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ABSTRACT 

If two laser beams have a difference frequency 

nearly equal to the plasma frequency, nonlinear inter-

action resonantly excites longitudinal plasma oscilla-

tions. These then induce transitions to other transverse 

modes. Nonlinear damping of the longitudinal mode heats 

the plasma. The process is optimized by having parallel 

beams, equal laser intensities, and damping equal to the 

frequency mismatch. 

We propose a new method" of heating a plasma, utilizing the 

excitation of longitudinal plasma waves by resonance with the difference 

frequencies of, a set of transverse waves. The energy is provided by 

two (nearly) parallel laser beams, with frequenCies (WL'WL_l ) dif-

fering by approximately the plasma 

with the mismatch L\ small (say, 

frequency: w
L 

-2 
10 w), and p 

-'W l;;;w +A, 
L- p L 

The non-

linear interaction of transverse and longitudinal waves [see Eq. (2) 

and the insets of Fig. 1] excites a longitudinal wave, with wave-vector 

~p - ~ - ~-l' which is nonlinearly damped, if its "amplitude is suffi

Ciently large. (1ilet:e. is no Landau damping, since W /k "" c; collisional p p 

damping is too weak for our purposes.) This wave in turn interacts 

with each of the two transverse waves (L, L-i) to produce two more, 

-2-

at IL -IL -k 
"-1.-2 - ... 1.-1 ~p 

and IL 1 = IL + k. When 
~+ ;...-r. ""P ~-l are nearly 

parallel, the new mismatches 6£ 

2 "2 2 
dispersion relation w£ = k£ c 

are not. 

W£_l - wp' determined by the 

are also small; otherwise they 

In quantum language"a coherent set of photons L undergo 

induced (by L - 1) decay into photons L - 1 and plasmons. The 

damping of the plasmons deposits energy irreversibly into the plasma. 

Some of the plasmons, before they are absorbed, engage in further three-

wave interactions, inducing the decay 'of the photons L - 1 into 

photons L - 2, and so on, coherently cascading the photon frequency 

downward. Others induce transitions upward in frequencY,by converting 

L into L + 1, and so on. Because energy is conserved in these inter-

actions, and also the number of photons is conserved, the process must 

be preferentially downward, to allow for the plasma heating. (See 

curve 5 of Fig. la for an example.) For maximum efficiency, the 

downward rate should be maximized relative to the upward spreading. 

This is accomplished if the two laser intensities are roughly equal, 

and if the damping rate approximates the mismatch [see Eq. (5)]. 

The resonant interaction between two transverse waves and one 

longitudinal mode has been studied by Kroll et al.,l TSytovich,2 and 

Wolff,3 among .others. The fundamental equations for the interaction of 

thE scalar potential ¢(z;t) of the longitudinal;;ave and thE vector 

potEntial Ax(z,t) of a set of parallel, linearly x-polarized trarisverse 

waves is 

( el 2) dt2 + wp "¢(z,t) (la) 

(lb) 
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where we treat the unperturbed electron plasma as cold, uniform, and 

stationary; and ignore dissipation for the time being. To derive these 

. 3 t equations, we use the invarianoe of the canonical x-momentum 0 

obtain Vx = -eAximc. The Lorentz force along z is thus (e/c)VxBy = 

_(e2/2mc2 )OAx
2/0Z, whence ~noevz = _(0/oz)Wp2[~ + (e/2mC

2
)Ax

2
]. This 

. .. 2 2 2 2 
is then inserted into the last term of (0 lot )(0 ¢/oz ) = 

_(02/Ot2 )4rrne = 4rre(02/otoz)nvz ;, (0/oz)4rrnOevz ; we have used the 

Poisson and ·continuity equations,· and have dropped harmonic-p~oducing3 

terms. Integration with respect to z then yields Eq. (la). For 

Eq. (lb), we use the wave equation OAx = -4rrjx/c = 

(4rr E/c)(n + on)(eA fmc), and replace 5n by - -(4rrerl (l~/oz2. 
. 0 x 

The coupled equations ·for the wave amplitudes are obtained from 

(1) by sett-ing Ax(z,t) = E.eA.e(z,t)exp i(kez - ~.et) + c.c" and ¢(z,t) 

-i~l(z,t) exp i(k·z - w t) + c~c .. Assuming that the amplitudes vary . p p 

slowly, we obtain 

(2a) 

(2b) 

in the coefficient of (2b), and we have 

intI-oduced a phenomenological damping coefficient r in (2a). The 
. . 2 . 2· 

corresponding wave-energy densities are Wp:: [wpoe/ow]kp l¢ll /4n = . 

w 2/" /2/21l C2 and W 5! w -l[o(w2e)/dwJCw.elc)2IA.e12j41l = w/IA.e12/21lC2, 
p .Pl fi. .e 

2 2 .. . ( ) t where e(w) = 1 - (wp /w). We note that Eq. 2b conserves ransverse 

action (photon number): (%t) E.eW.elw.e= -(O/07r)Ep,C.eW.elw.e; while the 

set (2a), (2b) conserves energy (with dissipation): 
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dinal mode has zero group velocity.) 

We study here (a) the boundary-value problem;, in which two 

laser beams with steady intensities o 0 CW
L 

and CW
L

_l are incident 

on a semi-infinite (z'> 0) plasma, and we look for quasi-steady state 

solutions as fUnctions of z; and (b) the initial-value problem, in 

which two laser modes are present at t = 0, uniform in spaCE, with 

energy densities WL
o and and we look for the evolution as a 

function only of time. The fUll space-time problem will be studied in 

a later publication, together with the important effect of plasma non-

uniformi ty • 

In the steady-state problem, the dissipation rate is 

Q = 2yWp = -(d/dZ)E.eC.eW.e ' from the energy conserVation law. Dividing 

both sides by the constant action flux density E.eC.eW/w.e:: J , ·we find 

that Q/J = -~ d(l'.;.jdz, where (.e)(z) is theaction-,:eighted mean 

mode number. Thus it is desired to have (.e) decrease as rapidly as 

possible. It.s derivative is given by Eq. (5)~ Similar considerations 

apply to the initial-value problem, 1vhere ·-d(.e)/dtis to be maximized. 

The set (2) has the characteristic rate4 rO == K ~o 

[W 0 /(8nmc2)]~(w /L) ,but this is not the actual rate, which is found L p 

below. In dimensionless variables [t' == rot, z':: roz/c, 6' == biro, 

y' :: rlro' ¢i" ¢/A1
o

, A.e==A/~oJ,the equations (2) retain the 

same form [denoted (2)' below],but with K deleted. The boundary (or 

initial)conditions are i9 
1),(0) = 1, 1),"1(.0) aCt e(a positive). 

An explicit solution for the boundary-value problem may be 

found, if all the mismatches are set equal (6.e -+ 6); this is equivalent 

to ignoring dispersion, which is not too bad if.e »1. To be consist-

ent, we then set c.e -+ c, and £ -+ L in the coefficient of (2b) • For . 
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tiffie-independent A£, the steady-state solution of (2a)' is 

¢l'(z',t') = Cy' - i6,)-lB exp(-i6't'), where B;: L£A£'(Z')A~~l(Z')' 

Thus ¢(z,t) is driven at.the (common) beat frequency w£ - w£_l = 

~ + 6, not at its natural frequency wp' Substituting ¢l' into 

. (2b)', we obtain 

L dA£'/dZ' - (r' - i6,)~lB A' • 
£-1 

(:3) 

'-i9 We use (3) to show that dB/dz' vanishes, i.e., B(Z') = B(O) = ae· . 

Introducing p;: tan-l (6/r) and t,;: 20: L- l (r,2 + 6'2) ~ z' = 

-1 -1 2 2 _l 2 . , 
20: L c (r + 6 ) 2 rO z and setting A~ - Ap exp 1£(9 - p), 

, 11 ff " 

we can write (3) as 2 dA/d~ = A£+l - A£_l' This is the recursion 

relation for Bessel functions, except for sign. Hence the solution of 

(3) satisfying the boundary conditions yields· 

, ',2 ~+n 

:~ 12 = a2 J 2 2 ( ) I--r,-l-n I n + I n+l + 2a cosp I n I n+l ' 

where !; is the argument of the Bessel functions. 

(4) 

.From Eq. (3), we may directly calculate the evoiution of m~an5 

mode number (£)(z) ;: L£ £/Ap/2(Z)/L£iA£/2(z). In dimensional var

iables, we find the cascade rate 

r d{£ ) 
-c~ 

1 

4L3 

2 a WO 

--2 ' 
nmc 

where W
O

;: WL
o 

+ ~-l .. is the total input energy density. We recall 

that r represents the rate of plasma heating, and is to be maximized. 

(Note that in contrast to r O' it varies linearly with ~.) For 

given WO
, it vanishes as a2~ 0 or ~, and is max~mized at a = 1. 
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This is illustrated in Fig. 1, which presents IA£' 12 versus £, at 

several ~,for the two cases a = 1 (~-l = WL
o ) and 

a = 10 (~-l = 100 W
L

o). The latter case evolves alniost symmetrically 

about L - 1, and little heating results. The former case is quite 

asymmetric, which is desired. The dependence of r on the damping 

rate ris similar, r being maximized when r = 6. This is evident 

from Eqs. (4), where the ,asymmetry between higher and lower modes is 

seen to be proportional to 
221 

cos P = r/(r + 6 )2. 

Formula (5) leacls to an estimate of required laser intensity~ 

for a. criterion that (.1, ) change by unity in one centimeter, say. 

Taking L ~ 10, r ~ 6 ~ 10-2 w, w - 2 j( 1013 sec -l, a ~ 1, 
P p 

17 3 0 14 2 n ~ 10 cm -, we obtain W c - 10 watt em - . Thelongi tudinal 

field produced is then sufficient to produce damping by parametric 

instability,6 with of the order assumed. 7 

To study the effects of variable mismatch 6£ (caused by 

dispersion), we have numerically integrated Eqs. (2) for the uniform 

case (?J/oz 0). Of.the several cases studied, we report only the 

14 -1 ( ) following: ~ was chosen to be 1.8 x 10 sec -C0
2 

laser, and 

L = 10. The initial p0\:ier density P (expressed in w/cm2 ) .was in modes 

10 and 9, with a
2 = 0.1. The damping coefficient was chosen to be 

4·~ -1 . / r = 10 p2 sec ,corresponding to r' = 0.3, and r 0), = 0.005 at 

10
14 w/cm2 • 

The inismatch ~was adjusted for optimum energy transfer. 

Because the mismatch Lp, decreases algebraically with P, due to the 

plasma dispersion, it is .desirable to choose .~ positive. Then for 

higher modes, the mismatch increases , and thus coupling to those modes 

is inhibited; while for lower modes, the coupling is enhanced as 6£ .. 

decreases and passes through zero to negative values. The best choice 
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of 6:r, was in the range 0.01 < 6:r,/mp < 0.03· With this choice, energy 

transferred to higher modes was blocked, and eventually made to cascade 

back down, with little energy remaining in those modes. Figure 2 shows 

the fractional energy transfer after a time interval t = 5 ),-1. (For 

,later times, the transfer rate becomes relatively slow.) We note that 

the effective, threshold power density is 1014 w/cm2; for Weaker power, 

the mismatch prevents appreciable energy transfer. 

When the calculation was repeated with 6£ held constant (Le., 

neglecting dispersion), typically 0.3 to 0.4 of the energy remained in 

the higher modes £ > L, and did not cascade down. In this and other 

respects, there was agreement between the time-dependent uniform case 

and the space-dependent steady-state case. 

When the initial laser beams are not (nearly) parallel, sponta-

neous frequency conversion to other transverse modes will not occur 

because of the large mismatches. The longitudinal mode then catalyzes 

the complete transfer of action from L to L - 1. For the anti-

parallel case, for example, the longitudinal mode has k - ~ - ~ 
~p - ;"1" ~L-l 

as before, but now I~pl ~ 2~ ~ 2 WL/c, whereas in the parallel case 

k ,,~ W /c « 2 WL/c. Asa result, the wavecouping on the right side of 
p, p 

Eq. (It), proportional to kp2, isgreatiy enhanced. To balance the 

advantage of enhanced coupling are two disadvantages and one further 

advantage. First, the damping rate may be greatly enhanced by Landau 

damping (since now w/kp « c), beyond the optimum )' ~ 6. Secondly, 

the further tra.nsi tioD to L - 2 cannot be induced by the longi-

tudinal mode k , since this would require~. - ~ - k -
~~~-~~ ~-

or ~-2 ~3~ ,violating the dispersion relation. This 

means that the further decay must be induced instead by a third laser 

beam L - 2 in any desired direction, and the corresponding longitudinal 

wave excited k' 
""P = ~-l - ~-2 

-8-

is not the same as k • 
-p Thirdly, no 

energy is lost on up-conversion, since each transition must be seeded 

by its own laser beam. 

!he idea of using laser beats to heat a plasma was suggested to 

us bi'M. Rosenbl\¢b ana N~ Kroll. Discussions with Y.-R. Shen and 

C. ToWlies were helpful for orientation. S. Bodner, W. Kunkel, 

D. Nicholson, and R. Riddell provided us with good advice and encour~ 

agement. 

"L!. 
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FIGURE CAPTIONS 

Fig. 1. Mode energy as a function of mode number £;: ill£/ ~ , at 

several positions ~ [defined below Eq. (3)]. In case (a), 

the laser intensities are equal (ex =1). In case (b), they 

are very unequal (ex = 10). The damping rate is cOIIIParab1e to 

the mismatch (cos p = 0.5). 

Fig. 2 •. Fractional energy: transfer as af'unction of laser power density. 
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