
LBL-9753 C.~ 
Prepr;nt 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Published in Physics of Fluids, Vol. 22, 
September 1979, pp. 1700-1706 

UNSTABLE CONTINUOUS SPECTRUM IN MAGNETOHYDRODYNAMICS 

Eliezer Hameiri and James H. Hammer 

September 1979 

--------------.-
TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 

RECEIVED 
L.t\, VIRENCE 

BERKE!,.5Y LABORATORY 

NUV 161979 

Ll13Rl\RY AND 
DOCUMENTS SECTIO[\! 

). 

I 
\~ 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 

~ , 
~ 

~ 
~ 
f' 

Y-> 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

'. 



(II 

Unstable continuous spectrum in magnetohydrodynamics 
Eliezer Hameiri 

New York University. Courant Institute of Mathematical Sciences. New York. New York 10012 

James H. Hamme!"') 

Lawrence Berkeley Laboratory. University of California. Berkeley. California 94720 
(Received 24 January 1979; final manuscript received 7 May 1979) 

The continuous spectrum need not be stable for an equilibrium with flow. The case of a noncircula~. 

rotating 8 pinch is shown to have an unstable continuum with the instability interpreted as a. parametnc 
instability' arising from coupling between the rotation frequency and the plasma wave frequencIes. On the 
o.ther hand. equilibria with sub-Alfvenic flow parallel to the magnetic field in incompressible plasmas. as 
well as static equilibria. have a stable continuum. A formulation to determine the continuous spectrum IS 
given in terms of characteristic surfaces for the equations and does not involve the use of any partIcular 
system of coordinates. 

I. INTRODUCTION 

The study of the temporal behavior of plasma systems 
under the assumption of a small deviation from an 
equilibrium state, is equivalent to the study of a sRec
tral problem through the applicadoh 6nhe Lilplac~: 
transform to the linearized equations of motion. The 
spectral problem can be formally obtained by assuming 
an exponential behavior exp(iwt) in time. It is known 
that in the magnetohydrodynamic model, the resulting 
spectral problem cin be cast in a formally self-adjoint 
form l if the equilibrium state is static. As a result w2 

must be real. When the equilibrium involves plasma 
flow, this property is lost and the spectral problem is 
not self-adjoint! We will uncover an additional dif
ference between the spectra of steady and static equil
ibria. It will be shown that the part of the continuous 
spectrum known as the Alfven and Cusp continuum, is 
always real (and therefore exponentially stable) in the 
static case while it may be compl,~x ,in the._general , ~. ' ... , '" ., 
steady equilibrium case. . 

There seems to be some misunderstanding in the 
plasma physics literature with Iregard to the physical 
and mathematical meaning of the continuous spectrum. 
Let us now describe the mathematical view of the spec
trum.3 Consider the evolution equation a~/at=LI:" with 
L a spatial operator defined in a complete normed space 
(say a Hilbert space). The corresponding spectral 
problem is (L - iwH = O. For any element f ofthe space, 
the integral W)=(-1!21T) J reiwt(L -iW)-lfdw ~ields a 
solution to the evolu~ion equation, where r is a closed 
contour contained in the domain of analyticity of 
(L - iwtl (viewed as an operator-valued analytic func
tion of w), and encloses a singularity of (L - iW)-l. The 
different types of the spectrum can be defined in terms 
of the types of the singularities of (L - iW)-l. Poles are 
the manifestations of eigenvalues. Continuous singu
larities give rise to the continuous spectrum. Unlike 
some views, the continuous spectrum is not a branch 
cut in the w plane through which every solution of the 
Laplace transformed equation can be continued analyti
cally. Rather, only speCial solutions can be continued. 

a)Present address: Lawrence Livermore Laboratory, 
University of California, Livermore, Calif. 94550. 

In fact (L - iW)-l, when it exists as a bounded operator, 
must be defined uniquely because it is literally the 
unique inverse of L - iw. 

An investi .... ation of the continuous spectrum (the con-
," I 

tinuum) .is of interest.fo}- a variety of reasons. It was 
proposed' that radio frequency (rf) heating, by means 
of resdnating with a continuum frequency, could be used 
as a cheap low-frequency heating mechanism. The con
bnuous=spectrum can also be ip.entified analytically in a 
relativ~ly simple way while the rest ofthe spectrum can, 
in general, be treated only numerically. Inaddition, the 
continuOus spectrum (or actually a somewhat larger set 
known ~~ the essential spectrum), serves as the only 
location of possible accumulation points of eigenvalues. 
In particular, the celebrated ballooningmodesS are, in 
fact, limlt points of eigenvalues with large toroidal wave
numbers and, significantly, may be unstable. 

In the._next two sections we describe the origins of the 
continuous spectrum"in magnetohydrodynamics. It 
arise~ from th~ eX:isfence of characteristic surfaces in 
the equatio'ns and can be derived without the use of any 
particuiar system of coordinates. For a better under
standing. we treat 'the special case of a noncircular ro
tating e~pinch in straight geometry (a/az=O). While the 
circuia'Z' case is known to have a stable continuum6

,7 for 
a fixed axial wavenumber, the noncircular case which 
also describes a toroidal e pinch will be shown to have 
an unstable continuous spectrum. This instability will 
be interpreted as a parameteric instability arising from 
coupling between the periodic rotation (the driving force) 
and the plasma wave frequencies bised on k". The dis
cussion will be based on the Hamiltonian nature of the 
equations of motion and will be presented in Secs. III-V, 
In the following section we show that the continuum in
stability is not universal to systems with flow. The 
case of incompressible flow parallel to the magnetic 
field will be shown to have a stable continuum. Essen
tially the same proof is used to show that a general 
static equilibrium has a stable continuum. This last 
result was known for the axially symmetric tokamak 
configuration.8 The general result was also recently 
obtained independently by others.9 

After the results of this investigation were announced,!o 
the autp.ors learned of a related work by Hellsten and 
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Spiesll who treated the complementary case of a toroidal 
plasma rotation with a purely poloidal magnetic field. 
This case too may h:we an unstable cusp continuum, 
but its origin is hydrodynamical and-is, in fact, a modi
fication of the unstable continuous spectrum in hydrody
namics. (The cusp continuum has a hydrodynamical 
counterpart while the Alfv€n continuum is genuinely 
magnetohydrodynamical.) As a result it can be sta
bilized by a simple requirement such as having iso
thermal magnetic flux surfaces. In contrast, the para
metric instability we ,describe in this paper disappears 
in the hydrodynamical limit and, by its nature, will be 
almost impossible to suppress within the ideal plasma, 
model. 

II. THE EQUATIONS 

We use the ideal magnetohydrodynamics equations in 
the following form: 

p(ut+u ,Vuh V(p +B2/2) - B ·VB = 0, 

Bt+u 'VB+B divu - B 'Vu= 0, (1) 

, Pt+u·Vp+pdivu=O, 

St+u,VS=O, S=p/p', 

where B, u, p, and p are the magnetic field, the plasma 
velocity, pressure, and density, respectively. For the 
determination of the continuous spectrum it is useful to 
ob.serve that all spatial derivatives appear in the form of 
two directional derivatives, namely, U· V and B· V, ex
cept for terms involving V(p+B2/2) and divu. Hence, 
only p + B2/2 and on'e component of u are differentiated 
in the direction of u x B. It follows that tile surface with 
normal u x B is a characteristic surface of the system 
which determines the equilibrium states. "Initial condi
tions" cannot be specified on it'arbitrarily since the 
normal derivative of only two quantities will be deter
mined while the other six equations will impose restric
tions on these conditions. 

The equilibrium state which is of interest to us, in
volves an asymmetric rotating e pinch. Thus, we con
sider u in the (x, y) plane, B= Bi. All equilibrium quan
tities are independent of z. The second and third 
equations in (1) can be written as 

div(Bu) = 0, div(pu:) = 0 . 

We conclude 

u .V(B/p)·=O 

so that B / p is constant along streamlines. The last 
equation in (l)implies that S is also constant along 
streamlines, ' 

u ·VS=O. 

Taking the scalar prodti~t-'of the inomeiltum equation 
with u, we find after ~sing (2) and (3) 

U. v('!'/u/ 2 + -Y- sk'-' + B2) = O. 
2 y-l P 

(2) 

(3) 

(4) 

This is the generalized Bernoulli equation for the case 
of a magnetic field perpendicular to the flow,'2 and it 
yields another constant along streamlines. It can be 
shown that, in analogy with fluid dynamics, prescribing 
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the previous three arbitrary functions of the flow flux 
and the domain of the plasma, is sufficient to determine 
the equilibrium state. , 

The1lirtear,stability .. o;£this state is determined by li
nearizing system (1) atiout the equilibrium. We also 
take the Fourier transform in t and z, or equivalently 
assume a dependenc~ of 'exp[i(wt +kz»). For reasons that 
will presently become apparent, we now determine the 
characteristic surfaces of the resulting system of equa
tions. These are surfaces on which initial conditions 
cannot be prescribed arbitrarily, Clearly, the differ
entiated terms of the linearized equations are exactly 
those that appear in (1), with coefficients that are 
equilibrium functions, e.g., the term U· VB generates 
(among others) a term 11o'VB, in the perturbed system, 
with the subscripts 0,1 denoting equilibrium and per
turbed quantities, respectively. In addition, time deri
vatives do not appear. Thus, the type of the perturbed 
system is the same as that of the system which deter
mines the equilibrium state. It is known in the litera
ture'2 that the system (which is of eighth order) is either 
fully hyperbolic or has two complex characteristic sur
faces and six real ones. In our case, the system is 
fully hyperbolic only for a super-magnetosonic flow, 
i.e., /110/2> YPol Po +B~/ Po, which is assumed not to be 
the case. Using the remark made at the beginning of 
the section,we make the observation that a surface 
with normal ,110 x Bo is always a six-times characteristic 
of the linearized, transformed system, and one can find 
six equations in the surface that have to be satisfied. 
We remark that in the, case of a containment equilibrium 
with magnetic flux surfaces and flow, the flow must of 
necessity be within the flux surface because of the fro
zen-in condition, and the' flux surface is then'the char
acteristic surface. This is, of course, the case even 
when the equilibrium is static. It is this property which 
enables a reduction of the system to a single, second 
order equation in some sufficiently symmetriC cases.5

,'3 

The linearized and Fourier transformed form of Eq. 
(1) is 

iwpu, +iwp,u+ pu' Vu,+ pU,' Vu+ p,u' Vu+ V(p, +B'B,) 

= B· VB, + B, • VB , 

iwB, +u' VB, + u,·VB+ B, divu+B divu, 

=B·Vu, +B,'Vu, 

(5a) 

(5b) 

iWP, + U· Vp, + u,' Vp'+ YP divu, + YP, divu= 0, (5c) 

iwS,+u'VS,+u,'VS=O, (5d) 

where the subscript 0 was suppressed, B·V can be re
piaced by ik IB /' and p, in (5a) can be expressed in 
terms of p" S, by using the linearized form of p =Sp', 
Now, replace p, by (p, + B·B,) - B·B" then add -B/(yp) 
or'Eq. (5c) to (5b) to eliclinate the divu, term there. 
The resulting system can be written symbolically as 

VT+~wv=Av+Bw+C~; , 
wT+iu.)w+Pwn~Dv+EUJ+FvT , 

where the subscripts denote derivatives, alar = U· V, 

(6) 

w~ is the derivative in the normal direction, A-P are 
matrix coefficients, w is a 2-vector containing the per-
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turbed total pressure P1 +B·B1 and the normal com
ponent of u1. v is a 6-vector which houses the rest of 
the perturbed quantities and is not differentiated in the 
normal direction. The second equation in (6) stands for 
(5c) and the normal component of (5a). 

III. THE CONTINUOUS SPECTRUM 

The continuous spectrum of the perturbed system with 
w the eigenparameter, can be found by taking linear 
combinations of the equations that involve only deriva
tives in the characteristic surface, and then setting the 
two dependent variables that are differentiated else
where across the surface to zero. In our case it means 
that we consider 

dV/dT+ iwv=Av. (7) 

This is a system of six ordinary differential equations 
along each stream1ine (characterized, say, by a stream
function I/J), with periodic ooundary conditions. The 
eigenvalues of this system w"(I/J) determine the continuous 
spectrum, when I/J is taken as a continuous paramefer. 

A mathematical proof of this characterization of the 
continuous spectrum exists, and will be given else
where,14 The formal procedure, however, is equivalent 
to the ones used by Pao" and Grossmann et aL 15 for 
some static equilibria. Reference 15 suggests the use
ful heuristic argument that the continuous spectrum 
manifests itself by allowing large derivatives in the so
lution, which are only possible across characteristic 
surfaces. However, if one wants to pursue this argu
ment further and try to find the kind of singlllarity which 
is generated by using the natural extension of Pao's" 
procedure, it can be shown14 that the outcome may be 
(I/J-I/Jo)C for any real number c (even c> 0), with I/J= l/Jo 
the characteristic surface under consideration. Clearly 
for c sufficiently large, the derivatives across the sur
face are not large. Nevertheless, this procedure has 
its merit and will be shown to relate14 to the existence 
of the so-called "singular sequences" which characterize 
points in the essential spectrum. 

Going back to system (7), we first write down the sim
ple equation for the perturbed entropy s =$1 

ds/dT+iws=O, s(O)=s(T) , (8) 

where T parameterIzes the streamline'a's' the time it 
takes an unperturbed fluid particle to move along its 
trajectory. T is the period of this motion. The solu
tion to this equation is S(T) = s(O) exp( -iWT). Either 
s=O or wT=21Tm for some integerm, i.e., w=mQ(l/J), 
with Q = 21T/T the frequency of the unperturbed motion. 
Since we are interested in the unstable part of th.e spec
trum, we assume w'" mQ so that s = O. The same equa
tion (8) holds for the perturbed normal component of B, 
and it is also set to zero. Equation (7) is now a fourth
order system. A further simplification is obtained by 
defining y = v exp(iwT)., This eliminates w from (7) and 
it now enters only through the boundary conditions 

d 
dT y=Ay, y(T)=~y(O), (9) 

where we define 
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~ = exp(i wT) • 

The boundary <;onditions require that a vector solution 
y return to its initial direction after time T. The num
bers ~ such that y(T) = ~,y(O) are known in the literature16 

as the Floquet multipliers of the system (9), and their 
number is the same as the order of the system (which 
is 4 in our case). Once the multiplierS \(i = 1, ... ,4) 
are known, w is found to be w;",(iJI) = w;o(l/J) + mQ(I/J), with 
m any integer. Clearly, the continuous spectrum is 
real if, and only if, 1\1 = 1 for all i. 

The Floquet multipliers can be found in the following 
way. We arrange four independent solutions of (9) (ig
noring boundary conditions) as columns of a matrix Y. 
Y'=AY, with the p,rime denoting d/dT. y'is picked such 
that Y(O) =1, the identity matrix. Every solution is a 
linear combination of the columns of Y and thus can be 
written as Y~, with ~ a constant vector. The multi
pliers are simply the eigenvalues of Y(T), since then 
there is a ~ such that Y(TH = ~~, and y(T)= Y(TH satis
fies the boundary condition in (9). In the next section 
we investigate the properties of the multipliers of our 
system. A good exposition of the theory involved may I 

be found in Ref. 17. We will develop some of the basic 
properties to make the discussion reasonably self-con
tained. 

IV. HAMILTONIAN PROPERTIES OF THE CONTINUUM 
The system (9) can be written as 

y'=JHy, 

with J an antisymmetric and H a symmetric matrix 

J=( 0 
-I 

1 

T _ (1 B' i B ' ' \ ;wT 
y-f3p h'pq It,tUh,-qult)e , 

where the subscript t denotes the component along a 
streamline, 

q= IUoI, f3 =yp/(yp+B2) , 

(10) 

(11) 

and all coefficients are equilibrium quantities. Because 
of the equilibrium properties (2)"':(4), both f3 and q can 
be written as functions of p for a given streamline, and 
B/p is constant. We note that the coefficients in (10) 
are real. 

A system of the form (10) is recognized as a linear 
Hamiltonian system. In the more traditional way the 
Hamiltonian will be defined as ~ yWy, and the first and 
last two components of y will be considered the coordi
nates and momenta, respectively. Linear Hamiltonian 
systems give rise to symplectic matrices, i.e., if Y is 
a solution matrix of (10), Y(O)=I, then for all T 

(12) 

This can be shown by noticing that the derivative, with 
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respect to i, of the left-hand side of (12) vanishes, that 
(12) is satisfied at T = 0, and that J T = -J by its defini
tion. Relation (12) can be written as 

(13) 

This similarity relation implies that the set of eigen
values of Y is the same as that of y-1. Also, since the 
system (10) is real, if A is an eigenvalue of Y, so is 
its complex conjugate. Thus, X, A*, l/A, l/A * are all 
Floquet multipliers if A is such. Notice that 1/A * is the 
reflection of A in the unit circle. Since system (10) is of 
fourth order, it is posSible that all multipliers are re
lated to one A [Fig. 1(c)]. The system is stable only if 

: all· multipliers are on the unit circle. Because of (9), 
the relation between the multipliers translates into the 
statement that w, w*, -w, -w* are all eigenvalues if one 
of them 'is, and there is always an exponentially grow
ing mode if an eigenvalue is complex. 

. Before investigating the ·multipliers more closely we 
can determine them asymptotically for large wavenum
bers k (or actually for kB/fp» 0). Using a standard 
method16 we can obtain sol.utions of the form 

y= f exp[k ~T ~(T)dTJ, 
1 1 

f= fo+ k f1 + k2 f2+'" , 

(14) 

where f is a vector function and Il is a scalar. In view 
of (11), system (10) can be written symbolically as 

y'=(kA+p'B)y (15) 

with A a matrix function of p and B a constant matrix. 
The kth and zeroth-order terms of (15) yield 

(A - Ill)fo=O, (A - Ill)f1 = f~ - p'Bfo. (16) 

The first equation implies that Il = Il(P) is an eigenvalue 
of A with fo as an eigenvector determined up to a scalar 
multiple, fo=a(T)cp(p) and cP is a known vector. The 
second equation can be solved for f1 only if the right
hand side satisfies a solubility condition which requires 
.that it be orthogonal to the eigenvectors of A T corre
sponding to the eigenvalue Il. If g(p) is such an eigen
vector, the orthogonality condition yields an equation 
for a(T) which, after replacing T by p as an independent 
variable, can be written as 

gTC~ fo-Bfo)=O (17) 

Clearly, a = a(p) and is periodic. To leading order, 
the Floquet multipliers are therefore exp(k J : Il dT), or 

A1 ,2 = exp(± ikT (B/v'p»)[l + O(l/k)] , 

~3,4 =exp[±ikT(B(/3/p)1/2)] [l.tO(l/k)], (18) 

where 

(f)= -.! (T fdT = -.! 1: f dl 
. T 10 T Y q 

is the time average of f. The logarithm of (18) yields 

W1,2 = rnO± k (B/!P>+ O(l/k) , 

(19) 
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The first two eigenvalues are identified as the Alfven 
continuum and the last two as the cusp continuum. In a 

'circular cylinder the average symbols can be dropped, 
the correction term O(l/k) vanishes and (19) is the 
familiar expression for this case6 with rn being the 
separation variable from the exp(ime) dependence. Re
turning to (18) we see that.for large k, and when the ex
ponents do not differ by approximately a multiple of 21Ti, 
the multipliers cannot be. the reflections of each other 
with respect to the unit circle, and thus must be on the 
circle. Hence, the continuous spectrum is realfor large 
k, except ,perhaps for narrow bands in k of width of or
der l/k around the points where, to leading order in k, 
two multipliers coincide. 

Before continuing with a complete description of the 
continuum, we point out that for k = 0, EC!.. (15) can be 
solved expliCitly as Y= ePB with Ya matrix solution. 
Thus, all solutions are periodic and the multipliers 
are \ = 1, i = 1, ... ,4, which is a stable stllte . 

V. A PARAMETRIC INSTABILITY 

A full description of the Floquet multipliers for all 
ranges of k will now be given. It is based on general 
results in the theory of linear Hamiltonian systems. A 
comprehensive and simple description of the theory can 
be found in Ref. 17. . 

A simple multiplier on the unit circle will remain and 
move along the circle as k is varied continuously. Be
cause the matrix H in (11) (essentially the Hamiltonian) 
is monotonic in k, the motion of the multiplier will be 
monotonic in its direction as k increases. A multiplier 
can deviate from the circle only after it coalesces with 
another multiplier moving in the opposite direction. De
viation from the circle will then occur only if the two 
eigenvectors corresponding to the two multipliers also 
coalesce (which will be the case in general). After de
viating from the circle, they will move in opposite direc
tions so as to remain the reflections of each other in the 
circle. After some interval in k they will coalesce again 
on the circle and continue their motion along it in their 
original opposite directions. Since A and A * are both 
multipliers, there must be two eigenvalues moving 
clockwise and two moving in the opposite direction. At 
k = 0 it was found previously that all multipliers coalesce 
at A= 1 but do not then deviate from the circle because 
they do have a full set of eigenvectors. As k increases, 
the system remains stable until the first two multipliers 
coalesce at A = -1. From thenon the system goes through 
unstable bands in k which become infinitely narrow as 
k - 00. The initial behavior of the system is described 
in Fig. 1. The general case does involve deviations 
from the unit circle and thus, an unstable continuous 
spectrum. This was also confirmed by some numerical 
checkS. For a better understanding of this phenomenon 
we present the following explicit example of instability. 

Example: Consider the incompressible limit (Y_oO, 
/3 -1) in which pis a constant along streamlines, p' = O. 
Equation (2) implies that B is also constant on stream
lines, and Bernoulii's law (4) reduces to q2/2+p/p 

= const (I/i). This merely serves to determine p while q 
decouples from. p and is the only nonconstant entity along 
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,,. 

(0) 

( C) 

FIG. 1. Initial behavior Of the Floquet multipliers as k in
creases from zero; Al.3 move counterclockwise, A2.4 move 
clockwise. (a) System is stable. (b) First unstable coupling, 
the complex w's satisfy Re w = fI/2. (c) Second coupling, all 
eigenvalues are complex. 

l/J. System (10)'now decouples into two independent 
systems ' 

Y;= (kB/p)Y3' V;= -kBy!> 

y;=(kB/pq2)Y4' y~=-kBq2Y2' 

(20) 

(21) 

System (20~ has constant coefficients and is readily seen 
to be stable. For the second system we define w = qy, , 
and get" 

w" +'[k2(B2/p) - (q"/q)] w= O. (22) 

This is Hill's equation which is known to have unstable 
bands in k. To be more specific, replace -q"/q by' j(T) 
and k2B2/p by>. and consider (22) an eigenvalue problem 
for>. with periodic boundary conditions, and j assumed 
to be known. The eigenfunction corresponding to the 
lowest eigenvalue \, is known'6 to be positive every
where. Let q be that eiegnfunction (q = /110/ should be 
positive). It satisfies 

q"+[>'O+j(T)]q=O, 

or -q"/q=\,+j. In (22) we have 

w"+ [WB2/p) + )0+ j(T)]W=O. 

(23) 

(24) 

If now j is so chosen that (24) becomes Mathieu's equa
tion, say j = COS2T, >. 0 serves as a shift in k such that 
k 2 = 0 corresponds to the boundary of the first' stable re
gion. Once q(T) is found one can pick an analytic closed 
ctlrve of length L = J: q dT ,specify q approprfately on 
it, and then solve for a flow in the neighborhood of the 
curve. ,This will be a flow with unstable continuous 
spectrum. Notice that unbounded growth.in Tof solu
tions to Eq. (22) is equivalent to the instability in T of 
the continuum. Both are related 'to the existence of 
Floquet multipliers outside the 'unit circle. 

, , . 
In the example, it is clear thattheorigin of the in

stability is parametric. Namely, the rotation acts as 
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a periodic driving force and couples with the plasma 
Alfven frequency kB/fP. In the general case, coupling 
may occur also with the cusp frequency I? f73B/fP or 
with both frequencies. It should be remarked that each 
flux surface generates unstable bands in k. Considera
tion of all flux surfaces broadens those bands and, al
though in actual systems k may attain only discrete 
values, it is difficult to envision a case which will not 
be unstable. This instability in itself probably dooms 
ideas like the rotating Tormac's which rely on poloidal 
mass rotation to inhibit particle drifts. In the next sec
tion we show, however, that not all is lost', and that an 
important class of steady equilibria has stable con
tinua. 

VI. SOME STABLE CONTINUA 

The condition offrozen-in magnetic fields 'which pre
vails for ideal plasmas, restricts the class of flows al
lowed in an equilibrium state: A flow parallel to the 
magnetic field leaves the field lines unchanged and there
fore may exist. In fact, one can Show that for axisym
metric equilibria with e'rgodic flux surfaces, the flow 
can be decomposed into a parallel flow plus rigid rota
tion of each flux surface. Here, we treat the case of 
parallel flow in incompressible plasmas without the use 
of any symmetry. Such an equilibrium is distinguished 
by the conditions 

u=>'B, B.V(>.p)=O. 

(25) 

(26) 

If flux surfaces are characterized by a flux function l/J, 
(26) implies 

)'=>'(l/J) , p=p(w). (27) 

Bernoulli's law for this equilibrium reads 

(28) 

,We first show that in this case, unlike the general steady 
equilibrium case, the current J = curl B lies in the flux 
surface. Multiplying the momentum equation by J and 
making Use of (28) yields 

J. V(pH) - ~ / B/2J. V(>.2p) = 0 

frorri which we conclude that J . V~' = 0 as desired. 

Denote byv, b the perturbed velocity and magnetic 
field. According to the discussion in Sec. in, the con
tinuum is determined by the, following system of equa
tions in.each flux surface: 

iWIJv+ pu' Vv+ pv· Vu= B . Vh+ b ·VB, 

i wb + u . Vb + v . VB - B . Vv - b . Vu = 0 , 

(29a) 

(29b) 

where v is considered a two-dimensional vector with 
components in the flux surface, and (29a) equates, only 
components in that surface while the normal component 
of the equation is ignored. The normal component of 
(29b) yields 

iw(Vl/J·b)+u.V(Vl/J·b)=O. (30) 

This equati;n inv.olves only the normal component of b 
and clearly yields a stable piece of the continuum. We 
ignore this part by taking b . Vl/J = 0 so that now both v 
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and b are vectors in the flux surface. 

Define the operators 

Av=B·Vv, Hv=v·VB. 

Equation (29) can now be written as 

(A+H}(b- >"pv} = iwpy , (A -H}(v- >..b}=iwb, 

or, after defining fJ = b - >.. pv, 7) = v - >.. b, we obtain 

where P is a symmetric matrix given by 

P= 1 ~\2p [~ ~l 

(31) 

(32) 

(33) 

(34) 

Notice that >..2p is the Alfven Mach number andP is (posi
ti~e) definite if >..2p< 1, that is, for sub-Alfvenic flows. 
Equation (33) is a fourth-'order eigenvalue problem in 
~ = {7), fJ}. It is useful to introduce the inner product 

(35) 

where dS is an area element, and V labels the flux sur
faces and is equal to the volume enclosed by the surface. 
System (33) will be an anti-self-adjoint eigenvalue 
problem with real w's if we can show that H is Hermi
tian and A is anti~Hermitian with respect to (35). The 
first assertio~ is derived from the simple relation 

v.(uoVB}-u.(v.VB}=uxv.curl B., 

The triple product vanishes because all three vectors 
lie in the magnetic surface. The second assertion fol
lows from the relation 

v ·(B·Vu) -u ·(B ·Vv}=B 'V(u ·v}=div(u 'vB), 

anct 

f div(u 'vB} I ~~I = ddv f v 1diV(U 'vB} I :~'I dV' 
Vo 

d 1. dS = dV j (u ·v}(B ·n) IVVI 

which involves the use of the divergence theorem. n is 
normal to the surface and the last integral clearly 
vanishes for all V, hence also its derivative. Thus, we 
have· shown that the continuous spectrum is stable for a 
sub-Alfvenic, parallel, incompressible flow. 

Essentially the same proof can be used to show that 
the continuum is stable in a general static equilibrium. 
In order to determine the continuum for this case, it is 
useful to replace the continuity equation by 

(36) 

and then add a multiple of (36) to the second equation in 
(I) (Faraday's law) so as to eliminate the divu term 
there. The fourth-order system which determines the 
Alfven and cusp parts of the spectrum now has exactly 
the form of (33), with7)=v, fJ=b, and 
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t 1 [ 
pv J v 

P = 1 ; 
b b'+ yp (B ·b}B 

P is also positive definite. Indeed, 

(p~, ~)= 1 (p 1~12+lbI2+ ~ IB .bI2) I~~I' 
The proof is complete. 

VII. CONCLUSION 

We have discussed the stability of the Alfven and cusp 
continuous spectra in magnetohydrodynamics for several 
systems, with stationary flow or with no flow. The sta
tic equilibrium aiways has a real (and thus exponentially 
stable) continuum, while the presence of flow may give 
rise to an instability. Two causes for this instability 
were indicated. In the case of the noncircular rotating 
(J pinch it was shown that the flow acts as a periodic 
driving force which may couple with the natural frequen
cies of the system, that is, the frequencies of the Alfven 
and slow waves, and thus drive a parameteric instability 
much like a system described by tne Mathieu equation. 

A different cause of instability was indicated in the 
case of parallel flow. In the incompressible limit 
treated, stability was assured only for sub-Alfvenic 
flows. We interpret this restriction on the stable re
gime as heralding the development of shock waves due 
to "supersonic" speeds. It is knownl2 that the equation 
determining the equilibrium state is elliptic when toe 
flow is slow enough, but becomes hyperbo.lic, and ad
mits discontinuous solutions, at the critical cusp speed 
lul 2= i3IBI2/p, with i3 defined in (11). In the incompres
sible case, i3 -1 and the critical speed equals the Alfven 
speed. We expect the transition from a stable to an un
stable continuous spectrum to coincide with the critical 
speed in the compressible case as well. 
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