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ABSTRACT 

We have derived simplified formulas for the transition probability 

from an entrance channel Ii) to an exit channel f> that corresponds 

to a heavy ion reaction. It is shown that a rearrangement of the per -

turbation series leads to an expansion of the cross section in terms 

of the ratio y between the duration of a nucleon-nucleon collision and 

the elapsed time between two successive interactions. The cross sec-

tion splits into two contributions, the markovian part independent of 

y and the nonmarkovian one containing explicit y-dependence. Such a 

decomposition allows us to demonstrate that a transition from the 

markovian to the nonmarkovian behavior is to be expected around 

20MeV/amu in the initial channel. This transition manifests itself in 

a change in the slope of the width of the mass distribution as a func-

tion of the incident energy. This fact seems to be in agreement with 

existing data. 

Key-Word Abstract Heavy-ion reactions, Gaussian random matrix 
ensembles, perturbative expansion, ratio between characteristic 
times. Markovian and nonmarkovian contributions to the cross section. 
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1. INTRODUCTION 

Heavy-ion reactions at intermediate energies (10-200 MeV per 

nucleon of the projectile) have recently received considerable 

attention.' 3  The mass distributions of the fragments observed in 

the exit channel are essentially Gaussian shaped and their widths may 

cOntain valuable information on the reaction mechanism. 2  In addi-

tion, the measurement of charge distributions is being considered. 4  

The present experimental situation 1-5 indicates that in the 

domain of incident energies below 20 MeV/amu, these widths are in-

creasing functions of the bombarding energy. Recent measurements
1

' 4  

from 16 0 and 40Ar induced reactions on several targets show that 

the widths of the mass (and probably those of the charge) distribu-

tions become essentially constant when the energy increases beyond 

20 MeV/amu. Although the available experimental information is 

1-4 
restricted to few data points 	between 20 and 200 MeV/amu, it is 

clear that these widths deviate from the predictions of the simple 

model of the evaporating nucleus. This fact configurates a challeng-

ing situation for whose interpretation we could resort to a model of 

partial equilibration at high energies 2  or to the abrasion-ablation 

, model. 1 6  

The aim of this work is to offer a novel and rather different 

possibility. First, we observe that the notion of an evaporating 

nucleus assumes the existence of a microcanonical equilibrium. 

Secondly, it is well known that when the duration t coll of a two-

nucleon collision is small compared to the time tMFP  between 



subsequent interactions (hereafter, MFP stands for mean free path) a 

series of such independent, uncorrelated collisions leads to the 

microcanonical equilibrium. In fact, only when the ratio parameter 

y= 
t coil 
	

(1) 

MFP 

is much smaller than unity we can speak of an individual two-body 

interaction. In this case, the relaxation towards equilibrium is des-

cribed by a Pauli-like master equation 7  and the chain of well- 

defined collisions is usually referred to as a markovian process. 

In Fig. iwe display results from an estimate of the parameter y 

as a function of the energy per incident nucleon. The details of the 

calculation are given in the Appendix. We realize that y is small at 

low energies (10 MeV/amu) but it becomes comparable to unity at 

higher energies ( 30 NeV/amu). In this latter regime, the frequency 

of collisions is so high that the concept of an individual two-body 

collision becomes meaningless. This effect in the high energy domain 

has a strong influence on the energy dependence of the phase space 

populated in the reaction and introduces aspects that we could call 

tithe  nonmarkovian features of the process." 

We are going to demonstrate that one of these features is, 

precisely, the fact that the predicted widths exhibit a transition, 

namely, they no longer increase with increasing energy. Furthermore, 

they tend to decrease at higher energies. 
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In Section 2 we provide the formal definition of the markovian and 

nonmarkovian parts of a physical quantity, as we shall use them in 

this paper. Section 3 deals with the derivation of analytical ex-

pressions for the markovian and nonmarkovian contributions to the 

transition probability, by means of perturbation theory in the frame-

work of the Gaussian random matrix model. The main results of this 

section will be discussed and illustrated in Section 4. Conclusions 

and future perspectives are presented in Section 5. 

2. FORNAL DEFINITION OF MARKOVIAN AND NONMARKOVIAN CONTRIBUTIONS 

In the following we will refer to experiments in which the initial 

channel i> contains two heavy nuclei and the final channel f> con-

tains several fragments. Since in the determination of the widths the 

experimentalist performs a highly inclusive (i.e., one body) 

measurement, it is meaningful to introduce the notation 

If> IAf ,Z f ,E f ;ct f >where Af , Z f  and E f  are the mass, 

charge and kinetic energy of a given fragment and ctf  summarizes the 

quantum numbers of all other fragments. 

The expectation value of an observable A, namely (A) = Tr(pA) 

where p is the density operator of the system under consideration, can 

be formally expanded as a series of powers of the parameter y and thus 

we can always write 

(A) = (A)M + (A) 	2 	 (2)
NM 



ru 

where the markovian part (A)M  is independent of y and the non-

markovian <A> 	contains all powers of y. 

The width of the distribution of any observable x present in the 

exit channel is given by 

22 	2 
F = (x ) - (x> = 
x 

= (I dx x2f(x))/aT - (1 dx xf (x)) 2 hy 	 , 	 ( 3) 

where f(x) = dc/dx.is the inclusive cross section for the variable 

x and GT = f dx f(x) is the total cross section. According to (2) 

we can write 

f(x) = fM(x) + f(x) 	 (4a) 

aTaM+ONM 	. 	 (4b) 

Thus Eq. (3) becomes 

F2  = r2 (1 - s) + F 2  s + [(x)M - (x>] s(1 - s)  
x 	M 	 NM 	NM 

where s = 
	varies between zero and unity. 
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The markovian and nonmarkovian contributions to the width are 

consistently defined according to the corresponding terms in the cross 

section, for example, 

= (I dx x2fM(x))/YM - (f dx xfM(x))2/ 	. 	 (6) 

It is useful to notice that the third term on the right hand side of 

Eq. (5) remains small, in general. This is obvious for the extreme 

values of s, s <<:lor s 	1, while for intermediate values of s, 

and thus we can expect (x)M - (x) 	0.NM 

It- is clear from Eq (5) that the width 	F2  will differ 

significantly from the predictions of the evaporating nucleus model, 

/E (where c represents the excitation energy per particle) 

whéns is not negligible, i.e., when the nonmarkovian term"NM  dom-

inates the total cross section. As this happens, the total width be-

comes closer to the value 	We shall see that this quantity 

is expected to decrease with increasing excitation energy, conse-

quently inducing a decrease in the total width F. 

3. ANALYTICAL CALCULATION BY MEANS OF PERTURBATION THEORY 

3.1. General Formulation 

We recall that the cross section is proportional to JUITIDl2, 

where the reaction matrix T satisfies the Lippmann-Schwinger 

equation. The corresponding series expansion reads, 

k. 



T = V 	(GV)t1  

where H is the unperturbed Hamiltonian of the system whose resol-

vent is G = CE - H) 1  and V is the two-body potential. We 

assum that the reaction mainly consists in the formation of a di-

nuclear system and its decay into several channels, whose details are 

determined, by the dynamics of the intermediate complex. In this work, 

we are considering the properties of this intermediate system; 

accordingly, we confine ourselves to the situation in which H ex-

hibits only a discrete spectrum with eigenstates Ia), such that 

HIc ) E.Ict>. 

If we insert these eigenstates as an intermediate decoupling basis 

in Eq. (6), we obtain, for the transition, probability P f1 , 

Pf  = I(fITIi)1 2  = 

= 	 [IvIa1> E _Ea <aIvIa2). '• E -E 

n,n'l a ,...a 
1 	n 
a,.. 1 	n 

1(f IV jal1 E 
- Eat1 

<ct1V1... E 	Eat 	
(a'IvIi>] 	

. 	(7) 
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The measured cross sections, from which our information is der-

ived, correspond to inclusive one-body spectra. Due to limited exper-

imental resolution, all measurements represent averages Over an energy 

interal. Therefore, the actual quantities of interest are the average 

matrix elements, whose form is 

I(iITIf)L = 

2  1 	
fdE 	 , 	• (8) 

	

(AE)2 	
f 	1 	 1 1 1 1 

where AE is the energy resolution. This limitation, combined with 

inclusivity, the large number of degrees of freedom and the short-

range character of the force, possibly justify the •use of "random-

phase" type assumptins in order to provide an averaged description of 

this complex many body physics. We actually consider an average pro-

cedure over the ensemble of two-body matrix elements (a 1 IVc 2 ) = 

under the assumption that these matrix elements are random numbers and 

posess aGaussian distribution, 7  

	

(c1lVlc2) = 0 	, 	2 	
(9a) 

(ct1lvkz2)<a3IvIct4> = 

(cL IvIa 0 S 	+ cS 	'5 	) 	. 	 (9b) 
1 	2 	a1ct3  a2ct4 	a1c 4  2a3 



[3 

Here the bars denote the ensemble averages. 

One of the practical benefits of the assumed Gaussian distribution 

is the fact that the average of an evennumber of, matrix elements can 

be calculated as a sum of all possible contributions of products of 

averages over pairs. 7  These distributions of matrix elements have 

been widely employed and tested in nuclear spectroscopy, 8 in nucleon 

induced multistep reactions 7  and deep-inelastic heavy-ion colli-

sions. 9 '' °  Its validity seems to rely on the short-range of the 

force as compared with the linear dimensions of the system. There-

fore, our results should not be generalized to systems that interact 

through long-range forces (i.e., a plasma). 

We now proceed to outline the evaluation of the average of. ex-

pression (7). The general n-th order term in this expansion can be 

split into markovian and nonmarkovian parts, according to the way in 

which the matrix elements are contracted. (Hereafter, the words 

"contraction" and "average" of pairs will be used as.synonyms). 

First, we have to consider averages that involve two interactions in- 

side the came bracket (ef. Eq. (7)). Among the several possibilities, 

we can recognize the following. 

3.2. Uncorrelated Terms (uc) 

We define as uncorrelated terms the averages of the form, 

= T 	 0 0 0 	 0 
<f I VG VG VG V . . . VG Vii) 	, 	 (10) 
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where n is the number of interactions inside the bracket. These terms 

are the only contributions considered in the markovian limit at very 

low excitation energies. 7  

3.3. Negligible Terms 

In this case, the terms contain at least one pair of crossing 

contraction lines, 

(n) T neg = If> . . ..VG 0 
 VG 

0 
 VG 

0 
 V . . .. 1> 	 (11) 

and can be neglected provided that the Poincare time 7  for the system 

is large as compared with tMFP  (see Section 1). This is the case 

for systems with many degrees of freedom and (or) continuous energy 

spectra. 

3.4. Totally Correlated Terms (TC) 

The general term of this type is built as a product of averages 

in the following way, 

! = KftVG VG VG V . 	. VG VG VG VJi) 	. 	 (12) 
F r-' 

0 0 0 	 0 0 0 

- We want to establishthat T 	 is proportional to y'' . TC 

We will show this fact for n = 4; the general case can be treated by 

repeated application of the same procedure. We have 
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= <fVG  
0 0 0 
VG VG Vii) 

r 

((i V c ) ) 
S lTp(E.)fdE p(E ) 	

1 	
2 	

(13) 
if 	1 	 (E - E ) 

In Eq. (13), we have converted the discrete sum over eigenstates into 

an integral, introducing the level density p(Ec 1 ) of the states 

Let us now define AE as the energy interval over which the 

•2 2  
quantity p(E1) ((iIVIc 1 ) ) changes significantly as a 

function of E 1 . The integral on the r.h.s. of Eq. (13) can be 

approximated as 

22  

f dE p(E ) ((
iIVIa1 ) ) 	

1 I p(E )((iIVIa 
)22 	

(14) 
a1 c1•(E-E 	

2 	AEc] 	1 	E =E 
a1  

We notice that the time h/L\E is roughly the duration of a two-body 

collision in the system.. Comparing the (correlated) term in Eq. (13) 
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with the corresponding uncorrelated expression (fIC0VG0VJi )  

we can see that their ratio.is essentially F./L\E, where 

r. = 27r E (iIVkt1 ) 2  p(E) 
:i (15) 

is the decay width for the state I) (cf. Ref. 7). Since the time 
scale tN = Ji/F 1  corresponds to the time between two subsequent 

collisions, the ratio of the correlated to the uncorrelated term is 

y = tcoll/tMF.1• This completes our argument. 

3.5. Partially Correlated Terms (PC). 

These terms contain mixed products of correlated and uncorrelated 

averages, 

= (fG Vr  G VVG 	GVI1> 	. 	 (16) PC 	0 0 0 	 0 0 0 

The preceding discussion concerning the TC case allows us to 
fl/4 

assert that this term is proportional to y 	, where n is 

the number of interactions that participate in correlated averages 

(flç  < n). The contribution from TC and PC terms is responsible for 

the nonmarkovian mechanisms in the behaviour of the nuclear system. 
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Our next step is to cast the discussed correlated (TC,PC) and un-

correlated (UC) contributions intomore transparent closed form equa-

tions. For this purpose we would like to introduce a renormalized 

•Green function, 

G=G +G 
M NM 

whose markovian part is given by 

.1 

G =G +GVGVG +GVGVGVGVG +. 
M 	o 	o o o 	o o o o 

i.e., it contains all uncorrelated graphs. Following Ref. 7 we have 

(aIGM a a a') = S (E - E + if /2). The additional nonmarkovian con- 

tribution to the Green function is the sum of all TC and PC terms and 

in a symbolic manner it can be written as, 

G =G +G 
NM 	PC 	TC (19) 

The totally correlated part of the nonmarkovian Green function 

admits a compact representation, 

 

 



(aIGTCIct') = (aIGo TC o T G a') = 

5 	,irp(E ) 
aa 	a  [V2(a,a1) p(E) x(cti,a)] 	

=E 
(20) 

a 	a1 

where the off-shell kernel (a1,a)  satisfies the equation 

V2 (a1 ,a)+ 	[P) V2 (a,a2 ) x(a1a2)] 	
E 	

(21) 
a2 2 	 E a

2  a1  

Eq. (21) can be easily obtained as one observes that its iterative 

solution leads exactly to a series expansion containing the terms that 

have been classified as TC. 

13 
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Having defined the renormalized Green function by Eq. (15), we can 

see that the average of expression (7) for P f  can be written as 

Tr f . 	I<fITI 1 H 

= (fIVGV . . . GvIi)(1IVGV . . . GVf) 	, 	 (22) 

where the average bar denotes countractions of interacting pairs with 

one component in the matrix element (fiTli) and the other one in the 

complex conjugate (iITIf) * . All other averages have been considered in 

the renormalized Green function. 7 ' 9  

The main class of contractions that we will take into account in 

Eq. (22) is represented by the pattern 

Lr 	1 —r— — - --

i  J 
(fIVGV . . . VGVI1)(iIVGV . . . VGVf) 	, 	 (23) 

where there is no line-crossing. We are not going to consider terms 

that contain crossing lines, as in (fIVGVIi)(IIVGVIf). We have 

investigated the structure of these terms but for the sake of a more 

transparent presentation we will skip their discussion. The 

interested reader can verify that their inclusion does not affect the 

qualitative conclusions of this paper. 
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The sum of the averages of the type (23) can be case into a simple 

expression 9 

= 	+ E (fI\JGJIc) ir 	(o.j'GVIf> 	,. 	 (24) 
fi 	fi 

Once again, the iterative solution of Eq. (24) produces the sum of the 

terms given by Eq. (23). 

In the markovian limit (y <<1) the renormalized Green function is 

simply GM in Eq. (18.) and Eq. (24) reduces to the time-independent 

version of the master--(Pauli) equation, 

Mf1 = ó
fj + E (TT 	- TMfiWfi) 	 (25) 

where W f  is the transition rate between states having the same 

energy E = E f  = E, 

W. f  = - 	V2 (j,f) p(E) 	. 	 (26) 

The transition rates Wjf  are linear increasing functions of 

energy, 7  since the level density p(E) and the average matrix ele-

ments v2  are roughly proportional to E 2  (two-body selection rule!) 

and l/E, respectively. Thus, as the excitation energy increases, the 

probability W. f  that a complex configuration j is populated as an 

intermediate state becomes larger. As we establish a chain of such 

transitions, according to Eq. (25), the volume of the phase space that 



16 

contains all available exit channels grows as well with increasing 

energy. This enlarging of the phase space is the obvious reason why 

the evaporation (compound nucleus) model predicts widths that are 

increasing functions of excitation energy. 

However, this picture breaks down in the presence of a strong non-

markovian component. In order to demonstrate this fact, let us con-

sider explicitly the correction to the transition probability arising 

from the TC part of the Green function, as given by Eq. (20). Inser-

tion of this contribution into Eq. (24) allows us to write down a 

closed-form equation for 7r 	 that we can solve iteratively. Thefi 

first non-trivial term reads, 

= 6 f 1  + 	( fIVla) 2  (aIGTC1c')2<hlVIi)2 	. 	 (27) 

The TC contribution to G, namely GTC,  is given by Eq. (20) and can 

be written as (afGTCIc) = &,A(E)/(E - E) 2 , with A(E) a 

linearly increasing function of E. Then, we get 

TT 
(1) - 	+fdE p(E ' ) 	

A2(E) 	
V2 (f,a) V2 (,i) 	. 	(28) TCfi 	fi 	C' 	 (E - E )4 

We observe that the average off-shell matrix elements <nIV Icc' >2 

CE # E ,) should correspond to on-shell quantities (E = E ,) that 
	13 

decrease with energy as E'. Uing this property we c:nclude from 
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Eq. (27) that the TC transition probability in first (non-trivial) 

iterative order decreases .with excitation energy, at least as E'. 

This feature is commOn to all higher-order iterations as. of Eq. (24) 

in the TC limit. We should realize that the presence of partially 

correlated graphs in the Green function (Eq. (16)) will smooth out 

this dramatic decrease. Nevertheless, we can state that the volume of 

the phase space populated by the nonmarkovian transition probability 

is smaller, at higher energies, than the volume associated with the 

markovian process. As a consequence, we can tentatively assert that 

an observable realization of this fact would be a saturation or a de-

crease in the widths Of the mass and charge distributions, as they 

become dominated by the nonmarkovian contributions (see Eq. (5)). 

3.6 Interpretation 

We can learn more about the meaning of UC, PC, and TC contribu-

tions to the transition probability with the help of a somewhat crude 

graphical representation in the time-dependent scheme. In Fig. 2 we 

illustrate a situation that corresponds to y<<1, i.e., where two sub-

sequent collisions are well separated. Two independent particles in 

states (i,j) collide at time t 1 . At a later instant t1I tcoll 

they are in the single-particle orbitals (i',j') and they are able to 

start a new collision at time t+ t 
coll 	MFP 

+ t 	. This clean time- 

scale separation ensures us that the locus of (i",j"), namely the 

phase space that can be reached through two consecutive collisions, is 

the product of the phase spaces populated by each separate collision. 

This is a well-established fact associated with the markovian 
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character of the microscopic chain of events (see, for example, the 

abundant work by Prigogine and co-workers)) 1  In this way, after a 

few cascades the populated phase space has increased enormously and 

resembles the microcanonical equilibrium state. It is also worthwhile 

to recall that the information on the two-body interaction transmitted 

in a Markov process is the same as in a two-body scattering experi-

nient, i.e., on-shell properties (see Eq. (26)). This is not valid for 

a nonmarkovian chain (see Eq. (20)). 

In the opposite extreme of fully overlapping collisions (y 	1), 

the process shown in Fig. 2-becomes very rare while the most likely 

situation is illustrated in Fig. 3. In this case, since the duration 

of a two-body collision is much larger than the time between two con-

sequtive interactions, we represent two pairs of particles in states 

(i 1 ,j 1 ), (i 2 ,j 2 ) as undergoing collision simultaneously. In 

this strongly correlated nonmarkovian limit the phase space for 

the combined pairs (i 1 ,j 1 ), (i 2 ,j 2 ) is no longer 	 - 

the product of the individual phase spaces. Destructive interference 

among the single particle wave functions involved in the event that 

takes place inside the box in Fig. 3 reduces the final phase volume. 

This observation contributes to understand the reason why this volume 

is a decreasing function of energy in the nonmarkovian limit. 
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4. QUALITATIVE PREDICTIONS OF THE MODEL 

As we already stated in the Introduction, the fact that the width 

of the mass distribution increase with energy is a characteristic of a 

Markovian system. This increase is experimentally well-established at 

lower energies, below 20 MeV/amu. 1 ' 5  Since the parameter y is an 

increasing function of the incident energy (Fig. 1.) the relative 

importance of the markovian component diminishes. We could say,. as 

the energy increases the system progressively behaves in a non-

markovian manner. In the limit y 1, the dominating graphs contri-

bute to a decreasing width.. 	. 

Our next step is to express the parameter s = O/c5T, which 

has been introduced in Section 2, as a function of y. Following the 

procedure outlined in Section 3 we may write 

= 	+ a1y + a y 
2 
 + . . . 	, 	. 	 (29) 

where a is the markovian cross section and a 1 ,G2 , ... are co-

efficients that contain the sum of all totally and partially cor-

related graphs. The nonmarkovian cross section is thus given by 

= c5 1 y + c 2y2  +. ... and in the linear approximation in 

which 	a1y we obtain s = cy, with 	al/aM. A closerNM  

examination of the structure of.a 1  (see Section 3a) convinces us 

that a is approximately unity. Thus, we can write, in this linear 

limit, 



(1 .- ay) F +yF 	. 	 (30).'
NM  

It is thus clear that for very small y the markovian width dominates, 

while an increasing y induces a relative cancellation of the term con-

taining F and a larger presence of the nonmarkovian contribu- 

tion. Of course, for increasing y the linear approximation is no 

longer valid. It must be borne in mind, however, that a quantitative 

calculation of the nonmarkovian coefficients a 1  3 
6 	 ... of the

2-3 

cross section and the partial width r would rely on a partic-

ular model for the off-shell matrix elements of the nuclear poten- 

tial. Such a calculation would be possible, in principle. However, 

we have preferred to exhaust the discussion on an analytical basis, 

and to state the results that should, be independent of particular 

model assumptions. Our main requirement has been, that these matrix 

elements must be compatible with a short-range, regular interaction. 

We conclude that the transition in the widths of the mass distri-

butions is an effect that can be globablly understood. Its roots lie 

on the short-range nature of the nuclear force, as compared with the 

linear dimensions of the nucleus itself, in combination with the high 

level densities of the nuclear fluid. It seems that due to this uni-

versality, this transition would be an effect of the basic nuclear 

dynamics. 
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5. CONCLUSIONS 

We have shown that when the assumption of a nuclear system inter-

acting under the conditions that allow a markovian description breaks 

down, there is a novel behavior.. We have illustrated this original 

fact by demonstrating that the widths of the mass distributions exper-

ience a change in slope as a function of increasing energy of the pro-

jectile. This peculiarity provides an example of nonmarkovian effects 

that can be detected in macroscopic observables. As a matter of fact, 

our model predicts that there is a change in the energy dependence of 

the width of any observable that might be present in the exit 

channels. However, in the case of the angular momentum, for example, 

its measurement is difficult in reactions where the exit channel con-

tains more than two fragments. The most satisfactory candidates are 

thus the widths of the mass, and probably those of the charge, 

distribution. 

A difficult aspect of our presentation resides in the fact that 

the nonmarkovian effects are quantitatively connected with the 

off-shell matrix elements of the nuclear interaction. We believe that 

our present analysis encourages further work on the subject, aiming at 

identifying observable quantities whose properties can be traced to 

the presence of off-shell mechanisms. 
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APPENDIX 

1) The time between two subsequent collisions is given by 

MFP 	A 	'. 
	 (Al) 

where v is the asymptotic relative velocity of the two colliding part-

ides and A the mean-free-path. We assume that the Fermi motion can 

be disregarded for an estimate of the mean relative velocity, since it 

affects both collision partners. 

The first collision involves two particles whose relative energy 

is the laboratory energy of the projectile's particles above the 

Coulomb barrier. This process causes the available energy to be 

shared by the outgoing collision partners; in consequence, the 

relative energy available for the next two or three interactions, 

before the separation of the complex occurs, is lower than the 

original incident value. Thus,.it is reasonable to assume that in the 

average, the collision takes place at a relative energy equal to half 

the incident energy per particle. This choice allows us to calculate 

the asymptotic relative velocity v and to estimate the MFP from the 

results displayed in Ref. 12. 



23 

2) The duration of a two-body collision can be estimated through 

the semiclassical formula, 

t 	
= 	(2d + k) 	 (2A) 

S 	 - 	coil 
'v +V/2m 

0 

where v is the asymptotic velocity in (Al), V 0  and d the average 

values of the strength and range of the two-body force and k is the 

wave number of the incident nucleon. 

The calculations displayed in Fig. 1 correspond to two sets of 

parameters V and d (Ref. 13) (square-well) 

V = 14 MeV , d = 2.7 fm , (no hard-core) 
0 

and 

V = 28 MeV , d = 1.9 fm , hard-core radius 0.4 fm 

These values are adjusted to produce a bound deuteron state and to fit 

the low energy triplet scattering data.13 
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FIGURE CAPTIONS 

Fig. 1. The parameter y= t 1 /t 1, as a function of the energyMF  

per incident nucleon. Curve 1 corresponds to a square well 

potential with V = 14 MeV, d = 2.7 fm and curve 2 

corresponds to V0  = 28 MeV, d = 1.9 fm (see Appendix). 

Fig. 2. Schematic representation of. two consecutive nucleon-nucleon 

collisions taking place at times t 1  and t1  + tco ll + 

respectively. 

Fig. 3. The same as in Fig. 2., but the two different nucleon-nucleon 

collisions are now overlapping along the time axis. 
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