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Abstract 

Experiments have shown that in mu-mesic uranium-238 fission the 

is bound mainly to the heavy fragment with a few percent of cases 

of binding to the light fragment. We use time-dependent perturbation 

theory to calculate the theoretical branching for a variety of fission 

asymmetries and fission fragment dynamical conditions. We go beyond 

earlier theoretical works in that we study extended nuclear charge 

distributions aswell as point charges. Agreement with experiment is 

within limits of error. 
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I. Introduction 

Following some muon-induced fission processes, the 	survives 

in final states bound to one of the fission fragments. Because the 

lifetime depends inversely on the mass of the binding nucleus, it 

is possible to determine the probability of the p being bound to 

the heavy fragment, the light fragment, or ejected into the continuum. 

The final state probabilities for the muon are associated with 

fission dynamics. If the motion of the nuclear system past the saddle 

point is infinitely slow, that is, by very viscous flow, the muon 

would always stay at the lowest energy level up to the scission 

point. Past the scission point the nuclear system is accelerated by 

the Coulomb force modified by the nuclear force and shape distortion 

at first, and the muon can be excited to a higher orbital and have a 

non-vanishing probability ofending up bound to the light fragment. 

On the other hand, if the motion of the nuclear system is not slow 

from saddle point to scission, that is, the motion is not so viscous, 

there should be already some fraction of muon excited-state 

population, even beforescission. Thus, for non-viscous flow the 

greater percentage of muon binding to the light fragment should be 

obtained. 

A number of experiments bearing on this problem have been 

done. 16 

Various aspects of the theory have also been treated. Leander and 

M1ler7  looked at the augmentation of the fission barrier in the 

presence of a negative muon in the lowest state. Karnaukhov proposed 



that the complicated problem of final state probability of the muon 

could be simply solved if statistical thermal equilibrium between muon 

and internal nuclear degrees of freedom of the excited primary fission 

fragments is assumed. 8  Olanders Nilsson, and Muller attacked the 

dynamical problem of final state probabilities by solving a time-

dependent Schródinger equation for the muon in the field of two 

separating point charges. 9  Since the point—charge model produces 

too large separation of the energy levels and too small transition 

matrix elements when compared with a more realistic model, the results 

for finding the muon on the light fragment are certainly under -

estimated. Experiments 6  and theory8 ' 9  indicate a few percent 

probability of the muon being captured onto the light fragment in the 

most probable asyimietric fission. The probability certainly deviates 

from an assumption, albeit not critical, in Ref. 2 analysis that the 

muon final state probability is proportional to the atomic numbers of 

the fission fragments. Of course, for completely symetric fission 

the probabilities would have to be equal for the two fission fragments. 

We felt it worthwhile to make new theoretical calculations, going 

beyond Ref. 9 in that we would examine extended charge distributions 

as well as point charges, study alternative forms of variational wave 

functions, and run a sufficient number of cases to establish the 

systematics with respect to fission asyimietry and nuclear viscosity 

from saddle to scission. 

As a weakly interacting particle,the muon may be treated as having 

only electromagnetic interactions with the nucleus. However, the muon 

t 
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is so much more massive than the electron that muon is wave functions 

for fission fragments and heavier nuclei are significantly within the 

nuclear volume, and binding energies and wave functions are consider-

ably altered from the point nucleus values. A convenient reference 

for muon is binding energies is the theoretical paper of Ford and 

Wi1ls) 0  For example, in barium (Z = 56) their calculated is bind-

ing energy is 6.167 MeV, to be compared with the point-nucleus Bohr 

formula of 8.47. Thus, it seemed to,us important to explore the 

effects of using extended charge distributions. To use the familiar 

Woods-Saxon or Gaussian charge distributions was early seen to involve 

considerable calculational difficulties. The use of exponential 

charge distributions, however, seemed tractable, and we have for the 

most part. used these, with the range constant chosen to match the 

experimental root-mean-square charge distribution of the nucleus. 

With the extended charge distribution the potential no longer has 

the singularity of the point charge and is indeed of harmonic form at 

the nuclear center. For the heaviest nuclei, where the muon is wave 

function is appreciably inside the nucleus (-54% for uranium), the 

wave function approaches the Gaussian form of the 3-dimensional 

isotropic harmonic oscillator wave function. Thus, it is not obvious 

for fission fragments whether the better LCAO (linear combination of 

atomic orbitals) variational wave functions are of exponential hydro-

genic form, as for point nuclei, or Gaussian harmonic oscillator 

form. Accordingly, we have investigated both forms of variational 

wave functions. 
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II. Static Two—Center Muonic Eigenvalues 

We have first studied the static, symmetric problem. For point 

charges exact solutions exist based on separation in a prolate 

spheroidal co—ordinate system. 11  Figure 1 plots the lowest two 

eigenvalues as a function of separation distance between the two 

charge centers. The topmost curve (long dashes) in both families is 

for an extended charge distribution, while the other three curves are 

for nuclear point changes. The lowest solution is the exact solution 

(solid line). The next lowest solution (dashed line) is for a varia-

tional wave function based on two Gaussians, with the width parameter 

r0  interpolated between values that minimize the energy in the zero-

separation and infinite—separation limits. Above that is a curve 

(dash—dot) for a two—Gaussian variational wave function with the width 

parameter r 0  held constant at its infinite separation value. The 

topmost curve (dot, long—dash) for the lower family (syliunetric wave 

function) gives the energy for an extended (exponential) charge dis-

tribution. In Appendix A we derive the Hamiltonian for the extended 

charge. The corresponding energies for the antisymmetric wave 

function are seen in the upper four curves. 

Several features are to be noted. Although the eigenvalues for 

the variational wave functions lie above the exact eigenvalues by 

0.15-0.2 atomic units over the range of interest (R 	2), the energy 

difference between is °g 
 symmetric (ground) and is °u  anti-

symmetric (first excited state) is almost the same for exact and 

variational solutions. It is this energy difference that enters most 
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importantly in the time—dependent dynamic problem and not the absolute 

energies. The variational wave function with constant Gaussian widths 

is much poorer for R 	1.2. However, these short separation distances 

are not relevant to the dynamic muon fission problem, since at fission 

saddle the equivalent separation of charge centers is larger. Thus, 

to simplify calculations we have used the constant width Gaussians in 

the time—dependent problem. 

We note the Bohr formula point nucleus energy for Z = 46 is 

—5.92 MeV. The Ford-Wills mu—binding energy is —4.57 MeV. Our 

point—charge Gaussian energy is —5.11 MeV. For unequal fission 

product charges we show examples in Figs. 2 and 3 of the dependence of 

eigenvalues on separation distance. In Fig. 2 the extendea cnarge 

distribution and Gaussian wave functions were used. In Fig. 3 a 

point—charge and exponential wave functions were used, so in this case 

the wave functions are exact for infinite separation. Figure 3 may be 

directly compared with Ref. 9, and we find essential agreement on the 

energy levels. 
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III. The Time-Dependent Problem 

We use the method of perturbed stationary states (PSS) for the 

problem of the 	in the field of moving nuclear charges. We 

neglect muon mass compared to the nuclear masses; that is, the separa-

tion motion of the nuclear centers is assumed not to be influenced by 

the muon motion. 

In our two-state case we get two coupled time-dependent 

Schridinger equations (see Appendix B for detailed algebra). 

(t) c  = _ag(t) 	(t) -I iP> 

expt. 
f t [E u (t')  - Eg (tt)] dtlj 	 (la) 

Ag(t) = -a u (t) <iPg(t) IjI Pu (t)) 

exp 	f {Eg(t') - E(t')] dtuJ 	 (la) 

Since the amplitudes may be complex, we have four coupled 

equations in the real and imaginary parts. 

After a series of transformation these equations can be reduced to 

two coupled equations in the amplitude and the difference of the 

phases. 

= _COSY1J)uIhPg> 	 (2a) 

= Eu... Eg + 2 ct9nsinpu Fkig ) 	. 	 (2b) 
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where 

	

a9  = coseI59 	, 	a = 
s i n ,ie 6 U 

= 6 u 	6 g + 	f .(E - E g ) dt' 

Using the modified Eulermethod we have integrated these equations 

on the NOVA 840 computer of the Atomic Energy Research Institute in 

Beijing. As t = 0 boundary conditions we assume the 	to be com- 

pletely in the lowest state when the 238U is at the second saddle 

point for fission. M81ler and Nix 12  have given calculated center-

to—center distances for forming fragments at second saddle for 

and 236Th. Interpolating, we get for 238U a value of R second saddle 

9.7 Fm. We use R = 10 Fm as starting distance. 

To check against results of Olanders et al. 9  we have calculated 

the case of two point charges starting from rest at R = 11 fm with 

ZL = 38, AL = 100, ZR = 54, and AR = 140. We have used both 

of their alternative initial conditions of Ia(0) 2  = 0 and 

Ia(0) 1 2  = 0.11. 

In Fig. 4 we plot the per cent population of the upper state 

( IAl x 100) as a function of separation distance, using the 

parameters of Olanders et al. While our results qualitatively match 

4-hrma nf fhir Fin L the MlrePment is not exact. For the initial 

condition 1;1 2 0 their probability rises toa maximum of 0.006 

at 24 Fm, dropping to a very small value asymptotically. Our 



probability rises to a maximum of 0.016 at 23 Fm, falling to 0.005 

asymptotically. For the other boundary condition our probability goes 

through somewhat wider excursions, though the final probability, after 

about 1-1/2 cycles of oscillation is near 0.12 for them and us. 

We cannot explain the disagreement, though it may be related to 

their use of (VO-R for the perturbing potential, whereas we use 

R 3  . These forms would be equivalent if the Schrödinger equation 

were exactly satisfied by the wave functions. This is not the case 

for LCAO variational wave functions, and we believe our use of 	to DR 

be more correct. 

Our next calculations are run from R = 9 or 11 Fm with and without 

an 1g6 (exponential) nuclear potential of diffuseness 0.65 Fm and 

strength adjusted to give a potential maximum at the initial dis- 

tance. With the nuclear potential there is no acceleration at t = 0, 

and we choose an initial fission kinetic energy E 0  of 1 MeV at the 

saddle. This initial kinetic energy can be rationalized in terms of 

the size of the wave packet crossing the fission barrier. 

In Fig. 5 we show the probability curves for a probable fission 

fragment asymmetry ZL = 40, ZH = 52. In most cases the extended 

charge distribution was used. We see a sensitivity to starting 

distance, the use of 9 Fm giving about 4% greater final occupation of 

the light fragment than the use of a starting distance of 11 Fm. The 

Gaussian and exponential variational wave functions give different 

results, with the Gaussians giving about 5-6% higher occupation. The 

addition of a nuclear potential, which makes initial acceleration 



vanish, lowers the probability by only —1.5 percent. This calcula-

tion, with nuclear potential and Gaussian wave functions, gives a 

final probability of —14 percent on the light fragment, somewhat in 

excess of the experimental estimate of —8 percent, but we need to do a 

weighted probability distribution over the fission mass—yield curve to 

compare with experiment. 

It seems that using the Coulomb potential to accelerate the 

fission fragments from second saddle is inconsistent with fission 

data. In the calculation mentioned above the final kinetic energy of 

the nuclear system is about 300 MeV. That is much larger than the 

experimental value of 170 MeV. To match this final kinetic energy we 

choose the scission point of 17.6 Fm as starting distance. As for the 

excitation probability during the penetration of the fission barrier, 

we investigated two cases, IaI2 = 0 and la u l 	0. For the 

latter case we assumed that from the saddle point to the scission 

point the separation speed of the two parts of the fissioning nucleus 

is uniform with (a) v = 10 cm/sec or (b) v = 3 x 10 8  cm/sec. At 

the scission point of 18 Fm the excitation probability is about 

0.15 percent for case (a), -0.017 percent for case (b), and the 

kinetic energy at 18 Fm is —29.8 MeV for the former, —2.68 MeV for the 

latter. The influence on the final excitation probability for case 

(b) can be neglected. Figure 6 shows the final excitation probability 

is —6 percent for the case with laul2 = 0, E 0  =1 MeV at 17.6 Fm 

and —8 percent for the case with IaI2 = 0.15 percent, E 0  = 

29.8 MeV at 18 Fm. These results are close to the experimental 

estimate. 
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From Figs. 7 and 8 we can see that the final occupation proba-

bility on the light fragment is a strong function of the fission 

asynEfletry. The comparable (Gaussian and nuclear potential) calcula-

tion for a highly asymetric split to Se and 

gives ai.5 percent probability (Fig. 7). The near-syninetric 

division to 	6 Rh and 122.6 Ag gives 44 percent (Fig. 8). The 

The fractional mass numbers in the last case were used to strictly 

keep the center-of-mass and center-of-charge at the same point. We 

have taken care to avoid spurious center of mass motional terms by 

keeping the center-of-mass strictly fixed. We made some investigation 

of the effect of changing the masses at fixed charge values, thus 

varying a dipole term that can induce muon transitions. The effect is 

small for the range of charge-to-mass ratios found in fission 

fragments. 

In order to make a more careful comparison with experiment we must 

make a weighted sum of muon probabilities over fission yields. For 

this purpose we wish to represent our foregoing calculations in a 

simple functional dependence on fission-charge asyninetry. It seems 

likely that for large asymmetries the probability of p binding to the 

light fragment should decrease exponentially with the muon is binding 

energy difference for the two fragments. As we approach syrruiietric 

fission, we must approach a 50% occupation probability. The appro-

priate methematical function might be a Fermi function, and we 

approximate the binding energy dependence on Z as quadratic by the 

Bohr point-nucleus formula. Thus, for uranium (Z 1  = 92) 
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P(Z) = fi + exp[-b(Z2 - (92 - 

= tl + exp[b'(46 - 	 (3) 

- 	 The single adjustable constant b' can be determined from any one 

of our calculations. Let us here use the case of ZL = 40, ZR = 

52, IaI2 = 0 at R = 17.6 Fm, where the final probability is 6A. 

In this case the constant b' is 0.45. 

For fission it is really the final mass chain yield distribution 

that is best known. In order to translate such data into primary 

charge yield we have to correct for neutron-evaporation and use some 

expression for primary charge distributions. We take the 239Pu 

thermal neutron fission mass yields 13  as approximately those for 

radiationless muon induced fission. (The 2p + is transition 

energy gives comparable excitation energy to the capture of the 

thermal neutron in 239Pu and the mass difference of compound nuclei 

and 280Pu* approximately compensates for , the number of 

evaporated neutrons.) We assume constant charge-to-mass ratio in 

primary fragments, though this is known not to be quite so. Then the 

fission yield for the light fragment may be approximated by a Gaussian 

y(ZL) = Bexp[_(ZL - 38.6) 2 / 0 2 ] with a = 3.5. The constant B 

is fixed by demanding the fission yield sum to unity. Thus, B = 

(1I2)_1. Taking the product of expressions (3) and (4) and 

approximating their sum over Z by an integral from - to +OO we get a 

light fragment muon probability of -6.2%. This weighted sum is so 

nearly equal to the result for ZL = 40, ZR = 52 that we may use 

ZL = 40, ZR = 52 calculations to be representative of the full 

folded distribution. 
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It issatisfying to see that these simple calculations are in 

qualitative agreement with the experimental result of -8% p attach-

ment to the light fragment. This result comes from using the natural 

boundary condition of muon population entirely in the lowest state 

while the system is moving most slowly at scission. There is no need 

to invoke special arguments about higher state population at saddle, 

as Olanders et al. 9  did for their alternative case. The case of 

muonic fission from the fission isomer, where there is barrier pene-

tration, may require some such sudden-approximation expansion of muon 

wave function as in their alternative treatment. 

There are obviously many possible refinements to be considered in 

future work, but we do not think they will alter the main conclusions 

here. For example, more realistic nuclear charge distributions than 

the single exponential might be used. Relativistic effects could be 

taken into account in muon motion through use of the Dirac equation or 

relativistic corrections to the Schrôdinger equation. The effects on 

velocity of separation due to the low frequency quadrupole (and 

octupole) vibrations of the fission fragments might be taken into 

account. The time period for oscillation of the muon between light 

and heavy fragment (_1021 sec) is comparable to vibration periods. 

The coupling between muon motion and internal degrees of freedom of 

the excited fragments (central to K arnau khov ss Boltzmann factor 

arguments8 ) should be considered, particularly the beta vibrational 

mode. We believe these couplings to be weak after preliminary exami-

nation, but we have not made numerical calculations involving 

vibrational degrees of freedom. 
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Obviously the basis for the 	molecular wave functions should 

be expanded beyond the 2—state basis we used. The inclusion of the 

two 2p orbitals along with the is a should not only improve the 

result for final is populations but also show the final 2p populations 

that in principle might be experimentally detectable via —mesic K 

X—rays characteristic of the fission fragments. The inclusion of 2p a 

orbitals might be especially significant for fission asymmetries so 

large that the 2p level in the heavy fragment is close in energy to 

the is level in the light fragment. By the Bohr formula (E = 

const. Z 2 /n 2 ) this special degeneracy would only occur for extreme 

asynuiietry with Z H = 2 ZL  or  ZH - 62, ZL - 31. The fission 

yields are vanishingly small for such large asyTmIetries, so we think 

inclusion of 2p a wave functions in the basis will not appreciably 

change results. Of course, the cylindrical symmetry of the problem 

excludes coupling to 2p w states or any other than a states, so they 

need not be considered. 
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Appendix A. Coulomb Potentials for Extended Charge Distributions and 

Solutions of the Two—Center Problem 

The use of exponential charge distributions seems practical. We 

could make the charge distributions closer to the Woods—Saxon form by 

taking linear combinations of exponentials with different ranges, but 

we have felt the one term exponential charge distribution sufficiently 

accurate for our purposes in the mu—fission problems. 

We take 

p(r) = PoexP( 
•T;•) 

	

(A.1) 

The two constants p 0  and r 1  are fixed by the total charge 

condition and matching of the root mean square radii with uniform 

charge distribution. 

z 	 (A.2) 
p = 

0 otrr. 

2 	
Sr2pdT = 12 r = (3/5)112 rc 	

(A.3) 
(r > = 5PdT 

We took r = 1.2 x A113  Fm. The potential of the extended charge 

distribution is 

V(r) = - 	[1 - ex( 	
) - 	

ex( 	 (A.4)

I 	i )I 
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We have tried both Gaussian and exponential trial wave functions 

for the 1—atomic orbitals of each separated center. 

= (r)314 ex(_ 
	

) 

	
(A.5) 

or 

= 	1 	e_'b 	 (A.6) 
e 

The variational equation fixing r 0  (or b) for the one—center 

asymptotic state is 

	

_54(  + 2) e[1 
- W] 	

4Ze2m 
=0 	(A.7) 

- 3h 2  ,cr. 

r 	 X 	2 
0 	 2 

= - J etdt 

0 

or 

+ 8) - 
	

- 	+ 2) = 0 	 (A.8) 
Ze miir 

= b/r1 
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For the two—center variational problem we follow the standard 

LCAO—MO (Linear Combination of Atomic Orbitals—Molecular Orbitals) 

approach. The Hamiltonian for the 2—center muon motion problem with 

fixed mass—center is as follows: 

[1 (1+  
=—— 	

- 	Ir— 

I 	 r 2rj) exp( 
I - 

H 	V2 	
ZLe 	 L 1 

2m 	

)] 

. 

- similar term for heavy fragment 	(A.9) 

where r is the vector for the muon location with respect to the 

center—of—mass of the whole system, and R L 
 and R H  are the positions, 

respectively, of light and heavy charge centers. In the 2—state basis 

we get the variational wave functions and corresponding energies. 

Pu(g) = Au ( g )L + Bu ( g )H 

Eu(g) = 2(1 - S2) + HHH 

where 

A 	Ii 	B I/1 1 / 2  

U(g) 	S2 )J 	-- 

- 11 ; iG 1/2 

Bu ( g ) = _Au(g)SS + L 	2  

= (HLL + HHH - 2SHHL)2 - 4(1 - S2)(HLLHHH - H 2  
HL 

(A.1O) 

(A.11) 
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= HLL - (1 - 2S 2 ) HHH - 2S HHL 

S = 

= ( HIHIH )  

HHL = ( H IHI L> 

HLL = ( L IHI L  

The HHH ,  HHL ,  HLL and S integrals can be evaluated analytically 

and do not require numerical integration. For the case of the 

Gaussian trial wave function they are expressed in terms of error 

functions. The two variational wave functions 	and 	are 

normalized and orthogonal. 
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Appendix B. The muon dynamical equations in the 2—state model 

We solve the time—dependent Schrödinger equation 

iii 	= ft 
	 (B.1) 

in the 2—state model. Let 

(t') dt' 	 lftE(tI) dt 

= a(t) e 	
ftEu 	

+ 	a 9 (t) e 	 g 	
(B.2) 

Substituting into Eq. (B.1), we get two coupled equations: 

(B.3) 

(t) = —a (t)u(t)Ig(t)> exP[(ih) f (E(t,) - E 9 (t')) dt'j 
u 	g 

g(t) = 	 (t)j
dt 	

exP[(i/h)J (E9(t') - E(t')) dtl] 

The time differential can be expressed as 

d/dt = 	• 

We assume no orbital angular momentum for the fission fragments. 

We can eliminate time from the equations by replacing dt with dR/R. 

Hence, 
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da U 	
RE —E 

	

= _ag(uI 
3 
 I g) exp (i/h)J 	

U 	dRu] 
.dR

da 	 RE 
 

= +a(II) exP[(i/h) 

	

f 
	

g _E 
dR1] 

Let 

i6 
a = Since 

(B.5) 

IS 
a =cose g 

Substituting into Eq. (B.4) we get the coupled equations for n, 

d 	 R(E_E) 	a 
= 	u - 6 g -f 	hR' g dR' <P u IihPg > 

d6 	 R(E —E) 
= 	

6 u - 	 - 

 f 	u 	g dR' 	u hi g > ,dR

d6 (E —E) 
= sin[u 

- 6 g -f
R 	g 	 (B.6) 

After further transformation we only need two coupled equations 

for the excitation probability. 

din uj~ = _CO5(1P u I4•I 1Llg )  

- E - E 
+ 2COt 2nSifl) u Ik)g)  dR 	hR 
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R 

6  +f 
	

. 

U 	9 	hR1 
(8.7) 

In the zero initial condition (C o  = 0, n o  = 0) we have to make 

use of l'HospitaPs rule for the second equation to determine the 

initial value of dc/dR 

dR 	- 	hR 

no=o 

The transition matrix element can be derived as follows: 

3A 
= 1 	j + 	Bg 	 1 	

<H11'L> R 	
A(1 _S2 ) 	 i_s2  

The matrix elements <øHtIøL> can be derived analytically. 

They differ for Gaussian and exponentional functions, but no numerical 

integration is required. 

Since 	and 1P are orthogonal, the probability of the muon 

being in the upper level is p = Sin2r. 
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Figure Captions 

Fig. 1. Comparison of 	binding energy calculations as a function 

of separation distance between two Z = 46 nuclei. The lower 

family of curves is for the is °g (symmetric) orbital and the 

upper for the is au  (antisymmetric). The lowest (solid) 

curve in each family is the exact solution, point charges. 

The middle two curves are Gaussian variational wave 

functions for point charges (see text). The top (long 

dashed) curve in each family is a variational calculation for 

extended exponential nuclear charge distributions. 

Fig. 2 and Fig. 3. 	Mu-minus binding energies, variational wave 

functions, for unequal fission fragment charges. 

Fig. 4. Dynamic muon fractional probability bound to light fragment 

as a function of fission fragment separation distance. 

Boundary conditions and other parameters of Olanders 

et al. 9  are used as a test case. 

Fig. 5. Muon lightfragment probability curves for the most probable 

charge division in U 238  fission. 

Fig. 6. Probability curves for more realistic viscous descent from 

saddle to scission point for fissioning system. 

Fig. 7. Probability curves for very asymmetric fission. 

Fig. 8. Probability curves for near—symmetric fission. 
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