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* DSCK MODEL FOR TRI?LE-REGGE COUPLINGS 

Cristian Sor~nsen 

Lawr~~ce Berkeley Laboratory 
University of California 

Berkeley, California 94720 

August 25, 1972 

ABSTRACT 

Inclusive cross sections in the triple~Regge region are 

calculated using a version of the ABFST multiperipheral model that 

amounts to an extension of the De~k model. Even though ,almost no 

par&~eters are available for adjustment, presently available moderate-

energy data are described in a qualitatively satisfactory manner. 

Predictions are made for future experiments at higher energies~ and 

the various triple-Regge couplings are extracted from the model. It 

is found that vertices corresponding to high-lying trajectories are 

suppressed. In particular the dimensionless parameter 

characterizes the triple-pomeron vertex turns out to be 
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I • INTRODUCTION 

This work constitutes a semiquantitative test of certain 

theoretical ideas relevant to the triple-Pomeranchon vertex, an 

entity to be defined below. In this introduction we will briefly 

explain the experimental significance of triple-Regge expansions and 

then review the theoretical developments that motivated our effort. 

Consider the inclusive experiment a + b ~c + X; defining 

focus on events where particle c emerges as a fast leading particle 

separated from the rest of the secondaries by a large rapidity gap. 

We require in addition that the missing mass -r;; be large. In terms 

of the invariants defined above, such conditions mean (see Appendix A) 

t fixedandsmall,(:,) » 1 / s' » 1 . 

In such a region of phase-space the following expansion is expected 

to be useful: 

a. (t)-Ja.(t) 
* . ()l J 1 

--2 
1611s 

x 

Sj (t) f3_
J(t) :. 

ca 
~. (t) 

1 

~(O) k 
g. ·k(t) s' f3 (0) 
lJ, bb 

In the above, the A _i(t) d t th ft· d 1· f ~ eno e e ac orlze coup lngs 0 

ac 

(1.1) 

trajectory a. 
1 

to the ac system, the . t;. (t) 
1 

are signature factors 

and the g .. k(t) will be referred to as triple-Regge vertices. 
lJ, 

The expansion reflects the view that it is possible to explain 

most of the physics in terms of a set of discrete powers with 
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factorizable coefficients. We will also assume that the trajectories 

are the familiar ones from two-body phenomenology, i.e., we will con-

sider a Pomeranchon trajectory (p) with ap(O) ~ 1, and a set of 

secondary trajectories (R) with ~(O) ~ 0.5. In the limit 

(:,) ~ "", s' ~ "", only the triple-Pomeranchon contribution 

survives, and the magnitude of gPP,P controls the rate at which 

events of the above type are observed. (We have tacitly assumed that 

particle c has the same internal quantum numbers as particle a.) Let 

us review the reasons that make ~p,p an interesting and controversial 

object. 

Expressions like (1.1) were first. written down by researchers 

studying multi-Regge models.
2 

Following Mueller's observation21 that 

inclusive cross sections could be related to discontinuities of certain 

connected parts, most of the consequences of multiperipheral models 

were underst60d to follow from Mueller's generalized Regge analysis. 
. 1 

In particular, De Tar et al. identified the variable that has to be 

made asymptotic in a forward 3-3 connected part in order to obtain 

the triple-Regge expansion. 

To discuss the special problems presented by the triple-

pomeranchon vertex, it is worthwhile to outline the basic steps that 

most physicists would follow to arrive at an expansion like (1,1). 

We have already explained that the kinematic condition 

(: .) »1, t fixed and small, implies a large rapidity gap between 

the fast leading particle and the rest of the secondaries (see Fig. la). 

Regge behavior is associated with large rapidity differences and 

implies that the matrix element will exhibit a behavior (s/s,)a(t), the 

quantum numbers associated with a being determined by those of a.and c. 

-4~ 

If Regge behavior is supplemented by good factorization properties, 

the amplitude will exhibit a form (see Fig. 9) 

where is a function that characterizes the particles in the 

right-hand cluster. Squaring, summing over different numbers of 

particles and introducing appropriate flux and phase~space factors, 

we find 

1 
m 2 

s I 
i,j 

a. (t)-ta.(t) 

( Ss' ) ~ J ~ i(t)~. (t) ~ .*(t) ~ jet) ac ~ J ca 

B (s' t) can be thought of as the imaginary part of the forward 
ib .... jb ' 

amplitude for the scattering of reggeon i of mass t from 

particle b to produce a reggeon j of mass t and particle b. 

Now assume that the reggeon-particle amplitude reggeizes like 

a regular particle-particle amplitude when the energy goes to infinity 

(1.4) 

Substituting (1.4) into (1.3) yields the desired expansion. The three 

ingredients that entered into this heuristic derivation were: Regge-

behavior associated with large rapidity gaps, factorization and the 

assumption that reggeon-particle amplitudes behave just like particle-

particle amplitudes. 
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Among the accepted Regge singularities, the Pomeranchon is 

placed by many physicists in a special category.37 According to their 

wal of looking at things, the Pomeranchon is not su~posed to be 

associated with any peripheral exchange, as are other Regge trajectories, 

and therefore is not necessarily a pole with factorizable residue. 

This lack of factorization would prevent us from carrying. through the 

"derivation" of the asymptotic expansion that we outlined above. 

Once the Pomeranchon has been given special status it is possible to 

attribute to it special properties, for example, its decoupling from 

inelastic states. The meaning of the "inelastic" decoupling is not 

without ambiguities. In the context of the present discussion, it 

means that triple-Regge couplings of the form gPP,k could be identi-

cally zero. 22 This would imply no observed events in, the region of 

phase space where (sis'»> 1, s'» 1, t fixed and small. 

A theoretical argument to be presented later implies however 

that there will be some effective nonvanishing gPP,P' irrespective 

of the factorization properties of the Pomeranchon singularity. This 

suggests that the decoupling of the Pomeranchon from inelastic states 

is an inconsistent assumption. 

We review now what serious . work has been done in studying the 

"inelastic" couplings of the Pomeranchon,assuming that it is a 

factorizable pole. 

The first hard result which indicated the need for care in 

han'dling the inelastic couplings of the Pomeron was obtained by Bali, 

Chew, and Pignotti. 39 Using a multi-Regge model that allowed multiple 

couplings of the Pomeron, they observed that, if the P were a fixed 

pole at J = 1, partial cross sections involving production of more 

than four particles would v;i.olate the Froissart bound23 for total 

...;6-

cross sections. This paper, however, tended to reinforce the belief 

that the Pwas not different from the other trajectories since the 

authors showed that, if the P has a nonvanishing slope, i. e., it 

is a moving pole, then the violation disappeared. It was then 

pointed out by Finkelstein and Kajantie
24 

in a careful multi-Regge 

calculation, that even though a moving P prevents the partial cross 

sections from violating the Froissart bound, their sum, the total 

cross section, still violates the bound if a (0) = .1. In other words, 
p 

there is an incompatibility between constant asymptotic total cross 

sections (~(O) = 1) and multiple couplings of the Pomeron. 

Since the original work of Finkelstein and Kajantie, the 

effect has been rediscovered many times. For instance, it shows up 

in all calculations with multiperipheral models. 

A particularly interesting version of the result was found by 

10 Abarbanel, Chew, Goldberger, and Saunders. They obtained a relation 

between the intercept of the Pomeron a (0) and an almost dimension-
p 

less parameter T] = [g;P,p(0)]/[16rr 2ap(O)J. Their result is 

1 - ap(O) > T], and was obtained by considering double diffractive 

dissociation into high masses and noticing that such events give a 

contribution to the total cross section that increases asymptotically 

if ap(O) = 1. This is obviously incompatible with a constant 

asymptotic total cross section. 

Since the publication of Ref. 10, efforts have revolved around 

the alternatives ~(O) = 1 gPP,p(O) = 0, or ~(O) < 1 

Asymptotically constant total cross sections are esthetically 

appealing. In an effort to preserve them, independent arguments have 

been sought to prove that gPP,p(O) = o. 
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Chang et al. 25 studied the spin properties of the forward 

Pomeron-particle amplitude (referred to above as B) and noticed that 

if a (0) = 1 then the amplitude is at a wrong signature nonsense 
p 

point. To eliminate the spurious pole one requires that the residue, 

which is proportional to gPP,p(O), vanish. Their argument has the 

additional 'feature that even if one chooses to have a (0) < 1, 
P gPP,P 

has to be small because the wrong-signature zero is somewhere in the 

neighborhood. To support their claim, Chang et al. studied a planar 

, d W . 26 
ladder model and found indeed the desired zero. De Tar an e1S 

showed that in a naive dual resonance model in which ap(o) is 

arbitrarily set equal to one, the same wrong signature nonsense zero 

is obtained. It has already been pointed out by Mueller and Trueman
27 

that if one enlarges the model of Chang et al. to include nonplanar 

diagrams, then it is possible to have a fixed pole that cancels the 

wrong-signature nonsense zero. Dual resonance models without the 
. 28 

wrong-signature nonsense zero have been constructed by V1rasoro. 

In an effort to reinstate the zero, Abarbanel and Green
29 

studied the 

connection between the discontinuity across the two-Pomeranchon cut 

of the Pomeranchon-particle amplitude and gPP,P' Using a very 

plausible expression for such a discontinuity, they found that, at the 

branch-point, the discontinuity was proportional to the residue of 

the fixed pole mentioned above. They then invoked a result of Bronzan 

and Jones,36 which states that, at the branch-point, the discontinuity 

has to vanish as a consequence of unitarity, to claim that the residue 

of the fixed pole vanishes and, therefore, we still have a zero of 

One obvious difficulty with the above argument is that the 

authors have chosen to focus on the two-pomeranchon cut in spite of 

the fact that if a (0) = 1 
P 

then, at t = 0, all the other iterations 

-8-

of the Pomeranchon pole are also at J = 1. Even accepting tile 

approximation of keeping only the first iteration of the Pomeranchon, 

there are some difficulties. The Bronzan-Jones theorem may not be 
..•.. 

valid when one has a pole colliding with the branch point" as will be 

the case at t o if ap(O) = 1. It has been shown by Muzinich et al. 31 : 

that the theorem can be used in this situation only if tbe absence of 

the fixed pole is assumed, i.e., the argument of Ref. 29 is circular. 

Recent work by Jones et a1. 35 and Brower and Weis38 has underlined 

dramatically the difficulties encountered by a Pomeranchon pole with 

ap(O) = 1. The authors of Ref. 35 show in a very general way, using 

energy-momentum conservation sum rUles,32 ttat a (0) = 1 
p 

implies not 

only that gPP,p(O) = 0 but also the vanishing of vertices of the 

form Pomeranchon-particle-Reggeon when the mass of the Pomeranchon 

is zero. 'This suggests that the P will not contribute at all to 

asymptotic total cross sections because the quantity that controls its 

contribution is the Pomeranchon-particle-antiparticle vertex, which 

can be obtained by analytically continuing the Pomeranchon-particle-

Reggeon vertex to a physical value of the reggeon mass. Brower and 

Weis 3,8 study this continuation in detail and find that the vanishing 

of the Pomeranchon-particle-antiparticle vertex does in fact follow 

from that of the Pomeron-particle-Reggeon vertex. 

In summary, there is by now serious evidence that if a simple 

Regge pole controls asymptotic behavior at t = 0, then its intercept, 

~p(O), has to be less than one. 

To conclude we outline an older argument due to Chew,20 which 

motivated our work and which leads to the same conclusion as the more 

recent paper of Brower and Weis: A straightforward extension of the 
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Finkelstein-Kajantie analysis shows that the coupling of two Pomeran-

chons to a particle-antiparticle system (V _) has to vanish when 
PPllll 

evaluated for zero masses of the Pomeranchon legs, if op(C) = 1. This 

will be so for a continuous range of values of a momentum transfer u 

indicated in Fig. lb. Since V is expected to be an analytic 
PPllrr 

function of u it will vanish everywhere in the complex u plane. 

This is impossible because we know that V will have a pole at 
PPllrr 

u = m 
II 

2 The presence of this pole can be established by considering 

the six-line connected part A The pole factorization 
ab-> ablln 

theorem,33 a cornerstone of S-matrix theory, states that such a 

matrix element has a pole at u "= m 
II 

2 (see Fig. lc). The residue of 

the pole is A ·A , i. e., the product of two elastic 
all-> all bn-> bn 

amplitudes. Taking the limit sl,s3 ->00, t l ,t
3 

->0 (see Fig. lc), 

these elastic amplitudes are evaluated in the forward direction and at 

high energies. Hence they are dominated by Pomeranchon exchange. 

Making a double Regge expansion of the six-line connected part and 

comparing we find 

(m 2 _ u)A I 
" II ab-> abllll u=m 2 

II 

u=m 
II 

2 

therefore 

llll 
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u=m 
II 

2 

is the quantity responsible for the contribu-

tion of the P to total cross sections involving particle ll, we 

have arrived at the result that either V has a pole and therefore, 
PPllll 

by Finkelstein-Kajantie, 0: (0) < 1 
P 

or the P decouples from total 

cross sections. 

Chew's argument also suggests a way of estimating the various 

triple-Regge couplings. Let us focus on the pole in u corresponding 

to the pion. Because of the smallness of the pion mass, such a pole 

will be very close to a section of the physical region. In such a 

section it is reasonable to approximate (see Fig. 10): 

Always staying in the section of phase-space that is close to 

the pion pole, consider now the subsection where sl» 1 Ge~, 

Because is large, the missing mass s' will be 

large. Note that the only dependence on s3 in the matrix element 

occurs in ~1l->bll(s3,t3). Since we know that elastic cross sections 

at high energies are very slowly varying and nonvanishing, we are 

sure that .re can produce a missing mass s' as large as we wish. 

In addition, the fact that sl is very large guarantees that we have 
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a large rapidity gap (see Appendix B for more details on the 

kinematics). For large sl the amplitude A (sl,tl ), which an-> Cn 

controls the sl dependence, will be Pomeranchon.dominated; i.e., we 

have isolated a contribution to the triple-Pomeranchon vertex. 

The same pion pole will also occur in connected parts for the 

production of more than four particles. In a similar way one expects 

a contribution to the triple-Pomeranchon from each of these. 

In the following sections, we study these contributions quanti-

tatively. We first derive (Sec. II) an expression for the inclusive 

cross section for a + b ->c + X using the approximation (see Fig. 8) 

The result is identical to what one obtains in simple multiperipheral 

models. 3-5 Next we show that, in the limit (:,) »1, s'» 1 

the model generates a triple-Regge expansion with a nonvanishing 

triple-Pomeranchon vertex. We also discuss in Sec. II the form factors 

used to select the region of phase-space close to the pion pole. In 

Sec. III we test the reliability of the model by comparing its pre-

dictions with presently available data. The experimental results are 

only marginally within the triple-Regge region. The pion pole 

approximation, however, is valid also outside this very small region. 

We find the comparison with the data encouraging in that several 

features are reproduced reasonably well by the model. Among other 

favorable results, we find that events from the phase-space close to 

the pion pole can account for about half the empirically measured 

cross sections. Having gained some confidence in the model, we use it, 

-12-

in Sec. III, to predict cross sections at energies accessible to the 

new generation of accelerators (CERN ISR, NAL). In Sec. IV we discuss 

in more detail the properties of the triple-Regge couplings that 

derive from the model. Section V contains conclusions. 
-. 

.'~ 
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II. THE MODEL 

We are interested in calculating the double-differential cross 

section (d20)/(ds'diti) for the inclusive experiment 

a + b -7 C + X, 

where 

s' 

t 

we also define 

s 

The inclusive cross section may be obtained by summing over the 

exclusive ones. For the latter we USE the approximation: 

2 2 
(p - p - k) - j..l a c J{ 

(see Fig. 8a). 

As explained in Appendix II, one obtains, after squaring the 

matrix element, summing over final states, and introducing the 

appropriate flux factor, the following expression for the double-

differential cross section: 

L 
i 

x 
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~( 2 2) TOTAL ( ) 
2" S3,j..lJ{'~ 0 b s3 J{i 

X 5(t' - t) 5(s' - s") 5
4

(p + Pb - P - k - K) a c 

indicates a sum over the three charge states or the pion, 

t' 

u = 

s" 

d3p 
"'C 1 

2( 2 + m 2)~ (2J{)3 
Ec c 

(p + k)2 
c 

(Pa - Pc - k)2 

(Pa + Pb - P ) c 
2 

and similarly for dk 

,,(x,y,z) 2 2 2 
- 2xy - 2xz - 2yz • x +y + z 

(ILl) 

Formula (II.l) is represented schematically in Fig. 2. Depending on 

the quantum numbers of particles a, b, and c, it may also be 

necessary to add contributions like the ones shown in Fig. 3. In our 
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calculation of p + P ~p + X (see Sec. III), such terms have to 

be included. 

The reader will recognize in Fig. 2 an extended Deck model. 7 

In previous applications of such a model the total cross section on 

the right was restricted to a given resonance (e;g., 6 or p), in 

our case we use the total cross section for any energy. 

The same result obtains if one uses a multiperipheral model of 

the ABFST type.) It is interesting to note, however, that the result 

is really independent of the detailed structure of the multiperipheral 

chain. The only feature required is the capacity for generating a 

realistic total cross section. The details could be much more compli-

cated than the simple model of Ref. 3. 

If the limit s' ~OO, sis' ~oo is taken, one obtains,lO 

assuming that high-energy scattering is well described by Regge poles 

(see Appendix II for details): 

ds'dltl 

1 
--2 
16T(s 

(n.2) 

-16-

where 

g .. k(t} lJ, f f 
l a.(t)-fCX.(t) 

du 1. 2 1 J 
2 2 J-?(p ,u,t)1 

( _ u) J1 J 
ftT( 

2 2 
X (3 . (ft ,u,t) (3 ,(ft ,u,t) (3 k(u,u,O) • 

~(O) 
dx x T(T(1 n . nnJ n T(n 

x Pa . (t)-fCX.(t)(Z) 
1 J 

z 

1 
ch q - (t/U)2 x 

sh q 
ch q 

2 
ftT( - u - t 

I 

2(utF 

(3 denotes a factorized Regge residue, S a signature factor. In 

formula (3), the fact that one of the pion mas ses is not 2 
I-ln 

has 

been exhibited explicitly. We will have more to say about this later. 

The normalization of the residues is such that the contributions 

of a pole i to the (a,b) total cross section and to the elastic 

differential cross section are: 

1 
B (0)(3_(0) 

a. (0) 
S 1 

aai bbi 

dcr. bes,t) l,a 

dt 
6 ( 1 2 2 I Baai (t) ~bi (t) ~i (t) 12 . 

1 nf.. s,ma ,~ ) 

The factor 3 in formula (3) reflects the three charge states of the 

pion. It is correct if the trajectories i and j have the quantum 

numbers of the vacuum. 16 

, 

~, 
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In our calculation of p + P ~p + X by means of formula (1), 

we have used the experimentally observed (ll,p) total cross sections 

together with isospin invariance. For the elastic amplitude AnN~ llN' 

we have adopted the following simplifying prescription, 

AnN~llN(S,t) = AnN~nN(s,O) ert . This form is fairly accurate for 

small t, even in the resonance region, when Y is taken to be 

~ 4(GeV/C)2. For A N N(s,O) we used the tabulation of Ref. 17. 
n ~1l 

Off-shell corrections to the llN elastic amplitude and llN 

total cross section have been introduced to provide the necessary 

cut-off in the integrals over the virtual pion mass. We have used a 

form factor of the type suggested by the ABFST integral equation:) 

J."'he ABFST model suggests that the asymptotic behavior of the 
0:.+1 

residue ~i of the pole i is (-u) 1 as -u ~oo. Since, for 

low energies, we do not use a Regge parametrization of or of 

,A , we cannot incorporate this result in a simple manner. 
nN~nN 

Motivated by the perturbative approach of Refs. (4) and (10) we have 

taken an average intercept a = 0.7. 

The form of the off-shell corrections given above has been 

shown to provide an adequate fit to numerical solutions of the ABFST 

-18-

equation even in the low-virtual-mass region if We 

have experimented with other cutoff procedures, such as "reggeizing" 

the pion, and found that the results do not change significantly. 

Thus our model contains almost no free parameters. 

,.., 



-19-

III. RESULTS AT INTERMEDIATE AND HIGH ENERGIES 

Figure 4 shows a comparison of the predictions of the model 

for the process pp -7 pX with the experimental results of Anderson 
I~ 

et al."" The following aspects of the experimental data are satis

factorily reproduced: 

(i) Energy dependence: one of the striking features of the 

data of Ref. 6 is a rapid decrease of the average cross section with 

"increasing beam momentum. This effect, indicative of the weakness 

of diffractive excitation in this energy range, is well reproduced by 

the model. 

(ii) Missing mass dependence: Given that we cannot expect 

to reproduce the full resonance structure, we consider our results 

"satisfactory. The calculations yield bumps in the missing mass at 

the appropriate locationsll but with insufficient strength. 

(iii) Absolute normalization: This point is sensitive to the 

cutoff procedure adopted for the integration over the momentum 

transfer u in formulas (1) and (2). This is the problem of off 

mass-shell corrections mentioned in Sec. II. It may be seen from 

Fig. 4 that our normalization is better for high missing masses, where 

_ resonances are not expected to be important. 

Another interesting result from our calculations is the 

importance, at intermediate energies and small t, of pion exchange, 

in the sense of Fig. 3b. For high missing masses, this mechanism 

accounts for about 50~ of the cross section at Plab = 20 GeV / c 

~nd t ~ -0.04 (Gev/c)2. The importance of diagram 3b has also been 

recognized recently by other authors. 8 ,9 
,J 
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Figure ':) exhibits the t dependence of the douhle differer,tial 

cross section for a fixed value of the incident energy, at various 

values of the missing mass. Comparison with the data is again 

satisfactory. 

The broken curve in Fig. 4 shows that a triple Regge expansion 

with the vertices predicted by the model (see Table I) provides a 

reasonably accurate approximation to the more exact calculation even 

t 1 
. 19 a ow energ~es. 

Figure 6 shows what we expect to observe at higher energies 

on the basis of this model. Dominance of the triple-Pomeranchon 

component would give a flat, energy-independent, curve in Fig. (;. 

The broken line at the bottom of the graph is what alone 

contributes to the double differential cross section. It can be seen 

that, for the ISR energies, this contribution can amount to about ')0% 

of the cross section in the appropriate missing mass range 

(s' 2 10-30 GeV ). Thus it may be possible to extract the vahle of 

gPP,P by means of a fit to the data. 

Figure 7 shows a comparison of the recent results of the 

CERN-IHEP boson spectrometer18 (continuous curve) with a triple-

Regge expansion ,with the vertices predicted by our model. It can be 

seen that our expansion yields a very satisfactory missing mass 

dependence and energy dependence. 

Figure 11 shows a comparison of the pre~iction of our triple-

Regge expansion with recent experimen,t.al results on p 1- P -7 P + X at 

the CERN ISR. The following comments are in order: (i) The bump and 

dip structure in x is reasonably well reproduced; (ii) the absolute 

magnitude of the calcula-ced cross section is about half the experimental 



~ ". 

"', 

-20a-

value as long as x ~ 0.7 where the model can be believed; (iii) an 

exception to (ii) is the very sharp peaking exhibited by th~ data when 

x approaches 1. If the experimental results continue to show such 

violent behavior, one would have to conclude that the lower bound to 

gPP,P' gPP,R' etc. provided by the model is far from what is observed 

in nature. 



_ ..... 

.> 

.. 
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IV. TRIPLE-REGGE VERTICES 

Table I exhibits the values of the various triple-Regge vertices 

obtained from formula (3). For the off-shell residues t3 • (u,u' ,t) we 
1l1l~ 

have used the following prescription suggested by the ABFST integral 

equation and already discussed in Sec. II: 

2 
t3 .(u,J.! ,t) 
1l1l~ 11 

t3 .(u,u,O) 
11111 

t3 .(0) 
1I11~ 

_ ~IJ.! 2 
2\!: 11 

+ u -

..,ex. (t )+1 
I ~ 

!)I 
2'..1 

where t3
l1l1i

(t) is the on-shell coupling of trajectory i to the 1111 

system obtained by using factorization and fits to high-energy data. 

(For more details see the footnote to Table I.) 

According to Table I, at small t, all the couplings are within 

a factor ~O. There is, however, a definite trend. The higher the 

intercept of trajectories ~ and ~, the smaller the coupling. 

The rough equality of the vertices derives, in this model, from 

the comparable values of the couplings of the P and the p' to the 

1111 system, as extracted from total cross sections. The relation between 

the strength of the vertex and the height of the intercept can be under

stood most easily by writing formula (3) for t = 0 

2 ex. (0)-ta.(0)-2-<lk(0)-1 
du(J.! _ u) 1 J . 

11 

~(O)+l 2 2 

X (-u) t3. (u,J.! ,0) t3 .(u,J.! ,0) t3 k(u,u,O) 
1I11~ 11 1I11J 11 1111 

(4 ) 

or, letting J.!2 ~ 0, 
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g .. k(O) 
~J, 

cc 1 3 
1611

3 ~(O) +l{ cx. (O)-ta. (0)-2 
due -u) ~ J 

(4' ) 

In (4') we have exhibited the explicit form of the off-shell corrections. 

The influence both of the traj ectory intercept and of the 

magnitude of the couplings of the trajectories to the 1111 system .. is 

exhibited in (4) and (4'). Note that we use the appropriate values 

for the trajectory intercepts in the form factors. Since we have 

singled out a specific set of trajectories we do not have to use an 

average intercept as we did in Sec. II. 

The effect of the trajectory intercept can be traced back 

to kinematical limitations on the minimum momentum transfer u between 

the two blobs of Fig. 3 when and are large. 

The reader may have noticed that the only secondary trajectory 

included in Table I is the P'. As already discussed in footnote 16, 

the p and A2 trajectories are not important for the p + P -,> p+ X 

and lIP -,>X + p experiments in the kinematical regions that we have 

been considering. However, the absence of the w coupling is more 

serious. So long as we restrict ourselves to n exchange, the w 

decouples. This circumstance can be interpreted either as an 

interesting consequence of the n-exchange model or as a disturbing 
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violation of the cherished, and empirically well supported, notion of 

exchange degeneracy. Note that, if degeneracy is assumed, the 

extraction of from experimental fits becomes easier because 

non diagonal terms of the form (PPI,k) are approximately cancelled 

by terms with p' replaced by w. 
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V. CONCLUSIONS 

The existence of the pion pole in connected parts together 

with the pole factorization theorem implies that the triple-Pomeranchon 

vertex cannot vanish~ The question is then whether the contribution 

to the cross section from the region of phase space dominated by the 

pion pole is a significant fraction of the total. We believe that 

the results of Sec. III show that the pion pole has something to do 

wi th the observed cross sections. We have not attempted to fit the 

data but rather to show that the gross features could be reproduced 

with a very simple model. Section IV, however, shows that the 

triple-Pomeranchon vertex is so small. as to be almost unobservable 

except at extremely high energies. 

. 10 
The dimensionless parameter llppp that determines the 

/ 
-2 

displacement of op(o) from 1 is, assuming op = 0.5 (GeV c) 

llppp 
16:rr 2op(O) 
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APPENDIX A. 

We discuss here some kinematical details relevant to th€ 

experimental significance of the triple-Regge limit. 

(a) Equivalence of small t and fast leading particle 

(assuming that a is the projectile) 

t 

In the rest frame of a, 

t 

2m E a c 

2 2 
m +m 

c a 

m c 
2 

2m E a c 

If t is to be bounded it is clear that Ec has to be bounded; Le., 

particle c has a finite velocity in the rest frame of the projectile. 

It therefore moves very fast in the laboratory. 

(b) To show that s 
- .-, 00 

s' 
implies that the rapidity gap 

between the leading particle and any other secondary tends to infinity. 

The rapidity Yi of particle i with four-momentum 

w. sh y. 
J. .J. 

ch where ch· and sh denoted hyperbolic 
Wi Yi' 

functions. 

(mi 
2 2 1. 2 2 2 

w. + P~i )2, P~i Pxi + Pyi 
J. 

by L i 
whe~e L means sum over all Define YF K P , 

i i 

secondaries but c; 
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1 1 

K [( S I )2 ch Y
F

; ~1.,(S')2 sh YFJ 

s 
2 2 

(p + K) m + S' + 2pc· K c c 

2 1 
s m + s' + 2(S' )2W 

c 

Dividing by S' and using the fact that 2 
P..lc 

is small, we conclude that 

» 1 . 

Therefore 

[ 
i 

This implies y »y, 
- c 1 

for all i. 

2 
ch(yc - YF ) - 2p~c ' c 

is small because t 

-2S-

APPENDIX B. 

s We derive formula (ILl) and tten take the limit S -7 00, "S"'" -7 co 

to obtain the triple-Regge expansion for a + b -;. c + X: 

2 
)' r 

o'E· d 0 n J 
1+ 

X ;) 2 dpc d'j· (211 ) + Pb - Pc 
ds'dt 2t,2(s,ma-'~ ) 

n 

? ') I (2 X o[ s' - (p + Pb - P ) -] o[ t - (p -- p )~] A b + ' a c a c a~cn 

where 

d¢ 
n 

1 

(211 )3 

n 

P~ ," ! 
~--
i=l 

and similarly for dpc' A(X,y,Z) 
222 

x + Y + z - 2xy - 2xz - 2yz. 

Now use thE' approximation 

2 
where u = (p - p - k), k being the four momentum indicated in a c 

Fig. Sa (k ;;; PI)' Also introduce a dummy four momentum 

K 

and a mass 

• 



-29-

ds'dt 

x o[ t - (p 
a 

x fd<l> 1(211} 04~K - ~ p)IA b 112 n- . L Y :rr ~n-
i 

L 
n-l 

The summation in the third line can be identified with 

- 2 I Aelastic( t - 0) - m:rrb s3' - • 

Substituting this in the above expression and remembering to sum over 

the three charge states allowed for the pion pole, we obtain formula 

(1). The attentive reader may have noticed that we are neglecting 

interference terms. We now proceed to take the limits' ~ 00, 

~ ~oo and obtain the triple-Regge expansion with explicit expressions 
s' 

for the triple-Regge vertices. The product 

4 2 4 
dpc dk d K o(K - s3) 0 (Pa + Pb - Pc - k - K) is just a three-body 

phase space with total four-momentum p + Pb and masses m 2, m 2, a c :rr 

s3 as shown in Fig. (8b). We will use BCP variable~9 .to handle it. 

As shown in Ref. 39 
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1 dt du dw dv d(ch ~l) d(ch S2) 

~ l 2 2 
16 r-. 2 (s,ma ,~ ) 

where 

2 2 - t m - m 
c a 

1 
2m (_t)2 a 

2 
- t ~ - u 

:rr 
1 

2(tu)2 

2 s - u 
3 -~ 

1 

2(-u)2 ~ 

The invariants sl's' of interest to us are given in terms of these 

variables by 
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Sf 

Note that 

(

S' _ ,\2 t) 
sh qo 1 

~(_t)2 

Dividing the above equation by Sf and taking the limit s ~OO, 

S f ~ 00 we find that in order to have ~ »1 we need to have Sf , 

ch ~l »1. We do not assume that ch ~2 »1 since experience with 

pion exchange indicates that it is important when the "boost" related 

to it is not very big (we have in mind here the successes of pion-

exchange models at intermediate energies). This implies that Sf» 1 

will result from ch q2 »1; i.e., most of the produced mass comes 

from the rlTotal(s3) "blob .. " . v Tak~ng advantage ·of the fact that 

obtain 

i 

~(-ur' 

(Le., 

s' 
+shqOi 

~(_t)2 
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1 

s' ~ 2,\(-t)2 sh q2(sh ql ch ~2 + ch ql) 

1 

sl ~ 2ma (-U)2 ch qo sh ql ch ~l • 

We now eliminate ch ~l,ch ~2 and express s 4n terms of s s' s ~" 1 ~ , , . 3' 

u and t; 

with Phase-space, plus flux-factor, plus integration over 

d ch ~l' d ch ~2' dv (assuming spin averages to eliminate all 

dependence on v) yields a factor 

1 1 1 
--5 228' 

. (2n) 32,,(s,ma ,'\ ) 

in the integrand. 

cos w 

Now we use the high-energy behavior of /A (s,t)/2 and 
·an~ Cn 



.. 
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\A (s,t)\ 
2 

\~ 

~L 

. . * cx.(t)m.(t) 
13 l. ( t) 13 J (t) (. ( t) ~. ( t) sll. J 

all-> Cll 

i,j 
ac ac "l. "J 

I k k ~(o) 
1m A b(s~,O) ~ i3 (0) i3 _ (0) s3 • 

11 ./ 1111 bb' 
k 

Putting everything together and changing the integration over 

ds
3 

to S I dx we find 

r i3 _i(t) 13_ jet) Sl(t) s. (t) 

d2 a 
J 

1 ijk ac ac 
i3 k(O) i3 _k(O) 

(211)5 2 2 ds'dt 32A(s,ma ,~ ) 1111 bb 

u l -ql 

f 
1 2 cx.(t)m.(t) (-Fe 

X 
~(O) 

du [A2(~ zu,t}J l. J f t ""CO) 
s' 2 2 dxx 

(fJ.
1l 

- u) 0 

To obtain the upper limit of integration on x, we used the fact that 

the maximum value of s3 is limited by the requirement that 

ch S2 :::: 1. 

Recalling the identity: 

p(z) = !fll d¢I 
A 11 [z + (z2 _ 1)2 cos ¢JA.+1 

o 
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we arrive at the triple-Regge expansion (11.2) with the corresponding 

expression (11.3) for the gij,k· 
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Table I. Triple-Regge vertices.
a 

I ! 
i PP' ,P PP,P 

Ii 0. ,42 1 0.299 i 0.135 0.293 

i 0.127 1 0.285 

! 0.118! 0.275 
i 

0.1091 0.263 
. 

0.099 i 0.251 
i i Ii 0.091 ! 0.237 

Ii i 
1 0.082 I 0.223 

.j I 

i 
i 

P'P' ,P i PP,P' 
! 

PP' ,P' 

! 
0.745 I 0.236 • 0.488 

0.734 i 0.244 • 0·523 
i , 

0.734 i 0. 247 0.547 

I 0·562 0·733 ,0.246 
i 
! 

0.731 ! 0.240 0.569 
~ 

0.726 10.231 0.567 
( 

0.719 I 0.219 0·559 
! 

0.709, I 0.206 ' 0.546, 
I 

, 
! 
! 

: 
P'P' ,P' 

1.21 

1.31 

1.40 

1.48 

1.55 

1.61 

1.65 

1.68 

! 

I 
! 

I 
I 

I 
! 
I 
I 

a Values of the triple-Regge vertices as a function of t, 

assuming that 13p(t) varies as e1.5t . and that 13p l (t) 

isa constant. The magnitude of the coupling of the P 

to the 1111 system has been' obtained via factorization 

assuming that the asymptotic 1IN and NN cross sections 

are 23 mb and 38 mb respectively. The pI was assumed 

to couple to the 1111 system with the same strength as the 

P. This is empirically well supported (see for example, 

Ref. 14). The couplings given above are to be used with 

and expansion like Eq. (11.2). The scale parameter in the 

form factor has been taken to be uo = 1 Ge~. 
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FIGURE CAPTIONS 

Fig. l(a). Schematic description of the kinematics; 

(b). The vertex VPP~rr ; 

(c) • The 11 pole in the connected part for ab -> ab1ln. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Schematic representation of formula (11.1). If the detected 

particle is a pion other diagrams having a pion coming not 

from the leftmost blob may have to be considered. The con-

tribution of these other terms is not important very close 

to the kinematical boundary. 

other terms that may have to be included depending on the 

quantum numbers of particles a, b, and c. 

Comparison of our results with the data of Anderson et al. 

The circles correspond to the experimental values, the 

smooth curve is our calculation and the broken line is what 

a triple-Regge expansion with the couplings of Table I 

predicts. In 4 (a-d) we have plotted the same quantity as 

have the authors of Ref. 6 for "fixed" t and varying 

energy (see the relevant footnotes in Ref. 6). 

2 
-0.042 (GeV/c) • 

Comparison of our results with the t dependence of the 

data of Ref. 6 at three different values of the missing 
1 1 

mass: (a), (s,)2=1.4Gev; (b), (s')2=1.7GeV; 
1 

(c), (S')2 = 1.9 GeV. The normalization of our results 

has been adjusted to coincide with the data at the lowest 

value of t. 

.. 



.. 

., 

• 

Fig. 6. 

Fig. 7. 
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Expectations at higher energies. We plot 

2 / / . 2 tIlEs' (d 0') (ds'dt)] versus tIl S' at t = -0.04 (GeV c) • 

The triple-Pomeranchon component, if sufficiently strong, 

would be evident as an almost flat, energy independent, 

section of the curve. The flat broken line at the bottom 

of the graph is the contribution of the triple Pomeron. The 

curvature at small S' is due to the use of the variable 

2 v = S I - ~ - t instead of s I. See footnote 19. 

Continuous lines are the result of calculating with the 

complete model; broken lines correspond to the triple-Regge 

expansions. The reaction is p + p ~p +X. 

The experimental results of the CERN-IHEP boson missing-mass 

spectrometer (continuous curves) compared with the predic-

tions of a triple-Regge expansion with the vertices given in 

Table I. We have taken t = -0.25 (GeV/c)2. The exper

imental It I varies between 0.17 (Gev/c)2 and 

2 
0.35 (GeV/c) • 

Fig. 8(a). Schematic representation of the matrix element; 

(b). The relevant kinematic variables. 

Fig. 9. Schematic representation of the arguments leading to a 

triple-Regge expansion. 

Fig. 10 . Pole approximation for the matrix element A b b' a ~C:rr:rr 

Fig. 11. Comparison of the predictions of our triple-Regge expansion 

with recent experimental results on p + p ~p + X at fixed 

angle. The data was taken from J. C. Sens, Invited paper 

presented at the Fourth International Conference on High 

-42-

Energy Collisions, Oxford, U.K., 1972. The sum of all 

triple-Regge contributions is given by the continuous 

line. o , 0 ' and t::. show partial contributions. 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights, 
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