evidence for resonances
and we did not éeg all the inelasticity N#w channel. Cro;s-hatched
marks on the.curve correspond to energies D, E, and F, etc. The

2,3

arrows indicate the known resonances from EPSA. To the right

inelastic Argand diagram, we give the variation with energy of the
square modx}lus of the wav;. The total inelastic conﬁ-ibution in each
elastic Wav'e is'compared with the sum of the inelastic cont‘ributions
{ +‘) we observe ( * ), where the ‘elasti.c amplitudes are those c;f |

CERN. 2

All Argand dia\grams are now determined to within one overall
sign. We have chosen the APP11 -to be up.
5. POLES IN THE T-MATRIX

In this section we discuss how Eqgs. (13) and (11) are analytically

continued into the complex energy plane. This continuation natura11.y

leads to an analytic T-matrix except for complex branch points associ-

ated with the isobars and polesi due to S-channel resonances.

t
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5.1 Kinematics

Once the K-matrix fits were complet‘ed, we searched in the complex
energy plane for poles which are identified with the different resonance
states. Because the K-matrix generates simplé poles in the T-matrix,
the residue of the pole is factofizable. A simple proof of this is given
in Appendix II. The residllte matrix of the T-matrix pole is identified
with the coupling of the resonant state to the differént channels. One
Woﬁl& like to relate this coupling matrix with the usuél partial‘widthsv‘
I’ of the resonahcef The partial width is equal to the’ coupling times a
kinematic factor. The que stion is, should this kinematic factor be eval-
uated at the pole or on the real axis? We decided to take the kinematics
calculated on the real a.xils, becaus;e for a/. simple Breit-Wigner with
narrow width, the partial width will be more real and the sum of Vthe
partial widths will be closer to th;a total\width. See Applendix IIL

5.2 Analytic Continuation’

. In order to search the complex energyy plane for poies,_we had to
continue analytically the 4 matrix into the complex plane. The off-
diagonal terms of Arnn matrix turn out to be from 5%< to 20% of the
diagonal elements. Also they ao not seem to acildany additional analytic
sheet structuré:, and it is very timefconsuthing to evaluate é,hem many
times. W'hen we did the pole search, therefore, we set thé off-diagonal
terms of the Amn rmatrix to zero. 1 . o

. In order to continue the Amn matrix to complé’)i'fg}flergy W, we have'

to do a contour integration.in the complex diparticle mass Ea plane re-

lated to a given isobar. Equation (21)
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W-m3 _ -
~ Q q "
2 a'a L2
| Ta(Ea)| —— B, dE,
m, +m
_ 1 172 )
Aaa T Iw W-m; ) (36)

q
T (E,)|* 5 aE,
' m1+rn'2
When we are on the real axis, all terms in the integral are real. Siﬂce
‘we want all terms to be analytic in E,» we must be able to expand them
i;x a Taylor series with real coefficients as a function of}Ea. ‘Every
term in the integral is obviously analytic except | Ta 12 However, we

know that T is analytic. In fact, T, can be related to a functionm ,

which is free from cuts, by

T = ___.1'__ . 37
a m -iq .
o a :

Recall that Ta is essentially the 2 + 2 scattering amplitude, so that m,
is an invefse K-matr%x. Therefore, I Tal 2 can be written as
l 2

. 1 : ' '
| Tl ® 2 —— o (38)

which is obviouslybanalytic.

5.2.% The Pole in | T_|°

Next we derive Eq. (41) to show that ' Toz ’ 2 has a pole, and that it
occurs exactly where the sheet II pole oéc_urs for the amplitude Ta of
Eq. (37). We use the standard definition of sheets; the imaginary part

~ ~ ’

of a, >0 [<0'] corresponds to sheé_t 1[1I]. Therefore, droppihg the

a index, we have the usual relationships:
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i 1

m"(E")= m(E), q(E) = - a}(E"), a (E) = - q;(E), ayy(E) = - a(EV). (39)

From Egs. (38) and (39), we have

N 7% - 73 = 5 (40)
m™(E)+q[(E) m (E)+q(E)
This can be written in a symmetric form using.both sheets:
2 1. 1 k%
|T|" = - v % = T(E) Tp(E)
1 ! _ ® %
= T(E)T{(E") . (41)

m(E) -iqp(E) | g%, iq’;I(E'*) .

Since T(E) is the two-body elastic scattering amplitude of the particles
that make up the isobar, it will have a pole on sheet II that is properly

identified with the isobar, as we set out to show.

5.2.2 Contours of Integration A

. Notice that both integrals in Eq. (36) are path dependent because of

the pole in |;I‘a| 2, We can take many paths of integration. We are,

however, only interested in the paths that go most directly to the end
¢ =~ .

point of integration, because they lie near the physical region, which is

. just the real axis, o .

In Fig. 5 we have drawn three different paths of integration and
labelled them with the symbols A, A', A" as used for the integrals
themselves, and in Fig. 6 we have deformed the three contours to

show that they differ only by circles around the pole. Also in'Fig. 6

we show a branch cut coming to the end~-point of integration which is due

o
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to the factor Q in the integr:ai in the nﬁ,rﬁerato'r"of Eq.‘ {36). Along A

we want Q to be continuous; but this means that Q is on a éifferent

sheet when the integration passes near the pole: So in order to define

on what sheet, Aaa is evaluated; we mﬁét:sﬁécify both the sign of the
imaginary part of Q at the lower limit of inte“g-ratioﬂand also _the path
(A,AY, or A") of the integration. In summary of Figs. 5 and.6, we

fipd six sl.leéts geherated by three contours '(A, A',A") and two possible
signs for ImQ. - However, we ionly. expect to find pdleé on the she.ets\with
ImQ < 0 for reasons of causality.

5.2.3 Sheets in W Plane

Next we point out that all values of A, A, and A" ap;proach zero if

To see this,

the end-point of 'mtegratmn (W-m3) approaches Epoile'

consider Eq. (36), which we write as A =1/D, Eq. (43). Then D di-
verges as the end-point approaches the pole (in !Tal 2). But the inte-
-grand of I contains a factor Q which always goes to zero at the end- ’

point and cancels the divergence of | Tal 2. So at'the end-point A

equals a finite number divided by infinity, which is equal to zero. So

as a function of W we have shown that thé values of A (A, A', A'") all be- i

come equal at W=E + mj so that E et ins is the beginning of a

pole po

branch cut (see Fig. 7). There is, of course, also a conjugate branch
* : : .
cut at E = prle + my, also drawn on Fig. 7.
Soon we shall discuss 'huntirfg in W, looking for a pole in T. Sup-

pose we find a pole at W on the A sheet; 'there will in general be

" shadow poles' at W' on the A' sheet and at W'" on A", where W,

W', W' may be close. Hence we must understand the W sheet struc-

s -

ture of Fig. 9 to decide which of the poles is most influential at real

caxis. R ¥ . N
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To understand Fig. 9, it is helpful to consider Fig. 8, a sketch of

cont\ouxjs in the E plane. In Fig. 8, a dashed line starting at Epole

corresponds to the branch cut starting at E e + m, in Figs. 7 and 9.

pol
This line is no barrier to the contours ‘A, A", A", but we cannot move
the end-)point W—m3 across this line without chaﬁging the names of the
contour (changing sheets in the W plane)., '

Note that if W-m3 is near the real axis the oniy shg'rt contour is A,
Consequéntly the W sheet connecting to the physical region in Fig. 9 is
labelled A.

To go further we need Fig.‘ 8a.through 8d. In Fig. 8a, the end

point of the integral is below the dashed line. As we deform the con- .

tour from Fig. 8a to Fig. 8d, the end-point of the integral moves

around the pole in the E plane. In Fig. 8d we are above the dashed

line. If we consider point 3in Fig. 9a and move it continuously up

through the branch cut, we will change sheets. We see that the A con-
tour in Fig. 8a dgf_oi-ms continuously into A' contour in Fig. 84. Thus
_ploi‘nt 3 of Fig. 9a would move from the A sheet to the A' sheet, e.g. .
point 2 of Fig. 9b. . '
,~ In Fig. 9a through 9c we show three pointsA on each of the A, A",

zind A" sheets. For each 'poin‘t we have drawn continuous pathbs leading
to the physical region. In Fig. 9b and 9c, when wé pass onto the A
sheet (the only sheet connected to the physical region) the lines are
dashed. The length of the lines in Fig. 9a through 9c are a measure of

- how cliose a point is to the physic;'a.l region. Therefore if we find a pole

T on A, A', or A", we can use Fig. 9 to tell us how close it is to the

physical region.
In practice it is necessary to calculate only one contour integral.

We now show how this is done. From Eq. (21), making energy
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dependence explicit, we have
W-m

3
1 ,
T | T(E) | 2w, £) LEL B%(wW, E)E.
_ m1+m2 ‘
A = w_m3 N ’ (42)
2 qE
| el LEL e
-

where the path of integration is A (see Fig. 5). Let us define
— = I
A= "3 ’ ' ' (43)
where [ is the main integral and D is the denominator of Eq. (42),

respectively. Call the dehomi_nator residue Rps then, by using

Cauchy's integral formula for contours A and A', we obtain '

~

D-D = 2mR_ <2m lim % AE
mRp = 2m lim Epole e
pole »

-E)| T

) © (44)
L . 2.
I-1I" =2mQ(W, .
i MW, E 1) BYW.E_ )Ry, .

We must be sure that we evaluate Q(W, Epole) on the correct; sheet. It‘

is clear, if we know A, RD, and D, that we can evaluate A" by

o 2
I-2
XL miQ(W, Epol_e)B (W’Ej)ole)RD C
L 2miR (45)
D(t - —52) '

Thus it is clear from Eq. (45) that.

. 2
A -2 w,
Al = ™ Q( Epole)B (W’Epole)RD/D

1 - Zw.iRD/D

In the‘ case of A' the spilral around E oie is counterclockwise (see
Figs. 5 and 6), so 271 - - 2wi, and that is the only change in the de-

nominator D.
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In addition in the main integral I, Q changes sign becaise it is on the

other sheet (see Fig. 6), so we obtain ) :
- - )

. ' 2 :
A »:A - 2T Q(W, Epole) B (W,Epole)RD/D .

1+ Z'n'iRD/D :

(47)

[Inj this aside we comparé the sheet structure generated, by Aéa of
"Eq. (24) (reliance on relativistic Breit-Wigner). It is cleaf that the
sheet structure we h?.ve discussed so far generated by Eg. (21) is a
spiral sheet structure. _. We see that since-Eq. (24) does not have a de-
nominafor, A' would be equa;l to A". Therefore this sheet structure’

would be square root in nature. ]

Another pr’operty- which may be demonstrated is that

\

.
A(W) = - A(W ) : (48)
for all three contours A, &, A' ‘and both signs of Q. It is also clear
that Q in the integral A has the property
. * % _ %

QW.,E)=-Q (W, E) . (49)
for a given imaginary part of Q. This follows from

. %k v

Q?w.E) = AW, ED). o (50)
All other terms that appear in the integral, Eq. (21}, are Hermitian. '
Thus they are the complex conjugate of the value above the real axis

when they are integrated below the real axis. So from Eq. (21), itis

clear that

R T

L%



£y

-25-

'w-m3

\

2| 1m®few, 5 4E 85w, BjaE

mytm, ’ -

W-m

(51)

Therefore Eq. (49)-is true by the way we tonstgructed our integrals.

'

5.3 Poles

: To demonstrate sheets and poles in our ri}odel, we will take the
F15 amplitude as an example. The F15 resonance lies near the pN
threshold w}uch is s = (1760 - i/5'4_) MeéeV as shown in Fi_g.-,io. _W}‘ie.n we
did i:he T pole sea‘rc.h we found F15 poles on each (A,A', A, for ImQ < 0)
sheet. The pole on the sheet generated by th'e A contour is closest to
the physicalr region. Figure 10 shows the sheet structure and continuous
pafhs going to the different poles on the different sheets.
corrésponding sheets are (1672-i77)A, (1682-154)A', and (1682-i84)A;‘.
The path from the physical region to the pole on the A" sheet is drawn
in such a way as to reveal the path' moving from the A sheet to the A"
All poles that we report in this
paper are the closest pole"s to the physical x\;e'gion.

sheet as it crosses the branch cut.

The poles. and
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Once the poile position was found, we propagated the error matrix
from the K-matrix fit to an error matrix for the pole position by dotting

. A
the Jacobian matrix and its transpose into the K-matrix fit error matrix

T
90X, o0X_.
2 2 '
opi; =\ 7%  Tkem aTP‘L\ » (52)
K1 Km/‘

\.;vhere Okym i8 the K—matru; fit error ‘matrlx, and oPij is the pole

poéition 2X2 erro.r matrix (real and imaginary), XPi is the pole position
vector (only two components), XK,Q is the K-matrix variable’, and
axpi/a XK[ is the Jacobian matrix which was evaluated numerically.
This }-)rocedure'gav’e errors that were much too small when compared
with the difference in pole position obtain from CERN and Saclay elasti;:
‘inpu.ts. The reason for this may be that the Davidon error matrix may :
not describe the true errors of our complicated space.

Table IV gives a summary of the T-matrix poles and the partial
width calculated from c-oupling résidﬁe matrix times ‘the kinematics

on the real axis. The sign in“the upper right corner of the box where

- the partial width is shown comes from the off;diagonal terms of the

residue matrix and is related to the sign of the coupling. Since the

Argand diagrams are determined -to ‘within one overall sign, the same
is true for off—diagoﬁal residue terms. We defer further discussion of
these parameters until Sec. 6.
J -6. BREIT-WIGNER REFIT

In this section we discuss how we refit the smooth T-matrix ob-
tained forrﬁ the K-matrix fit with an amplitude which is a sum of a
@itary background and a Breit-Wigner, rotated in such a way as to
Once we have done the refits,

insure unitarity for the total amplitude.

we compare resonance parameters obtained from the K-matrix, the
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T -matrix poles, and the Breit-Wigner refit. The motivation for these
comparisons was to find out how sensitive resonance parameters are
to the presci-iption from which they are obtained.

6.1 U(UB + BW) Amplitude

In the past, resonances were parametrized by the Breit-Wigner
form. The Breit-Wigner by itself is unitary. Since there is always
a background pre sent due to other singularities, the T-matrix is in

general a sum of Breit-Wigner plus background. Because this is not

A
v

a manifestly unitary prescription, we have turned to the K-matrix. Now

that we have made K-matrix fits and obtained smooth description of the

3 A
data, we would like to know what the Breit-Wigner parameters are for

comparison with theoretical predictions. For this purpose we used a
'unitary asmplitudfe which was a Breit-Wi_gner plus a uni.ta}-y background
with no local poles. For convenience we denote this amplitude by
U(UB + BW). We believe that the backgroﬁnd should not be affected
locally by the presence of the resonance. Therefore, thg é.ssu_mptién ‘
that if is unitary with no local poles seems reasonable. In order to
construét U(UB + BW), we let ‘the Breit-Wigner be rota.t_ed by energy
dependent phases (§ve believe that the Breit-Wigner not the back-l
grouﬁd must éc.commod.at\e »i.tself to unitarity). These phases are calcu-
la.t.ed by the;Davi_es-Baranger11 constraint eth;a.tion;( also, see Goebel-
and McVoy. 1 Once we have made a K-matrix fit, we then refit using
U(UB-+ BW).to the smooth T-matrix in the region of the pole, in order
to extract the Breit-Wigner parameters.

Let us assume . we have a unitary background S matrix Bij’ and a

Breit—Wighe r given by
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% LT, % 0.
R, = 1] T 5 , where I'.=Q%.e 7, (53)
. ] (ER-E) - 3 E.Yk Qk J 1]

where all terms are real except I"J., and Qj is the same as the diagonal
>
\ B >
terms of the Aij matrix used in the K-matrix (see Eq. 21).

The Davies-Baranger constraint equation is
B.T.=rI,. (54)
Let us recall Bij in term of the ba.ckgrou.ﬁd T-matrix T:

B, -5, + 2012027 . ' (55)
Tij ij i 7j ij :
Now if we substitute Eqs. (53) and (55) into Eq. (54), we obtain

16,

: ’ ’ -i6, i )
2. +20Y2Q 2 1y ol 2T oy l/2e (56)
FRRS. 7] 177375 R
which can be shown to equal fo
—iGJ. -
y;sin Gi = ?ijYj_Tije .o (57)

The right-hand side of the Eq. (57) seems at first to be a complex'

. number, but the left-hand side is real. So we can set the imaginary

pa.rtv of the right-hand side equal to zero; i.e., - -

ZQ.y. Imag(T,.)cos6, - ZQ.y.Real(T, )sinf, =0. . (58) .

] JYJ el 13) J j JYJ ( 11) J ' i .)

At this point we assume that Qf is real. This means we must
restrict ourselves to energies.such that the jth channel is open

(Qj2 >0). We now define the vectors ' -
] si,nGi\ _ ) f'cosei
(Sin) = sin 92 \ i and : (Cos) = cos 62 N (59)

j / | E - , \ ; /

and the matrices

P
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Q1Y1Rea1(TM) szzReal(Tiz)- .-
(Real) = QiyiRgal(T12) szzReal(TZZ*- k
and
Qiyilmag(T11) -szzlmag(T12)= ..
{Imag) = Q1Y11mag(T12) szzlmag(Tzz)- . ‘
. (60)
Equation (58) then becomes
(Imag) (Cos) - (Real) (Sin) = 0 _ (61)
or ) , :
- (Cos) = (Imag) ' (Real) (Sin), - » (62)
In addition we have the added constraints between the sine and the
cbsine.
' Cos?6, + Sin%0, = 1. | (63)

Unfortunately we were unable.to solve these trans cendental equations’
’ s

"in general. Therefore we imposed Egs. (62) and {63) by a XZ con-

straint and parametrized 9i as a polynomial in W.

We were also interested in looking for the pole in T = U(UB + BW),

(which is just the pole in the Breit-Wigner term) in the complex W plane.

Since the U(UB + BW )'. amplitude must be Hermitian, Gi must have the
same real axis cut structure as Qi[ or Aii; see Eq. (48)]. Therefore a

natural parametrization for Bi would be
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. m ’
Bi(W) = Qi(W) nfo a w. ’ , :(64)

6.2 Di\é, F35, and F15 Refit
,Havin;g e_stablishea this machinery, we performed a series of
K-matrix fits and Breit-Wigner refits on threerwell-establis'hed reso-‘ '
nances which were coupled to two, three, or four channels: We used
the D15, F35; and F15 resonances. The results of-th_ese fits and re-
fits are given in Table V. vIn line one of Table V we have identified th;e

pole term of the K-matrix with Breit-Wigner -like resonance param-

eters: the mass is the location of the pole, Er, the ith partial width

_is just (kinematics)xxyi2 , and the total width is the sum of the partial

widths. From this K-matrix fit we looked at the T-matrix pole where
the real part of the polé position is identified with a mass; ‘twice the
imaginary part is identified with the total width (pole pééition is re-
corded in the mass column of Table V). From the residue of the T-
matrix pole wé defined the partial width as discussed in first pa}t of
Sec. 5.

We record the real part, the imaginary part, and the modulus

'ofjpartiai width in Table V.. For the total width we record the sum of

thev real parts, the imaginary parts, and the moduli of each partial width.

' For this T-matrix we do a U(UB + BW) refit from one-half width before °

‘

the pole (in the T-matrix) to one-half width after the pole. We then ob-
tain Breit-Wigner parameters (mass, partial v&"idths‘, total width)
whic£h we record in Table V. For. the Breit-Wigner 'term of the refit, ,
we look at the pole in the complex W plane thus recording the pole .
position and residue-related partial widths as we did for, the T-matrix.
Next we re.ﬁt’»the T—rn»atrix again, but this time relaxing the Davies—

Baranger constraint, thus performing a UB + BW refit where the ei's/'
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are now constant with energy. From this Breit-Wigner refit we re-
cord the fitted parameters and the pole parameters. Finally we went
back to the K-matrix fit and took out all the inelastic amplitudes, thus

»

performingﬁ a fit only to the elastic da'w.ta.. In order to absorb the
inelastic part we added an uﬁconstr#ined A7 channel. ‘ We then went
‘through the same series of refits and pole searches except for leaving
out the U(UB + BW), since we only wanted to fit the elastic channel.
Figure 11 shows the Argand diagrams vobté,ined_ from the U(UB + BW)
refit to the F35 wave. The solid line is the total amplitude from 1740 |
to 1900 MeV (one-half width below T -matrix pole to one -half width
above). The dashed line is the background for t’he same energy range.
_Arrows show the d;rection of increasing energy. Let us define VAGi as
the‘change of rotation aﬁgle Gi of the BreitLWigner over the range of

refit. 7 Then

AG =0.(W=|W )] (65)

; |)-ei[w= |w |-2Im(W

pole pole pol_é

¢

v?here Wpole is thé pole position in the ’It—matrix.' AG.I is plotted néxt
to the elastic Argand diagrams of Fig. 11. N
- The resglt§ for the three resonances for both CERN and Saclay
" EPSA input are listed in Table V. Note that the pole position.'and‘
;-esidués for the T-matrix from‘both the>K-matrix and U(UB + BW) are -
very close to each other. This is sirnilar/ to the obser.va.tion of Ball
and Sha.;)v12 for the P33 resonance of the Nw éystém. Also, the K-
matrix parameters for the F35 have very little to do with the actual.
resonance parameters. This is because the background term in the
K-matrix is very large, and we have shown.in Appeﬁdix A% thét'the back-

ground term couples directly into the pole position of the T -matrix,

The resonance parameters obtained from T-matrix péies' and
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U(UB + BW) refits are the best candidates for checking tﬁedretical
predictions. Since they disagree by factors of 2 with eéch other, we
would not expeqt theory to do any better.
7. SIGN OF COUPLINGS
In this section we discuss one poyssibl'e prescription for extracting
the signs of the couplings to the different channels from the total T-
matrix near the resonant energie s.. The detérmination of these is
important for the purpose of comparison with th.eor.y.

In order to understand what the sign of the resonance couplings. is,
one must know the exact Clebsh-Gordon coefficients t_hat go into the
isobar model fitting program. For all sign conventions see Chasmore-
He'rndon-Si')ding. 13 Once these conventions are kﬁown {t might be pos-

sible to read the signs off the Argand amplitudes shown in Fig. 4. How-

‘ever, one sees that the resonance is not necessarily pointing up or

down. In these cases one could do a unitary Breit-Wigner refit to de-
termine the sign of the resonance coupling. However,jth’is is really

not necessary, because if we can seé the resonance shape we should "

\

be able to guess the angles Gi that the resonance is rotated by. We see, .

from Eq. (54) that the angles should be measureable by comparing the

“elastic and' the inelastic channels. In the elastic channel (A11) the

resonance is rotated by 261, and in the inelastic channels (Ali) the
resonance is rotated by 61+8i' It is clear that Bi has a ran"ge from

-90° to 90°. Thus by determining these angles we will determine the

sign of the couplings. We have seen that once we have made the uni-

tary Breit-Wigner refit, the total T-matrix produced by this method is
very close to the T-matrix produced by the K-matrix. \

Thus we shall employ the simple in terpretation of U(UB + BW)

but determine the coupling sign directly from the T-matrix elements’
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prédﬁced by the original K-matrix fits.‘ In fact _for all resonant waves
which have been‘fitted, we have lookc.ed at the T-matrix for all the

elasAti'c (incl'ud‘ing, é.g., Am — Am) and inelastic channels and determined
by eye what the nominai values of the 6's are. - Table VI giye;; a list of

the signs of the couplings and the arigles from this eyeball-fit. If the

. nominal value of 6 is within £30°, we think we are safe in determing the

sign. But if the value of 6 is greater than +60°, the sign is question-

8. PREDICTED CHANNELS
In this section we disc‘uvss two K-matrix fits in which we introduced
an e;ctfa channel in order to make up for the lack of cross section ob-
serv~ed in the Nmm system. in the _Sii wave we kn.ow414_there must be .
a component of N7. In the F37 wave we assumed that the additional
channel was Nfrmr.

The uppef right-hand plot for each incoming partial wave in Fig.4.1
through ;1.16 gives the unitary check, i.e., a comparison t?ét\yeen ‘
ﬁk?(J+1/2) (1-'172) from EPSA (CERNZ)l and Nm ~ N7m cross section con-
tributed by each of the channels plotted in the right-hand column. Of
the 13 incoming partial waves plotted, unitarity is well satisfied in '
10 casés.' We now\discuss'the other three. |

The P31 has no eviden.ce for resc;nance structure an.d such a small
sectiox;l observed in the isobar amplitude s that we did not do a K-matrix

fit.

A}

Around 1520 MeV a sizeable amount of cross section goes »inté
Nn (about 4 r;'lb). In our K-matrix fit to S11 we includ'edr the N7 chan-
n'e.l as. é predicted channél (i. e. , ho_ input amplitude to constrain the
'XZ). Our results are consistent around 1520 with all the N cross sec- .\

‘tion going into the S11 wave. Figure 9 shows the total Nn cross section

i

<
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plotted along with the 511 cross section of the Nn channel from the
K-matrix. The S11 amplitude for the Nn predicted from the K-matrix

is scen in Fig. 4.2. We believe that the moments of the Nn can be ex-

plained by an introduction of a fev;r percent in cross section of P, D, and
F waves in the region 1520 to 1590 (see Appendix VI).

In the 1900 region we do not satbu;-at'e the iﬁelasticity of the F57
wave by 3 mb, so we introduced a plggdiéte.d channel. . In this énergy
region, 1900-2000 MeV, the Nuww cross section grows from 4 to 6 mb,15
so we made the predicted channel an F37 decaying by Ap with langula.r '
momentum in a P wave. Thu.s our analysis forces a prediction .of the
amplitude for F37 decéyiilg into the Nwmw via a Ap decay in a P wave.
The predictea A.rga.nd amplitude is shown in Fig. 1.16.

| 9. CONCLUSIONS .

We were able to al;ply the\gonstraints of unitarity (using the K-
matrixd to isobarr-model—generated amplitudes. We obtained a good
representation of the Argand diagrams in almost all channels. These
permi‘tted us to remove the overall phase uncertainty of the inelastic
‘amplbitude.s at each energy.

1

With a good representation of the T-matrix we then could extract

the pole parameters associated with resonant behavior in the Argand

diagrams. " The ﬁniqueness of the pole parameters was demonstrated
by doing Breit-Wigner refits to the. fitted T-matrii: amplitudes. Thus
we found the same pole parameters in this alternative prescription.
However, these refits showed it was not p.ossible in general to reiate
pole parameters unambiguously to the parameters of the Breit-Wigner.
Furthermore,‘ the success of the réfit; and the obvious interpretation

of the amplitdde U(UB + BW) (of Sec. 6) justified a simple determination’

of coupling signs from the fitted T-matrix (K-matrix-generated) ampli-

fudes.
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Since the i‘sobar model amplitudes may not be the final set the
world accepts, the numbers prescnted here arc subject to some changes.
The biggest chaﬁge may come from Nn7 data in the energy gap. In
addition theoretical predictions are stimulating searches for new solu-
tions, using additional partial waves that may have been removed by
‘ the teéhniques described in Ref. 1. ’

' ACKNOWLEDGMENTS : ‘

I w‘ish to thank my advisor, Art Rosenfeld, for his guidance and
support. I also want to thank all the physicists with whom I\ worked:
Roger Cashmore, Gerard Sma&ja, Thomas Lasinski, and Daﬁd Leith.
Special thanks to Gerard and Tom for spiritual guidance.

‘ ‘I>v1y thanks to my feilow graduate sfudents on this experiment,
Lai‘ry Miller and David Herdon.‘ ‘
Finally I want to thank the other members of my i:hesis committee,

William Chinowsky and Lawrence Ruby.

-36-

FOOTNOTE AND REFERENCES

*Work done under the auspices of the U, S. Atomic Energy Qommis sion.
1. D. Herndon igl. , A Partial Wave é.nalysis of the Reaction

7N - wrN in the c. m. Energy Range 1300-2000 MeV. XVIth Interna-
tional Conference on High Enel;gy Physics, Chicago, Illinois,

Sept. 1972. ‘

2. S. Almahed and C. Lovelace, Nucl. Phys. B40, 157 (1972).

3. R. Ayed, P. .Bareyre, and Y. Lemoigne, contributed paper to the
XVIth International Conference on High Energy Physics, Chicago,
llinois, Sept. 1972. ’ _

4. L. R. Miller (Ph. D. thesis), Lawrence Berkeley Laboratory
Report LBL-38 (1971).

5. D. J. Herndon (Ph. D. thesis), Lawrence Berkeley Laboratory
Report LBL-544 (1972). |

6. P. Chavanon, Paris (Ph. D. thesis), Study of pr' —» p1'r+1r° from
1.6 to 2 GeV, (1971) p 16, Equation II-8.

7. P. Graves Morris, Nuovo Cimento 54, 818 (1968).

8. J. M. Blatt and V. F. Weisskofp. Theoretical Nuclear Physics

(Wiley, New York, 1956), p. 361. See also F. Von Hippel and C.
Quigg, Phys. Rev. B 5, 624 (1972). '
9. 'H. H. Rosenbrock, Comp. J. 3, 175 (1960).

10. W. C. Davidon, Comp. J. 10, 406 (1968). o

41, K. T. R. Davis and M. Baranger, Ann. Physik 19, 383 (1962).

'See Also C. J. Goebel-and K. w. McVoy, Phys. Rev. 164, 1932 (1967).

12. J.' S. Ball et al., Residue of TN3-3 Resonance Pole, National .
Science Foundation, Technical Report No. 72-69 (1973).
13. Cashmore-Herndon-S8ding, The Extended Isobar Model,

Lawrence Berkeley Laboratofy Report LLBL.-543 (1973).



e

'-37-

14. Y. Lemoigne et al., m p— ‘nn Up to P: = 400 MeV/c, Purdue con-
.férence on Baryon Resonances, April 1973.

15 E. Flaminio et al., Corﬁpilation of Cross éeqtiéns IV-n+ Induced
Reactions, CERN/HERA fo-s, Sefn. 1970.°

16. R-ﬂ Cool and R. Marshak, Advances in Particle Physics, Vol. 2.

(Wiley, New York, 1968), Chap. 2, p. 226.

: ;3’8-
APPENDIX I
. UNITARITY OF THE 7-MATRIX
In this appendix we show that the 7-matrix as defined in the text by
Eq. (13) is unitary, since we relate '1' to‘S by Eqs. (29) and (31): |
S=1+ivA v NA
(with no factor 2 ivnvsecond term), the uf-litar‘}r condition to be tested is
('r. -7*‘"217"’ AT . (1.1).
"Equatioh (13) from Sec. 2 is l ) '
| T -k =i/2 1AK, ' ' (i.\2)
By definition the k-matrix is real.and the A-matrix i\s Hermitian. As

' seen from Eq. (15) of Sec. 2

/ A= j Qy)\.fzf)\dsyds)\ ; | (1.3)

(I"Y)" which is the recoupling coefficient has the property that
QY" = CI):Y (Ref. 6) If we solve Eq. (L.2) for the T-matrix, we obtain
T =k (1-i/2 ak)7L. - (1.4)

Let us substitute Eq. (1.4) into the left-han& side of Eq. (I.1); we get
. - . - 7 i .
K(1-3 a7 - (1 +dxkah) ke Lirtar (1.5)
The next step is to intréduce the unit matrices within [ ], in the apbro-

priate places in the left-hand side of Eq. (I.5):

» P bied,, it i -1 i 41 i i1
[(u—zkA) (1+—2kA)]k(1-—zAk) -(1+ S kA’ k[(i-—ZAk)(i—iAk)]

thaa .

i7+A7 . (1.6)

. ; -1 ' :
"We have (1,-% kA+) at the left of both terms, and a similar common

factor on the right; factoring these out, we have

irtar, . (w7)

[IBN)

i 41 TS i -1
(1 +%kA ) {(1A+-ZkA\)k-k(1—-2-Ak)}(i-ZAk)

Simplifying, we obtain
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N -1 R . B )
1+ irat)y k& k IkAk oy E A2t (L.8)
3 3 73 2 =
Since A is a Hermitian matrix, we have
it gka ) kak(t -gaK) = irfar (L.9)

Finally, from Eq. (I.4) vs}e note that the matrices following A are
just T and the matrices preceding A. are/'r+. Indeed Eq. (I.1) is
satisfied. . | o » |

APPENDIX II
. FACTORIZABLE RESIDUES

In this appendix we show that simple poles in the T-matrix have
factorvizable' residues.
| The first step is to demonstrate that a factorizable matrix has only
one non-zero eigenvalue. Cogsider a matrix B which has only one non-
zero tez;m B“. Let Uij be a unitary matrix. Consider t'he 1.'natrix\ B;
such th_af;

‘ ‘B =Uu'BU. (I1.1)
Using the condition that only the B,, termis non-zero, we obtain

N

R . -
[ )
B ij UiiBiiUij - (I1.2)

-or, rewritten another way,

. ’ * ’ :
! =
Blyj= (Ugy N Byy) WByy Uy (IL. 3)
It follows from Eq. (II.3) that ‘ ) -
2
1 [ IR
B By = (B! )" o

We shall use this result shortly.

It is clear that When_ we have a pole in the T -matrix, the deter-

1

minant of T " will be zero. We may diagonalize 'I‘—1 with a unitary

matrix U.
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TD = X \} . (H.5)
|
|
/

The determinant Det(T]-Di) becomes

\ Det(T-’j') = A MA e ' | (1L.6)
If we have a simple zero at co_nfipléx t.otal-center-of—ma'sfs energy
E'= EO’ then only one eigenvalug is equal to zero. By contrasta dipole.
(higher.order pole) would ha.ve two (ma.ny) zZero e.igenvalues.' . Therefore.
we may assume that one eigenvalue is given by .
x1 = C(E - EO) ] ‘ (11.7)
and the others are non-zero.

Therefore the dia.go.nal T_i-matrix can be written

C(E - Ey)
Tt- N, O (11.8)
P ] .
oI
and the inverse isr 1
CE -E,) O _
T, = S L (11.9)
1
1
O x /
S, 4 ,

The diagonal residue matrix is defined as

Rp= lim (E-Ej) Ty > (11.10)
E- E,

From Eqs. (II.9) and (1I.10), we get
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e 5 o

(‘)l'f
O

C
RD =  lim ) (E-EO) : = o - (IL.14)
0 2 ' O o
| (E-E,)
- 3
Notice that the non-diagonal residue matrix is just

’ .' + . .
R=URLU. (I1.12)

-

From Eq. (III.4) we know thé.t it factorizes.
‘ APPENDIX III
POLE AND RESIDUE FOR A SIMPLE BREIT-WIGNER
In this appenciix we dis cﬁss the shift of the pole parameters from
the mass and Width parameters of the Breit-Wigner. Also we discuss
possible. definitions of the rgsidué and how it is related to the width.
- For simﬁlicity we také a single-channel T-matrix which is gen-
erated by a K~-matrix:
1-iAK °

" where A is the kinematic factor. If we want a simple S-wave Breit-

T (1. 1)
Wigner, we need a simple pole in the K-matrix without any barrier =

factors. Therefore we have

k.L/2
"E, -E

(111.2)

where E is the total ¢c. m. energy and ER is the K-matrix pole position.

For A let us take a form that has a square root behavior and is equal
to.o_ne at E = ER:

A = = : _ (I11.3)

Substituting Eqs. (II1.2) and (IIL.3) into (II1.1), we obtain
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T = —E—"—i—;—_ : ' (111.4)
R™

E e
Tz ! Eq

We know that we will have a pole in T when we have a zero in

D(E), the denominator of T. Let E_ be the value of E where D(E) is

P

equal to zero:

D(EP) =0. (111.5)
Therefore

Ex-Ep Ep

-—7——2 =1 % . ‘ : - ) : ) . (m-6)

Squaring both sides of Eq. (II.6), we obtain

2 (. r 2 ‘
EP -2 <ER - _8ER\) EP + ER =0, (IL.7)
which can be solved by the binomial theorm
EP-= (11L. 8)

If we make the narrow width approximation (ER >>7T), Eq. (III.8)

becomes )
- 2\ . 2 _
EP=ER1-—I:—-2—7 + L1 I . (L9)
: 8K 32E . ’ :

R /- ' R
Taking the root with the minus sign because we want the pole to be on

the correct sheet, we see that EP is given by

R . 4

2\ . 2 :
E_=E_ (1 -1y i, T (I11.10)

P R sE2 2 32E2
- R . R

The .real part of the pole position has been shifted by .-FZ/SER‘ from

\
the K~matrix pole position. Also the width as been reduced in size by
/3282 ‘ :
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Next we expand D(E) in a Taylor serice about EP’
8D

DE) = - $E| (EpE)te., C(ad)

P
réca.lling that D(EP-) = 0. Differentiation of D(E) and Eq. (IV.11) yields
D(E)z(% + —i/z ) (EP-E) . (I11.12)

VEp Ep

If we substitute into Eq. (III.12); the expression EP[Eq. (I11.10)] and

assume ER> >T we obtain

¢

D(E) = (f—- + _i/2 (Ep-E) . (111.13)
NEL(EL-T /2 ,
Simplifying, we get
D(E) = _.__2__2__\ (Ep-E) . (IIL.14)
r‘_g.__ T . :
A 4Eg ' ' \
The residue of the pole is defined by ’
in Ep F) 1115
Repm D@ | (HRAE)
— P , // ‘ ] N .
Therefore we see that
. r  ar? ) 6
= I e 1111
L R= 7 "8E;: (LIL.16)

'The residue of the T-matrix-is rélated to the coupling of the reso-

nance. We may define the coupling such that T’ = 24X (coupling).

total
But the question is what momentum should we use.in calculating the
total width. For the coupling we used the residue of the pole, so one
might think that the momentum at the pole should be used. On the other

hand the momentum on the real axis tells us how much of the .coupling

is physically seen.
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We also know that the total width is associated with twice the imag-

inary part of the pole position, which is equal to

.1"3
r ZXI:mag(E)‘I"-—-—.

total 1 6E (l,H' 17

Using the A on the real axis evaluated at Real(E and the‘ residue

. P)
equation (II1.16), we obtain

Ttotar™ 2

2\ "
= ) (111.1°8)
R

Using - ER > > T, we see

ir?’ ’
Tiotal =1 ~3E_ (IL.19)
"R
.Next, we use A at the fnole position: I
g . L2 T air
o R SER 2 '64E; ( irz >
T =2 - T -== 1, (I11.20)
totgl ER o SER \
where ER> > I . Thus
) 2 '
il"
rtotal =TI - TE——R;- . (I11.21)

It is clear that A on the real axis gives a total width with ‘smaller imag-
inary part and magnltude closer to twice the 1mag1na.ry ‘part of E
APPENDIX IV

L .'DEPENDENCE OF POLE POSITION ON
K-MATRIX PARAMETERS

In thls appendlx we dernonstra:te that the pole and background pa-
rameters of the K- rnatrlx become mixed together in the pole parameters
of the T-matrix calculated from the K-matrix. ,

In order to demonstrate this point, we will take a single-channel

S-wave K-matrix written as
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K=%+B. (IV.1)
R

Here E is the tofal-center-of-mass energy, ER is the pole position,
T/2 is the coupling, and B is the background. T is given by

T = =

T3AK’ (Iv.2)

where A is the kinematic facfor which we will take the same "as in

. Appendix III: -

(IV.3)
Substituting Eq. (IV.1) into (IV.2), we get .

o= 1 ‘ . : (IV.4) -

’ER-E

[ Tz ’E
B(E_-E) : E_R
1 <

/2

If we assume |BI << I', then

1
N B2
Eg-E B(Eg-E) ‘T,:E‘
TT T T2, R

T = (IV.5)

We know that we will’ have a i)ole in T When we have a zero in D(E), the

denominator of T. Let EP be the value of E where D(FE) is equal to zero:

D(Ep) = 0 . (1v.6)
Then by substitution of E, into Eq. (IV.6), we obtain
: ~ 22
(Eg-Ep)  B(Eg-Ep)”\  Ep ,
T/ 73 =T E 1.7
_ : r“/4 ‘ R .
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or
3 ' 2 :
16B(Eg-Ep) 4(Ep-EL)° (Ep-Ep) .

- +1=0,
o rt Er

(1v.8)

where we have dropped the factor of Bz/l"4. If we assume

ER >> T > > |B | and |Bl < <1, thén a solution of Eq. (IV.S) is

\

' 2 2
E_ - IB L _ir /L :
Ep=Bpt 7 "wE - 7 /) TeR, (1v.9)

) R ‘ R
In this approximation we see, from Eq. (IV_.9), that the real part of the
pole position has been shifted by I'B/2 from the normal Breit-Wigner
pole’v(s_ee Appendix IV) due to the preseﬁce of the background., We also
should note tha.t\ the shift can be either up or down in energy, depending

on the si_gn of the background. ‘ For a narrow resonancebwith a small .

'bac\:kground the shift will be to first order in the real part‘of the poie

position.
| APPENDIX V \
S-WAVE DOMINANCE OF THE nN CR‘OSS SECTION-

In this appenaix we estimate the minimum partial wave cross sec-
tion for the w p - nn by usv'n.1g moments and the assu.mption of S-wave
dorninance around the 1520-MéV c.m. energy region. »

B If we assume that only Si1, P11, D13, D15 and F15 waves contri-
bute to the NN channel and that they all have the same phase, we then
will obtain the minimum amount of these waves necessary to generafe .

the moments. From Ref. 16 we obtain the moment expressim/ls:
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Cy = |51i|2+ |P11|2+2|D13f|2¥3']D15{2+3|F15|2,
C, =2|st1||P11| + 4| P11]|D13| +7.2| D13|| F15| +0.515| D15 | | F15|,
C, = 4|s11| |D13|+6|su{“1ms|+6-}P11|t§*15|+2|1>13|2+ 1.714‘]D13| |F15]
+3.429| D15] % + 3.429| F15| %
C, = 6| S11| | F15|+6| P11||D15]+4.8| D13| | F15|+3.2| D15| | F15] .

(V.1)

From our K-matrix fits to the S11 wave, we know that most of the
cross section goes into S11 around 1520. Therefore we will assume
S-wave dominance. Dropping all terms except those which have S-
waves in them, we get for the moments:

: ~ 2
Co = |S11]°,
c, = 2|s11||P11],
C, = 4|S11||D13| +6|s11]||D15], (v.2)
C, = 6|S11||F15].
We now can easily show that the ratio of the cross section of P11, D13,

or D15, F15 to S11 can be written as N

) “’Pu:IPuIZ:(Ci ) S :
- %11 |s11|? \ZC .
'.O'< (o T 2 /[ C 2
Di3(only) _2|D13|% _ 1 (___é_
(V.3)
O~ 2 c, \
Di5(only) _3|D15]% _ 1 (_2_>
Og1 1s11)2 3 \7%

~

9g15 3[F15]% 1 (c3 )
-3

Os11 |s11]? 2Co

A summary of these cross-section ratios taken from the moments of

Lemoigne et al. 14 are shown in Table VII for 1520 to 1590 MeV. We

conclude from Table VII and Fig. 9 that the S11 nN ‘is reésonably
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predicted from our K-matrix fit and small (~ 5% ) total contribution of
higher waves (not permitted in our fit) to this channel could well de-

scribe the moments for = p-nN.
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Table I. Parameters of Breit-Wighér used in .
Watson final state factors equation (18).

Isobar, a Mass, Era

(pion masses)

Width, y

(dimensionless)

Orbital angular

momentum, la

J

Delta . 8.83
Rho "~ 5.464
- Epsilon 6.0

-0.40
- 0.20

0.8

- 6?-



Table II. Corﬁparison of P11 solutions of Sec. 3.2

with two poles and three poles.

P11 solution with two poles P11 solution with three poles

XZ per deg. 1.47 XZ per deg. 1.62
of freedom of freedom
elastic+inelastic elastic+inelastic
2 . ' .
x elastic 45 x elastic 58

_Og-
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Table III. iK-niatrix pa‘rarﬁeters of all waves, in sequence ‘S, P,D,F.
' [ The parameters are defined in Eq. (25).]

)

Y3(1'1'1ass

2.329+.010

Table Illa
Wave ) S11, CERN 811, Saclay S31; CERN $31, Saclay
Energy range 1310-1810 1310-1810 1310-1810 1310-1810
(MeV) .
2 88.7 57.2 ' 136.4 141.7
Degrees of free- 62 62 T3 © 73
- dom C . '
Channel 1 Nm L=0 Nwm L=0 Nom L=0 Nm L=0
Channel 2 Ne L=t N e L =1 Am L=2 Awm L=2
Channel 3 Npi/z, L =0 Npi/z, L=0 Npi/Z’L =0 Npi/Z,L =0
Channel 4 ‘Nq,L =0 N7, L =0 ) L . . -
Vit oo .345%.009 -.047%.020 1.786% .012. 2.000%.013
vy(bion 3.7982 .035 3.235% 161 -4.932+ 215 - 5.784% .166
1(Pion )‘ 1.351+.092 .531+.100 -2.802%.149 -2.852%.142
3'mass P . ) :
1(Plony -2.539£.022 3.535%.037
4'mass ) .
2 «~ Pole- ’
¥y _ Channel 3.431%,004 3.358+,002 A
y2(Elon, -1.676%.005 -2.273£.040 S -
2'mass .
2, Pion

1.876%.050 --- : S

-16-



Table IIIb

a0 o0 o0 a o0 o a a

S11, CERN S11, Saclay S31, CERN S31, Saclay
yi_(frtg‘;s) ' 11.688%.009 -2.209+.0216 . -
Pole 1 (MeV) 1493+ .6 1483£2.4. 1598+ 2.9 1602+ .4
Pole 2 (MeV) 1691% .06 1691% .2 - o
1 30.62%.013 30.55+.023 19.30+.085 20.44%.033
12 -56.53+,189 -59.70+,690 -126.28%2.370 _ -88.42%,675
13 _5.64% 417 S3.21%.074 . 3.54% ,828 -22.64% 374
‘4 6.55%.094 374,062
22 157.27+£2.35 100.524£1.970  -2046.18£14.030 -2318.66£5.574
23 66.43% 147 70.69% .469 -703,34% 3.162 -1346.85%3.207
-64.08% .112 -63.96 .193 e
24 -
33 33.16% .169 37.44%1.473
34 -19.27+ 130 -12.34+2.021
44 97.65% .271 98.4181 964
- Pion -1 . E ' :
B ) -1.85% .003 -1.71% ,002 -3.68% - .010 -3.86% .002
11 'mass ’ .
B, (Tion, 5.32+ .017 5.73% .031 14,02+ .114 10.76 .024

12'mass
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Table IIlc
S114, CERN Si1, Saclay > 8§31, -CERN S31, Saclay
Pion -1 '
( ) .34+ ,006 .46+ ,010 -.39%.,059 2.14% 016
13'mass ) .
(pi\°h )-1 2.94% .011 '3.97#.011 g
14'mass : o o = ot T
B,,Pion ! 12.44%.231 ( - -7.19%.022 173.60%.976 280.0 +.298
mass
(Plon -1 . -4.63%.017 -4.23%,044 64.25%.233 120.29+,252
23'mass
Pion -1 CoL
s aes) 3.47%,011 3.61%,008
_ Pion -1 ' ) _ o
33(mass) -5.31%,038 -4,29%.,109 68.65% .940 109.29+ .344
Pion ,-1 ' - . -
34‘mass) 2.76+.032 2.67%.179 ——-
Pion ,-1 ,
}344(n1ass) -3.55§.020 -2.76%.,050 --- ---
Partial width 1 1,216 .022 35,703 44.793
) (MeV)
Partial width 2 . 43,738 30.799 33.096 46.878
(MeV) i
Partial width 3 7.754 1,186 33,587 34,684
' (MeV) .
. Partial width 4 12.255 0.000 - .-
(MeV) i ; . /
Total width " 64.963 32.007 ' 102.386 126.355
(MeV) : .
Partial width 1 139.976 134,071 - -
(MeV)
Partial width 2 12.693 23.324 --- .-

_Eg_



Table IIId

S11, CERN | S11, Saclay
© Partial width 3 21.215 13.768
(MeV) . ‘
Partial width 4 .  23.282 39.847
(MeV)
Total width 197.166

(MeV)

211,009
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" Table Ille

Wave P44, CERN P11, Saclay P43, CERN P13, Saclay
Energy range. 1310-2010 1310-2010 1520-2010 1520-2010
(MeV) ) ;- ‘
x2 - 152.6 160.6 - 117.6 89.1
Degrees of 98 98 47 47
freedom '
Channel 1 \ Nan Lio=1 N L =1 Nt L=1 Nmm L =1
Channel 2 Aw, L =1 Aw, Li=1 Npi/Z’L_i Np-i/Z,in
Channel 3 Ne L =0 Ne L=0 —— —
1+ Pole 4.919% ,047 4.871%.014 2,497+ ,044 2.541%,039
—Channel . . . . . . .
$(Cion . 5.935% .135 6.386% .026 -7.465% .088 -7.506%.092
yyPlon ~-2.347% 141 -1.848%.039 --- -
Yf(if::s) ' 5.838%.192 5.277£.015 - -
yablon -4.831% 155 14.176%.018
" 2,Pion ‘ e
30 mass) 4.945%.170 4.592%.,010 .-
Pole 1 (MeV) 1477+1.5 1476+1.2 1809+ 5.4 1809+4.9 .
1870+ 4.9 1869 .7 —--

Pole 2 (MeV)

-gg-



Table IIIf

"B

(MeV)

Pi1, CERN . P11, Saclay P13, CERN P13, Saclay
C,y -8.61+.500 -12.28%.,730 -8.78+ .130 -12.82+.090
7 22.85+ 4,903 14.47%.242 -8.26% 106 -2.88%.495
C,p 24.38+ 4,440 15,54 ,128 S -
C,, 144,54+ 2,038 93,08+.144  -179.10+1.593 -219,70£1.038
C,s 19.28%,146 46.34%.,4M - S
Cyy -6.92+3.168 42.92+.,930 --- -
(Plon -.18%.047 ,43% 056 17+ .001 .49+ .005
141 'mass A . )
(Plon, -.40+ ,402 -.35%.024 1.02+.033 .58+ ,003
12 mass )
1313(P‘°“ -1 -3.48%.376 -2.74%.,024 a—- -
mass
B, (Tion -1 -9.02% .154 .82+ .056 14,81+ .026 17.90% 031
~22'mass )
Pion ,-1 )
23(nans) -.24%.,047 812,035 —-
(Pion 88+ .273 -.89%.044 -
33'mass ‘ ’ ) : * R
Partial width 1 200,045 o 196.060 . 71.998 74.574
(MeV) .
Partial Width 2 66.999 77.285 235.844 238.951
" (MeV) .
Partial Width 3 27.561 ©17.091
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Table Illg
P11, CERN - P11, Saclay ' P13, CERN P13, . Saclay
Total width 294.605 290.435 307.842 313.525
(MeV) N .
| - -
Partial width 1 407.369 332.702
(MeV) , i .
Partial width 2 171.665~ 128.176
{(MeV)
Partial width 3 182.936 ‘ 159.541 DA
(MeV) .- o » ,
761.971 620.419 -

Total width
(MeV)

-L'g-



Table Illh

Wave D13, CERN D13, Saclay 'D33, CERN D33, Saclay
Energy range 1310-2010 1310-2010 1440-1810 1-440-1810
(MeV) - ‘ ‘
, o
X _ 202.0 225.4 110.0 119.1
Degtees of 142 To142 52 » 52
freedom . B ’
Channel 1 N.om L =2 Nwm L=2 Na L=2 . N L=2
Channel 2 Am L =0 Am L =0 Am L=0 Am L=-0
Channel 3 - Npgjp L=0 Npg,p L=0 Npgjp L=0 Nopy, L=0
Channel 4 Ne¢ Lo=1 Ne Lo=1
Channel 5 A, L=2 AT L= 2 ‘ ] - [
1+ Pole . ' ' 5 5n
Yy~ Channcl 3.587+.015 $3.605%.023 2.024%.03 2.271%.013
R B . » , \ .
yy(oion -2.640+.092 2.673%.049 5,340+ .156 6.182+.038
1(Pion 1.933% 134 1,929 .081 4.297+.296 4.353%.078
3'mass
yi(Pion) ' .027%.044 .084£.027 . . -~ -
mass
1 Pion . ' )
Slnass) S6.367£.203 . -6.947% .166 Lo o o---
2 Pion .
Y Cnaes! -4.009+.065 -3.813:k.0v53 R
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Table IIIi
D13, CERN D13, Saclay /| D33, CERN D33, Saclay

2(Pion -9.624% .211 -8.989% .176
2(Pion -3.859%.087 ©  -3.498%.239
yaiony 19.339%.255 20.764% .563
vebion ) -11.453+.920  -13.464%.375 .
vo(oien ) 2.122+.,028 1.679 .082
S(Plon -2.471%.156 -3.354%,381 - -

& 1MAass . [ . ~
yy(oion -7.734%,006 -8.463%.134

3 Pion ,

2'mass’ 9.484+ .247 11.548+% .262 -
va(ron ) 11.465%.399 13.381%.139
Pole 1 (MeV) 1508+1.0 1540%1.0 1697+ 6.1 1704% .9
Pole 2 (MeV). 1878+ .6 1908+ 6.5 -

' Pole 3 (MeV) 2218+3.9 2261+ 7.8

11 -11.18 %.143 -10.52 +.167 51.26 .033 51.33%.076
C,» -17.82£.450  -16.38 *.433 -8.76%1.640  -5.23%.065
c -6.45 £.,215 -8.62 +.678 -65.73£.078  -65.39%.055
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Table IIIj

D13, CERN D13, Saclay D33, CERN D33, Saclay
" - 53.20%.634 55.29% .806
c,. -35.10% .495 35.10%.663
C,, -60.00£2.964 -67.08+5.070 545,88+ .196 545.94+ .798
C,y -36.74%.658 -36.20+3.261 -32.61%.710 -31.98%.263
C,4 162.9242.459 179.76£2.486
c25 20.48+1.102 47.78+5.253 -
C,y . -59.50%4.885 -44.28+5.015 204.29+1.036 208.41%.609
C,, 85.85% .117 89.84% 5.895
C,s ‘ -91.71£2.298 -80.34+4.699
Cuy -60.93+3,446 -65.51£1.842 - -
Cys 2.55% 5,885 . 1.881£6.090
c -293.10%8.500 -315.5246.746
55 _
Pion -1 : -
( ) .65%.005 714,011 24.85%.025 -4.88%.008
11" mass
Pion , 1 - L
(o0 L06+.017 .24+ ,014 -.95%.182 -2.33%.008
12" mass . :
(Plon, 584,012 82+ .047 6.25%.074 6.18%.003

13'mass
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Table 1llk
D13, CERN D13, Saclay D33, CERN D33, Saclay
Pion -1 -
11 'mass -2.13%.047 -2.45+.,041 P L
15 mans) 1 .23%.014 412,013 . o
Pion -1 - ) ) ’
BZZ(rnass) 3.70%.152 4.88+.332 -51.18+,268 -52.06+.080
Pion !
B,3lhass! .75%,064 1.07+.421
Pion 1 i ' :
By4tmass’ -3.32%.126 -5.52+.238 .- L
Pion -1 .
B,slmass’ -1.86%.192 v‘—2.681.;84 - -
Pion "1 ‘ .
B33tmass! - 1.12%.350 -.02+,245 -16.25% .238 -16.59%.057
Pion ,}
Bs4lmass! -.35+.090 -.95%,370 .ia L
Pion -1 ' R
35mass’ -.62%.225 -.89+.259 .. L
Pion’ -1
By4lmass) -15.30%.474 -15.88%.421 --- .
Pion !
45Qnasq) 15.15%.058 15.34%.055 - L
Pion -1 - \
Bsslmass’ -7.98+1.29 -9.98+1.100 - - .
Partial width 1 69.150 70.211 33.{27- 42.142
“(MeV) , _
Partial width 2 32.126 33.114 201,740 / 273.255
(MeV) . . ‘ ’
Partial width 2 - 16.021 15.967 72.634 75.471

(MeV)

-9~



Table III'1

(MeV)

D13, CERN D13, Saclay D33, CERN D33, Saclay
Partial width 4 .002 1,022 = ---
(MeV)
Partial width 20.633 25.116 - -- -
(MeV) .
.Total width 137.932 ,144.420 307.502 390.868
(MeV) .
. f

Partial width 160.157 148.584 --- ---
(MéV) :

Partial width 810.063 725,494 - -
(MeV) .

Partial width 105.730 92.888 -~ -
(MeV) ' :

Partial width 2322.352 2800.493 -
(MeV)

Partial width 652.554 967.023 --- ---,
(MeV)

Total width 4050.857 4734.482 -
(MeV)

Partial width 55.182 35.100 --- ---
{MeV)

Partial width 51,273 124,672
(MeV) ( J

Partial width 642.319 789.966
(MeV)

Partial width 815.626 1246.676 --- ---
(MeV) o

Partial width 1097.227 1551.926 .- -

: (MeV)

Total width 2661.627 3748.340 .-

- 29_
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Table IIl.m

Wave D15, CERN . D15, “Saclay F15, CERN F15, Saclay
Energy range 1585-1810 1585-1810 1585-1840 1585-1810

(MeV) ’ _ ‘
K2 , 58.7 69.6 44.2 30.9
Degrees of free- 20 20 31 31

dom
Channel | Nw g =2 Nnit 2 N3 Nwig 3
Channel 2 Aw =2 Ame-2 Am g1 A g1
Channel 3 . s --- --- -Np3/21:1 Np3/2l:1
Channel 4 - - - . Ne £=2 Ne £=2
g}« Pole 4.362%.034

\(,1 - Channel, 2.890%.047

1,Pion

2lmass) -6.265% ,154

1 ,Pion
v (

3 'mass

) .-

Y1(Pion ) L

4'mass
Pole 1 (MeV) 1684+3.3

C11 -.59 %£.620

C12' -5.22 £1.834

2.840% .055

.

-6.064%,163

1683+ 3.2

-1.02 £,607

.93 £1.841

4.427+.035
' 1.0004.053
5.007+.205

- 2,684+ .186

1684+ .8

4,71 £.338

-8.34 £.126

1.147£.,053

4.843+.,200

2.588+ .182
,1682i.8
3.64 £.261

-7.86 £1.273

-59-5



Table [IIn -

D15, CERN D15, Saclay F15, CERN F15, saclay
Cys3 » -1.49%1.055 -4.00£1.045
C,4 - 15+1,911 -1.80%1.952
Cyy 6.22+£8.612 -1.54+8.808 -27.00£5.100  -23.52%4.662
C,s 53,41+ 2,753 1 50,26+2.131
C24 ) S 9.2(512.881 7.30+2.867
Cyy -40.67+5.886 - -40.31%6.029
Cyy - .- I -39.6448.290 -40'08+8.032
C44 --- --- 15.03+40.089 14.5-}:{:10.221"3
Partial width 1 66.192 63.815 83.458 80.647
Partial width 2 95,488 89.133 5.1477 6.772
Partial width 3 53,153 49.731
Partial width 4 .- . 15.293 14.154
Total width 161.680 152.948 157,080 151.305
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Table 1Llo '
Wave F35, CERN F35, Saclay F37, CERN F37, Saclay
Energy range 1730-2010 1730-2010 1770—2040 1770-2010
(MeV) S :
2 R ‘ '
X 26.5 . 20.7 23.0 9.5
Degrees of free- 34 34 23 23
dom ’
Channel 1 Nn L=3 N L =3 Nwx L=3 N L=3.
Channel 2 Anm, L =3 Am, L=3 Am, L =3 Aw, L =3
Channel 3 N'p3/2,L=1 Np3/2,L:1 va3/‘2, L -3 Np3/2, L =3
Channel 4 --- T o Ap, L1 Ap, L =1
1-- Pole 4.282+.263 4.179£1.691 3,513+ .005

Y4« Channel
1(Pion )
2'mass

1(Pion
Y3'mass

)
1(Pion_)“
4'mass

Pole 1 (MeV)

Cli

Cy2

2.938+5.451

-18.321+4.391

2169+ 60.5

-4.16 +.473

-3.79 £7.217

5.178+1.509

-15.666+7.688

- 7.238% .183

2136+125.9 1941+1.2
-3.80 £3.319 2.82 £.073
-6.42 *6.268 2.74 +.714

3.7944.,030 -

9.019+.084

-4.502+ ,101

6.099% .142
-3.296% .128

8.041+.033

1921+.8

©3.,08 *.286

6.59 £.919
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Table IHlp

F35, CERN F35, Saclay F37, CERN F37, Saclay
C,3 6.68+3.579 5.97+13.788 3.274£1.50 8.742.400
C,4 --- -15.191%.555 -17.07%.670
C,, -169.24+28,034° -142.68£50.356  173.02%7.348 156.74%4.310
Cys -57.69+53.152 -31.04£2.096 -56.51£3,496 39.39% 3,748
C,y - . -115.81%3.850 "-78.08+.922
Cyy -127.87+48.838 . 101.78+65.735 -221.14%27.150  -308.52%5.43
' - .
Cyy --- 154.91+8.074 190.03+ .890
Cyy .- -51.17%7,081 -23.62+4.058
Partial width 177.921 164.775 108.736 90.432
(MeV)
]
Partial width 46.503 135.129 234.350 98.772
(MeV) : : : i
Partial width 3176.717 2245.710 34,511 15,721
(MeV) .
Partial width --- --- 112,206 137.436
(MeV) .
Total width 3401.141 2545.615 489.803 342.361

( MeV)

»
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Table IV. T-matrix poles and residues for all waves in sequence S, P, D, F.
i (Poles and partial widths (residues) are in MeV),

. Table IVa

S11 CERN, First Pole

_L9—

Real = 1503.2% .8 _ /  Twice Imag < 64.81.8
‘ ! T . . r
TN ) NiNe®) r[1\1,31/2(5;] Tinnesy (total)
Real = 7.2 23.0 6.5 " 2.3t : 38.9  Real
Imag -5.8i 35.4i .21 9.7i _ _ 39.5i Imag
. . a
Mod [9.2] |42.2] le.5| {10.0 | : |68.0 | Mod
_ - 511 Saclay, First Pole
Real = 1491.4% 2.9 / Twice Imag = 57.5# 3.3
r T T r, o r
. (Nm [N e(P)] [ Np 1/2(5)] T [ Nn(S)] : (total)
Real .8 11,7 7 a4t -8 * 12.0 - Real
Imag -13.4i" 28.11 1.41 14.11 ) 30.21 Imag
Mod - 113.4] |30.5] |1.4] |14.1] o |59.4|* Mod
- 7
- S11 CERN, Second -Pole
Real = 1652.4% .2 ’ / " Twice Imag = 100.3.8
TN m) Fne®)) r[Npi/Z(S)] I s _ - Titotal -
Real 261 2.3 T -2:6 4.7~ _ 25.9  Real
~ Imag - -36.8i -3.7i -8.9i -31.9i ‘ ‘ -81.2i Imag
Mod |45.1] - 4.4 [9.2] |32.3] : {90.9] " Mod

2 Modulus of I’ (total) is sum _of moduli of Fi.




Table [VDb

S11 Saclay, Second Pole

‘ Real = 164.4 % 0.4 // . Twice Imag - 103.6 + 2.1
TN DiNve(p)) F[Np1/'2(S)] L Nns)] Litotal)
Real 18.8 - 0.4 -2 8.4 24.8 Real
_Imag -41.21 -7.91 . -5.01 -31.0i -85.11 Imag
Mod l45.3]  |7.9] |s.7] [32.1] |21.0/*  Mod
S31 (CERN, Pole
,'/ )
Real = 1600.3 + 4.8 ’ Twice Imag = 79.2 £ 10,4
Inm - Tia«my T Npi/z(sn’ U total)
Real -3.2 22.0 -5.3 ° 13.4 Real
Imag -19.51 15.81 101.9i 98.2i Imag
Mod [19.8] |27.1] |102.0| [148.9/*  Mod
S31 Saclay
Real = 1602.4 £ 3.9 ( Twice Imag = 74.1 % 6.1
r r T . r
(Nm [ & w(D)] [ Np 1/Z(S)] (total)
Real -4.2 24.5 -56.6 ~ -36.3 Real
Imag -19.2i 7.0i 56.41 44.2i Imag
Mod " [19.7] |25.5| [79.9] [125.1/*  Mod
8Modulus of I (total) is sum of moduli of l"i’.
N

-89-.



b Ty
‘ ) I
s
) Table IV ¢
Pi1 CERN, First Pole i
Real = 1384.8 £ 2.8 / . " Twice Imag. 223471243
. ) r
Tinmy L Hane)] Tine(s)) (total)
Real 360 - 210" 5.1 ° 62.1 Real
Imag  -109.2i -  -25.5i ' -5.1i -139.9i Imag
Mod  |115.0] 133.0] 17.2] , |155.2 |2 Mod
Pit Séclay, First'Pole
. = ) N
Real = 1391.0 + 0,5 o Twice Imag = 206.3 £ 1,8
Foomy © Tame)]  Tines)) Ttotan)
Real 29.5 2957 2.0 61.0 Real
Imag -85.4i -30.9i 0.6i -115.7i Imag
Mod [90.3] . | 42.8| lz.1] [135.1] % - Mod
v P11 CERN, Second Pole .
Real = 1724.5 + 5.5 / Twice Imag = 282.6 + 8.2
[ ~
) Tlan@)]  Tines)) T total)
Real  -39.4 46.6" 310t . 38.1 Real
Imag  -115.0i . T 5.3 -55.9i ‘ -165.6i Imag
‘Mod | 121.3] ~ l46.9] [63.9] |232.3| 2 Mod

2Modulus of

Y

F(total) is sum of moduli of l"i. -
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Table IV d

P11 Saclay,

Second Pole

/

Twice Imag = 293.7 £ 5.0

-oL-

Real = 1744.1 + 1.0
T (xm) Tlar@)]  TInes)] T (total)
Real -22.6 38.47 60.5 * 76  Real
Imag -126.3i 3.7 -57.6i ©-180.2i  Imag.
Mod f128.3| | 38.6| | 83.5] |250.4] % Mod
P13 CERN Pole
Real = 1728.2 £ 2.3 / Twice Imag = 159.3 % 5.6
T, r r
(Nm) ! NP;/Z(P)] } (total)
Real 0.5 42,3 7 ‘ . 42.8  Real
Imag -25.31 -72.7i -97.91  Imag
Mod - | 25.3] | 84.1] |109.3| % Mod
P13 Saclay Pole
Real = 1727.7 % 2.1 : / Twice Imag = 156.9 £ 4.9
r r r
(Nm) [Ney /,(P)] . ltotal)
Real 1.5 38.5 7 40.0 Real
Imag -26.0i -69.8i -95.8i Imag
Mod | 26.0] 79.7] | 105.8|% Mod

®Modulus of I’

(total)

is sum of moduli of I‘i.
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Table IV e
D13

CERN, First Pole

Real = 1514.6 % 2.1

/ . Twice Imag = 142.1 £ 5.4

T, r r r T,
Nm) - Han®]  TNeg 9] TiNe@®)]  Tfanm)] Tieotal)
Real 88.1 5T 33.7 % 3.4 7 3.2 126.7  Real
Imag 12,51 35.9i 5.7 0.3i 13.5i 67.9i Imag
Mod 1 89.0 “136.3] | 34.2| | 3.4] | 13.8] | 176.71%  Mod
D13 . Saclay, First Pole
Real = 1514.9 + 4.8 / Twice Imag = 148.9 % 6.4 '
] i
Ty r r T IR
(Nm) lan®)]  TINey 9] TIne®)]  Tlan®)]  ieotan)
Real 91.3 7.9 ~ 35.6 7 -4.0 " 3.3 ° 134.2  Real
Imag 10.4i 40.41 5.3i 0.3i 14.3i 70.5i Imag
Mod t91.9] | 40.9] | 36.0] |4.0] t14.7] | 187.5]* Mod
D13 CERN, Second Pole
Real = 1646.9 + 6.5 / Twice Imag = 116.6 5.4
. N
Ty r ' Tp iy r
() [am®)]  TiNey )] T(Ne®)]  Tlan(D)) (total)
Real 5.3 . -8.0* -1 56,9 " 0.3 " -60.0  Real
Imag -14.9i -22.2i 3.6i -31.71 -2.4i -67.51 Imag
Mod | 15.8] ©]23.6] | 3.7] | 65.1] |2.4] |110.71% Mod

8Modulus of T

(total)

is sum of moduli of 1"1
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Table IV £

D13 Saclay, Second Pole
Real = 1650.4 + 12.4 / ' Twice Imag = 125.4 %= 6.7
T r r
(N) [ an(s)] [Ny /o] Tine®))  Tlano))] L (total)
Real =~ 5.0 9.2 " -5 -e3.3 7 0.2” -67.8  Real
Imag 12,68 -23.1i 415 -39.81 . -1.3i -72.8i ‘Imag
Mod [13.6] | 24.9] | 4.1 | 74.8] V11,3 |118.6]* Mod
D13 CERN, Third Pole
Real = 1974.0 * 11.5 / ' Twice Imag = 452.1 + 37.4
r r ' r Iy, r
(N [ams))  Tiney 0] TIne®)]  Flamb)] (total)
Real 1.9 -a8.0t 110.6 ° 20" 8.3 7" 67.0  Real
Imag -87.21 51.0i -177.9i- w 1.3i , =27.4i . -240.3i Imag
Mod | 87.2| | 70.1| | 209.5] |2.4| }28.6 | ©1397.8|* Mod’
D13 Saclay, Third Pole
Real = 1970.7 + 32.0 / Twice Imag = 401.8 + 52.4
r T, r
Ty Tlans)] Tiwes 0] TINe®)] Tlaw)] (total)
Real 14.1° -48.3 ¥ 82.7 ~ 1.0 *t 0.6t 48.2  Real
Imag -54.8i 47.3i -170.2i 0.4i . -25.9i -203.1i  Imag -
Mod | 56.6] . |er.6] ] 189.2] [1.1] - 25.9] | 340.3|% Mod
is sum of moduli of l"i.

o
Modulus of r(tdtal)
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Table IV g

D33 CERN Pole

Real = 1656.7.£ 5.3

/

Twice Imag = 109.3 + 2.3

’ T Tans)]  T(Ney /(6] P (tota1)
/
- + + o
Real 6.9 -6.6 35.9 36.2 Real
Imag -3.4i -45.1i 7.5i \ -40.9i Imag
Mod | 7.7} l45.5] +  |36.6] | 89.8{*  Mod
D33 Saclay Pole
Real = 1654.4 + 1.4 / Twice Imag = 117.5 2.4
r r ’
mm - Flans) Tiney 0] Fleotal)
Real 6.9 -89 7 36.0 T ' 34,0 Real
Imag -4.2i -49.34 8.5i -44.9i Imag
Mod | 8.1] {50.1| |37.0] | 95.1| Mod
D15 CERN Pole '
\]
R w
Real = 1665.7 & 2.8 / Twice Imag = 159.0 % 11.1 '
L xm) Il an(D)] Titotal)
Real 67.7 91.0 ~ 158.8 Real,
Imag” - -13.8i -10.4i -24.2i Imag
Mod | 69.1] lo1.6] . '160.7|*  Mod

a o
Modulus of r(total)_

is sum of moduli of I“i. :




Table IV h

D15 Saclay Pole |
_Real = 1662.1 £ 2.2 / Twice Imag = 139.7 + 9.2
T(nm) Clar(p)] e Ditotal)
Real ° 55.8 71.2 7 127.0 Real
Imag -18.2i -21.2i _ . . -39.4i Imag
Mod f58.7] ~ [|74.3] : [133.0]%  Mod
F15 CERN Pole
Real = 1672.0 £ 2.4 | / Twice Imag = 154.6 + 5.2
. r r T
T (m) [an(P)] [Npy /()] FINe(D)] T (total)
Real 99.3 531 3257 1451 151.6 Real
Imag CATd 10.6i -27.0i -15.7i ' - -49.1i Imag
Mod | 100.7] [11.9] |42.2 | | 21.4 | ' : |176.2]1* Mod
Lo ]
~J
, F15 Saclay Pole "h
Real = 1668.6 £+ 2.0 ; o Twice Imag = 145.0 + 4.8
r T T ' ‘ ' r :
(Nr) . Tan(®)] [Nes /()] TINe(D)] (total)
Real 88.7 7.4t 29.9.7 11,7t . 137.6 Real
Imag -  -20.4i 9.2i -24.9i -14.9i - -51.0i - Imag.
Mod  |91.0] [11.8] |38.9] l18.9] |160.6[  Moa:

%Modulus of T is sum of moduli of Pi.

(total)




Table IV i ,
F35 CERN Pole
Real = 1824.1 % 7.5 / Twice Imag = 282.1 % 25.6 -
r r iy : :
(Nm) fan(F)] [Nej /p(P)] Fltotal)
Real 36.3 19.4 * -20.3 ~ 33.1 Real
Imag -25.5i 177 -104.7i -148.0i Imag
Mod | 44.3] | 26.1] | 106.7| |177.1]%  Mod
F35 Saclay Pole
Real”= 1831.9 = 20,7 / Twice Imag = 277.5  34.9
r r I r
Real 36.2 - 15.7 T 171 7 ‘ 34.8 Real
Imag -24.8i -19.2i -107.7i k -151.7i Imag -
Mod |43.9| " | 24.8| | 109.0] |177.8]*  Mod
'F37 _CERN Pole
Real = 1866.1 % 5.8 / Twice ;ma'g = 254.9 + 21.4
r 7. T r r,,.
T (xm) [am(F)]: “[Npg/p(F)] " [ap(P)] (total)
Real 78.2 12.0 ¥ -34.9 % 51.8 % \ 107.1 Real
Imag 23,04 54,7i 22.4i -84.2i ' 15.9i Imag
| 81:6] . | 56.0] | a1.4] | 98.8| |277.8/*  Mod

Mod

a
Modulus of ]_'—‘(total)

is sum of moduli of Fi.

-SL-



Table IV j

F37 Saclay Pole
1

Real = 1876.8 6.2 Twice Imag = 297.8 £ 30.2
r r r Iy r '
(Nm) (am(®)] [Npj /p(F)) [ap(P)] : (total)
Real 48.5 92.3 1 9.4 7 58.0 1 v . 189.8 Real
Imag - -37.1i 26.0i 50.0i -29.21 - '9.8i Imag
Mod l61.1] | 96.0| | 51.0]| |64.9]. |272.8|* Mod
2Modulus of T, is sum of moduli of T"..
(total) i

-9L-



s

Comparison of parameters of K-matrix, T-matrix, and’ Breit- Wigner refit, all in MeV.

Table V.
: Table V a
2 Channel, Small Background, D15 CERN(EPSA)+Nun
Parameter )
Mass r, T o -
Origin J (total) {N) [an(D)]
' K-matrix - -
% ole Real °1684 161 - 66 95 ~
. & from Table I
.on
g T-matrix Real 1666 159 68 91 . )
X pole? Imag ;—1%21— -24i -14i -10i
J from Table IV. Mod ' | 161 le9| . [ 92| )
,'_ Unitarized
£ (UB+BW) Real 1692 176 71 105 ~
@ BW parameter :
P : . -
D Unitarized Real 1666 156 68 - 88"
2 (UB+BW) Imag 1381 -24i -12i -11i
I BW pole® " Mod | 158] l69] {89]
! UB+BW :
g BW parameter Real 1683 167 68 99
a UB+BW Real 1659 134 57 77" B
=] 1 ~ -150i e . .
mag - -45i -22i -23i
I BW pole? Mod > [141] 61| | 80|
D15 CERN (EPSA) Only’
- Parameter '
X Mass T T, r
Origin 7 (total) (Nﬂ? : [An(D)]
l K-matrix Real 1682 156 64 .92
] pole . ’
) -
®  Tematrix Real 1660 125 54 71 : r
B : -140i -
o Imag 55— -43i  -20i -23§
| pole® Mod - 1133 | 58| | 751
! UB+BW '
g BW parameter  Real 1682 153 63 90
.- g N .
o UB+BW Real 1661 55
o -140i
. . 1 .
_ Imag - -18i
I " BW pole® Mod | 58| .

Real

Real

Imag

Mod

Real

Real

Imag
Mod

Real

Real
Imag
Mod

Real

Real
Imag
Mod

Real

R(_aal

Imag .

Mod

3T -matrix pole has complex position and partial width (I"i).

of the moduli of I‘i.

Modulus of T

is the sum

(total) .

_LL-



Table V b

2 Channel, Small Background, D15 Saclay(EPSA)+Nnw

N

Parameter
Mass r r I;
Origin (total)  * (Nm) [ar(D)]
' K-matrix . : _
w pole Real 1683 153 64 89
‘e from Table III :
- :
g T-matrix Real 1662 127, 56 71 "
1 .
X pole? Imag 5% -39i -18i -21i \
I from Table IV Mod ' [133] " |59] | 74]
f' Unitarized ) : : ) -
£ (UB+BW) Real 1684 153 64 89.
m BW parameter
+
£ Unitarized Real 1663 130 56 74 ~
5 (UB+BW), Imag 3% -36i -18i -18i
] BW pole® Mod f13s] | 591 | 76|
f UB+BW -
5 BW parameter Real 1684 153  64. - 89
m
L UB+BW Real 1662 127 55 71
= ' Imag —2301 -40i  -18i -22i
l BW pole® Mod [133] | s8] | 75|
D15 Saclay (EPSA) Only R
Parameter !
. Mass Cltota)  Tinmy Tam()]
Origin
' K-matrix
% pole Real 1682 154 . 64 90
@
& T-matrix Real 1660 122 53 69
1 - : : .
x Imag —% -44f 201 -24i-
| pore® Mod [129] |s6| | 73]
t ' ’
= UB+BW -
B BW parameter Real 1684 150 62 88 .
M
D  UB+BW Real 1663 56
o . Imag L‘ZB,‘ -15i
I BW pole® Mod | 58]

4T -matrix pole has complex posi/tion and partial width (Fi)b.

of the moduli of I‘i.

Modulus of I

(total)

is the sum

Real

Real

- Imag

" ‘Mod

Real

Real

Imag
“Mod -

Rcai

—~ e
il

Imuag

Mod

Real

Real
Ilmag
Mod

Real

Real
Imag
Mod

_8L-



- . ) : Tablg Ve

" 3 Channel, Large Background, F35 CERN(EPSA)+N1T1T

Parameter

.

Origin Mase - Tiota) Tvm Tan(®)] Ting, ,P)]
3 l K-matrix. ‘ . ‘ o i - - '
M pole Real =~ 2169 3401 178 47 3177 o . Real
‘& from Table 1 Ce
¥ — - . — - -
£ \T-matrix Real ' 1824 35 36 19t - -20 . Real
X  pole* Imag “ZBE Lyag o260 171 - -105i Imag
J from' Table IV~ Mod | 177] | 44| | 26| |107] : ‘ Mod
l Unitarized v "
£  (UB+BW) Real 1907 325 51 55 219 ~ , ‘Real
@ BW parameter : - : ' ’
+ .
@ , R ' - , -
D Unitarized - Real 1824 53 43 16t e Real
® (UB+BW) . Imag -282L. -143i  -27 120 299 Imag
BW pole* . . Mod 173 |51 | 23] 99| Mod
5 BW parameter | Real 1957 39t 75 et oo2mst ' Real
m - - : :
é UB+BW " Real 1783 13 37 18 % a2t : Real
. : Imag ;3—3‘1 -304i -62i- -36i © -206i i Imag
j BW pole® ‘Mod |323] | 72] |41 | 210 ' Mod
F35 CERN (EPSA) Only
Paran;)eter . N
T
Origin Mass (total)  Tan(F)] /
y Kematrix 7 peal 2042 1746 - 154 1592 - - ' Real
& pole . . ' :
o - - - - ‘
E'E T-matrix Real 1810 ) .33 ‘ R : Real
X L Imag :% o . -25i . : Imag
l pole® Meod ‘ . | 42| - Mod
I UB+BW & ) s - : _
N BW parameter Rea; 1891 . 300 36 ‘ 264 . . . ‘ Real
% - uB+BW Real 1815 ’ 20 S ’ Real
@ C-222i T . )
o Imag —5 -134 : . ‘ Imag
l BW pole® " Mod S |24 B ' Mod

A T-matrix pole has complex position and partial width (T,). Mbdulils“of r is the sum
of the moduli of T'. ! i etal)

\
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Table Vd

3 Channel, Large Background, F35 Saclay (EPSA)+Nnm

Parameter

BW pole a

. Mass ‘ r r r T .
Origin (totél) (Nm) - [an(F)) ( [(Ney /o (P)]
‘ K-matrix ' + o .
y  pole Real = 2136 2545 165 135 2246 Real
© from Table III :
& _
£ T-matrix Real 1832 35 36 te * -17 ’ " Real
% pole? Imag :.é;ﬁ -152i -25i -19i . :108i Imag
l from Tablé IV. Mod [178] ~ j44) |25 <109} _ Mod
' Unitarized B ‘ . + - '
S (UB+BW) Real 1911 320 50 . 50 220 Real
Cil BW parameter :
m - T : _
O  Unitarized Real 1833 50 46 15t 11 _ Real
P (UB+BW) Imag "—Zg—?‘—‘ -146i -25i -144 ~106i Imag
l BW pole® Mod | 180] ts3] |21 | | 106 ] Mod
I ussBw ' ' , + e - ' o
E BW parameter R€al toaz - 395 70 47 278 Real
f UB+BW Real 1798 -10 39 15t <647 Réal
& A ‘
. Imag ——3—(2)11- -2901 -52i ~36i . T-202i Imag
l BW pole & Mod | 3161 | 65| [39] S SV Mod
: ) L
T35 Saclay (EPSA) Only
Parameter
N Mass r T r
‘ Origin : (toFal) (NT) [ am(F)]
: I K-matrix Real 2062 1808 156 1652 Real
= pole -
2 T-matrix Real = 1822 35 Real
:2 Imag _—_2_;3& 261 Imag"
1 pole & ° Mod 43| Mo
1 UB+BW : ’ : »
z BW parameter R€2! 1901 291 35 256 Real
A .
M UB+BW Real 1833 22 Real
= -219i o
Imag —s 114 Imag
Mod | 24| Mod

4T -matrix pole has complex position and partial width-(T",).
. i
of the moduli of fi.

Modulus of T

(total) is the sum

-

-08-
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: ) Table Ve

4 Channell, Medium_Back/ground. F15 CERN+Nnw . : >

‘Parameter

. ' Mass r r r N r
Origin : (total) - “(Nm) - “[am(P)] - T{Neg ;5 (P) T [Ne(D)]
I K-matrix " +') +
pole Real 1684 156 83 5 53 15 Real
% from Table III o - :
~ T i
g T-matrix Real 1672 152 99 5 + 33 + 15 + Rcal
v pole_a’ Imag Lgs; -49i -17i 11i -27i -161 Imag
l from Table IV Mod |176] f101| [ 12] 142 |21 Mod
’ Unitari}ea : : / 4 + +
S (UB+BW) Real 1681 149 86 - 16 31 16 Real
m BW parameter - . .
+ - - : i ‘
£ Unitarized Real 1672 148 92 7t 37t 12t Real
5 A8 1 8i 14 14i Imag
"~ BW pole ? Mod | 162 | 92| [11] | 40| [19] Mod
UB+BW L+ + o
= BW parameter Real 1679 148 84 12 36 16 Real
59 ' + + +
@  UB+BW Real 1672 . 152 93 10 37 13 Real
= . Imag # -30i -10i -9i -18i -11i Imag
. BW pole® Mod | 165] | 93] [14] la1] {17} Mod
' . F15 CERN (EPSA) Only '
* Parameter .
L Mass Citota)  Tivm) Tlam(p)] '
" Origin '
g K‘;rc‘fl‘;“x Real 1693 . 183 107 77 Real
S 3
- A ; - .
_g T-matrix Real 1659 70 . Real
. Imag L;Sl -24i ' Imag
l pole a ‘Mod | 74| " Mod
[. uB+BW .
g BW parameter Real 1678 135 82 53 Real
+ , . - . .
m UB+BW Real 1664 75 Real
2 -129i )
) Imag —= -151 Imag-
J BW pole ? Mod ‘ | 77] Mod

-IS-

*T-matrix pole has complex position and partial width (Fi). Modulus of I‘(t t 1)
of the moduli of I"i. i ’ ota

is the sum




Table V £

4 Channel, Medium Background, F15 Saclay (EPSAHNTHT

Parameter

1H[Np3/2(-p)]

Mass r r r )
. Origin (total) (Nmw) [am(p)] F[NG(D)]
[ K-matrix ' : h + + +
‘pole . Real 1682 152 81 7 50 14
X from Table III
o
§ T-matrix . Real 1669 138 89 7t 30 * 127
< pole? Imag i;‘—f’-l 514 -20i - 9i -25i -15i
] from Table IV~ Mod | 161 | 91] l12] |39] | 19]
l Unitarized : ) + + +
£ (UB+BW) Real 1678 142 81 16 30 15
m BW parameter :
m >
B Unitarized Real 1669 137 84 gt 35t 10 %
D (UB+BW) Imag —'%‘Q -35i -12i 07 -15i -154
‘I BW pole ® [151] les| |11 l38! f17]
I UB+BW Real 1679 141 80 12t 34 F 15 T
5 BW parameter
©  UB+BW. Real 1672 144 87 107 35 * 12 *
0 -140i _
8 Imag 5% .25 -7i 9i 16 11§
l BW pole * Mod |154] |87 |13 | 38| | 16|
F15 Saclay (EPSA) Only
Parameter
Mass r(total) F(N‘IT) F[ATT(P)]
‘. Origin ’
I Komatrix Real 1692 179. © 104 75
» pole .
i
® T-matrix Real 1658 64
5 Imag '—1—23 -26i
l pole a Mod l 69 |
f UB+BW
z BW parameter Real 167'7 ,77 50
m - :
£ UB4BW . Real 1665 74
=) Imag _—1—5—21 -13j
I BW pole ® -Mod ‘ | 73]

T -matrix pole has complex position and partial width (I

of the moduli of Fi'

i)' Modulus of T

(total)

is the sum

Real
Reat
Imag
Mod

ReaV

Real

Imag

Mod

Real

Real
Imag
Mod

Real

Real
Imag
Mod

~ Real

Real

‘Imag
Mod

-7g-



Table VI. Sign of all couplings from Breit-Wigner refit made by
eyeball in sequence S, P, D. F. : . .

"Table Vlia
Wave S11 CERN, First pole
. I , (a)
Channel Nm, L = Ne L =1 N p1'/_2, L=0 N« , L=0 >
Sign » ‘ ' ‘ -
coupling * +v . * : *
Angle -20° 10° -10° . 40°
Wave . ' S11 Saclay, First pole
. r . ' B (a)
Channel . Nmw L =0 Ne L =1 'Npi/Z,L:..O'. Nn, L =0
Sign . o + + . + ) +
coupling . o
Angle -20° 20° -20° : 40°
. &
w
. . . : 1
. Wave S11 CERN, -Second pole
Channel Nwgw, L=0 Ne L =1 "Npi/Z,Li.O Nn, L=0
Sign ) .
coupling Tt - + T -
Angle . f20° -40° -40° . -30°

N n channel-is not in N o w; this sign has been defined as positive.




Table VIb

Wave S11 "Saclay, Second..Pole
Channel Nm L=0 Ne L=t NpypL=0 SN L=o0
Slgn . ~ + _ 4 I -
coupling. :
Angle 20° -40° -40° . - -20°
S31 CERN o
Channel Nm L=0 Am L=2 Npy,pL=o
Sign N »
. + - -
coupling
Angle -45° 0° 45°
A 1
) o)
S31 Saclay e
Channel Nmx L=0 Aq, L =2 Npi/Z’L_O
~Sign
. + - -
coupling
Angle -45° b o° 45°




-
~
L.

.
o
oo
o
R
ol
cz
-
f
L

.
Table Vic

Wave ~+° P11 CERN, First Pole
Channel - N L=1 Anm, L=1  Neg L= 0
Sign + + . .
coupling ;
- Angle  -30° -60° -40°

Wave ' P11 Saclay, First Pole
Channel NmL=1 _Aw, L=1 Ne L=0
Sign ' N 4 R
coupling
Angle -30° -60° -40°

Wave P11 CERN, Second Pole
Channel N m L =1 Aw Lo=1 Ne L=0

, ; -0

Sign + - +
coupling
Angle =~ . -50° -10° -40°

198‘



Table VId

Wave v P11 Saclay, Second Pole.

Channel Nw L=1 An, L1 Ne¢ L

Sign _ ‘
coupling ! i *

Angle - -50° -10° -30°

Wave . o ‘ P13- CERN

Channel . ~ N, L =1 Np1/2,L';:1

Sign
coupling -

Angle ' -ase - -45°

Wave ' P13 Saclay

!

1
-

Channel N 7, L N opyjp L=t

Sign
coupling

Angle -45° © -45°

_98_



3 T S S : ' . .
<o Ud 8 g 7o N

f
Table Vie
Wave D13 CERN, First Pole ‘ :
‘Channel NmLz2 Am L=0 NpB/'Z,L:o'._N e, L=1 Am L=2
Sign ‘ i ' _ ’ n L & ‘ -
coupling : )
Angle 5o . 350 50 -65° -5°
Wave D13 Saclay, First Pole
Channel NmL=2 AmL=0 Npgp L=0 NgL:t A&m L2
o
‘Jlgnl‘ + - 4 4 -
coupling .
Angle 50 35° 5e .. -65° . -se
Wave D13 CERN, Second Pole v
Channel ~ N 7, L=2 A, L=0 Npgjpli=0 N g L=t am L=2
Slgnv' + . 4 = _ . _
coupling . - _ .
Angle _20° _60° - 70° - Zgoe -60°
- “)



"Table VIf

D1.3_ Saclay, Second Pole

Wave
Channel Nm L =2 Av,L':o,’Np3/2,L:o‘--rN,c,L:ﬂ. Am L =2
Sign + + - - -
coupling
Angle -20° -60° 70° -80° -60°
Wave’ d D13 CERN, Third Pole
Channel . N 'rr,\ L =2 Am, L =0 N'p3/2,L=O ,-.N. €, L =1 A, L =2
Slgn . 1 4 - ?‘ 4
coupling
Angle -40° 80° -40° ? 2
Wave D13 Saclay, Third Pole
‘Channel NmL:2 AmL=0 Npy, L0 Ne Lo=2 Am L-2
Sign n n - ? ?
coupling ) ’
Angle -40° 8o° -40° ? ?




Table VI g

“Wave. D33 CERN
Channel _Nrr,, L =2 Aqw, L =0 N.p3/2,.L:O
Sign + + +
coupling - ,
Angle -30° -60° 0°
Wave D33 Saclay
Channel Ng L =2 Am, L =0 Np3'/2,L:0'.
Sign 1 + +
coupling
Angle -30° -60° 0°
Wave D15 CERN
Channel N L =2 A L= 2~
- Sign
. 1 -
coupling
Angle -10° -20°

-68-



Table VIh

Angle

Wave | D15 Saclay
Channel N a L =2 Awm, L 2
Sign
. + -
coupling
Angle -10° -20°
Wave 'F15 CERN
Channel Nm L =3 A&m L=i Npg, L=t Ne L
Sign v + + ¥
- coupling
Angle -10° 10° -10° -30°
Wave - F15 Saclay
-Channel . N 7, L =3 Am L =1 N p3/2, L =1 N € L
Sign + 4 + S
coupling :
-10° 10° -10° -30°

_06-



Table VIi

Wave F35 CERN
Channel N m, L§3 A, Li=3 Np3/‘2,L:1.
Sign - . + B N
coupling
Angle -25° o -50° -75°

V Wave . N » . F 35 Saélay
Channel Nom Lo=3. Aw L -3 Np3/2,L:1
Sign : 4 n -
coupling
Angle -25° -50° -75°

Wave ' : F 37 CERN
Channel N m L=3 Am L=3 Npg,pL=3 Np, L =1
Sign o 4 - 42
coupling o . .
Angle -10° 200 -80° - -40°

_Pé—

SN P channel is not Vin' Nrm its sign has been defined as positive.




Table VIj
Channel N w L =3 Awm. L=3 Np3/2,L=,3 " Ap, L =1
- Sign ‘ 4 . ’ o . o L2
coupling .
Angle - . 100 20° -80° - -40°
a

&p chaﬁnel is not in Nmm its s.ign has been defined as positive.

_26_



"L i3 A+ . .
o RO A R O TS B
Table VII. Cross-section ratio for n N, assuming.
S-wave dominance at 1520-1590 MeV, c.m.
Energy. 1520 1530 1540 1560 1590
Cy 120 425 125 130 A0
c, 025 025 025 .01 0.0
P14 .01 .01 .01 .0015 0.0
7s11 .
c, .01 .045 .055 07 .06
D43 ) :
> (only) .001 .016 ..024 ...036 .045
02
S11
. —=(only) = .001- .010 .016 .024 .03
Os11 ’ ‘
C, 0.0 0.0 0.0 0.0 -.05
g , o
i 0.0 0.0 0.0, 0.0 .02
~Ts11° '

-£6-



AFIvGURE C‘APIT_IONS__
Fig. 1._ S—channel diagram for isobar a outgoing and isobar B incoming,
whefé B(q,!) is square root of’ B‘la.t‘f:-Weis‘sk’opf8 barrier factor for
~momentum q 1n an angular momentum state £, Wa is thé Watson
- final .state factor for the « isobar. A, is.fhé; elastic‘Argand ampli- -
tudé for particles fhat ﬁla_ke up the isobar.
Fig. 2. Diagram of '1-;772 fo,'r the six différent rés‘onances‘usgd in de-"
termining the (‘)Avera_ll.phase.
Fig. 3 Flow diagrafn for thg reduction of four ééts of d)i's to one set
of ¢,'s, using Eqs. (33) and (35). . |
\Fig. 4.1.. ,A'r;gand diagrams and partial waff‘e cross sections for the
elastic and inelastic channels. The smooth curve on the Argand
di_agravms is the amplitude obtained from t_hé K—fnatrix when the
description was possible. Cross-hatched marks on the curve \'ﬁ
corres‘pond to the enefgies D, E, F, etc. the afrqws indicate the l
knownblresonances of Table V. The total inelastic conltribution in
eaéh elastic wave (+) is compared with the sum~of the inelastic con-
tributions we obéefve (*).’ Facing each inel.é.‘stic Argand d;agrarﬁ,
we give the variation with enefgy of the _s.qua'r-‘e' modulus of the wave.
(This caption also applies to Figs. 4.2 thrpugh 4.16.) » |
Fig. 5. Three different paths A, A', A" in the E is'l'ane'. E is the di-
| particle mass that makes up the isobar. W is the complex NE
(three body) where one searches for poles in the ti'lree—body
- T-matrix. _ o | |
Fig. 6. The paths of Fig. 5 deformed so that they only differ by in;ce-
gration around the pole. o '

Fig. 7. The branch cuts in the N's or W plane. (total c.m. energy)

generated by the pole in the final state inté'r_action of the isobar.

1



Fig. . 8. | Three different path‘s of integration in the E plane at four dif-
ferent values of W. The dashed line is the pro;ectmn of the branch
cut from the w plane which is not crossed by V\/f mgy as it moves
frond (a) to (d).

| Fig. 9. Three points' on the A, A', and »A“ sheets and how one has to
travel from them to the physical region iri a continuous way.

Fig. 10. The poles of the F15 T-matrix wh1ch 11es near pN threshold.
Each sheet is generated by the pN cut. | >

F1g 11. Argand dlagrams from U(UB + BW) reflt to F35 wave. Solid
11ne is the U(UB + BW) amphtude, while dashed line is the unitary
background UB. Energy r\angve is from 1740 to 1900 MeV, where
arrows point direction of increasing euer'g_y. é@i is t}re change of
rotatiorr angle of Brei‘t-Wigner in this energy range. See Eq. (65).

Fig. 12. K-matrix prediction for Nn S11 first .r_n.oim_ent plotted .‘againstA

1

total cross section.
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