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ABSTRACT

A 500 kW powerplant utilizing a direct
contact heat exchanger (DCHX) between the
geothermal brine and the isobutane working
fiuid is nearing completion at the East Mesa
‘Component Test Facility. The primary purpose
of the plant is to evaluate the performance
potential of the direct contact system in a
size nmuch larger than the small exploratory
units that have been tested to date. Thermo-
dynamic performance of DCHX binary power systems
has been demonstrated in small 10 kW research
test rigs (Refs. 1, 2, and 3), however, charac-
teristics that affect the economics and prac-
ticality of long term operation need to be
evaluated. Three factors influencing plant
performance and cost are: 1) the control of
noncondensables that contaminate the power cycle
condenser, 2) the equipment required to limit
working fluid losses, and 3) the control of
scaling or performance robbing deposits in
critical components. These factors are not
unrelated and control of one often impacts
control of the other two. Operating data and
research with the 500 kW pilot plant should
demonstrate a solution to all three of these
factors and provide design guidelines for larger
plants.

INTRODUCTION

The plant design is for a system that will
produce a net 500 kW with the highest utilization
factor consistent with proven concepts and
previous experience utilizing brine from East
Mesa well 8-1. Utilization factor refers to the
power produced per pound of brine (W-hr/1lb).

Theruodynamic cycle analysis was performed
to select the wmost promising working fluid and
cycle state point conditions. The cycle studies
were supported by independent groups with DCHX
experience to assure a maximum experience input
into the cycle selection. The cycle studies
were based on the pilot plant utilizing 340°F
brine from East Mesa well 8-1. The cycle
selected for the pilot plant uses isobutane at a
peak cycle temperature of 250°F. The selected
cycle will have an efficiency of 8.9Z with a 94°F
condenser and will produce 5.5 W-hr/1lb of brine
flow.

The plant brings the incoming brine through
a sand trap and COj separating vessel, boosts
the pressure of the brine for injection into a
spray column configuration DCHX and returns the
brine, after passing it through a working fluid
recovery system, to a facility pond for re-
injection. The isobutane (IC4) working fluid is
pumped from the hot well to a high pressure for
injection at the bottom of the DCHX. As the

1C,4 flows to the top of the DCHX through the
descending brine, the IC, is heated, then
boiled, and taken off the top of the heat ex-
changer as a vapor. The IC,4 vapor passes
through a single stage radial inflow turbine and
on to the condenser where it is condensed and
returned back to the hot well. The high speed
turbine 1is coupled through a gearbox to a 60
cyecle, 480 v, 3-phase generator. The output from
the generator is used to power the pumps and
other support equipment, the excess being the net
plant output of 500 kW.

The plant is being constructed in modular
form so that it can be moved from the East Mesa
site to other designated sites for additional
testing.

CYCLE STUDIES

A study of thermodynamic cycles for this
direct contact geothermal pilot plant was made.
The intent of the cycle studies was to define a
baseline system that would provide the highest
utilization factor consistent with proven
concepts and previous experience. Three fluids
were evaluated; isobutane, isopentane, and
N-pentane. The cycle analysis was made for a
system that would provide 500 kW net output
accounting for all the support equipment power
requirements and system efficiencies. The
results of the cycle studies produced a brine
utilization factor defined as the net W-hr
output/1lb of brine flow for cycle state points.

The results of these studies are shown in
Figure 1. The curves show a distinct superiority
in terms of brine utilization for the isobutane
with the 340°F East Mesa brine. The curves also
show that as condensing temperature is reduced,
the cycle efficiency and system performance are
improved further. Because the system may be
tested at the Raft River facility, studies were
also run using Raft River well conditions of
290°F brine and a 74°F condenser with the same
system configuration and component efficiencies.
At the lower brine source temperature the per-
formances of isobutane and pentane cycles are
nearly the same with isobutane being slightly
higher.

The higher utilization factor of the iso-
butane, particularly at the higher well temper-
atures at East Mesa, indicate that it should be
the selected working fluid. When plant costs are
considered, the pentane system appears to be
simpler and less expensive than an IC4; system.
The pentane cycles run at lower DCHX pressures,
eliminating the need for the brine boost pump and
the hydraulic power recovery turbine. The
delivered pressure from the well is sufficient
for achieving the optimum pentane cycle temper-




ature. Additionally, the required organic feed
pump power is much less for the pentane than the
IC, systen. The resulting pentane systems thus
can be designed for a lower gross power level and
the required pressure vessels can be designed and
built with lighter gage materials. Since initial
investment costs have a strong effect on the
price of geothermal generated energy, a cost
differential for the two systems was evaluated to
try to establish whether the higher utiliza-
tion factor of the IC,4 system would justify its
increased complexity. The cost comparison for
the IC, system and the pentane systems were
surprising in view of the complexity of the IC4
system and its higher operating pressure levels.
The - anticipated savings of the pentane system
over the IC, system were offset by higher costs
for the pentane DCHX and turbine. The DCHX is
more expensive as it is much larger in diameter
and the turbine is much larger to handle the
increased volume flow that results from the low
condensing pressure.

The comparison between pentane and isobutane
systems was based on selected operating tempera-
tures of 240°F for the pentane and 250°F for the
isobutane. The pentane temperature was selected
slightly past the optimum point because of
improved cycle efficiency and potentially lower
condenser costs with a small reduction in utiliz-
ation efficiency. The isobutane peak cycle
temperature of 250°F was selected to 1limit the
amount of power required by the pumps and, thus,
the gross power level and the pressure levels in
the system. The isobutane temperature appears to
be below its optimum point from a utilization
standpoint but at the higher temperatures and
resulting higher pressures, the system cost is
increasing. The cycle selected is felt to be
near optimum considering both system cost and
performance. The process diagram is shown in
Figure 2. Additional details concerning cycle
and process state points are covered in Reference
4.

PLANT LAYOUT

Construction of the pilot plant will be
modular form to provide the portability required
to move the system to various geothermal test
sites. The plant layout is shown in Figure 3.
There are seven modules including the DCHX
couponent. The control and power modules are
housed' in trailers. The electrical equipment
(i.e., ‘generator, voltage controls, switch

gear, etc.) are separated from the isobutane
turbine by a barrier wall. The electrical side
of the trailer is pressurized with ambient air to
eliminate any 1sobutane vapors and thereby
circumvent the requirement to use explosion—proof
equipment. The control trailer is pressurized
for the same reason. The hot well and brine
handling modules are built on steel support
frames and can be transported intact. The DCHX
is a column forty inches in diameter and thirty-
two feet high. The unit can be transported on a
flatbed truck. The 1isobutane storage module is
made up of four individual 1000 gallon tanks
connected to a common manifold. The evaporative
condensers make up the final module assembly.

The plant 1is being assembled on a concrete
pad located at the DOE East Mesa Component Test
Facility. The DCHX component is shown in Figure
4. This view is looking east and the condenser
modules can be seen to the left of the DCHX.
The modules are being fabricated at the Barber-
Nichols Engineering Company's facilities. in

Arvada, Colorado, and then shipped to East
Mesa.
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Fig. 1

Comparison of utilization factors
for SO0kW DCHX system
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Fig. 2

PROCESS FLOW DIAGRAM
SO0 KW DCHX PILOT PLANT
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Fig. 3
500 KW PILOT PLANT SITE LAYOUT
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