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1. Introduction 

For certain physical systems such as homogeneous solids, fluids, or the 

heavier atomic nuclei, made up of elements interacting by short-range 

forces and possessing a surface ion which is thin compared to the 

size of the object under consideration (leptodermous systems), the 

potential energy of the system may be decomposed into a bulk term and a 

surface~layer terrIl. The surface-layer term is associated wit.h the sur~ 

face region and is, therefore, approximately proportional to the area of 

the surface bounding the object. For a simply~connected system the 

above decomposition is accurate if the principal radii of curvature of 

the surface are everywhere much larger than the thickness of the surface 

region. Moreover, when this condition is satisfied, corrections to the 

leading area~proportional term in the surface-layer energy (such as the 

curvature correction) may be derived by expansions in powers of the 

ratio of the thickness of the surface to the size of the system, thus 

making the expression for the potential energy even more accurate. Such 

a series expansion has been useful in discussing the average binding 

energies (masses) of atomic nuclei, and one might have thought that, 

apart from effects arising from special symmetries (shell effects) there 

was no more to the problem of average nuclear energies than the calcula­

tion of the above series expansions to a sufficiently high 'I'his 

not the case. Thus, when the sur of the system becomes contorted 

features whose dimensions are of the of the 

thickness the sur region itself, the ser expansions 

become of limited This ing is by no means of merely 

academic it ser for a system with a neck, on the 

verge of dividing into two fragments nuclear , or in the 



case of two subsystems about to come into contact (as in collisions 

between heavy nuclei). In the latter case in particular, when the sys~ 

tem is not simply connected, a calculation of the surface-layer energies 

of the two pieces, no matter how accurately they are corrected for the 

curvatures of the two surfaces, can never give rise to the (strong) 

attraction that in practice appears when the two surfaces approach to 

within a distance comparable with the surface thickness. 

It is possible to derive expressions for the additional potential energy 

(or forces) associated with certain of the more important types of 

violently contorted surfaces, which should enable one to complement in a 

useful way the usual series expansions of the nuclear energy. These 

additional forces may be ca1led "proximity forces" because they arise 

from the proximity of elements of the contorted surface, the contortion 

being such that different pieces of the surface actually face each other 

across a (small) gap or crevice. In particular it is possible to relate 

(approximately) the interaction between two finite nuclei to the 

interaction between two flat parallel slabs of semi-infinite nuclear 

matter, a problem that is simpler, and can be solved (in a suitable 

approximation) once and for all. An extended discussion of the proxim­

ity forces has been given in ref.l. 

2. General Treatment 

The starting point of our considerations an expression for the prox-

imity energy vp associated with a curved gap or crevice of gently var 

able width D, which we shall write in the form 

vp = Jf e(D)dcr+ corrections. (1) 



Here e(O) is the interaction energy per unit area of two parallel sur­

faces at the appropriate separation O. The integral is over the area of 

the gap or crevice and the "corrections" become negligible as the curva­

tures of the surfaces defining the gap become small. 

The geometry of the gently variable gap may be specified by first choos­

ing a mean gap surface r (a two~dimensional surface in space) and then 

considering normal displacements !1A9 nB, locating the gap, 

n
A 

~ nb ::::;: O(u,v) being the distance between the two sides r
A

, r
B 

of the 

gap. The gap width O(u,v) is a (slowly varying) function of position on 

the surface r, the position being specified by two coordinates u and v, 

say. 

Since e(O) is, by definition, a function of only one variable, D, rather 

than of the two position variables u and v, the surface integral in Eq. 

(1) may be converted, at once, into a one~dimensional integral. Thus 

imagine that a family of (closed) curves (or set of curves) is con~ 

structed on the surface r corresponding to constant values of o. 

Denote by J (O)dD the area of the surface r that 1 between two such 

curves (or sets of curves) defined by D and 0 + dD. Then we may write 

v p:::: f e (0) J (0) dD + •••• ( 2 ) 

The function J(D) is character of the geometry the gap, and thus 

if the two sides of the gap are shifted, rotated, or deformed in some 

way so that the gap surface r gap width 0 are changed, J will be a 

function a functional) of these , rotations, or 

J ,0) to 

e energy 

the depen­

gap 

area of two 



surfaces) u by definition, independent of the geometry of the gap. It 

does depend, however, on the nature of the surfaces. In particular, if 

the structure of the surface (e.g., the density falloff profile in the 

surface region) is considered as variable, and specified by a set of 

degrees of freedom, we may exhibit this by writing e(surf, D). Thus our 

basic equation for the energy associated with a gently variable gap or 

crevice is, 

Vp ( gap, surf) = f e(surf, D) J(gap, D)dD + GGG, (3) 

In what follows we shall specialize at once to the case of surfaces with 

an invariable structure corresponding to that of a standard plane sur-

face at equilibrium, characterized by an equilibrium density profile and 

a standard surface-energy coefficient. As regards the geometry of the 

gap we shall illustrate the applications of Eq.(3) by several assump-

tions about the function D(u,v) and the mean gap surface r. 

2.1. Gap with Gently Variable Paraboloidal width 

Consider a mean gap surface r which is so gently curved that the coor-

dinates u, v on the surface r may be taken as cartesian coordinates x, 

y, and the normal coordinate n used to specify the gap (nA - nB = D) may 

be taken as the cartesian coordinate z, with zA - Zs = D. Consider now 

as an example a gap width D(x,y) which has a least value D = s at 

x = y = 0, say, and whose width in the vicinity of this point is given 

by the Taylor expansion 

D(x, y) = s + 1/2 D + 1/2 D y2 + 
u W 

= s + 
2 2 1/2 (x IR ) + 1/2 (y IR ) + •••• x y (4) 

Here Dxx and DW are the second derivatives of D with respect to x and y 



evaluated at the point of least gap width. In the second line these 

derivatives are written in terms of the principal radii of curvature, 

Rand R, of the surface obtained by plotting the gap width D as a 
x y 

function of x and y. 'l'he directions of x and yare assumed to have been 

chosen along the principal axes of the quadratic form D(x,y) so there is 

no cross term in xy in Eq.(4). 

Now change variables from x, y to [" n , defined by [, "" 

so that D may be wd Hen as D =: S + n"" Y/(2Ry)1/2, 

p2 "" [,2 + n2. '1'he proximity energy can then be transformed as follows: 

Vp (8) :;:: f f dx dy e(D) (5 ) 

"" 2(R R )1/2 f J d [, d n e (D) x y 

"'" 2(R R ) 1/2 (' 2wp dp e(D) x y 0 

:= 2wR f~=sdD e (D) 

'" 2wRC(s). (6) 

In the last few lines the integration has been extended to infinity. 

Tbis assumes that the gap width grows to beyond tbe range of the 

interaction function e(D) and that e(D) approaches zero sufficiently 

rapidly for large values of D so that the integral becomes essentially 

independent tbe upper limit '1'he quantity R the geometr mean of 

the two principal radii of curvature Rx,R , characterizing the gap D. 
y 

of R (R R )1/2 
x y 

curvature at x "" y "" 0 

square root of the invar 

the surface obtained by plotting D 



versus x and Yo 

The negative of the partial derivative Vp(s) with respect to s gives 

the force between the two surfaces as a function of the separation 

degree of freedom 

F(s) = -(dVp/dS) = 2~Re(s)o (7) 

This leads to the following Proximity Force Theorem 

The force between two gently curved surfaces as a function of the 

seEaration degree of freedom ~ is Eroportional to the interaction poten­

tial ~ unit area, ~(.§.), between two flat surfaces, the Eroportionality 

factor being 2~ times the reciErocal of the square root of the Gaussian 

curvature of the ~ width function at the point of closest aEEroach. 

The usefulness of the Proximity Force Theorem lies in the circumstance 

that the principal feature of the function e(s) may be derived from 

experimentally known surface properties, such as the surface energy 

coefficient Y and the degree of diffuseness of the surface layer. 

Thus for s greater than the thickness the surface (2 or 3 fermis in 

the case of nuclei) e(s) tends rapidly to zero. For smaller values of 

s, e(s) becomes negative, and for s "" 0 it is approximately equal to 

minus twice the sur face energy per unit area of the mater ial of which 

the system is composed. This is because at s = 0 the two juxtaposed 

density distributions add up to an approximately constant bulk value, so 

that the net of bringing the sur together from infinity 

to destroy the two surfaces. Thus e(O) ~ -2Y Q where y the surface 

energy coefficient (about 1 MeV/fm2 nuclear matter and about 

75 ergs/cm2 for water). 



If one were to countinue on to negative values of s, adding up the two 

density distributions without allowing them to get out of each other1s 

way, the function e(8) would begin to increase, would go through zero, 

and would eventually grow without limit, reflecting the energy cost of 

doubling the density in the overlap region. It follows that e(s) exhi­

bits a minimum, and this minimum occurs in fact near s = 0 , where 

e (0) ~ -2Y. This because it is at this separation that the total 

density is approximately equal to the standard bulk density, and the 

bulk energy of stable saturating systems (such as nuclei or ordinary 

matter) is a minimum with respect to deviations of the density from the 

standard value. From this circumstance follows an interesting result. 

The maximum attraction predicted by Eq. (7) occurs where e (s) is most 

negative, and this as we saw occurs at s ~ 0 where e ~ -2Y. Hence 

Maximum Attraction ~ 2wRe(O) (8) 

~ -4wR/. 

This equation expresses the remarkable result that the maximum attrac­

tion (in the separation degree of freedom) between gently curved bodies 

may be written down approximately without any knowledge of the nature of 

the cohesive interactions between the particles constituting the bodies, 

provided only the surface energy coefficient is known. 

As the two curved objects begin to overlap beyond the point of maximum 

attraction at s ~ U, the attraction in the separation degree of freedom 

decreases and becomes zero at some point sl where the function e(sl) is 

zero. Since the zero of e(s) is, in the nature of things, independent 

of the curvatures of the two objects, we deduce a second noteworthy 

result. The equilibrium point (a minimum) in the separation degree of 



freedom for two gently curved objects, such as two (uncharged) nuclei, 

occurs at one and the same overlap distance sl for all pairs of nuclei, 

independently of their sizes. 

Under the conditions stated Eq.(8) would apply equally well to the con-

tact force in the separation degree of freedom between ordinary solids 

(where the attraction is due to molecular forces), or to nuclei, where 

the attraction is due to nucleon-nucleon forces. 

In order to calculate the force between two nuclei in its dependence on 

the separation s one has to use Eq.(7), whose right-hand side a pro-

duct of a geometrical factor 21TR depending on the two nuclei in ques~ 

tion, and a universal function of distance e(s), independent of the 

nuclei. The semiquantitative appearance of e(s) has been sketched out 

above, but in order to calculate e(s) in detail one needs to have a 

theory describing the structure of the nuclear surface region, so that 

one may take two flat nuclear surfaces and calculate their interaction 

energy per unit area as a function of the separation. Such a calcula~ 

tion of e(s) has been performed with a theory of the nuclear surface 

based on the Thomas-Fermi treatment. (See later). 

2.2 Other or Crevice Geometr 

The proximity potential may be readily generalized to other equations 

besides the paraboloidal relation between D and x,y given by Eq.(4). 

st note that Eq.(5) the proximity potential invariant with 

respect to an area-preserving stretching and compression of the 

transverse coordinates from x,y to xti,y! where Xl = cx,yl = (l/c)y. It 

that even we special to systems which D assumed to 



function of the transverse radial distance r, where be only a 

r2 = x2 + y2, the results will hold, without any modifications, for 

UUstretched" systems obtained by deforming the original circular contours 

of constant D into area~preserving ellipses. Conversely, in any problem 

where the contours of constant D are ellipses, the analysis may be sim~ 

plified at once by considering the case of circular contours, where D is 

a function of r2 only. 

Consider now the relation between r2 and D to be of the form 

N 
r2 "" \' C Dn (9) 

L n ' 
n=O 

where cn are arbitrary coefficients. Inserting Eq.(9) in Eq.(5) we find 

211'r dr e(D) 
N 

f I nc~ -1' 1 :r;Ln 

where the quantities 

00 

e. "" f Dne(D) dO, (10) 
n sorO 

are moments of the universal function e (0). The lower limit UIS or QUi 

distinguishes between what we shall call a "gap" and a Uicrevice. Ii The 

former means that 0 has a least value (say s) at r "" O. (This value may 

be nC'gative, corresponding to an overlapping of the two bodies which, 

for large negative s, would lead to a region of doubled density.) The 

latter means that 0 becomes zero at some finite value of r, say a neck 

or crevice radius r neck (related to Co by r~eck "" cO), and there is no 

overlap or density doubling. Thus a gap refers to two bodies (overla~ 

ping or not) and a crevice to a indented body. The upper limit 

(10) has been set equal to infinity under the same assumptions as 



The case N = I v with c i = 2R and Co = ~ SCI corresponds to the para­

boloidal gap considered before. For a paraboloidal crevice (a crevice 

formed by portions of two intersecting paraboloids) we have 

00 

2WR f e(D) dD. o 
Note that the proximity potential for a paraboloidal crevice with given 

R is independent of Co (or r k) v i.e, is a constant independent of the nec 

degree of overlap. 

It follows that the proximity potential along a sequence of configura~ 

tions which for s > 0 consists approaching gently curved surfaces 

(approximated by paraboloids) and for s < 0 turns into the corresponding 

crevice, exhibits a discontinuity in the first derivative at s = o. 

This is because as s tends to zero from above, avp/as tends to about 

4WRY (Eq.8), whereas for s < 0, aVp/dS = O. As is readily verified, 

this 4wRY is precisely the negative of the discontinuity in the deriva-

tive of the surface energy that occurs when two gently curved surfaces 

characterized by a gap width curvature radius R turn into a crevice at 

contact. It follows that the addition of the proximity energy rounds 

off (approximately) the familiar kink that is present when only the sur-

face energy is retained in the calculation of the potential for two fus~ 

ing nuclei parametrized by separated or overlapping figures such as 

spheres or spheroids. 

The case N = 2 corresponds to a relation between r2 and D which defines 

a conic 

+ + (11) 

to 



-11 

(12) 

For gapsueo (the same as€,> andel are two universal functions of s, 

and for crevices two universal constants, characteristic of the material 

of which the surface is made. Several different geometrical arrange-

ments are covered by Eqs.(ll), (12). 

In particular, for the case of a gap between two coaxial elliptic 

boloids with tip distance s, with radii of curvature Al and A2 in the 

principal planes of curvature through the tip of paraboloid A and 8
1

, B2 

for paraboloid B, and an azimuthal angle ¢ between the principal planes 

of curvature of A and B we find cl = 2Ru C2 = 0, where 

1 1 1 1 1 2 1 1 2 
-2 = AIA2 + BIB2 + ( AB + AS ) sin ¢ + ( AB + AS ) cos ¢ U3) 
R 11 22 12 21 

This formula could be useful for discussing the nuclear force between 

two nonspherical nuclei. In this case, in addition to an attraction 

along the line of least separation, there is a torgue around it, trying 

to align the principal planes of curvature in the vicinity of the point 

of least separation. (For a special discussion of the proximity treat~ 

ment of the interaction between deformed nuclei, see ref.2.) 

Note that the above results are valid insofar as the juxtaposed surfaces 

are nearly parallel. Contributions from parts of the surfaces where 

this is not satisfied cannot be expected to be given accurately. For-

tunately these contributions usually tend to zero, which is at least 

qualitatively correct in most cases. 



3. 

The above treatment general. We now turn to the nuclear case. It is 

convenient to the proximity function 

¢ ( 1;; ) '-, e ( 1;; b ) 12 Y p (14) 

obtained from e( mea sur separation s units the surface 

width b, 1;; =: sib, and by mea sur energy in units of twice the surface 

energy coefficient y . 

Similarly we define the d (incomplete) proximity moments by 

00 

cji (1;;) 
n f~ 1;;n¢ (t:;) dt:;:.c: En (1;;,b)/2ybn+l 

0 (15) 

(Foy the zeroth moment <PO we shaH simply write <Po) 

By dealing with these dimensionless functions one can make the predic~ 

tions of the theory insensitive to certain quantitative shortcomings of 

the models of the nuclear sur that have to be used in calculating 

e(D) and rals Thus a model of the surface could be somewhat 

inaccurate in the absolute values, of the exper imental sur~ 

face and, nevertheless, generate rela~ 

accurate ~. Combining these func~ 

with the values of Y and b (rather than 

with the by the model) will then result 

in the most of the theory, where the model of the 

sur only enters the functional form (but not the 

the 



We have carried out a calculation of the universal nuclear proximity 

function ¢ and of the associated moment functions ~n using the nuclear 

ThomaS-Fermi model with Seyler-Blanchard phenomenolog ical nucleon-

nucleon interactions. The resulting function ¢( L; is displayed in 

Fig. 1 and the integrated function ~( L; in Fig. 2. 

For practical applications it is useful to have available a simple 

analytical representation of the function ~ which enters in the 

nucleus-nucleus proximity potential that follows from Eq. (6) 

(16) 

One such approximation is given by the following iicubic-exponential" 

pocket formula 

(17) 

~( L; ~ L;1 ) '" -3.437 exp( -vO. 75), 

where L;1:: 1.2511 ~ 5/4, L;O "" 2.54, and k "" 0.0852 ~ 1/12. This pocket 

formula should be adequate for many purposes. The cubic expression has 

been chosen to go smoothly to zero and so it could be used by itself in 

cases where the tail of the interaction is not an important feature. 

The accuracy of this approximation illustrated in fig. 3. Approxi-

mate expressions for the higher moments ~ can be obtained by integrat­
n 

ing Eq. (17). One can also obtain an approximation to ¢ by differen-

tiating Eq. )8 but the result a rough representation, since a 
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discontinuity in the slope of ¢ appears at s ~ 1@2511 (a result of the 

discontinuity in the curvature in Eq. (17) at that point) • 

In appl of above to nuclear problems the following 

choice of numerical would be reasonable. For the surface 

energy coefficient y one might use the Lysekil mass formula according to 

which 

(8) 

where I = ( N ~ Z )/ Av and N, Z, and A refer to the combined system of 

two interacting nuclei. In this way some allowance is made for the 

dependence of the proximity potential on the neutron excess, even though 

the universal functions ¢ and <Ii were calculated for zero neutron excess. 

(A rough approximation to Y would be simply (1 - 212) MeV/fm2
.) 

In calculating the value of R (16 ) and the separation s "" r ~ r' . ""1 

~ C2 spherical the surfaces should be located using 

Sussmann c s Cg related to the sharp radius by 

C "" R - (19) 

For more the proper loca of sur profile 

more {see For the sharp radius one 

may use the 



R ~ 1.28 Al/3 - 0.76 + 0.8 A~1/3 
1/3 

~ 1.15 A fm. 

(20) 

(21) 

When used in conjunction with the Proximity Force Theorem the central 

radius C is preferable to the effective sharp radius R, which moves out 

relative to the density profile by an amount proportional to A-1/3 , and 

which not, therefore, in an invariant relation to the location of the 

profile for finite nuclei with different radii. Note that the Proximity 

Force Theorem is based on Eq. (1), whose physical content is the approx~ 

imate replacement of the interaction energy of two curved surfaces by an 

integral of the interaction energy per unit area of parallel flat sur~ 

faces for which the separation D(x,y) matches, point by point, the dis~ 

tance between pairs of elements of the actual curved surfaces. In order 

for the approximation to be accurate the flat surfaces should be located 

so that their profiles match the locations of the actual profiles as 

well as possible. This is ensured to a higher degree of accuracy by 

working with the central radius C rather than with the effective sharp 

radius R. 

The width b in Eq. (16) has the approximate value of I fm. Thus for a 

Woods-Saxon surface profile the Sussmann width b related to the IilO~ 

90% fall-off distance" by 

1/2 
b = [w/(2(3) In 9) Jt 10-90 ' (21) 

which for t IO- 90 = 2.4 fm gives 0.99 fm. 

The above equations give only average estimates of nuclear Vari-

ations caused by shell deformations, have to be taken 



into account In particular, when using the proximity poten~ 

tial for deformed nuclei g the distance of closest approach s, as well as 

the mean curvature radius R 

the point 

gap width function in the vicinity of 

have to be carefully related to the 

or ientations and shapes of the nuclei. 

The accuracy of the Proximity Theorem has been tested in several cases 

of interest in nuclear phys . Some examples are discussed in ref .1. A 

particularly detailed study has been made in. reL3. The accuracy of 

various additional approximations frequently employed when considering 

deformed nuclei is discussed in ref.2. The general conclusion from such 

studies that the Proximity Theor~n quite accurate provided proper 

care taken when matching the curved nuclear sur faces with the 

corresponding flat ones. 

In the formulas given above there are no adjustable parameters in the 

predicted nucleus~nucleus interaction. For some purposes it might be 

useful to have adjustable that could be varied, within rea~ 

sonable limits, in correlating experimental data. For example, some 

slight variations in the nuclear radii from the nominal values given by 

Egs. (20), (21) would be reasonable. Similarly the nominal values of 

the surface energy coefficient y (Eq. (18)) and the surface width b 

(= 1 fm ) need not, course, remain inviolate. 1\1 together the slight 

freedoms associated with adjustments in the values of the radius, sur~ 

face energy, and surface width are together equivalent to ight free-

doms representing a horizontal shift, and horizontal and vertical 

stretchings of the nucleus~nucleus potential Vp(r). Such adjustments of 

the parameters should, however, be used with moderation and should not 



be in conflict with what known about nuclear radii and surface pro-

perties. In particular, if in the interpretation of nucleus-nucleus 

scattering exper iments by means of the frozen idealization (in which all 

degrees of freedom except the separation between nuclei are frozen), 

unreasonable adjustments of the parameters arc called fOf, the explana~ 

tion is very likely to be the inadequacy of the frozen idealization. 

One would then be wiser to display clearly the discrepancies rather than 

to mask the expected failure of the frozen idealization by an abuse of 

the nuclear parameters. 

With reference to some earlier misunderstandings, let us stress that the 

use of the proximity energy expressions (as generalized in Section 2 for 

various geometrical arrangements including necks and crevices) is not 

tied to the frozen idealization. Thus if a neck degree of freedom is 

added in the description of (e.g., deep inelastic) scattering, an 

appropriate proximity energy formula, taken for example from Section 2, 

may be used. 

The proximity potential is often employed in analyses of nuclear colli­

sions and appears to give reasonable estimates for the interaction 

energy between nuclei. Really unambiguous tests of the proximity 

expressions against experiment are not easy because the proximity theory 

a theory of the interaction between nuclear sur as a function of 

their separation, but the precise locations of the relevant portions of 

the surfaces of two nuclei during a collision are, general, not 

known. the nuclei are assumed not to deform during the collision, 

then the surface separation can be deduced from the separation between 

the mass centers such an undeformability assumption made one 



the impression that the theoretical potential is often too weak by up to 

a factor of two. But it may well be that the calculated potential is in 

fact approximately correct but that the surfaces have deformed, i.e., 

reached out towards each other by a few tenths of a fermi and thus 

increased the interation at the given center separation of the two 

nuclei. Such polarization or deformation effects are to be expected and 

should be pursued, experimentally as well as theoretically. Figure 4 

gives a rough indication of the relation between estimated potential 

depths and the theoretical predictions. One might summarize by saying 

that a semiquantitative understanding of the non local part of the 

nuclear potential energy has been achieved. 
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Fig.l. The dimensionless proximity force function ¢(s) as 
of the dimensionless separation s. The minimum 
inflexion in ¢ are indicated. 

a fu.'1ction 
and point of 

2. The dimensionless proximity potential function ¢ (U as a function 
of the dimensionless separation S. The minimum (at s = ~1.3734) 
and the point of inflexion in ¢ are indicated. The potential 
between two nuclei is a geometrical factor times ¢. It follows 
that the equilibriillfl point (in the separation degree of freedom) 
for the nuclear interaction between any two nuclei occurs at the 
universal interpenetration distance of 1.3734 b or about 1.37 fm. 
The dashed rectangle on the right indicates the region where a com~ 
parison of the function ¢ is made with experimental values in 
Fig.4, using are expanded scale. 

Fig.1,. The universal nuclear function ¢ is shown by the solid line and 
the cubic~exponential approximation by circles. '1'he dots show the 
continuation of the cubic beyond the dashed line (locating its 
junction with the exponential) to where it touches the s'- axis at 
2.54. The frozen Thomas~Fermi densities of the two semi ~ infini te 
distributions touch at sl : 2.74. 

Fiq.!. The theoretical proximity interaction potential between nuclei 
is shown as a function of surface separation. The experimental 
depths are deduced from elastiec scattering and heavy-ion fusion 
data. The unit on the abscissa corresponds to about 1 fm. The 
range of potential depths displayed goes from a fraction of an MeV 
to several ten of MeV. (From ref. 4) 
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