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Gas-Particle Flow in the Entry Region of a Curved Pipe

By

Woon=Shing Yeung

ABSTRACT

The flow of a dilute gas-particle mixture entering a
circular curved pipe has been investigated. The fluid is assumed to be
incompressible and the flow nonseparating and laminar. Individual
numerical schemes have been devised to handle the two different regions
of’ the fluid flow field, i.e., the irrotational core region and viscous
boundary layer region., Thus, in the core region, the traditional
Telenin's method is modified to obtain a numerical solution for the velocity
potential function. For the viscous boundary layer, the orthonormal
version of the method of integral relations is applied together with a
backward difference scheme for the cross derivative terms. Interaction
between the two regions is also accounted for by means of a simple
iteration scheme. Final results are then presented and comparisons with
other theoretical and experimental results are made whenever appropriate.
Since we have assumed an irrotational core, the uniform entry profile
changes to a two-dimensional potential vortex shortly downstream of the
entry section. This is consistent with a recent experimental investiga-
tion on entry curved pipe flow by Agrawal, Talbot and Gong. There is
also a cross flow directed from the outer bend towards the inner bend in
the Immediate neighborhood of the entry section. Further downstream, the

cross flow reverses 1ts direction and moves from the inner bend towards

st



the outer bend, as is generally reported in all curved pipe investiga-
tions. The axial profile, however, does not change drastically from that
of a uniform profile because of the weak interaction between the core and
boundary layer region for the values of Reynolds number considered in
this report (;Lol’*wloS).,

The remainder of the report discusses the dynamics of the particle
phase. Lagrangian equations of motion for the particle phase are used.
Due to the complexity of the momentum coupling between the two phases
(i.e., the gas phase and the particle phase), only the first order solu-
tion for the particle phase has been obtalned by neglecting its effect on
the gas flow field. This has been proved adequate, for example in the
erosion calculation of a curved pipe carrying a gas-solid mixture.
Asymptotic expansion solutions for the particle trajectories are dis-
cussed. Finally, the density of the particle at the pipe wall is

presented and discussion based on the numerical results are made.
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T. INTRODUCTION

The study of two-phase flow systems has been a subject of wide
interest owing to its broad applications to various physical problems.
Recently, with the development of large coal gasification plants under
the Energy Research and Development Administration (ERDA), it has become
necessary to investigate the fluid dynamics of gas-particle flows, both
experimentally and theoretically, in order to design better piping systems
and vessels that handle such flows.

One of the most common components that is present in nearly all
piping systems of a coal gasification plant is the elbow of circular
cross-section. It 1s, therefore, the purpose of the present work to
study the fluid mechanics of a gas-solld mixture flowing into a curved
pipe from a large reservoilr, such as a coal gasifier. Results from such
analyses should enable us to predict, in particular, the erosion charac-
teristics inside the bend due to the impact of the solid particles with
the pipe wall.

Historically, gas-particle flow analyses have had a wide application
to various fields of importance, such as rocket nozzle performance
analyses, aerosol studles, pneumatic conveying systems, etc. The majority
of the earlier work has been limited to simple flow geometries. Kliegel
(1963), Rudinger (1970) and Gilbert, Allport and Dunlap (1962) considered
the one-dimensional gas-particle flow inside a rocket nozzle. Soo (1965,
1968) investigated both the laminar and separated flow of a particulate
suspension for various systems. Pipe flow of a dilute suspension was
extensively studied by Soo and Tung (1971,1972), who took into account
the effects of deposition, entrainment, gravity and electrostatic force

in their analyses. The compressible boundary layer of a gas-particle



flow over a flat plate was treated by Singleton (1965).

Little work has been done for more complicated systems. One major
difficulty is to obtain analytical, whenever possible, or numerical solu-
tions of the fluid phase alone., Without such solutions, one cannot hope
to obtain solutions for the particulate phase. This explains why the
earlier work mentioned before was mainly confined to simple geometries
in which the dynamics of the fluid phase can be solved guite easily. In
the present case of a curved pipe geometry, the situation is more compli-
cated because of the three dimensionality of the problem. As a result,
the present work is restricted to a dilute suspension so that the gas
flow field is negligibly affected by the presence of the particles. In
this respect, the gas flow field can be solved independently of the
particle phase.

This report is divided into two main parts. The first part discusses
in detail the full numerical solution for the problem of a pure fluid
entering a curved pipe of circular cross-section. The flow ig assumed
to be steady, laminar and incompressible. Instead of solving the
full three-dimensional Navier Stokes equations, the cléssical approach of
dividing the gas flow field into an inviscid and viscous region is fol-
lowed. Individual numerical solutions for both regions are sought.
Finally, their interaction through the displacement thickness is included
in the analysis. Comparison of other analytical and experimental results
are also made here.

The second part contains a discussion of the fundamental behavior of
the particulate phase in a gas-solid mixture. The particle motion is
then solved using a simple Lagrangian analysis. Discussion will be made
based on the present numerical results. Circumsitances under which exact

golution of the particle trajectories is possible are also discussed.



IIL. FLOW OF A GAS INTO A CURVED PIPE

2.0 Historical development

When a fluid flows through a curved pipe, a pressure gradient
directed towards the center of curvature is developed to balance the
centrifugal force exerted on individual fluid elements. Because of
viscosity, the fluid near the wall moves more slowly than the fluid
away from the wall and consequently requires a smaller pressure gradient
to balance the centrifugal force. The differences in these pressure
gradients creates a secondary flow inside the boundary layer in which the
fluid moves from the outer bend towards the inner bend of the pipe.

The first theoretical studies of fully developed curved pipe flow
were made by Dean (1927,1928). He showed that the appropriate dynemical
similarity parameter is the Dean number, defined as Re(a/R)%, where Re
is the Reynolds number based on the mean flow velocity and the radius
of the circular cross-section, a; and R 1s the mean radius of curvature
of the pipe. BSince then, a number of numerical investigations were made
in this area, particularly those of McConalogue and Sirvastava (1968),
Collins and Dennis (1975) and Greenspan (1973). These authors considered
the full Navier-Stokes equations in the fully developed region and their
schemes suffered a serious drawback at high Reynolds number. ILater,
Smith (1976a) investigated the steady curved pipe flow with general cross-
section. He pointed out that laminar attached flow through a curved pipe
with a rectangular cross-section does not exist. On the other hand,
asymptotic boundary layer theories for large values of Dean number were
studied, first by Baura (1963) and later by Ito (1969). The unsteady

fully developed curved pipe flow subjected to a pulsatile pressure gradient



was investigated by Lyne (1970).

Comparatively little literature deals with the entry flow in a
curved pipe owing to the complicated nature of the problem. Farlier
analyses were mainly made using an inviscid rotational model developed
by Hawthorne (1953). The first complete analyses of a viscous fluid
flowing into a curved pipe were, to the author's knowledge, those of Yao
and Berger (1974) and Singh (1974). Special assumptions regarding the
inviscid core were made in Yao et alls analysis. Smith (1976b) considered
the case of a fluid flowing into a curved pipe from a stréight section,.
Perturbation methods were used in Singh's and Smith's work which render
their solution valid only for a small distance from the entry section.
Most recently, Agrawal, Talbot and Gong (1978) have measured experimentally
the veloclty profiles in the entry region of a curved pipe. They find
that the initially uniform velocity profile changes to a potential vortex
profile immediately downstream of the entry section. At the same time,
Choi (1978) investigated the unsteady entry flow in a curved tube experi-
mentally. These experimental results were only for moderate values of
Dean number.

In the present study, full numerical schemes are proposed to solve
the entry flow problem at very large Dean number. The physical situation
corresponds to a gas leaving a large reservoir and entering a curved pipe
with circular cross section. There are existing finite difference schemes
aiming at solving the three-dimensional Navier-Stokes equations. However,
almost all are restricted to low and moderate values of Reynolds number.
It is thus practical to use boundary layer theory for the present problem.
The boundary layer is assumed to be laminar and attached throughout the
whole analysis. Where the boundary layer becomes separated or turbulent

(a rough estimate can be made of the transition to turbulent boundary



layer by using the flat plate result, i.e., when the Reynolds number
based on the distance from the entry location is of the order of 105)j
the present results will not be valid. For the inviscid core region, it

is further assumed that the flow is irrotational.



2.1 Eguations of Motion

It is convenient to use a set of toroidal coordinates (r,\y,aﬁ) as
shown in Fig. 1. Denote by R the radius of curvature of the pipe axis,
by a the radius of the cross-section and by u,v,w the velocity components
in the direction of increasing r, | and ¢, respectively. The equations
of transformation from the Cartesian coordinates (X,Y,Z) to the present

toroldal coordinates are

X=(R+r cos {§)cos ¢ ,
Y=r sin § , (2.1.1)

Z=(R+r cos {)sin ¢ .

The corresponding scale factors for the toroldal coordinates system are

then given by

h, =1 , h, =1 , by = R+xr cos ¢ . (2.1.2)

With the help of (2.1.2), the familiar Navier-Stokes equations can be

written, in component forms, as follows: for the r-momentum

du v oou W u v w__cos

e e g e o

Y rgxi}“R»%rcosQJBQﬁ T R+r cos ¢

l ap+ 1 Js) U aw
= v{ = [Z=~w cos - (R+r cos |) =]
e (R+r cos \1;)2 op "op ar
1l 3 sin v, v 1 3u
) (I‘ oy R+r cos llj)(af r oy 5’9)} s (2.1.3)
for the {-momentum
, 2 .
L LYy, W Qv uv W sin
ar r 5@‘ R+I‘ COS \LF a@ r P+r cOos q!
SRyl uﬁmggwﬁim==)<av v_Louy
- rp 3y ar R+r cos ¥ ror oy
1 > (R+tr cos § ow . v
- 2"6@[ - B\hwsmq; ES@H ,
(R+r cos §)



and for the ¢ momentum

uEW;+V3"” W W, uW_cos viw sin ¢

ar  r 3y R+r cos § 3 R+r cos § R+tr cos y

:aRJrrlcos ] %%+V{(§%+%>[%am <%mw cos W]
+%%E%%am (%w sin )1} . (2.1.5)
The continuity equation is
aa%l+%+fi+rrcos q;%jLurC;ii{“czz zinw:o ’ (2.1.6)
The domain of interest is
O<r<l , O<y<m , O<g<m/2 . (2.1.7)

The planes { =0 and =7 are planes of symmetry and 1t is thus adequate
to consider only the top half of the flow field. The necessary boundary

conditions are

(i) no slip condition u=v=w=0 at r=a
(ii) wuniform entry w =W, = constant at ¢=0 (2.1.8)

(iii) exit conditions given at ¢=n/2

Most authors impose fully developed conditions at the exit of the pipe.
However, thls may not be true for flow into a 900 elbow at high Reynolds
number. Moreover, the amount of information required at ¢ =m/2 depends
also on the method of solution for the Navier-Stokes equation. Hence, we
only specify for the moment that some exit conditions are given and

clarify these conditions whenever appropriate.



2.2 Flow outside the boundary layer

Since the viscous effect is essentially confined to the boundary

layer, the core region is assumed to be inviscid.

The governing equa-

tions are, therefore, the Huler equations, which can be obtained from

the Navier-Stokes equations by neglecting the viscous terms. Using the
following variables
U i W : P
= e 7 I - = T = e
Yo W, >V W, W w, ° Po W ?
+ ¥y (2.2.1)
r
o Ta 0 Vo=V s 5, =8
and define the radius ratio, o, to be
o =2
"R
we can write the Euler eguations as follows:
U VAU oM U VS ol cos § oP
U 2+ 22y Q 2. -2. 2 S ol =2, (2.2.2)
+
o ar r a¢o ]ﬂ+qr§os¢0 as r 1 arocos¢o aro
. 2
i P
5 ELS ZQ, oMl vy UV, dWOs1J1¢O w‘,;g‘a o (2.2.3)
. s . - 2 ¢ °
0 aro r, 1yramc)cos¢o Bso r, 1~%arocos ¢O ro ayo
5 BWO_%XS,BWOMF @WO BWOEFQUOWOCOS\h)maVOWOSln$O:T o afb
P = - .
o aro . awo l+@rocos wo o8 1+arocos ¢O L or cos wo aso
(2.2.4)

The continuity equation becomes

a(UOrO> v o

CIR a(t&)cos ¢O=~VC)81n,¢O)

=0 .

Bro

Given enough boundary conditions on

-+
a¢o l%—arocos ¢O

(2.2.5)

8 1+or cos
0 o) o) wo

the entry plane, the exit plane and the

pipe wall, one can solve equations (2.2.2) to (2.2.5) for UV oW and

PO numerically.

However, the nonlinearity and three-dimensional nature

of the Fuler equations present great difficulties in constructing



efficient and economical numerical schemes. In view of this, we shall
further assume that the core region be irrotational. This greatly
simplifies the present problem because we can define a potential

function (O such that

_l20 1 20 1 20

U 9 V o mem—— 5 W P
o o ar, o ar_ oy, 0 1x+omc)cos by B8,

(2.2.6)

Substitute (2.2.6) into the continuity equation (2.2.5) and obtain the

gtandard Laplace equation in the toroidal coordinates:

QEQ , 20 [j; o cos wo - 1 52Q ) @ sin §_ 30
ot o Ty Lrom cos iy ri 8¢i Lo, cos g, ol
2 2
" & - 9 d-0 . (2.2.7)
(L+ar_cos wo) 38

Fquation (2.2.7) is to be solved subject to the following Neumann

conditiong:
i%l-z fl(rogyo) at s =0 ,
é%l.: (v s4,) at s =m/2 (2.2.8)
é%i = f3(¢ogso) at r =1 ,

where f,,f, and f, are prescribed functions of the indicated variables.

Although the above formulation is general, it should be mentioned that,
in the present studies, we limit ourselves to certailn classes of functlons
for ) and for the boundary conditions. In particular, () is an even
function in $o and so are the boundary conditions.

The assumption of irrotationality may seem drastic. Nevertheless,
it avolds the difficult Fuler eguations and also provides some fundamental
insights, both analytically and numerically, as we shall see in the

following sections.



10,

Approximate solution of Laplace equation

Before discussing the full numerical scheme for solving equation
(2.2.7) subject to (2.2.8), let us consider the case when o is small
(o<1 in all curved pipes of circular cross section). We take the boundary

conditions as:

£, =l+ar_cos §  , f,=l+ar cos y  , f,=0 . (2.2.9)

2 3

(2.2.9) corresponds to the uniform entry and exit conditions with zero

i

normal veloclty at the pipe wall. Following the method of matched asymp-
totic expansion (Van Dyke, 1964) with « being the small parameter, we
assume (, the outer solution, to be expanded in a power series in o:

2
Q=0 +toQ +d @ba%ee» (2.2.10)

Substituting (2.2.10) into (2.2.7), we have, for O(1)

2 2

9 Q A0 3 Q 0
o, Lt o, L o_ g | o = 0 (2.2.11)
2 r_ar 2 2 ar |

or o 7o r_ 3y of.
o o o \r =

The solution is
Q, = go(so> ) (2.2.12)

2 2
3 Ql 1 BQl 1 a Cﬁ an B
e e e S e o () = = 0 (2.2.13)
3 2 o Bro r2 3 2 aro
* ol wo rozl
with corresponding solution
Q = gl(so) R (2.2.1k)

where gl(so) is also a function of s only.
Clearly the above solution is not valid near the entry and the exit
planes. To obtain the inner solution near the entry plane, we scale

the dependent variable and S, as follows



11.
0=9 , .2 (2.2.15)

6 and sz are known as the inner variables. Again, we express 5 as
Q= '5O+aal+m (2.2.16)

The first order inner problem is given by

207 ~ Do 2
4 e ¥0. 0
o, L o, L 0o, 0o g,
E - E
we  To Oy g2 a2 o2
N o o "o o (2.2.17)
BQO‘ . BQol ) N ¥
- = s TR = s (0 bounded as s —~w
ar 38 o] o)
o= +*
ro L s =0
o)

Using separation of variables, 5; is found to be

~ R “Bnmsz
Q =35 %A J'(Bnmro)cosznwoe , (2.2.18)

© m=1 p=1 W

where Blm,ggm,eee etc. are roots of the equation

g(g ) =0 .

m-rTnm

The condition m>1 insures the roots 5nm:>0 for all n and m. This is
required because if an::o for some n and m, the inner solution will
converge to a function of T and ¢O as sjs*wa This is incompatible with
the outer solution, which depends only on s . A;m are found formally

o)

*
from the condition at sozzog

Tt
. EB“’J; OJm( Blo) cOSmy r dr dy
Anm - yl

In view of (2.2.15), the inner soluticn is actually of order « relative

= . (2.2.19)
r Jz(a T )coszm¢ r dr 4y
ovp MmO oo 0 o

to the 0(1) outer solution, Q¢ Thus, we may write to order agg

the outer and inner solutions as follows:



12.

Cuter solution:

2
Q<O) = go(s >+agj(sl)+o<oz ) o (2@2320)
Inner solution:
Qil) - @55-%o(a2) , (2.2.21)

)

denotes the outer solution and Q<l) denotes the inner solution

(o
where (} 4

3 3 3 —}e
near the entry plane. Since the inner solution tends to zero as sow»oo3 we

must have, for the outer solution, at SO::O

g,(0) =0 , g(0)=0 . (2.2.22)

In order to find the functional form of g, and g13 one must apply the
global mass conservation law, which simply requires that the mass flow

rate at any 5, must be constant, or

T ok
foyoworodrod¢o - Cl ’
or (2.2.23)
TT ke
1 [e.9) _
XOIQ 14~arocos @O 38 rodrod¢o =C

l >

where Cl is a constant given simply by the mass flow rate at the

entry plane, soz(h
gy -
C, = jOJOrodrodwo =5 (2.2.2L4)

Substituting equation (2.2.20) into (2.2.23) and using (2.2.22), we obtain,

to order o,

8o (5,) togy (8)) = Cu8

where 02 is given by



Ml dr dy

13.

¢ =c/f ) (2.2.25)
2 1 JOjO 14-arocos wo
It follows then
g, (8,) = Cy8 (2.2.26)
and
g (s ) =0 . (2.2.27)

S :%ws . (2.2.28)

s = -, (2.2.29)

In view of (2.2.26), the first order inner solution must approach

e
02 °ﬁ/2 as the lnner variable 8, = This suggests that no stretching
is required for (O in the exit region. Following the same procedure as

described before, the order 1 inner problem is given by:

2 - - 2 - 2 -
o QO 1 BQO 1 3 QO e} QO
2 e T3 Tt Tt

Bro oo r, 5¢O aso
ol EQO - —
N =0 , — =0 , QO bounded as S 7@ .

© r =1 BSO ¥
o] sO=O

The bounded solution satisfying (2.2.30) and which matches (2.2.26) is

In a similar fashion, the order « problem is given by

(2.2.30)

Q. = Cy n/2 . (2.2.31)



1k,

fs) Ql 1 BQl 1 3 Ql 3 Ql
+ S + =0 ,
2 r ar 2 2 —¥2
ar ro awo 56
- B (2.2.32)
BQl Bﬂl - —
= =0 , —= m=e1 Cﬁ bounded as s —o
Bro 5;* i
r =1 of =%
O 8 =
o)
with solutions
S
- R E@nmso
0 =2 zA_J (B r )cosmye ’ (2.2.33)
m=1l n=1 '

- +
where B again satisfies Qé(@nm)::o and A =-A_ . The inner solution

in the exit region, Qil), is then given by

(i) _ - -
o) = C%-*a@l~k0(a

2y . (2.2.34)

A composite solution which ig valid for the whole region can be constructed

from the two inner solutions and the outer solution. It is found as

Qr s¥8,) = e8] . T
© 2s) -8 2 - 2 ©
+oflw ¥ A:mJM(gmnro>cosm¢O(e oo TP O3 40(67) (2.2.35)

m=1] n=1 ~

where the condition A;mfzaA;@.has been used.

Higher order solutions can be found readily. Solution (2.2.35) shows
that the core flow develops quite fast into the potential vortexf profile
and persists downstream until the exit reglon where it is adjusted again
to satisfy the imposed exit condition. The existence of a potential
vortex away from the entry and exit sections is, of course, anticipated
since we have assumed an irrotational core and zero normal velocity at
the wall. It is also consistent with the experimental findings of

Agrawal, Talbot and Gong (1978). In the actual case where a boundary

TA potential vortex in toroidal coordinates is given by Q= const. 8,



layer exists, the potential vortex profile will be altered before the
exit is approached due to the interaction with the boundary layer.

In sumary, it has been shown that the assumption of potential
flow outside the boundary layer to calculate the early development of
the core flow in a curved pipe is a reasonable one. Furthermore, it
admits exact analytical solutions when the boundary conditions are
simple enough. For more general boundary conditions or when o 1s not

small enough, the solutions must be found numerically.

Numerical solution

Here we shall describe in detail the numerical scheme used in the

15.

present studies to solve equation (2.2.7) subject to the Neumann boundary

conditions given on the entire boundary. That the problem is well-posed

is very well established mathematically. Extensive numerical calculations

have been applied to the three-dimensional Laplace equation with com-
plicated geometries. The most commonly used method is based on

the use of finite difference scheme. While the formulation of finite
difference methods is quite straightforward, it is not our intent to

use such approaches. Instead, we shall study alternative techniques

aimed at eliminating finite difference calculations in selected co-

ordinate directions, in the hope of improving the efficlency of the

mmerical scheme. One such method is Telenin's method (Gilinskii,

Telenin and Tinyakov, 1964). It has been applied to numerous inviscid

flow calculations (see Holt, 1977) and proved very efficient. We shall

now describe the basic idea of Telenin's method.

In order to eliminate finite difference calculations in selected
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coordinate directions, the unknowns are represented by appropriate
interpolating functions in these coordinate directions. Partial deriva-
tives in these chosen coordinates can then be evaluated analytically

and, as a result, the original governing equations contain only partial
derivatives in the remaining direction (or directions). In practice,

the maximum number of coordinates are chosen so that the resulting system
consists of ordinary differential equations. As described, Telenin's
method can be applied to partial differential equations of elliptic,
mixed elliptic-hyperbolic, or parabolic type.

The principal advantage of Telenin's method over conventional finite
difference schemes lies in the freedom of choosing the interpolating functions.
Thus, when certain functional properties of the unknowns (such as oddness,
evenness or periodicity) are known, one can easily choose appropriate functions
that exhibit those properties, thereby improving the accuracy of the
numerical results. Furthermore, some boundary conditions can be care-
fully incorporated into such chosen functions, thus eliminating the need
to consider the boundary points separately, as is required in finite
difference formulation.

In the following, we shall apply Telenin's method to equation
(2.2.7). We shall approximate () analytically in the cross flow plane,
i.e., in ro and wo directions. The grid system is shown in Fig. 2.

Owing to the artificial singularity at rO::O in using the toroidal
coordinates, we exclude the center of the semi-clircular region for
numerical purposes. Let (i,k) represent the coordinates of the nodes,

i.e., on the point (i,k), r =r . and ¥ The functional value

0 T 0,1 ::¢03k°

of any function f(ro,xpo,so) at the node (i,k) will be denoted by fik(so)@
Note that fik is only a function of So'

On planes of constant woa ¢O=:¢O Ko we approximate () by a Lagrangian
El
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polynomial in the . direction:
, (2.2.36)

where NXL is the number of nodes in the ro direction and Qg depends only
on WO and S Normally, one can only fit a (NX1-1) degree polynomial
into NX1 points. However, due to the derivative boundary condition at
rO::13 one hags an extra degree of freedom in fitting a polynomial through
NX1 vpoints, i.e., one can fit an NX1 degree polynomial through the NX1

points. Rewrite (2.2.36) as

A j=1 0o NXL
=2 T Tt : (2.2.37)

O

Applying the boundary condition at ro::l from equation (2.2.8), QNXL

can be related to f3(¢o,sg) by the following:
0 1 NXL 0
O Yo25,) = 5 {f3(¢ogso>E.j§2<3-l>Qj(¢ojSo>} . (2.2.38)

Substituting (2.2.38) into (2.2.37) and simplifying, we obtain

NXL
- 0 o, J-1 J-1 NX1
Q=0+ 3 Qj{ro ST 1o, (2.2.39)
J=2
where 5 is defined as
NX1
_ fg(wojso)ro
Q=0Q ) (2.2.40)

The interpolating coefficlents QiﬁQg,eoe can be solved in terms of the
nodal values of (. Thus, if we apply (2.2.39) to the NXL points in the

ry direction, we have
5 A,,Cg , 1=1,0,...,0KL (2.2.41)

where Aij is given by
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A,, =1 when J =1

and (2.2.4h2)

_ el (3-1) N

.. . . otherwise
i3 0,1  MXL To,i°?

Solving (2.2.41), we obtain

NXL
%_1£fﬁf%k , 1=1,2,0..,NK0 (2.2.43)

In a stralightforward manner, the partial derivatives in the ro direction

are given by

BOlk NX1 _
— =3 Cl, .Q,
aro =1 iJ Jk
where (2.2.4k)
NX1
Cl,. =% (Z=l)AET(r§ i T§X§~l>
=2 ?
and
agﬁik Nl
5 = z Dli'Q°k
Bro j=1
where (2.2.45)
NX1
DL, . =% (4=1)A" [ (4-2)e%73 - (wxi-1)e™E2)
1J 4=0 23 0,1 0,1

Similarly, on contours of constant oo Yo=T 4o () is expressed in cosine
>

series because of its symmetry property as follows:
Nx2

a=7x 00 %o0s(j-1)y
g=1"

9 (29231%)

O

where NX2 is the number of modes in the ¢O direction. As before, ngg

which is now a function of r and So only, is a linear combination of

the values of Q on the NX2 points. If a matrix B is defined as

Bkj = cos(jml)wogk , kyd=l,...,0X2 (2.2.47)

it can be shown that the following holds:



00 hx2 1
= o j=Lyeeo, X2
aQik NX2
= 5. C2, Q.
awo =1 k3L
where
NX2 1
CEKJ. = - % (zwl)gzjsm(zalmojk R
=2
and
o, W2
5 =% D2, 0 4
a¢o J=1
where
NX2 5 -1
D2 ., =- L4=-1)"B Jcos(4-1 e
g =7 B Epees (i

Substituting the partial derivatives in T and q;o directions into

19.

(2.2.48)

(2.,2.49)

(2.2.50)

equation (2.2.7), the Laplace equation becomes the following system of

second order ordinary differential equations in S,

dQQ. i=1,0.., XL
e (Lt
dso K=l,e..,NX2
where fik is given by
2 .2
. <Jik.> {a Qik+< 1 +ozcos xgyojk)
ik oz2 ar r091 J:Lk
52Q osin 30
L1 ik Yo,k ik
£ Jik %
with ¢
= 1+ o
Jik - Q"frojj« co® 11fojk

The dependence on f._ comes from equation (2.2.40).

3

The boundary conditions for (2.2.51) are

(2.2.51)
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-t = (£) at s =0 (2.2.52a)
as_ 174k o e

and
Mk _ (£). at s =mn/2 . (2.2.500)
as_ o’k o e

System (2.2.51) with boundary conditions (2.2.52) constitutes a well
posed boundary value problem, However, the solution can only be deter-
mined up to an arbitrary constant, as is well known from the mathematical
theory of the Neumann problem for the Laplace equation. It is, of course,
harmless since one is interested in the derivatives of  only. However,
it does present a slight difficulty in obtaining numerical solution. The
difficulty can be removed by assigning a value, say zero, to the potential
function O at a particular point on the boundary or in the domain of
interest. Alternatively, since the exit condition does not effect the
initial development of the flow for most of the curved pipe, except near
the exit region (as discussed before),we shall instead use the following

exit condition:
Q= g(y,r,) at s =m/2 , (2.2.53)

where g(¢09ro) is any prescribed function of {_ and r_. Physically,
(2.2.53) implies that the cross flow at the exit plane is given instead
of the axial wvelocity.

The conventional Telenin®s method transforms the boundary value
problem into an initial value problem by guessing enough initial con-
ditions to start the integration. These are then adjusted until the
boundary conditions on the other side of the boundary are satisfied.
This approach is analogous to the shooting method for solving a boundary
value problem. Mathematically, one is trying to solve an elliptic

problem by assigning Cauchy data along an initial line. This approach
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suffers from the so-called Hadamard instability (Garabedian, 1964) which
asgerts that the solution of a Cauchy problem for an elliptic partial 4if-
ferential equation does not depend continuously on the initial data.

In view of this inherent instability of the conventional Telenin's
method applied to an elliptic problem, one must use the fewest possible
nodal points for the representation of the unknown and high precision
computation. Furthermore, since one has to iterate on the initial data,
the initial guesses must be close to the correct solution in order that
the iteration converges. These requirements pose a serious limitation on
the applicability of the conventional Telenin's method. Tndeed, when the
shooting technique was applied to system (2.2.51) subject to (2.2.53),
solutions grew out of bound and it was not possible to iterate on the
initial guesses. This can be due to the following. Since the present
problem is three dimensional, the least number of nodes can be signifi-
cant. TFor example, even though we have taken NX1 =3 and NX2=3, the
number of ordinary differential equations to be integrated is
2+ NXL - NX2=18. (The factor 2 accounts for the fact that (2.2.51) is
a second order system.) The large number of differential equations
makes it almost impossible to control the Hadamard instability. Further-
more, good initisl guesses are difficult to make, which again amplifies
the Hadamard instability even to a larger extent.

A different approach is sought by taking advantage of the linearity
of system (2.2.51). Since Hadamard instability arises only when we try
to cast the elliptic problem into a Cauchy initial value problem, numerical
schemes based on the direct solution of (282951) should eliminate the
instability. To do so, let us divide the curved pipe into NX3 equal parts
in the direction of increasing 5,5 as shown in Fig. 3. Denote the value

of O at the point (i,k) on the plane sOsz(ﬁﬁgﬂﬁ/gﬁ where v =0,1,...,NX3,
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by sza (2.2.51) is then approximated by replacing the second derivative

by a center difference formula. For the derivative boundary condition at

SO::O9 we imagine a fictitious plane SO::N( g” and denote the values

Ly,
NX3

of (3 at this plane by Q;io A central difference scheme can be used to ap~-
proximate the prescribed derivative boundary condition. In the case that the
derivative condition is also prescribed at the exit (equation (2.2.52b),

it can be treated in a similar Ffashion. The resulting finite difference

system of equation (2.2.51) is

ooy ot
ik ik ik - (Qv £ )
5 ik ety o
n
1T -1
ik Qik - (f >
oh 14k ?
QX3+ IK3-1 (2.2.54)
0 - op ik e L o(g)
ik Sik oh T Mol 0

v=0,1,...,N3 , i=1,...,08L , k=1,...,0X2

ﬁ%§ﬂg=is the step size in the present problem. FEguation (2.3.54)

where h= (
is a linear system constituting NX1 . NX2 - (NX3+1) algebraic equations for
the unknowns sz at each node.

The linear system (2.2.54) has a very interesting property.

Rearrangement of the equations enables us to write (2.2.54) in the

following form

Q=

X=C (2.2.55)

where A turns out to be a block tridiagonal matrix with the following

special nature:
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A 21
o}
I Al I
A = A (2.2.56)
~ v
with AorzAlz °°°:ANM3 and I being the identity matrix. The order of

each matrix element is NX1 . NX2 by NXL . NX2, n is 1 when (2.2.53) is

used and n=2 when (2.2.52b) is used. The transpose of X is given by

T
X = {Xonls.e,,XNX3} R (2.2.57)

~

where XO is a column vector containing QE’, k=1,NX2, 1=1,NX1; Xl
containing Qik, etc.

Finally, g‘contains the corresponding inhomogeneous term which
depends on the boundary conditions. The special gtructure of the coef-
ficient matrix é improves the efficiency of the present numerical scheme
for solving the Laplace equation tremendously. Thus, one can easily
transform é into a lower and upper triangular matrix as one
does for an ordinary tridiagonalmatrix (Issacson and Keller, 1966).

The order of systems that need to be solved during the course of LU
decomposition is at most NX1 e« NX2, as compared to the original order of
NXL - NX2 « (NX3+L)in (2.2.5L4). Moreover, many matrix multiplications are
saved since the lower and upper diagonal elements of é are multiples of
the identity matrix 1.

The central difference scheme used is of order O(hz), Higher order
difference approximations could be used to achieve higher accuracy for a
fizx h, bdbut this will destroy the tridiagonal structure of és Indeed,

it is computationally more efficient to use a smaller h with central



difference than a bigger h with higher order difference.

Numerical Results and Discussion

The present modified version of Telenin's method was applied to solve
the Laplace equation in a circular cylinder with prescribed Neumann
boundary conditions, as shown in Fig. b, It is worth mentioning that
the solution shown in the figure was obtained with the full Neumann
conditions, i.e., the solution could only be determined up to a constant.
Tt is therefore surprising to find out that the numerical solution
agrees closely with the exact solution. Possibly this is due to the
approximate nature of the central difference scheme itself, so that the
coefficient matrix of the system (2.2.54) is computationally nonsingular.
In the limit h—0, one would expect to obtain a homogeneous system with
a singular coefficient matrix. Other boundary conditions, mostly mixed
Neumann-Dirichlet conditions for the same problem have been tried and in
all cases there are close agreements between the numerical and exact
solutions. Hence there is no doubt that the present modified scheme is
more efficient than the conventional Telenin's method, at least when
applied to a linear problem.

For the potential function in a curved pipe, exit condition (2.2.53)
ie used unless otherwise stated. Different forms of g(ro,¢0) have been
tried and the solutions do not differ much from each other over most of
the curved pipe downstream of the entry plane. This is in conformity
with the matched asymptotic expansion solution derived before. In view
of this, we take g=constant, which corresponds to vanishing cross flow
at the exit plane. This is a reasonable choice since the cross flow in
the whole domain of interest is small compared to the axial motion for

small .
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Figures 5 to 8 present the numerical solution of the potential
function in a curved tube. The velocity components are obtained from
equation (2.2.6), together with the interpolation functions chosen for
the representation of (. The mesh size in the core region is given by
NX1 =3 and N¥2 =5 throughout the whole analysis.

Figure Sa shows the velocity potential, normalized as indicated in
the figure solely for graphing purposes, at the entry plane of a curved
pipe with o=0.1l. The slight variation of () reflects a corresponding
slight cross flow at the entry superimposed on the uniform entry
profile. In this context, it is worthwhile to mention that one may not
in general prescribe all three veloecity components oﬁ the entry plane,
since this will fix both Q and its normal derivative §§%5 and the
elliptic problem becomes ill posed. This cross flow decays quite fast
downstream, and () becomes uniform over the cross flow plane when SO::O.lW
is reached, as shown in Fig. 5b.

Figure 6 shows the variation of Q along the curved pipe for two
values of the curvature ratio, @, The uniform exit condition (2.2.52b)
was used. It can be seen that () is essentially a function of 5
when o= 0.1. Moreover, 1t corresponds almost to the velocity potential

of a two-dimensional point vortex given by
Q=05 (2.2.58)

where C, is given in (2.2.25). Tt can easily be shown that

C, = l"kg*a2~+0(au)

so that for o=0.1, ngals This agrees with the matched asymptotic

solution obtained in Section 2.2,



For o=0.6, the variation of Q in the cross flow directions is
more pronounced, albelt the absolute magnitudes of the variation are
still small. This is expected because the inner regions (both near the
entry and the exit) cover a much larger distance (roughly of O(x)).
Hence the conditions on the entry and exit planes persist further down-
stream/upstream of the entry/exit planes.

The cross flow velocity component parallel to the plane of symmetry
is next shown in Fig. 7(a) and 7(b) for o=0.1. It is indeed very small
and. can safely be neglected as compared to the streamwise veloclty
component, which is shown in Fig. 8(a) and 8(b) at two stations down-
stream of the entry location. The entry profile is also shown for

comparison. It can be seen that the flow almost develops into the

I

5 and is fully developed when it

corresponding vortex flow at sO::(Ool)
reaches sO::(062)§=:3,lMa, This is also in qualitative agreement with
Agrawal, Talbot and Gong, whose measurement indicates the potential
vortex is fully developed at a station so::EQMag

The above discussion has been carefully restricted to the very
early development of the flow. Hence it is still valid even when
viscosity effect is accounted for. Further downstream, the inter-
action of the core flow with the boundary layer may alter the core
flow behavior.. The main effects of the boundary layer on the outer
flow are twofold: firstly, the boundary layer thickness reduces the
effective cross section of the inviscid regilon and secondly, the normal
velocity on the pipe wall (or more precisely, on the outer edge of the
boundary layer) for the outer flow is no longer vanishing, as was
assumed earlier. Of course, these two effects are minute in the very

beginning of the flow development compared to the later stages of the

entry flow.

26.
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2.3 Flow inside the boundary layer

As fluid enters the curved pipe, a boundary layer forms all around
the pipe clrcumference ag in a straight pipe and grows downstream.
Since the Dean number in the present study is large, the boundary layer
will remain thin as the flow approaches the fully developed state.
Under such circumstances, it is advantageous to apply boundary layer
theory to the full Navier-Stokes equations near the pipe wall.,

By means of an order of magnitude analysis, one can readily obtain
the boundary layer equations in the entry region of a curved pipe.

Introducing the following dimensionless quantities

poM2 LYy L® bl By .o (pia)
“’w 9 WW ] ”W > - o) 2 e"“wn 9 eJe
e e e pWi i
5 )
n= (a~x)D%/a , ¢ =1¢ , s == (2.3.2)

where o 1s the curvature ratio of the curved tube. Subscript e refers
to quantities at the outer edge of the boundary layer and Wi is the
constant entry velocity as defined before. The boundary layer egquations

can then be expressed as follows:

aP
= = 0 2.3,
g Wy gy W v, ol siny + (v e awe WV 3we}j_;
1) oY " Tra cos i s " T4 cos ] " Trocos yoos W
~ .1 2P, Vo 2% (2.3.4)
- al\] w 2 9 ° ©
e o7
e
Wy W, W oWsing W w e WP aWe}
am 3y I+ocos § ds ltocos § LT We(l-mz cos ) ds
S N -\ Fazw
= 5 (2.3.5)

l+w cos § WE as We o
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The continuity equation becomes

. oW M
U, Vv, 1 W oVsin e il €120 . (2.3.6)

v
TN Y Itacos § a8 ltocos § {We Y We(l+oz cos §) os

In deriving equations (2.3.3) to (2.3.6), the radial coordinate v
is approximated by the radius of the pipe, a, since the boundary layer
is assumed thin compared to the radius. By virtue of (2.3.3), the
pressure in the boundary layer is imposed by the outer flow, i.e., the
inviscid core, It can be easily written in terms of the outer boundary

layer edge velocity components by neglecting the viscous terms in (2.3.4)
v W

and (2.3.5). Remembering “gﬁ and g-ﬁ- vanilsh at the outer edge, we obtain,
for the pressure gradients
A 9Py BVe+ 1 ave+ o sin g +-=“L{V2 awe+ Ve awe} (2.3.7)
we oV e o ltowcosy ds  ltwcos ¢ W t'e o ltocosy 3s e
e
and
a‘mwmi;w@g L oP :E,zZ§:iSi£“f{v awe.+ L awe}j; (2 3 8)
Itorcos § 2 s 1+ cos e oy ltocosy 3s W, ’ i
e
The boundary conditions are now
U=V=W=0 at 7N=0 ,
(2.3.9)
U»«Uegvmvej wlséﬂﬁbﬂmaﬂ 0O , M-

and U,V,W given at s = sig an appropriate initial station.

Method of integral relations as applied to the boundary layer eguations

Originally formulated by Dorodnitsyn (1956), the Method of Integral
Relations (M.I.R.) has been applied to a wide variety of current problems
in fluld mechanics which are governed by partial differential eguations
of elliptic, mixed elliptic-hyperbolic, or parabolic type. The key

feature of this method 1s to reduce the number of independent variables
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by one, s0 that, in problems involving only two independent variables,
the reduced system consists of ordinary differential equations. When
M.I.R. is applied to the boundary layer equation (Dorodnitsyn, 1960),
the normal coordinate is replaced by the streamwlse velocity component,
similar to the well-known Crocco's transformation. Recently,
Modarress (1978) has applied M.I.R. to solve the three-dimensional
boundary layer equations. Both separating and non-separating flows were
considered. A full description of M.I.R. and related applications can be
found in Holt (1977).

Mathematically, M,I.R. distinguishes itself from other standard
integral methods, such as the Karman-Pohlhausen method, in that M.I.R
guarantees the convergence of the approximate solution, at least in principle
(Abbott and Bethel, 1968). Shiau and Yeung (1978, unpublished) have applied
the method of integral relations to solve the fully developed curved pipe
flow. They obtained a resistance coefficient formula which agrees well
with experimental results. It is thus desirable to extend the method to
the entry region. We shall now proceed to derive the basic integral
relations,

The first integral relation ig obtained by multiplying equation
(2.3.6) by gk(W)5 equation (2.3.5) by gé(W)g add and integrate the result
with respect to 1 from O to «. Then change the variable of integration

to W by introducing a new dependent varlable Z, where
=1
2 = (/am) (2.3.10)

[gk(w)} is a complete set of linearly independent functions the elements

of which satisfy the condition

lim gk(W) =0 , Tk . (2.3.11)
W-1



The exact form of gk(w

) will be discussed later. The prime denotes

differentiation with respect to W. We obtain

o) 1
al f VAgk&W4‘l+acos ]

;i,f :
= 6Wng®M

1 WL

- osing 1
L+ cos § We

1 €

e)jo[(VW-Ve)g’

5 k-&ng]ZdW

4 ]
ltacos § W

ML 1 g’
g N BE Efk
55 ;§0[<l“w )gkagk]ZdW We
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(2.3.12)

Equation (2.3.8) has been used to replace 3P/ds. Z  is the value of Z at

the wall, i1.e., M=0.

The second integral relation is derived by transforming (ﬂ,¢,s) to

(W,p,8) in equation (2,.3.k4),

v _ v W
CONIEC RN

The following rules of transformation hold

(2.3.13)

v e\ ot v M

(Ew)ﬂss = <av)W>S(3¢ n,snk(aw>¢3s a¢>ﬂss )
v _ (v 3s v i

<as>ﬂ5¢ = ( ) 9¢(Bs>ﬂ Y (aw)¢9s(as)ﬂ5¢ )
> |

3V 32 oV aaw

S ( ) (= + (== (~

e A AR

With the help of (2.3
weighting function hk<
Finally equation (2.3

the following results:

.5), the transformed equation, factored by a
W), is integrated with respect to W from O to 1.

.7) is used for the pressure gradient term and
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1,2

1
20 13 1 Ye fh2 e o 7
2y IO E e P jw*\m We 5 O{(Ve V) = S5V VW) o, (W) aw

W i
1 .i; € T ,‘él _ 2
T T cos y W, os IO{VQ Wy aw(l W >}hkdw

) 1
pooasing j (1-W°) - %—%(vwave)}hk(mdw

ltacos § 0
v v 1 2
e 1 e Vot %y 1
+ (v + f h (W)aW + =% h, (W)dwW (2.3.14)
e 3y ltowcos ¢ 38 k W o BWZ Z2 k
bearing in mind that g% and 5% here imply keeping W constant. {hk(W)} is

again a set of linearly independent functions; however, no special

requirement must be satisfied by hk(W)e
On the plane of symmetry, ¢ =0 and { =1, equation (2.3.12) can be
simplified by asserting that V=0 and 2‘9 O to obtain
1 daw 1
1 " l. a;_ns e ~ 2 /s
I+a cos s fWZdW JOZSgde " Tra cos ] We ds XO[(l W >gk ng]Zdw
Vog/ (0)
N ]
- Wez w . Z aw -, (2.3.15)

where the new variable S is defined as

. oV

=5 (2.3.16)

Next, we differentiate equation (2.3.14) with respect to {, imposing

the symmetry conditions, and obtain

1 1 dw L
U S T T . 1 1l e ¥ ) 8 2
Tto cos § ds JOWShde“ JOS M T con § W, s joﬁ(se W8 ) - S2(10) T, W
o cos - 2, 1 ds r
“+
ltacos § ‘1 (1 W >hkdw i (S 1+ cos § ds )§ Ohkdw
L .2
oS 1 . .
S - (2.3.17)

e 0 W %
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where Se stands for ave/awﬁ in accordance with (2.3.16). Thus, the basic
integral relations reduce to ordinary differential equations on the plane
of symmetry in the variables 7 and 8. The boundary condition on S can

be readily deduced as

and. (2.3.18)

5 =8 at W=1
e

To solve equations, say (2.3.12) and (2.3.14), we represent the
unknowns analytically, in the form of a seriles based on some complete
system of functions. Conventionally, simple power series in the integra-
tion variable, W, is assumed for the reciprocal of shear stress, Z, and V3
the integrals in the integral relations are then evaluated analytically
and the resulting system of partial differential equations are solved
numerically. The amount of algebra involved is tremendous and the
coefficient matrix for the resulting system of differential equations
becomes more ill-behaved as one tries higher approximations. In an
attempt to overcome these difficulties, Fletcher and Holt (1976)
developed an orthonormal version of M.I.R. It has been successfully
applied to nonseparating flows, all of which involve only two independent
variables. We shall apply this modified version of M.I.R. to the present
three-dimensional problem.

The basic idea is to choose sets of orthonormal functions for the
weighting functions (g(W) and h(W)). The integrands on the left-hand
side of (2.3.12) and (2.3.14) are then expressed in terms of these ortho-
normal functions. Using the orthogonality conditions, one can evaluate
gquite straightforwardly the left-hand side of (2.3.12) and (2.3.14). The
corresponding right-hand sides are evaluated numerically rather than

analytically.
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For problems where only two independent variables are involved, the
number of unknown integrands that are preceded by a differential operator
is the same as the number of integral relations derived. Moreover, each
dependent variable (Z or V) can be solved uniquely from these unknown
integrands (see, for example, Fletcher and Holt, 1976). However, this
is not true for the present three-dimensional problem. Indeed, there
are four unknown integrands (vz,wzsvz and WV) and only two integral
relations. This is, of course, due to the dependence on one more
coordinate of the flow variables. To circumvent this difficulty, we

rewrite (2.3.12) and (2.3.14) respectively as follows:

1 1
—t 3 r 3 v
l+ocos § a8 dWngdW ¢ (k) - [ (v 5$*‘Z 5¢) aw -, (2.3.19)
1
1+a cos § as f WVh &W D(k) - J v g@’hkdw s (2.3.20)

where D(k) and D(k) represent the right-hand sides of (2.3.12) and (2.3.1k)
respectively. Here k denotes the subscript on the orthonormal function
g(W) or h(W).

In the Nth approximation, Z and V are represented as

N-1

= {bo + z leg )1/ (1 , (2.3.21)
N

= {Ve“k X bjghj(w)yﬁ . (2.3.22)
3=1

To satisfy condition (2.3.11), the gk(W) is chosen as

k .
g (W) =g a (1W) , (2.3.23)
k . kJ
J=1
where the coefficlents akj are determined from the orthogonality condition

imposed on gk(w)
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[ g, (0e, (1) % @ = o, (2.3.24)

613 is the Kronecker delta. ©Since there is no special reqguirement on
hk(w), one can use any orthonormal set with an appropriate weighting
function. However, from (2.3.22), the boundary conditions on V (V=0
at W=0 and VrsVe at W=1) can be satisfied automatically if we choose
hk(w) as a linear combination of the functions {(1==W)jB J=1l,e0e,k}

also. Thus,
b (W) = 2 ¢ (1-w)d (2.3.25)

The coefficients ij are now determined from the condition

1
"WPn, Gn.(Waw = 5, . . (2.3.26)
Y0 1 J 1J

Notice that the weighting functions for g(W) and (W) are different

even though their representations are similar. The existence and unique-

ness of such orthonormal functions are the content of the Gram-Schmidt

process (Issacson and Keller, 1966). Clearly

gk(l) =h (1) =0 , Vk (2.3.27)

Substituting (2.3.21) into equation (2.3.19) and using (2.3.24) we obtain

1 ng( ) b,

dw+-wsl-} = C(k) - f +7 ?\g)gk

K=1,.0.,0-1 ,

1 alj
1+ cos § { as

(W)aw

1 3b 4 j,l Wg\T(W) rl

l+o cos § 3s o = o

oW ) B\!}‘)gl\f( ) oW s k=N

We can further simplify the above by substituting abol/as to obtain



oy _ () (L+o cos )
3 I Wg (W)
j“ A
o LW
a 2.3.28
2 _ g, (W) (2.3.28)
b c(m)] o W
L =L k) - 0 k=1 N-1
l+owrcos § as 14WgN(W) ? et
f T W
0
where
c(g) Tv-——»rz axy> E(w)d_w , A=1,2,...,0 . (2.3.29)
Similarly, equation (2.3.20) gives
3b v L
1 k2 = 1 e 2 o _
Tiwoos § 39 MD(k)»«lWCOS\V v yow hk(%)dw , k=1,...,0 (2.3.30)
where
- 1 BV
D(f,)zD(ﬁ,)«f V?éwhk(W)dW y, A=1,2,0..,0 . (2.3.31)
0 ]

Equations (2.3.28) and (2.3.30) constitute 2N coupled partial differential
equations in s and {, which can be solved for the 2N unknown coefficients
introduced in (2.3.21) and (2.3.22).

Similarly, on the plane of symmetry, ¢ =0 and {=m, exactly the
same approach applied to equations (2.3.15) and (2.3.17) yields the

following system

ab oy B 5(N)(l+acos )
ds 1 g (W) ’
f A W
0 1-W
ook Ve, (W)
Lo C<N>JO T W
Itacos § ds = C(k) - 1 Wgy (W) ’ (2.3.32)
y i W
0
de ds
1 kK~ 1
l+acos § ds D) - 1+ cos § ds Jﬁw by AW
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where now C(k) and S(k) represent the right-hand sides of equations

(2.3.15) and (2.3.17) respectively and e, is the kth coefficient in

the approximate representation of 5, given below:
N

= [8 b (W)W 2.3
S= 05t 2 e S0)] (2.3.33)

Initial conditions

In the immediate neighborhood of the entry section, the curved pipe
behaves like a straight pipe. Thus, the correct initial conditions must
be obtained from the solution of the uniform entry into a straight tube.
To a first approximation, we can use the Blasius solution with a free
stream velocity equal to Wi (i.e., Wersl). In order to apply
the integral relations in this region, we need to rewrite the boundary
layer equations in cylindrical coordinates, with the center of the entry
plane as the origin and the z axis in the direction of the entry flow.
This can be easily accomplished by setting o =0 and redefining the

parameter 7Z as

~ - ~ - 1
7= (@, JeEge (2.2.34)
am
Equation (2.3.12) becomes
1, g, (0) 1g,
2 Nwgan = - £~ - [ L (2.3.35)
“ Y0 z 0 7
and the szimuthal velocity component is
V=0 . (2.3.36)

7 is related to Z by the following

Fl=

7 = 7a . (2.3.37)
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From the Blasius solution, we can express W as

where { is the Blasius variable

Hence

/7 = & = yr(g) = Lowr(g) - e
a2 2z Vz

Since W is a function of { only, when W is constant ¢ is also constant,

50 that we may write, on the i-th W boundary

~

Z, = ej\j.,,; and 7 = o(W)\z (2.3.38)

where Zj is the value of Z at WE:%:and ej’s are constants. The applica-
tion of the method of integral relations to the flow defined by (2.3.36)
and (2.3.38) yields a system of nonlinear coupled algebraic equations

in ej§ J=0,...,N-1, whose solutions can be obtained readily.

For the orthonormal M.I.R., one cannot in general solve directly
for the ej‘s because the fundamental variables involved in equations
(2.3.28) and (2.3.30) are not the value of 7 at each W boundary. In
fact, they are linear combinations of the Zj?s as seen from equation
(2.3.21). Thus, one may write down the coefficients LI {b

!
symbolically as

N-L oo
1
bol - an dog J o’
J (2.3.39)
N-1 3
b, =% a%d, 2. , k=l,...,N-1 ,
k1l 420 ki g

where equation (2.3.37) is used. From equation (2.3.38) it follows that
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{b } have the same square root dependence on z, so that we may

olj
write
P
bol = o AO Z
(2.3.40)
bklﬂa”Ak\/E“ k=1,...,0-1 ,
where
_ N-1 . N-1
A =3%4d .8, , =240, (2.3.41)
o] =1 oJJ k =0
Substitution of (2.3.40) into equation (2.3.28) yields the following:
i g
DAY 1 ¢.) B
o 1 Wy,
Jo 1-W aw
(2.3.42)
1 ng
S(N) — dW
- o LW
~2~AK~S(1§) T ) s k=1l,...,N=1 |,
P
qo l—W
where
gé(O) o8
S(g) == Tj‘dw 5 A =Llie.e N

Substituting (2.3.40) into equation (2.3.21) and comparing with equation

(2.3.38), we find that

N-1
(W) = {(A_+ £ &g (W)}/(1-W) (2.3.L3)
and hence
N-1
{A + zA g o)y . (2.3.44)
j= l

System (2.3.42) consists of N coupled algebraic equations in N unknowns

A A s k=1ly...,N=1, whose solution in general can only be found itera-
0"k

tively. Having found the A's, equation (2.3.40) can be used to evaluate



the initial values of oy {bkl} at an initial station z,. The initial
conditions for {bj?’ J=1l,.00,N} are, from (2.3.36)
bjg =0 , J=l,0e0,0 (2.3.45)

The initial condition at the plane of symmetry for the unknown S can be

easily derived from (2.3.36) as

so that we have
e, =0 , J=1l,e00,N (2.3.46)

Numerical dinvestigation of the boundary layer equations

In general, the method of integral relations reduces the three-
dimensional parabolic boundary layer equations to a system of first
order, hyperbolic partial differential equations, with initial conditions
derived in the last section. To solve this system numerically, 1t is
necessgary to approximate the derivatives by some sort of finite difference
formulae., Alternatively, one can, of course, apply the same idea with
Telenin's method. Thus, for example, one can represent the unknowns by
suitable interpolating functions in the aximuthal direction (§) and
evaluate the cross derivatives (i.e., ] derivatives) analytically. The
resulting equations can then be integrated in the streamwise direction.
However, it was found that such approach yielded results that were
oscillatory with the streamwise variable, s, when the number of polnts
in the { direction exceeded three. The same phenomenon was also reported
by Modarress (1974), who pointed out that since the reduced boundary layer
equations are of hyperbolic type, the cross derivative at any point should

only depend on the values of the unknowns at neighboring points.



Lo.

In view of the unstable nature of Telenin's method when applied to
the present problem, backward difference for the cross derivatives was
used and was found to be successful. It should be mentioned that the
instability encountered here is not the Hadamard instability encountered
before in the core region. Indeed, the Hadamard instability is not
relevant here because the integral relations are of hyperbolic type.

If we divide the ¢ domain into £ equal intervals, the cross derivative

of any unknown f at the nodal point wk::kﬁ/zj k=1,0,00.,(4=1) is given

by
£ ~f
3y Tk Tk=1
GV =~ (2.3.L7)
where fk and fkal are the values of f at wk and kals regpectively, and
Ab is simply
A-\V :% o (203@2‘%'8>

On the plane ¢ =0, the solution can be obtained independently from the
rest of the planes ¢::¢K3 k=1,...,(4=1) by integrating simultaneously
the modified M.I.R. equations (c.f. equations (2.3.32). Solution at
this plane can be used to calculate the cross derivatives of the next
plane, and so on until the last plane is reached. At each plane, there
are 2N integral relations from either equations (2.3.28) and (2.3.30),
or equations (2.3.32), so that in the WNth approximation, there are in
total 2N.(4+1) coupled ordinary differential equations in the unknowns
{eJ.} J=1lyeos N1, {bjlg 3=0,40.,N-1} and {b329 J=1,...,0%.

It is worth mentioning that the symmetry equations are not used on
the plane ¢ =1 because it has been found that a very small step size has
to be used for the integration of equations (2.3.32). The unknown S is

found to attain large negative values as the flow moves downstream.
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This is supplemented by the fact that the inverse shear stress Z also
increases very fast at the inner bend, §=1. The combined effect
renders equation (2.3.32) at § =71 not so well behaved from a numerical
viewpoint because the magnitude of some of the terms on the right-hand
side of (2.3.32) may become too large, and the significance of other
terms will be lost during computation. In this sense, equations (2.3.28)
and (2.3.30) are more well behaved because the azimuthal velocity, V, at
¥ =m is zero along the whole pipe.

The remaining task is to supply an appropriate outer (core) solution

in order to evaluate the velocity components and their gradients at the
8We
oy

ouber solution in turn depends on the boundary layer solution. Before

outer edge of the boundary layer (Ve5 We’ , etc.). However, the
discussing the interaction between the two solutions, which will be the
subject matter of the next section, let us derive the expressions for
the velocity components and the displacement thickness from the boundary
layer solution.

We shall define the displacement thickness as follows:

co

8, = I (1-w)a(a-r)
1
0

and in the present notation,

5, a1 ¢t

— =T (1-W)zZdWw . (2.3.49)

D? “0

From the representation of Z, or %%5 the displacement thickness can be

given in closed form in terms of the coefficients bkl:

5 N-1 j
11
—_— e + N

T {Pop* B Py Z

T (2.3.50)
DZ j:l ,Q,:

1
laj/@<m)} 2
ajﬂ being the coefficients of the orthonormel functions {g} in (2.3.23).

For the streamwise velocity component W, it can be determined from
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the representation of Z. In the Nth approximation, we have

N-1 N
W ¥ by * Elbj.lgj (W) N

= | zaw = S S (2.3.51)
Y0 0 14

The integral on the right can also be evaluated in a closed form. The

final resullt is

-t J £ a1k, W
N==-b dn(l-W)+ 2 b+ Ta, -z (1) ") » (2.3.52)
g=1 97 k=1 9% p=1 "
where
k k!
() =

n’  nl(k-n)! °

The inverse of (2.3.52) can only be obtained numerically for nz 3.
Nevertheless, (2.3.52) provides the streamwise velocity profile in the
physical coordinate, 7.

The azimuthal velocity profile, V, in the physical coordinate can
be obtained from (2.3.9) and (2.3.6) and is given symbolically as

N

V(W) = v+ = bon W) W) (2.3.53)
=1

J

J

Tt should be realized that V and W depend on § and s as well.
Finally, for the radial velocity component, one cobtains by integrating

the continuity equation, equation (2.3.6)

il i ; T ;a0
N A 5 1 W __osiny 1l e
U= Jo<a¢)dn“’ T+a cos § JYO 3 N Tagcos § jOVd““*we 5y J an
3 0
1 e 1 .
+ﬁz-7§?'l+acos ¥ Ideﬂ ’ (2.3.54)

In particular, the radial velocity at the oubter edge of the boundary
layer is found by setting n::g)(l!;jso)3 where 6(¢3SO) is the conventional
boundary layer thickness. To convert the integrals in equation (2.3.54)

to the M.I.R. notations, we notice that
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(RIS Ry P
Jo 28 s J 3 s g 28
However,
1
§ = f 7,4
0
from equation (2.3.52); thus, one has
8 1
w3 e
J e an = = (W-1)Zaw . (2.3.55)

O 0
Substituting equation (2.3.55) into (2.3.54), we obtain

w1

1 X 1
g = & ot ;1,} _ _osing 1 Ze f
Ué jo 1} = l+acos § o8 (l W)z oW (lﬁycos v W a¢)* VZdwW
0 e 0
oW 1
1 e 1 P
—+Wé ds l+ocos § JéWZdW 2 (2.3.56)

where Ué is the cuter edge normal velocity component. Rewriting Ue

in the outer variable notation, we have

U o=-3 U . (2.3.57)

DE
In summary, we have obtained expressions for the boundary layer

veloclty components and the displacement thickness from the corresponding

solution of Z and V. We shall now proceed to discuss the coupled solu-

tion of the inviscid region and the viscous region.

Interaction between the core and the boundary layer regions

Initially, the boundary layer equations are integrated using the two-
dimensional point vortex as the outer solution. The displacement thick-
ness and the outer edge normal velocity are calculated respectively from
equations (2.3.49) and (2.3.56). The velocity potential in the core
region is then recalculated using the normal velocity as the boundary

condition at ro::lg instead of at the outer edge, provided the displacement



thickness is thin enough. The necessary outer velocity components and
their gradients in the azimuthal and streamwise directions are calculated
at rO::l from the core potential. Again, assuming the boundary layer

is thin compared to the radius of the pipe cross-~section, these velocity
components and gradients are used as conditions at the outer edge of the
boundary layer for the next integration of the boundary layer equations.
The process is repeated until there is no appreciable change in the
results between successive iterations.

The crucial assumption here is that the boundary layer must be thin
enough so that the region of the core flow is essentially the same as
the interior of the curved pipe. BSince the boundary layer thickness is
of order O(DB%)5 this assumption is reasonable for large Dean number.
The assumption fails, of course, when separation occurs. Furthermore,
the present iteration scheme is generally applicable to weak interaction

situations, which means the boundary layer must be relatively thin.
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2.4 Results and discussion for the entry curved pipe f£low

Numerical results have been obtained for the whole flow field
inside a 900 elbow for various values of the curvature ratio and Reynolds
number. The core region and the boundary layer are coupled together
through the simple interaction scheme described before. Results
converge usually after thirty iterations.

The overall accuracy of the present model is restricted by the
accuracy of the boundary layer calculation. The integration of the
integral relations is done by a variable order Adams-Moulton method,
which requires fewer derivative evaluations than the commonly used Runge-
Kutta method. Nevertheless, the main computing effort is spent on the
boundary layer equations. For example, with N=1 in the M.I.R. formula-
tion (i.e., first approximation), the computing time for the integration
of the reduced boundary layer equations (consisting of 10 ordinary dif=-
ferential equations) requires about twice as much time as for the core
region, which needs about 1 second on a CDC 7600 machine. Since the
computation time increases rather rapidly as the order of approximation
for integral relations increases, we are contented with the second approxi-
mation in the present analysis. It is believed that the second approxima-
tion provides accurate prediction of the flow behavior, and also requires
little computer time (about 5 minutes for 4O iterations).

During the iteration process, it is necessary to relax the outer
edge radial veloclty in order to achieve convergence within a reasonable
number of lterations. The following simple relaxation scheme has been

employed:

{y(mm):.whl+wuyaﬁwl)

o o o-Ys , O0<@p<l , (2.4.1)
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where Uz and Uznl are the outer edge normal velocity (equation (2.3.57))
evaluated from the current (vth) boundary layer calculation and the

. \ _ . . v(new)
previous (v-1)th boundary layer calculation, respectively. Uo
is the relaxed outer edge normal velocity for the calculation of the
vth core flow. The (v=1)th normal velocity is then updated by setting
v(new)

it equal to UZ

ot olnen) (2.4.2)
O 6]

The correct choice of w is very important in the present scheme and is
discussed in Appendix C.

Finally, we mention that the initial station, Z45 has been chosen
as 0.0025 in the present investigation. One can then calculate the

values of {b k=0,l,.0.,N~1} at this particular z; from equation

k1’
(2.3.40). Other values of zs have been used (zi=:0g0059 zi::OeOO75)

and the results of the boundary layer equations do not differ much from
each other, within the accuracy of the integration scheme.

Figure 9 shows the displacement thickness (equation (2.3.49)) along
the curved pipe at different azimuthal locations. The streamwise
variable is modified as §=¢/m/2. Tt is relatively thin compared with
the radius of the pipe, except at the inner bend, ¢=:l800, where it
increases continuously as the flow moves downstream as one would expect
physically. The variation of the displacement thickness azimuthally
is shown in Fig. 10. At the early stage of the flow, the boundary layer
is thinner at the inner bend than it is at the outer bend. This is
because initially the outer flow is faster at the inner bend than at the
outer bend (potential vortex profile) and the curvature effect is small.

As the flow develops, the curvature effect becomes dominant and the boundary

layer 1s thicker at the inner bend than at the outer bend. Further



h7.

downstream, the boundary layer stays gquite uniform around the pipe and
increases abruptly when ¢::18oo is approached. This indicates secondary
flow separation somewhere ahead of \!;::1800e

Next, the variation of the average azimuthal velocity, §¢9 along the
pipe and arcund the pipe are shown in Figs. 11 and 12, respectively. The
absolute magnitude of the azimuthal velocity inside the boundary layer is
small everywhere, as indicated in the figures. It is interesting to note
that V atbains its maximum first at about ¢::6OO, This maximum location
then shifts towards 900 and remaing near there as the flow develops
further downstream. Finally, typical profiles of the axial velocity and
azimuthal velocity across the boundary layer are shown in Fig. 13 at a
particular location.

We now turn to the flow in the core region. The development of the
secondary flow at different streamwise sections is shown in Fig. 1.
The cross flow velocity vector at each node is drawn. The direction of
the flow is represented by the direction of the arrow and the magnitude
by the arrow's length. Very near the entry, the cross flow behavior is
the same as that predicated by the pure inviscid analysis (section 2.2),
thus justifying the assertion that the viscous effect 1s minimal near
the entry. Here the secondary motion is directed from the outer bend
(¢<%f)tmmmm'weimmrbmﬁ(¢>9&w5asshmmjﬂ]ﬁg,lMaL
Physically, since the flow develops from a uniform profile to the
potential vortex profile immediately downstream of the entry section,
the fluld must move from the outer bend to the inner bend for reasons
of mass conservation requirement. As the flow develops, the secondary
motion begins to reverse its directioﬁ and, in Fig. 1b4(c), the fluid has
already moved from the inner bend towards the outer bend. This is, of

course, due to the boundary layer growth around the pipe cross section.

+

I
The average azimuthal velocity 1s defined as Vﬁzj VdawW.
0
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This secondary motion persists further downstream to the exit. It is
important to realize that the cross flow is indeed very small compared
to the axial motion, as indicated by the velocity scales used in Fig. 1h.
Furthermore, the direction of the cross flow is essentially parallel to
the plane of symmetry at all the stations shown in Fig. 1k, an assumption
which has been used by many other investigators of the curved pipe flow.
The axial veloclty profiles at three parallel planes, ag shown in
Fig. 15(f), are drawn in Figs. 15(a)-(e). Since the boundary layer in
the present study is very thin, except near ¢::1800 when the flow
develops further downstream, the axial velocity profile does not change
much over the entire elbow. Thus, the characteristic of the potential
vortex profile is seen at every station shown in Fig. 15. The velocity
is higher at the inner bend than it is at the outer bend. Furthermore,
the velocity results are almost independent of the vertical distance
measured from the symmetry plane. For the last station, Fig. 15(d),
the axial velocity results at the inner symmetry plane (¢::1800)
may not be valid because the boundary layer ﬁhere is relatively thick.
Instead, we have indicated the boundary layer axial velocity profile
there. The present model does not predict the shift of the maximum
axial velocity towards the outer bend. This is not surprising because
we have assumed that the viscous region is confined near the pipe wall
everywhere. As the viscous region at the inner bend extends further into
the core region, the fluld is pushed towards the outer bend, thereby
causing the maximum axial velocity shift. For flow at low to moderate
Reynolds number, this maximum shift occurs shortly downstream of the
entry section. For flow at high Reynolds number, as in the present study,
the viscous region at the inner bend is relatively small over a much

longer distance in the entry region. As a result, the shift and the
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maximum velocity occur much later. Of course, the shift occurs first at
the symmetry plane for all Reynolds number. Finally, the results show
that the core flow is accelerated, only slightly, due to the displacement
effect.

In summary, we have obtained numerical results for the entry curved
pipe flow, both in the boundary layer and in the core region. The assiump-
tion of a potential core is consistent with the experimental results of
Agrawal, Talbot and Gong near the entry of the pipe. Further downstream,
the strong interaction between the core and the boundary layer near the
vicinity of ¢::l8OO may render the irrotational assumption invalid.
Moreover, the boundary layer may well be turbulent near the exit region

and the present analysis will not apply.
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ITT. PARTICLE PHASE

3.0 Some fundamentals of the particulate phase in a gas solid mixture

Having discussed in great detail the motion of the gas phase, we
now consider the particulate phase. As mentioned in Chapter I, relatively
few investigations have been made for a three-dimensional gas=-particle
flow system. The general theory of multiphase fluid dynamics is very
complicated when every aspect of the interaction between different phases
is considered.

The main difficulty in solving gas-particle flows, or any other two
phase systems for that matter, is due to the momentum (and possibly energy)
coupling of the fluid and the solid phases which makes 1t necessary to
solve simultaneously the governing equations for both phases. This is
further complicated by such phenomena as particle-particle interaction,
attrition of particles due to collisions with the system boundary and
with other particles, reflection or deposition on the pipe wall, just
to name a few. The eguations of motion for the particulate phase are
not yet well established when such phenomena are accounted for.

There exigt two major methods to formulate the particle phase in a
dilute suspension: the Lagrangian description and the Eulerian descrip-
tion. The lLegrangian description fixes attention on a single particle
throughout its whole trajectory in the region of interest. The Bulerian
formulation, on the other hand, assumes the particle phase as a continuum
and the resulting governing equations for the particle phase are quite
gimilar to the well-known Navier-Stokes eguations in fluld mechanics.

As described, the Lagrangian formulation is on a microscopic scale, and
particle-particle collision must be accounted for even in a dilute suspen-

sion. Nevertheless, one can apply some sort of statistical average to
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the individual particle equation of motion and thus obtain the trajectories
(or streamlines) of the mean particle motion. The important point here

is to realize that the results only represent the macroscopic behavior of
the particle motion, but not the microscopic behavior of each individual
particle, To this extent, the effect of averaging the Lagrangian equation
of motion is equivalent to replacing the convective derivatives in the
Eulerian equation of motion by the corresponding material (or total)
derivative, in the usual terminology of continuum mechanics.

In the present analysis, we shall confine ourgelves to obtaining
particle trajectories, up to the first impact point with the wall, in a
dilute suspension in which particle-particle interaction can be neglected.
The Lagranglan equations of motion are employed, since they are most
suitable to obtaining particle trajectories. It must be understood that
only the macroscopic behavior of the particle phase is of interest here.
Since the particle trajectories are obtained up to the first impact point,

no boundary condition for the particle phase is needed.



3.1 Eguations of motion for the two phase system

In addition to the assumption of a dilute suspension, the following
assumptions are made:

(1) The presence of particles does not affect the gas flow field.
Strictly speaking, this is not an additional assumption because it only
holds when the suspension is dilute. We shall discuss this further.

(2) We shall only consider the aerodynamic drag force exerted by
the fluld phase on the particle phase due to differences in velocity of
the two phases. Other forces, such as gravity force, pressure force,
etc., are assumed to be insignificant. Furthermore, we assume that the
drag force is given by Stokes law throughout the region of interest.

(3) When particles first hit the pipe wall, they are assumed to
be stuck there without reflecting back into the carrier fluid. This
assumption excludes the fact that particles reflecting from the wall may
collide with the oncoming particles, with a much larger likelihood, and
thus alter their original paths.

(L) The transport properties of the mixture are approximated by
those of the fluid phase alone.

(5) The static pressure of the dilute suspension is due solely to
the fluid phase., This is Justified since the R.M.S. speed of the
particles is very much less than that of the gas molecules.

By virtue of assumption (2), the momentum equation for the gas

phase can be written as, in vector notation,

e Db 1 = p vw:;f
V.V v, =v Vv, -y -2 B = (3.1.1)
£ f £ f PR oPe Ty

where v is the velocity vector, v the kinematic viscosity, p the phase

density in the mixture and Tm is the momentum equilibration time.
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Subscripts £ and p refer to the fluid and the particle, respectively.

In the regime of Stokes law, T is given by

GQS
e 9]
= = ol .2

where Eé denotes the material density of the particle, ¢ the particle
diameter and b the viscosity of the fluid phase. From equation (301.1)3
the last term on the right-hand side represents the momentum coupling
between the fluid and the particles. Thus, for a dilute suspension, the
phase density of the particles is very small compared with that of the
fluid and one can neglect the coupling term for a first order approxima-
tion. On the other hand, if the momentum equilibration time, T ? is very
small, one would have a situation that the particles adjust their motion
to the fluid motion very fast and their relative velocity (35335) will
vanish practically, in which case the coupling term is again negligible.
Without the coupling term, equation (3.1.1) reduces to the usual
Navier-Stokes equation for a single phase system. Hence, the results
of Chapter II can be used to calculate the particle trajectories. In

effect, we neglect terms of order B or higher, where B is given by

P
B == (3.1.3)
Pr

as 1s easily seen from equation (3.1.1). As mentioned before, when T
- =
is very small, the relative velocity (waVf)~Will also be very small so

that the parameter B is again the small parameter in equation (391.1,)°

W, T
Indeed, it can be shown that the relative velocity is of order Im:= %;m 5

2

where Wi and L are the characteristic velocity and length of the flow
system (Yeung, 1978). A question remaining is that for particles with
large T? 1t appears that one can neglect the coupling term in (3.1.1)

even though the density of particle phase, pp3 is comparable to pfe
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However, if ppwpfS one would have a nondilute suspension and equation
(3.1.1) would not hold anyway.

For the particle phase, we shall use the cylindrical polar coordinate
system (r,z,p) as shown in Fig. 16. Denoting the velocity components in
the increasing r,z and ¢ direction by u,v and w, respectively, the

Lagrangian equations of motion are

du wg ufmu
v S (3.1.4)
dt r T
m
dw U W wf=
o (3.1.5)
dt r L
m
dv vfwv
—L .2 (3.1.6)
at 1
m
dr _ W (3.1.7)
at
W
@ _ 2, (3.1.8)
dt r
- ¥
2.2 (3.1.9)
at

where the veloclty components are referred to the constaent entry speed
W,, r to the mean radius of curvature R, z to the radius of the pipe, a,
and t to the characteristic time R/Win @ is the famillar curvature ratio

and Lm is defined as

The initial conditions are given as
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po P } at T =0 . (3.1.10)

With the fluid flow field known from section 2.4, equations (3.1.4) to
(3.1.9) can be integrated simultaneously to give the particle trajectories.
The continulty equation is satisfied by requiring that the density of
particles along each particle trajectory be constant. In this particular
situation, one can simplify the integration by assuming the following:

(1) Since the boundary layer is relatively thin, the particle
velocity at the outer edge of the boundary will be essentially the same
as that at the wall. Thus, one can ignore the presence of the viscous
layer when computing the, particle trajectories. This assumption does not
apply to those particles that are initially inside the boundary layer,
i.e., particles near the wall.

(2) The secondary motion of the gas can be neglected compared
with 1ts axial motion, as indicated by the results of the last chapter.
Furthermore, since the axial velocity profile of the gas essentially
corresponds to the potential vortex profile, we shall assume that w_ is

£
given by the following:

W, o= =, (3.1.11)

where C 1is an average constant determined from the axial velocity results
at different streamwise stations.

The above two assumptions fail when the boundary layer 1s relatively
thick. As indicated in section 2.4, the velocity profile at the symmetry
plane near the exit region is quite different from the vortex profile.
Fortunately, in many practical situations, most particles hit the pipe

wall long before the exit region is reached. In these cases, equation
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(3.1.11) should be adequate. With the help of these two assumptions,

equations (3.1.4) to (3.1.9) become

du W u
2. 2. 2 (3.1.12)
dt T L
: m
aw U /1w
~L . EP, B (3.1.13)
dt r L
m

o, (3.1.14)
at P

W
8.2, (3.1.15)
at r

and

v, =0 E”:zo , Tt (3.1.16)
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3.2 Particle trajectories and density distribution along the pipe wall

Equations (3.1.12) to (3.1.15) are integrated, using initial
conditions (3.1.10), up to the first impact point. For systems having
small values of fg (f%fil)ﬁ there exist matched asymptotic expansion
solutions (Yeung, 1978). In the limit where f%f%O, the particle motion
and the gas motion become identical with each other. Indeed, it can be

readily shown that the particle velocity and trajectory are glven by

u =0 , W = L 5
P r
o (3.2.1)
J— Ju— C —
ro=ro ¢ = s t
r
O

Notice that wp does not satisfy the initial condition imposed on the
particle phase. Thig is solely due to the assumption made on the gas
motion (equation (3.1.11)) which neglects the very small region over which
the uniform entry profile transforms to the potential vortex profile.

On the other hand, when iﬁ assumes a very large value, the effect
of the gas motion on the particle is negligible. In such cases, the
particles experience essentially no drag force and will maintain their
initial motion until they hit the pipe wall. When the drag force terms
in equations (3.1.12) and (3.1.13) are neglected, one can obtain closed
form solutions for the unknowns. They are given by

— P

t o= 1
U= s W r lj
PoyE B poNgRze
o © (3.2.2)

— = -1
r = E2+r2 , ¢ = tan

i

B

._Si;
r
@)

The particle trajectories in this case are simply straight lines normal

to the entry plane.
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Having obtained the particle trajectories and velocity components,
we can calculate the density of the particle phase at the pipe wall from
the continuity equation. To do this, we consider a stream tube around a
particular trajectory as shown in Fig. 17. Point A denotes the impact
location. The impact velocity g and the impingement angle, §, measured

from the tangent of the pipe surface are given by

aw) = W)l () (3.2.3)

(3.2.4)

[
o
p——g
T
ot
©
o]
i
et
=
fe}
=2

Denoting the area intercepted by this stream tube on the pipe wall by
2, we can relate the density at point A by equating the mass flow rate
of particles at the entry plane and at ¥:

Mo

pp(A> = TR (3.2.5)

p
where MO is the initial mass flow rate of particles across the area
intercepted by the stream btube at the entry plane. In the special case
where fga%og (3.2.5) is not applicable since & is undefined. Indeed,
one must consider the boundary layer region in order to predict the
particle density at the wall in this case. On the other hand, if

o~

L —, one obtains from (3.2.2) the impact normal velocity as

up(A) =sing . (3.2.6)

Also, the area % can be related to the area at the initial plane,

denoted by AO§ by the following
A =nsing . (3.2.7)

Substituting (3.2.6) and (3.2.7) into (3.2.5), we obbain the particle
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density at the wall as

5 (3.2.8)

where pp is the entry particle density and 1s assumed constant in the
0

present analysis.
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3.3 Results and Discussion

Results for the particle trajectories and density distribution have
been obtained for a curved pipe with o¢=0.1. Figure 18 shows the
particle trajectories for different values of EQ at the plane 72 =0.1,

The constant C in equation (3.1.11) has been found to be
¢ = 1,05 (3.3.1)

from the results obtained in section 2.4, It is interesting to observe
that the particle trajectories are essentially straight lines for iﬁ as
low asg 3. This indicates that the asymptotic solution obtained in
section 3.2 for ﬁ@mﬁw has a much wider range of validity than is
expected mathematically. As Eg decreases, the particle trajectories
are bent more and more toward the streamlines of the gas flow field,
which is, of course, expected physically. When Eg‘is less than 0.1,
some particles leave the pipe without making any impact with the outer
wall. In the 1imit, as E£f%09 one would expect that most particles
leave the pipe without hitting the wall. It is worthwhile to notice
that the asymptotic solution for iéaeo gives poor results even for iﬁ
as small as O.L. 1In this sense, it has a much smaller range of applica-
bility compared with the solution for I, - e

Figure 19(a) shows the area at the outer bend that is intercepted
by the particles that orginate from the initial plane. The lines
;g::constant in this diagram represent the impact locations of those
particles that originate at the specified radial coordinate, e Only
 the ouwter bend is impinged by the particles under the assumptions made
in this analysis. In the actual case, particles reflected from the outer

bend would impinge on the inner bend further downstream of the first



impact area.

The density distribution of the particles at the plpe wall is
calculated from equation (3.2.5). The area 3 is calculated in the
following way: The entry plane is divided into a rectangular grid
system as shown in Fig. 19(b). Consider the square ABCD. The stream
tube initiated from this square will intercept the outer wall at A’B’'C’D’,
as shown in Fig. 19(a). The area of the curvilinear rectangle A'B'C'D’
is £. The normal velocity of impingement at the center of A'B'C’'D’ is
approximated by the average of the normal velocity at A’,B’,C’ and D',

Figure 20 shows the density distribution along the pipe wall in the
streamwise direction for two values of Ega Consistent with the results
for the trajectories, the particles are concentrated at the entry region
for large Eg and spread out further to the exit region as Eg decreases.
The density distribution 1s quite uniform in both cases. We have also
indicated the actual numerical values of the particle density obtained
by the use of Figs. 19(a) and (b) for igf:O,SG Since the area ¥ is
evaluated roughly by counting the squares in Fig. 19(a), the numerical
results scatter about the mean value 1.0 as shown in Fig. 20. The
increase in pp for ngsoel may be due to the diminishing normal velocity
up(A) in that case. Finally, we plot the density distribution, angle of
impingement and impact velocity in Fig. 21 for the case in which iéz:055e
Such plots supply Important information for the calculation of, say, the
relative erosion rate per unit area of the pipe wall.

The discussion made in this section is based solely on the present
mumerical results. It has been shown that the results obtained are
physically reasonable although we have used many simplifying assumptions
for the particle phase. The validity of these results should increase

for large Lm since in that case, the particle motion is only slightly



affected by the gas motion. Consequently, any approximation made
regarding the gas flow field does not induce significant error to the

results of the particle motion.

62.
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TV. CONCLUSIONS

The fluid dynamics of a gas-partilcle mixture in the entry region
of a circular curved pipe have been investigated and numerical results
have been obtained for a curved pipe with ¢=0.1 and Reynolds number
Re::lOu° Other values of «{0.05) and Re(lOS) have been tried and the
results obtained are all qualitatively the same. Much of the emphasis
has been placed on the numerical solution of the gas phase. The numerical
schemes used in the present study are quite different from other theoreti-
cal investigations of the same topic. An efficient scheme has been
devised, based on the conventional Telenin's method, to solve the
Laplace equation in three dimensions. The orthonormal method of
integral relations has been applied successively to obtain numerical
solution to the present three-dimensional boundary layer equations.

Results of the fluild flow field conform with the recent measurement
of Agrawal, Talbot and Gong. By taking into account the interaction
with the boundary layer, it has been shown that there is a novel reversal
of the direction of the secondary motion in the core region. For the
boundary layer reglon, the present results agree gqualitatively with
those obtained by Yao and Berger (1974). 1In particular, the secondary
motion inside the viscous layer 1s always from the outer to the inner
bend. This conforms with the fact that the boundary layer acts as a
reservolr receiving fluld in the outer bend and losing it in the inner
bend. On the other hand, the boundary layer is thin except near the
proximity of ¢::18005 where there is a relatively large outflow from
the boundary layer. Direct quantitative comparison is not possible

because of the different methods of attack and the different range of

Reynolds number considered.



As for the particle phase, a first order solution for the particle
trajectories has been obtained. Simplifying assumptions have been made
which render the two phases uncoupled from each other. In this respect,
only simple particle dynamics is involved in the present analytical
work. Indeed, the method of solution for the particle phase is similar
to the author's previous investigation regarding the erosion in a curved
pipe (Yeung, 1977). The only difference is the form of the gas velocity
profile. In view of these assumptions, no more than a qualitative
validity can be claimed for these results, particularly regarding the

density of particles at the pipe wall,

6l
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APPENDIX

Note on the choice of w, the relaxation constant

It has been mentioned that the oubter edge velocity must be, in
general, relaxed for the iteration between the core and the boundary
layer regions to converge. The particular choice of w depends very
much on the individual problem. In the present case, the values of
for convergence are relatively small. Consequently, a relatively large
number of iterations need to be computed to acquire reasonable convergence
results.

Various values of w were used during the present analysis to
determine the optimum value. For the first approximation (N=1), an
optimum value of 0.0l has been found to yield converged results for
the whole flow field after 35 iterations. The computation time is about
50 sec on a CDC 7600 machine. For the second approximation (N=2), the
converged solution for the core region of the first approximation has
been used to initiate the iteration process. As a result, comparatively
large w can be used, which in turn speeds up the convergence process.
This is particularly crucial in the present analysis because the integra-
tion of the boundary layer equations for N=2 requires much more time
than for the first approximation. Presently, w is assigned a value of
0.1 and it takes about 4O iterations to obtain converged solution. The
computation time is about 6 minutes, which is to be compared with 50 sec

for the first approximation.
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