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Abstract 

Experiments were done with strong shocks diffracting over steel 
ramps immersed in argon. Numerical simulations of the experiments 
were done by integrating the Navier-Stokes equations with a higher or
der Godunov finite difference numerical scheme using isothermal non
slip boundary conditions. Adiabatic, slipping boundary conditions 
were also studied to simulate cavity-type diffractions. Some results 
from an Euler numerical scheme for an ideal gas are presented for 
comparison. When the ramp angle B is small enough to cause Mach 
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reflection MR, it is found that real gas effects delay its appearance and 
that the trajectory of its shock triple point is initially curved; it even
tually becomes straight as the MR evolves into a self-similar system. 
The diffraction is a regular reflection RR in the delayed state, and this 
is subsequently swept away by a corner signal overtaking the RR and 
forcing the eruption of the Mach shock. The dynamic transition occurs 
at or close to the ideal gas detachment criterion Be. Immediately be
hind the overtaking corner signal there is a vigorou.,; vortex which rolls 
over the boundary layer and causes order of magnitude fluctuations 
in its thickness and heat transfer rates. With increasing B, the delay 
in the onset of MR is increased as the dynamic process slows. Once 
self-similarity is established the von Neumann criteria is supported. 
While the evidence for the von Neumann criteria is strong, it is not 
conclusive because of the numerical expense. The delayed transition 
causes some experimental data for the trajectory to be subject to a 
simple parallax error. The adiabatic, slipping boundary condition for 
self-similar flow also supports the von Neumann criterion while B <.Be, 
but the trajectory angle discontinuously changes to zero at Be, so that 
Be is supported by the numerics, contrary to experiments. 

1 Introduction 

Consider the regular and irregular wave systems which appear when 
a plane incident shock i diffracts over a rigid ramp of apex angle B as 
in Figure 1. In this paper a detailed study is made of the transition 
between regular (RR, Figure 1a) and irregular (IR) reflection on the 
ramp. Here the IR will be either a self-similar complex Mach reflection 
(CMR, Figure 1b), or a non-steady system of somewhat similar appear
ance. As usual, i is defined to be strong if near transition RR ~ I R, 
the flow leaving the reflected shock is supersonic M2 > 1, where M is 
the flow Mach number for coordinates that are fixed with respect to 
either the reflection node R, or the Mach (shock triple point) node N, 
and states 0, 1, and 2 are indicated in Figure 1. Conversely, i is weak 
when M2 < 1. Irregular systems have .different structures in the strong 
and weak cases. The weak irregularities include single Mach reflection 
(SMR) and vori Neumann reflection (VNR). A CMR or double Mach 
reflection (DMR) is impossible for stationary and pseudo-stationary 
weak shocks because the necessary condition that M 2 > 1 is not ful
filled. However a CMR or DMR appears possible when the system is 
neither stationary or pseudo-stationary, such as when either a corner 
signal or a shock overtakes a SMR from the rear. 

The transition criteria which determines when RR ~ I R have been 
discussed previously for the perfect gas (Henderson, 1987; von Neu-
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Figure 1: Regular and irregular strong shock diffraction. a) RR; b) CMR; 
states i, incident shock; r, reflected shock; n, Mach shock; cs, corner signal; 
rl, augmented reflected shock; cd, contact discontinuity; B, interaction zone; 
N, triple point node; R, RR node; e, ramp angle; x, triple point trajectory 
angle; On, streamline deflection across n shock; 'T/, ramp impact angle; sub
scripts: 0, undisturbed state; 1,2, states downstream of i and r, respectively. 

mann, 1963; Hornung, 1986; Ben-Dor, 1992). There are three alterna
tive criteria for strong shock transition, namely, the detachment point 
Be (von Neumann, 1963), the sonic point Bs (Hornung, 1979; Lock & 
Dewey, 1989), and the von Neumann point BN (von Neumann, 1963; 
Henderson & Lozzi, 1975). The angles Be and Bs are very close and 
it is usually difficult to discriminate between them, but the B N point 
is sufficiently different from the others to be discriminated experimen
tally. 

Many experimenters have found that the B N point correctly predicts 
transition for stationary shock systems, as in a wind tunnel (Hornung, 
1979; Henderson & Lozzi, 1975; Molder, 1971; Pantazapol, Bellet & 
Soustre, 1972; Hornung & Robinson, 1982). However, transition may 
be forced to other positions by changing the system boundaries, such as 
by using cylindrical instead of plane surfaces (Heilig, 1969; Henderson 
& Lozzi, 1979; Ben-Dor, 1992). Hysteresis effects may also be observed. 
Stationary and symmetric boundaries are illustrated in Figure 2a. Al
though the data are more scattered, there is also evidence that the ()N 
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point is correct for the unsteady, self-similar, symmetric, internal cavity 
diffractions, shown in Figure 2b (Henderson & Lozzi, 1975; Henderson 
& Lozzi, 1979). By contrast, for the asymmetric, but unsteady, self
similar diffraction over ramp, Figure 2c, transition occurs closest to the 
Be point. The experiments often show that RR persists for conditions 
that should make its existence impossible according to the von Neu
mann theory for a perfect gas (Henderson & Lozzi, 1975; Bleakney & 
Taub, 1949; Kawamura & Saito, 1956; Henderson & Lozzi, 1979; Hor
nung, 1986). Thus the Be point is not an accurate criterion in this 
case, and this effect is referred to as the von Neumann paradox. It has 
long been recognized that viscosity and thermal conductivity could 
affect the transition. For example, a boundary layer begins at the re
flection point on the ramp surface in Figure 2c, and the slope of its 
displacement height at this point could affect transition. But there is 
no boundary layer at the reflection point of any of Figures 2a,b, because 
those occur on planes of symmetry, and not on physical surfaces. 

The present paper presents a study of the diffraction of a strong 
shock over a ramp in a real gas. A real gas is defined as one which 
has a finite shear viscosity J.L and thermal conductivity k. The object 
is to find what effects these properties have on the diffractions and 
on their transition. It is found that the real gas properties delay the 
onset of MR on the ramp, and delay its evolution to a self-similar state. 
Our studies contrast the effects of two different boundary conditions 
on the ramp. One boundary condition corresponds to the existence of 
a boundary layer on the ramp, while the other corresponds to shock 
reflection at a plane of symmetry where there is no boundary layer 
even in a real gas. For the latter boundary condition there is typically 
no delay in the onset of MR and self-similarity is attained rapidly when 
e < Be and e is not too close to Be· But when e-+ Be from below, an 
MR is still obtained but its evolution to self-similarity is increasingly 
delayed. It is found that both the Be point and the ON points are 
important in strong shock diffraction, but that the two angles control 
different aspects ofthe diffraction. We also take the opportunity to 
study the effect of other boundary conditions on the ramp surface upon 
the shock system. 

The methods employed for the investigation were shock tube exper
iments and numerical simulation of them by integration of the unsteady 
Navier-Stokes equations. Some numerical results for an inviscid, non
heat conducting perfect gas are presented for comparison. 
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Figure 2: Symmetrical and unsymmetrical shock reflection. a) stationary, 
symmetrical reflection; b) self-similar, symmetrical reflection; c) self-similar 
unsymmetrical reflection with a boundary layer; 

2 The experiments 

These were done in a conventional shock tube and are fully described 
elsewhere (Virgona, 1994). Some of the data will be presented be
low. The shocks propagated in argon, which was chosen to simplify 
the physics. For example, there was no molecular vibration, rotation, 
dissociation, or bulk viscosity and for the shock Mach number of the 
experiments M;=2.33 there was no electron excitation or ionization. 
The significant non-ideal gas effects were caused by the shear viscosity 
and thermal conductivity. 

Strong, plane shock waves were diffracted over smooth, solid steel, 
symmetrical ramp models of various semi-apex angles(), see Figure 3a. 
This design .was chosen to reduce shock-boundary layer interactions 
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Figure 3: Model Designs for Shock Diffraction Experiments. a) symmetrical 
model b) concave corner model c) boundary layer (b.l.) in node fixed coor
dinates; v, boundary layer deflection angle at node R, wo, w~, wave angles 
of i and r with respect to the triple point trajectory. 

which can be a troublesome aspect of concave corner models, see Figure 
3b. 

We measured the angle x between the trajectory and the ramp 
surface, see Figure 3a. This was done by taking a schlieren photograph 
of the diffraction after the shock had progressed approximately 4 em 
up the. ramp. In order to tie the measured angle x with the physical 
evolution of the shock diffraction, we must assume that the Mach shock 
n and indeed the whole system grows uniformly in time t; in other 
words, the system is self-similar. The assumption is called the parallax 
assumption and since it is of some importance, it is stated formally. We 
emphasize that this is an assumption and will later present evidence 
that the assumption is sometimes incorrect. 
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Parallax Assumption. A Mach reflection (SMR, CMR, DMR) 
present in the diffraction of a plane shock over a rigid, plane 
ramp always grows self-similarly with time. In particular, 
the trajectory of its shock triple point is a straight line which 
always passes through the apex (corner) of the ramp. 

3 The Gas Model 

The minimum undisturbed pressure of the argon was about 0.1 atmo
sphere, while the maximum pressure caused by the shock compression 
was about 4 atmosphere. The minimum temperature of the undis
turbed argon was about 288°K during the experiments, while the max
imum temperature of the shock compressed gas was about 1400°K. In 
the numerical computations, we have represented the argon as a contin
uous medium because the mean free path is less than any discretization 
scales t..x. 

For these states, it was assumed that the virial equation of state 
applied, 

Z = pv = 1 + B(T) + · · ·, (1) 
RT v 

where Z is the compressibility factor and B is the first virial coefficient. 
The gas tables of Hilsenrath, Hoge, Beckett, Masi, Benedict, Nuttal, 
Fano & Touloukian (1960) were used to find Z for the p and T ranges 
of interest, 

p = 0.1 atm, 290:::; T:::; 1400° K --t 0.9993:::; Z:::; 1.00002, (2) 

p = 4.0 atm, 290 :::; T :::; 1400° K --t 0.99705 :::; Z :::; 1.00085. (3) 

so the error is less than 1% if argon is assumed to obey the perfect 
gas equation of state. The variation in the ratio of the specific heats 
is small, 1 = 5/3 ± 0.014 for these ranges. We used the constant value 

'= 5/3. 
For the viscosity 11 we assumed that 

2.01572 X IQ-6 T1.5 - k -1 -1 11 - 171.691 + T g m sec ' (4) 

by fitting a curve to the tables. The coefficient of second viscosity 
>. is taken to be -2/31-L as is appropriate for argon. The thermal 
conductivity k can then be found from the Prandtl number Pr which 
is 0.67 for argon. 

P _I-LCp 
T- k l 

where Cp is the specific heat at constant pressure. 
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53.776 53.924 57.021 

Table 1: Transition criteria for 1 = 5/3, Mi = 2.327. Be detachment crite
rion; Bs sonic criterion; ()N von Neumann criterion. 

4 The computations 

4.1 Plan 

The computations were planned as though we were doing experiments 
in a shock tube. The following quantities were held constant. 

5 
1 = 3; Pr = 0.67; Po= 14.1kPa; To= 293.15° K (6) 

where the subscript refers to conditions in the undisturbed gas, and To 
is also the temperature of the ramp which was assumed to be isother
mal. A paper by Mark (1958) was used to check the assumption that 
the ramp surface is isothermal. By this means, the temperature rise 
caused by the passage of the shock was estimated to be 0(10-3 )° K, 
so the error is small. 

The incident shock Mach number was also constant Mi = 2.327, 
which ensured that i was always a strong shock. The ramp angle e was 
variable and its values were selected to explore the effects of viscosity 
and thermal conductivity on transition. The values of e were chosen 
to cover the neighborhood of the alternative transition angles Table 1. 

4.2 Formulation 

The compressible Navier-Stokes equations for 2D viscous unsteady 
polytropic gas dynamics are mixed set of hyperbolic-parabolic par
tial differential equations which may be written in conservation form 
as (Anderson, Tannehill & Pletcher, 1984) 

8tU + F(U)x + G(U)y = R(U)x + S(U)y (7) 

where 

(8) 
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F(U) = ( pu~: P ) 
puv 

u(pE + p) 

(9) 

(10) 

(11) 

(12) 

(13) 

As usual, p is density, u and v are the x and y velocity components 
respectively, E is the specific energy, e is the specific internal energy, 
subscripting by x or y indicates a derivative, and subscripting by 2 or 
3 indicates the second or third component of a vector. These equa
tions include the viscous transport of momentum, diffusive transport 
of heat energy, and the dissipation of kinetic energy into heat. In the 
simulations, we assume that argon is well described by the perfect gas 
law, 

p=pRT. (14) 

When combined with Equation 13, the perfect gas law implies 

(15) 

The computational domain is taken to be a rectangle whose lower 
edge is aligned with the surface of the ramp, as in Figure 4. For the 
coordinate system which is aligned to the computational domain, the 
surface of the ramp is at y = 0. The component u is tangential to the 
surface of the ramp, while the component v is normal. An incident 
shock i enters computational domain from the left at an oblique angle 
to the computational domain. There are 5 different boundary condi
tions on the computational domain. On edge a, the boundary condition 
is supersonic inflow of the post-shocked state. The boundary condition 
on edge b is a sharp transition between post and pre-shocked states 
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Figure 4: The rectangular computational domain is aligned with the top 
surface of the wedge. The boundary conditions on the boundary segments 
a-e are described in the text. 

which moves to the right at the speed of the shock. On edge c, the 
boundary condition is that of the pre-shocked state. On the segment 
e, the boundary condition requires outflow. 

Segment d, where the boundary is coincident with the surface of 
the ramp, is of particular interest. The ramp surface is taken to be 
isothermal with a temperature T = 293.15°K. The ramp surface is 
also taken to be non-slip, with tangential component u = 0. 

4.3 The algorithm 

The computations described in this paper employ an adaptive semi
implicit scheme appropriate for unsteady viscous compressible flow 
(Steinthorsson, Modiano & Colella, 1994; Steinthorsson, Modiano, Crutch
field, Bell & Colella, 1995). The algorithm has two important compo
nents: the semi-implicit finite difference scheme and the adaptive mesh 
refinement (AMR) implementation of the scheme. We will describe the 
finite difference scheme first. 

This finite difference scheme employs a predictor-corrector cycle, 
combining an explicit higher-order Godunov prediction of the hyper
bolic fluxes at a half-time level with an implicit Crank-Nicolson cor
rection. Note that the scheme employs cells with an aspect-ratio of 
one. The entire scheme is second-order accurate in time and space for 
smooth flows. In analogy to Godunov schemes for the Euler equations, 
the scheme is first order accurate in the presence of an unresolved dis-
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continuity, i.e. shock or contact discontinuity. In the predictor step of 
the algorithm, we use a straightforward extension of the unsplit second
order Godunov integration algorithm of Colella (1990) to compute the 
fluxes pn+l/2 and Gn+l/2 at the half-time level. In the computation of 
pn+I/2 and cn+I/2, the viscous fluxes enter only as sources computed 
at the lagged time level, Rn and sn. The lagging of the viscous flux 
source terms makes the Godunov fluxes pn+l/2 and cn+l/2 only first 
order accurate. However, the order of the finite difference method may 
be raised to second order by employing a Crank-Nicolson correction. 

u~+l = un.+ t.t (Fn+1
1
12 _ pn+I//2) + t.t (Gn+1/2/ _ Gn+l/2/ ) + 

t,J t,J C.x i-1 2,j i+1 2,j t.y i,j-1 2 i,j+1 2 

/l,tx (Rf+l/2,1- Rf-112,1) + /f:,_ty(S~i+1/2- S~i-1/2) + 
t.t (Rn+1 Rn+1 ) t.t (sn+1 sn+1 )(16) 

2C.x i+1/2,j - i-1/2,j + 2Ay i,j+1/2 - i,j-1/2 

Equation 16 is an implicit equation for un+l because Rn+l and sn+1 

are functions of the variable U at the n + 1 th time level. In the work de
scribed in this paper, the implicit equations were solved with a Gauss
Seidel relaxation. 

The shock diffraction problem has a very large range of length 
scales. The length scale of the experimental apparatus which is being 
simulated is the order of several centimeters. The viscous boundary 
layer which forms on the ramp surface behind the incident shock has 
a thickness measured in microns. The thickness of the boundary layer 
approaches zero as the shock is approached. Resolving both of these 
length scales with a single uniform grid would require a prohibitive 
amount of computational resources. For these reasons, an adaptive 
numerical method is required which concentrates computational effort 
into small regions which require high accuracy and high resolution. 
The adaptive method described in this paper is based on a hierarchical 
grid approach first developed by Berger & Oliger (1984) for hyperbolic 
partial differential equations. This approach has been demonstrated 
to be highly successful in two dimensions for high speed flow (Berger 
& Colella, 1989) and in three dimensions (Bell, Berger, Saltzman & 
Welcome, 1994). An extension of this methodology to the incompress
ible Euler equations is described in Almgren, Bell, Colella & Howell 
(1993). AMR is based on a sequence of nested grids with successively 
finer spacing in both time and space. These fine grids are recursively 
embedded in coarser grids until the solution is sufficiently resolved. An 
error estimation procedure automatically gauges the accuracy of the 
solution and grid generation procedures dynamically create or remove 
rectangular fine grid patches as resolution requirements change. 

Figure 5, reproduced from Pember, Bell, Colella, Crutchfield & 
Welcome ( 1995), demonstrates the hierarchical grid structure in an 
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Figure 5: Application of hyperbolic AMR for inviscid compressible gas dy
namics in interaction of shock and inclined ramp using three levels of refine
ment. Rectangles are grids used in the adaptive gridding strategy. Contours 
indicate density. Note that grids on finer levels of refinement are automati
cally placed on regions of large gradients in the solution. 

application of AMR to inviscid gas dynamics. The contours in Figure 5 
indicate increasing density in _the interaction of a shock with an inclined 
ramp. Each rectangular box in the figure indicates an individual grid in 
a hierarchy of nested grids. The rectangle enclosing the entire problem 
domain is the single grid at the coarsest level of refinement. At the 
next finest level of refinement, a set of grids cover the interaction region 
with higher resolution. A third and finest level of refinement is shown 
in the figure as relatively small boxes. Note that the grids on this finest 
level of refinement are concentrated in regions of large gradients in the 
solution. This is the result of an automatic adaptation of the grids to 
the changing solution. 

Rather than describe the AMR algorithm for the compressible Navier
Stokes equations in full detail (see Steinthorsson, Modiano & Colella 
(1994) and Steinthorsson, Modiano, Crutchfield, Bell & Colella (1995)), 
we will briefly describe how it differs from an AMR algorithm for a 
purely hyperbolic equation (Berger & Oliger, 1984; Berger & Colella, 
1989; Bell, Berger, Saltzman & Welcome, 1994). AMR for hyperbolic 
systems uses a purely explicit time-stepping method. The basic dis
cretization method for compressible Navier-Stokes described above has 
both an explicit prediction step and an implicit correction step. The 
compressible Navier-Stokes AMR algorithm therefore solves an implicit 
equation during the time-step advance, unlike the hyperbolic AMR al
gorithm. 

In AMR, coarse and fine grids are advanced in time at different 
speeds. However, the time steps are chosen such that a finer level 
of refinement synchronizes with a coarser level after an small integer 
number of time steps. In general, coarse grid cells are updated using 
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fluxes computed on the coarse grid and fine grid cells are updated 
using fluxes computed on the fine grid. However, this prescription is 
inadequate for coarse grid cells directly adjoining a fine grid because on 
the shared face both coarse and fine grid fluxes are available. In order 
to preserve strict conservation and accuracy, it is desirable to update 
such coarse grid cells using the available fine grid fluxes, summed over 
the appropriate number of fine grid time steps. This is performed as a 
correction step: 

• the coarse cell is updated with coarse-grid fluxes, 

• the fine grids make sufficient time steps to reach the coarse grid 
time, accumulating fluxes on the coarse-fine boundary, 

• the coarse cell is updated with the difference between the coarse 
grid flux and the summed fine grid fluxes. 

This adjustment to the coarse grid flux is performed in both the hyper
bolic AMR algorithm and the compressible Navier-Stokes algorithm. 
The two AMR algorithms differ in their definition of the flux. For 
hyperbolic AMR, the flux is the Godunov flux, while for the compress
ible Navier-Stokes algorithm, the flux is an appropriately time centered 
sum of Godunov fluxes and viscous fluxes, i.e. 

Rn + Rn+l 
pn+l/2 --+ pn+l/2 + -----

2 
(17) 

Note that for the compressible Navier-Stokes AMR algorithm, both the 
coarse and fine grid fluxes are computed implicitly, but the update to 
the adjacent coarse cells is performed explicitly. In comparison, a more 
complex consistency scheme between different levels of refinement is 
imposed in the AMR algorithm for the incompressible Euler equations 
(Almgren, Bell, Colella & Howell, 1993). 

The algorithm described in this paper and in Steinthorsson, Modi
ana & Colella (1994) and Steinthorsson, Modiano, Crutchfield, Bell & 
Colella (1995) was implemented using mixed language programming, 
i.e. the organizational levels of AMR were written in the C++ pro
gramming language while all routines performing floating point inten
sive parts of the algorithm (e.g. the Godunov integrator and linear 
algebra solvers). were written in FORTRAN. The AMR C++ class 
structure for this algorithm is described in Crutchfield & Welcome 
(1993). 

4.4 Regridding Strategy 

Adaptive Mesh Refinement algorithms must specify the policy by which 
fine grids are recursively allocated on the problem domain. The com
pressible Navier-Stokes AMR algorithm uses a combination of two 
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mechanisms. The first mechanism automatically tags cells as requiring 
further refinement if a Richardson extrapolation of the solution on two 
different levels of refinement indicates that additional refinement is nec
essary to maintain a given level of accuracy (Berger & Colella, 1989). A 
second mechanism allows the user to manually override the automatic 
error estimation and mark certain regions as either never requiring 

r refinement or always requiring refinement. The second mechanism is 
implemented as 9- user-defined subroutine which is executed after the 
automatic mechanism has computed error estimates for the cells. The 
second mechanism would be employed when the user has knowledge 
of the physical problem that provides a more accurate specification of 
where refinement is required. 

For the purposes of this paper, it is a practical necessity to manually 
override the automatic placement of grids. Given the extreme range 
of scales to be resolved, it is necessary to reduce the size of the refined 
regions to a practical minimum. Here, we are concerned with the effect 
of viscosity upon the shock reflection pattern. The finest scale viscous 
structures will form in regions of maximum velocity and temperature 
gradients. One such region considered to have physical importance is 
at the surface of the ramp. Therefore in this paper, the finest grids 
are concentrated at the surface of the ramp. In addition, preliminary 
calculations have shown the existence of a strong rarefaction fan where 
the Mach stem intersects the ramp surface. Therefore, refinement will 
also be allowed in a rectangular region surrounding the point at the 
surface which intersects either the Mach stem (Mach reflection) or the 
initial shock (regular reflection). In general, shocks are not resolved 
to the finest level of refinement in this problem except when they fall 
within the regions described above, even though they have very large 
gradients. Even where shocks are covered by finest level grids, the 
shocks are not resolved by the grid, i.e. ~x4 » mean free path. 

The calculations described utilize five levels of refinement, with 
each level a factor of four more refined than the next coarser level. The 
cell size of the nth level of refinement is denoted ~Xn· The levels are 
numbered from zero to four. On levels zero and one, only the automatic 
strategy is employed to place grids. Since coarse grids employ very 
little storage and CPU time, there is no reason to attempt to optimize 
their placement. On levels two, three, and four, grids are restricted in 
the manner described above. Figure 6 illustrates a typical placement of 
the refined levels. The position of the grids is recalculated periodically, 
so the refined regions approximately retain these positions with respect 
to the moving shock waves. 

Figure 7 illustrates the multilevel nature of AMR and the regridding 
strategy employed in this paper. Figure 7a is the coarsest level of 
refinement. Each succeeding level of refinement is a factor of four finer 
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Figure 6: Typical levels of refinement around Mach reflection pattern. 
Dashed lines indicate incident shock i, reflected shock r, Mach stem n . Dot
ted line is contact surface cs. Solid lines show boundaries of refinement 
regions 2, 3, and 4. Refinement regions 0 and 1 are not shown in diagram. 

level 0 1 2 3 4 
.6.x (meter) 1.0 X 10 4 2.6 X 10 5 6.5 X 10 6 1.6 X 10 6 4.1 X 10 7 
% refined 100 62 0.58 0.019 0.000374 

Table 2: Percentage of computational domain which is refined at each level 
in typical calculation. 

in resolution . Rectangular outlines in Figure 7 indicate location of 
refined regions as described above. At coarsest level of refinement, 
neither the Mach shock nor the boundary layer is visible. The finest 
level of refinement clearly shows both features. In Figure 7 only a very 
small percentage of the computational domain is resolved at the finest 
level of refinement. Table 2 show percentages of refinement for each 
level in the simulation of e = 52° near the end of the calculation. 

The approach described above introduces some numerical error into 
the simulation. Numerical error is introduced where a shock crosses 
a boundary between fine and coarse grids. Close examination of Fig
ure 7 will show faint smears emanating from such points. In regions 
where the flow is smooth, there is no detectable error emanating from 
boundaries between coarse and fine grids. Because we cannot afford 
to refine the entire length of every shock, it is inevitable that such nu
merical error exist in the calculation. Given that we cannot eliminate 
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Figure 7: Five levels of refinement in compressible Navier-Stokes calculat ion. 
coarsest level is (a). Each Sl!lcceedimg level (b-e) is refined by factor of fou r. 
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these errors , we have tried to minimize the effect of the errors upon 
important physical phenomena in shock diffraction by varying the size 
of the refined region. The dimensions of the refined regions shown in 
Figure 6 have been set empirically. Our approach has been to repeat a 
calculation while increasing the size of the refined regions. When the 
results cease to change with increasing size of the refined regions , we 
choose that size for subsequent calculations. 

We also empby the following rules of thumb in setting the size of 
the refined regions. First, if the solution forms a Mach stem, the Mach 
stem is always refined at least to level 3 (level 4 is the finest) . The 
base of the Mach stem is always refined to the finest level. Second , 
the thickness of the refined region in the long flat layer extending far 
behind the initiating shocks is always 16 cells on the fourth (finest) 
level of refinement . On the third level of refinement , the layer begin
ning at c and extending off the figure is at least twice as thick as the 
grids of the fourth level that it encloses. Thirdly, the flat refinement 
layer is extended behind the initiating shock to a distance at which 
the thickness of the viscous boundary layer becomes comparable to 
the thickness of the layer. At that point, the boundary layer is thick 
enough to be resolved on a next coarser level of refinement. That is 
the criterion by which the position b on the fourth level of refinement 
was chosen. 

4.5 Convergence Studies 

In the problem of strong shock diffraction of real gases over a ramp, 
it is necessary to resolve very small scales, i.e. the boundary layer 
which forms at the surface of the ramp. It is well known (Mirels , 1956; 
Mirels & Hamman, 1962) that the boundary layer thins as the shock 
is approached from downstream and approaches zero thickness at the 
shock. It is therefore impossible with current computational resources 
to resolve the boundary layer in the immediate neighborhood of the 
shock. This section will present evidence that it is possible to resolve 
enough of the important physical phenomena in this problem to make 
meaningful predictions. 

One of the major results that this paper presents is that, unlike the 
Euler equation, the numerical solutions to compressible Navier-Stokes 
equations do not evolve in a self-similar manner. In particular, the tra
jectories of the shock triple point are not straight lines, but are curved. 
We also observe, as expected, that the trajectory depends strongly on 
the fine grid resolution 6.x , see Figure 8. It is convenient to extract 
a single number from each trajectory to characterize its dependence 
upon grid resolution. Figure 9 shows how we analyze a shock triple 
point trajectory in the x - y plane and extract (among others) the 
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Figure 8: Triple point trajectories at () = 50.5° for varying resolutions 6.x4 . 

quantity we denote as Xint. Xint is extracted by determining the line 
to which the trajectory asymptotes when it reaches self-similarity. The 
x intercept of that line is Xint. 

Figure 10 shows the behavior of Xint at e = 50.5° as the finest 
grid resolution 6.x4 is decreased. This graph strongly suggests that 
Xint is converging to a finite answer as 6.x4 -+ 0 and that the order 
of convergence is first . This result is quite expected since, as stated 
earlier, the finite difference scheme is second order accurate in regions 
of smooth flow, but only first order in the presence of a discontinuous 
shock. Also shown is a linear fit to the computed Xint, 

Xint = 0.00652 - 0.001786.x4 . (18) 

The calculations reported in the remainder of this paper were per
formed with a resolution on the finest level b.x4 = 4.07 x 10-7 meters . 
Figure 10 clearly indicates that for b.x4 = 4.07 X w-7 meters , the 
calculation is not fully converged. At this value of Xint the calculated 
value of Xint is 0.00568 meters while the linear extrapolation above sug
gests a converged calculation would measure 0.0065 meters. Because 
of computational expense, we are not able to perform the calculations 
described below at a finer 6.x4 . All results should be implicitly under
stood to result from a calculation which is 85-90% resolved. However , 
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Figure 9: Trajectory angle x computed for x = 4 em and subject to parallax 
error angle E, 'lj; , self-similar trajectory angle, free of parallax, Xint , Yint , 

coordinate intersections of tangent to self-similar part of trajectory. 

some quantities, such as the asymptotic slope of the triple point tra
jectory, are quite insensitive to the value of .6.x4 . 

4.6 System Diagnostics 

4.6.1 Definition of the self-similar Mach number M 
The numerical data was post-processed to obtain various quantities 
which could make it easier to understand the physics of the diffraction. 
Pressure p is a sensitive indicator of compression waves, while the 
contours of entropy s coincide with contact surfaces and with particle 
paths behind curved shocks, and they can also distinguish between 
shock and isentropic processes. The velocity component u is sensitive 
to the viscous boundary layer ; and the temperature T, or equivalently 
the internal energy e, is sensitive to the thermal boundary layer; while 
v can reveal disturbances in the boundary layer. 

One of the most useful diagnostic tools is the self-similar Mach 
number M which is defined in the following way. Let 
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Figure 10: Xint versus .6.x4 at e = 50.5°. Linear fit to the calculated Xint is 
shown. 

where (x0 , y0 ) are the coordinates of a fixed reference point, such as 
the ramp corner. Now let, 

u = u- x; i) = v- fj, (20) 

then 
(21) 

where a is the local speed of sound. When (x , fj) are chosen to co
incide with a wave node, then M is the flow Mach number in coor
dinates which are at rest with respect to the node. Note that in an 
E-neighborhood of the node M -+ M, (see for example the discussion 
in Jones , Martin & Thornhill (1951) or Sternberg (1959)). Naturally 
M may be variable about the node. We often found it helpful to su
perimpose the M = 1 contour on the graphics of other quantities such 
asp and s. 

4.6.2 Boundary layer diagnostics 

It has been noted (Mirels , 1956; Mirels & Hamman, 1962) that the 
negative displacement height of the boundary layer (BL) in the node 
fixed coordinates (nf) induces a deflection in the particle path of angle 
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v at R, see Figure 3c. The deflection is caused both by the cooling 
of the isothermal wall which substantially increases the density p(y) 
inside the BL, especially at the ramp surface, and by the apparent 
gain in mass in nf coordinates due to viscous action. One way to 
calculate v is to calculate the boundary layer displacement height and 
then differentiate to obtain its slope at the node. But this requires the 
assumption that the displacement height is the appropriate one, and 
this may not be correct; it could be the momentum height for example. 
A better way, at least in principle, is to calculate v from the change 
in M across the reflected shock r by using the ordinary shock wave 
equations for a perfect gas (Ames, 1953) . Thus for RR, the particle 
path deflection angles for the incident shock can be calculated from 
the given data/, Mi, and B, while (h for the reflected shock can be 
calculated from the shock wave equations by extracting M1 and M2 

from the numerical results. Here M is for coordinates at rest with 
respect to the node R , so that M 1 = M1 , M2 = M2. In terms of bo , 
61 , the boundary condition for RR on the ramp for a viscous gas is 

bo- 61 + v = 0, 

therefore 
v = 61- bo < 0, 

while for a non-viscous gas, 

61 - bo = 0. 

4.6.3 Wave direction 

(22) 

(23) 

(24) 

It will be useful to assign a direction to a wave by resolving the flow vec
tors relative to it, and upstream and downstream of it, into component 
vectors normal and parallel to the wave (von Neumann, 1963; Glimm, 
Klippenberger, McBryan, Plohr, Sharp, & Yaniv , 1985). Then the 
direction of any oblique wave is merely the same as that of the tangen
tial vector component of velocity; this vector does not of course change 
across the wave. When an oblique wave points toward the node then 
it arrives there, but when it points away from it, then it leaves the 
node. Examples are shown in Figures 1 and 2. An oblique wave will 
also be considered as being in either one of two families , in the same 
sense as ± characteristics. For example in Figure 2a, it i 1 and r 2 are, 
for example, in the first family, then i 2 and r 1 are in the second, while 
i 1 and i2 arrive at the reflection node and r 1 and r 2 leave it. 
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Figure 11: Experimentally observed and numerically resolved diffraction for 
e = 52°' I = 5/3, Mi = 2.327. a) Unresolved irregular reflection observed 
in experiment; g is the "gap" . b) Computationally resolved diffraction; B, 
bend, interaction zone; v, vortex. c) system after cs -7 R collision; n, Mach 
shock; N, shock triple point node. 

5 Results and discussion 

5.1 Transition dynamics when () < ()e 

5.1.1 Before the eruption of the Mach shock 

When B < Be , experiments show that some form of Mach reflection 
(SMR, CMR, DMR) will appear, except perhaps when B -+ Be from 
below which can lead to an indefinite result because of the difficulty of 
resolving the wave system. In our experiments with B = 52° which is 
close to Be = 53.776°, the shock system had the appearance of a regular 
reflection except that the i and r shocks apparently did not meet on 
the ramp surface. Instead there seemed to be a small gap "g" between 
them, see Figure lla. Accordingly, it was described as an "unresolved 
irregular reflection". However our numerical computations have a finer 
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resolution than the schlieren apparatus and can resolve it. The wave 
system obtained numerically is sketched in Figure lib and the color 
graphics for the velocity field u and pressure field p are presented in 
Figures 12 and 13 respectively. 

Figure 12 shows a time sequence of 15 images which cover a pe
riod of approximately 17.2 microseconds. Note the presence of the 
boundary layer on the ramp surface behind the initiating shock in 
each image. Each image shows a region 130 x 10-6 meters square in 
the neighborhood of the reflection point. The center of the imaged re
gion advances down the ramp with a speed of 1205 m/sec. The speed 
of the incident shock was 742.1m/sec in the laboratory frame coordi
nates. Figure 13 shows a time sequence of 9 images starting at the 
same time as the first image of Figure 12 and covering a interval of 
19.2 microseconds. Images are separated by roughly 2.4 microseconds. 
In contrast to the images of Figure 12 which show a region of constant 
spatial extent in the lab frame, the images of Figure 13 show a con
stant extent in self-similar coordinates. Each image shows the same 
region, 1140 m/ sec :S x :S 1235 m/ sec and 0 :S y :S 95 m/ sec. Fig
ure 13 also has superimposed upon it the contour of self-similar Mach 
number M = 1. 

The first 7 frames of Figure 12 have the same structure as shown 
in Figure llb. The wave system consists of a pre-cursor regular re
flection ( i - r), but further downstream r is overtaken by the corner 
signal cs which forces r to bend smoothly at B into a steeper shock r' 
say. The r - s - r' wave triplet has some similarity to what Colella 
& Henderson (1990) called a von Neumann reflection (VNR), except 
that cs arrives at the intersection zone B whereas in a VNR the corre
sponding disturbance leaves the zone. It is interesting to note that the 
pre-cursor regular reflection cannot exist for an ideal (inviscid, non
heat-conducting) gas when() < Be. Is is only possible here because the 
existence of the boundary layer, as shown in Figure 3c, requires the 
use of Equation 23 rather than Equation 24. 

5.1.2 Eruption of the Mach shock 

It will be noticed from Figure 12 that cs overtakes the reflection node 
somewhere around the ninth frame . So the pre-cursor system is dy
namically unstable. After the cs -t R collision, a Mach shock n and 
its associated shock triple point node N erupt from the ramp surface, 
see Figures llc, 12, 13. The Mach shock travels with a greater veloc
ity than the incident shock and consequently its length increases with 
time. The results show that n is faster than cs, so the distance between 
them now increases with time. With further development , which is not 
presented, the system evolves to the self-similar state called complex 
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Figure 12: Time sequence of velocity component u , for 1 = 5/3, Mi = 2.327, 
() = 52°; ramp surface shown horizontal. Sequence is left to right followed 
by top to bottom. Units are mjsec. 
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Figure 13: Self-similar pressure and self-similar M = 1 contour for"! = 5/3, 
Mi = 2.327, e = 52°. Units are Pa. 
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Mach reflection (CMR). In our () = 52° experiment we photographed 
the shock system when it was about 4 em along the ramp surface. 
According to the numerical results, a Mach reflection forms when the 
incident shock has traveled down the ramp for 1.5 em, so the system 
we photographed must be a MR even though our schlieren apparatus 
could not resolve it. Our numerical calculations indicate that at 4 em, 
the Mach stem should be 0.37 mm high, which cannot be resolved in 
our experimental app:1ratus. 

The boundary layer and contact discontinuity cd are visible in the 
u field Figure 12, but not of course in the p field Figure 13. The Mach 
shock n is convex forward and actually arrives at the triple point N in 
Figure 11. Strictly speaking, it is not a Mach node since n leaves such 
a node, see Figure lb. Instead it is more like a cross-node as in Figures 
2a and 2b, but one for which the flow Mach number which leaves say 
i 1 is subsonic. When this occurs r 1 cannot exist and the (i1 - iz - rz) 
triplet comprises a "degenerate" cross node with i 1 and i 2 arriving and 
r 2 leaving the node. This implies that n in Figure llc is behaving like 
a pre-cursor which is being driven from its rear, presumably by the 
same disturbance that caused the cs -+ R collision. The discussion of 
this disturbance will be deferred to Section 5.1.4. Notice that n curves 
backwards as it approaches the ramp and that it is not perpendicular 
to the surface. This is a consequence of a mass sink that effectively 
exists at the foot of the shock and due to the strong cooling at the 
isothermal wall which causes the gas density to increase by a factor of 
about 4 and the viscous displacement effect - the angle v. Seiler & 
Schmidt (1978) found somewhat similar effects especially for the shape 
of the Mach shock. 

5.1.3 The sonic surface 

Important results follow by superimposing the self-similar M = 1 con
tour onto the self-similar p field, Figure 13. The contour appears to 
coincide with the rear of the overtaking cs- r' disturbance. A detailed 
study was done by extracting horizontal (y constant) and vertical (x 
constant) "cuts" through the r' and cs disturbances. This showed that 
there was a positive entropy jump across r' and that the M = 1 con
tour was embedded inside it . Furthermore, relative to r' the flow left 
it subsonically, so r' is a compression shock. By contrast it was found 
that cs was an isentropic compression and was terminated at its rear 
by the M = 1 contour. This is further evidence that the overtaking 
disturbance cs- r' is driven from its rear. 

In summary, the r - s - r' wave triplet comprises the r shock and 
the cs isentropic compression, both of which arrive at the interaction 
region B , and the r' shock which leaves it. The CMR thus appears to 
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consist of a leading SMR followed by an r - cs - r' wave triplet. A 
DMR would consist of a combination of two SMR's. 

5.1.4 The driving disturbance 

It will be convenient to continue with the () = 52° example in consider
ing what disturbance drives the overtaking cs- r' wave composite. We 
abstracted the self-similar flow Mach numbers M0 , M1 , and M2 about 
the RR pre-cursor near R, then M0 = 3.78, Nh = 1.96, and M2 = 1.18. 
The maximum particle path deflection (detachment) angle across r for 
M1 = 1.96 is 18.8°. In the notation of Bleakney & Taub (1949) and 
Kawamura & Saito (1956), this corresponds to the wave angle for shock 
detachment w;e = 63.2°. This angle is with respect to the on-coming 
streamline, but with respect to the ramp surface it is w;e = 42.1 o. How
ever Figure 12 shows that w~ increases to w~ ~ 50° > 42.1 o as r bends 
smoothly at B to r ' , and this implies that r' is behaving like a shock 
detaching from a steep wedge. This is not surprising since() = 52° < Be 
implies that w0 >we, where w0 is defined in Figure 3, although in this 
case the trajectory virtually coincides with the ramp surface. In Figure 
llb, the gas velocity along the surface A (upstream of the apex) is the 
driving piston velocity Up; of the incident shock in laboratory frame 
coordinates. The flow Mach number is Mp; = 0.891 < 1, so r ' must de
tach from the ramp. Indeed the results show that r' everywhere moves 
away from the apex. It is concluded that it is the ramp itself, which 
with () = 52° is a considerable blockage to the flow, is the disturbance 
which drives the r' - cs composite wave as though it is a detaching 
shock. It overtakes the RR pre-cursor and forces the eruption of the 
Mach shock. Evidently r' will have a sonic point where cs arrives at 
B, and as r' continues to steepen through B it will also have a detach
ment point e'. With increasing steepness this detachment condition 
will be exceeded. Therefore as the i- r pre-cursor is overtaken by the 
r' - cs composite, then firstly the sonic point overtakes R causing the 
corner signal cs to vanish, then the detachment point overtakes, and 
the Mach shock erupts as the detachment point is surpassed. After 
eruption the corner signal reappears and the evolution to a self-similar 
CMR begins. 

Remark Dr. Ralph Menikoff of the Los Alamos National Lab
oratory read an early version of this paper. He noted that, "Your 
section on the driving disturbance fails to explain why there is a de
lay in the corner signal overtaking the reflected wave" . He offered us 
the following ingenious conjecture to explain this delay. His idea is 
based on an analogy with the Marshak thermal wave (Zeldovich & 
Raizer, 1966). Suppose a block of metal is suddenly heated by thermal 
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radiation. Then a thermal wave propagates into the metal and the 
temperature increase behind the wave also raises the pressure. Usu
ally a rapid rise in pressure will cause a shock. However in this case, 
the thermal wave initially moves faster than the shock, that is at su
personic speed. However the speed of the thermal wave falls off with 
distance and eventually becomes subsonic. The pressure disturbances 
can then organize into a shock with outruns the thermal wave. 

Now consider the delay in the overtaking of the corner signal. The 
diffusion of momentum and heat in the boundary layer is analogous 
to the conduction of heat in the metal. The boundary layer prop
agates into the compressed argon downstream of the pre-cursor RR 
node (Figure llb). The temperature changes inside the boundary 
layer also cause dynamic pressure disturbances. If the boundary layer 
thickness is say y*, then it propagates at a definite velocity say v* 
in the y direction . Since the boundary layer is exceedingly thin near 
the node it will be assumed to be laminar, so by the Blasius theory, 
y* ex x/ffe, where Re = ux/TJ' is the Reynold's number, xis the dis
tance from the pre-curson RR node, u is the gas velocity just outside 
the boundary layer in the x direction, and rJI is the kinematic viscosity 
rJI = f.L/ p. Therefore y* ex Jxryltjx ex .j7}it, where tis the time. Then 
v * = dy* / dt ex v;Ji[i. Now when the node is near the ramp apex, then 
t will be small for any particular x. In this case v* may exceed the 
speed of sound of the compressed argon v* > a2, that is the boundary 
layer (analogous to the Marshak wave) propagates at supersonic speed 
in the y direction. But with increasing time, v* decreases as 1/ Vt, 
and in a time of the order of t 2: rJI/ a~ the diffusing boundary later 
wave thereafter moves at subsonic speed. But this now means that 
more flow enters the boundary layer than it can accommodate. The 
pressure disturbances now propagate out of the boundary layer to both 
retard the incoming flow and to form the corner signal. As we have 
seen, the corner signal is not a shock in this case but an isentropic 
compression. 

5.1.5 Experiments of the Lock and Dewey type 

During their experiments with weak shocks (ours are strong) Lock and 
Dewey generated sonic signals downstream of the shock system (Lock 
& Dewey, 1989) . They found that the signals overtook the regular 
reflection at , or near, transition, but that this condition was not the 
same as the sonic point criterion obtained from the ideal von Neumann 
theory. A similar effect exists with our results , for if such experiments 
were done with our strong shocks with the B = 52° ramp but before 
the eruption of the Mach shock, then there is a sonic surface at the 
rear of the corner signal. The eruption of Mach shock is very close to 
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the point where the sonic surface overtakes the pre-cursor RR (in the 
8th frame of Figure 12). Yet()= 52° is not the same as the sonic point 
angle Bs = 53.294° (Table 1) obtained from the inviscid theory. 

5.1.6 The boundary layer disturbances and the vortex 

An example of the disturbances is presented in Figure 14 in the v, u, p, 
and e fields . Notice the large amplitude disturbances in the boundary 
layer revealed by the v field. They are associated with the corner signal 
cs which is visible in the p field. As cs sweeps over the boundary layer, 
it generates a vigorous vortex in its immediate rear; it is visible in the 
v field as an elliptic shaped region colored blue. On the upstream side 
of the vortex v ~ 70m/ sec downwards and on the downstream side it 
is about v ~ 7m/ sec upwards , so it rotates clockwise. The boundary 
layer is strongly thinned underneath it and rapidly thickened behind 
it, which must cause order of magnitude changes in the gradient ofT. 

The initial temperature of the gas is To = 293.15° K and this is 
also the temperature of the isothermal surface of the ramp. Here the 
maximum temperature of the compressed gas is about 1400° K. The 
gas in the boundary layer is thus strongly cooled near the surface, in 
fact its density increases by a factor of more than 4. Some profiles 
are presented in Figure 15. Our results show that the pressure change 
across the boundary layer is small so we display no graph for pressure. 

For () = 52°, we had for the RR pre-cursor that M0 = 3.78, 
M1 = 1.96, M2 = 1.18. From these data it is calculated that the effec
tive slope of the boundary layer at the pre-cursor node R is v = -4.66°. 
The boundary layer actually makes the pre-cursor possible by virtue of 
Equation 23, but when the ideal gas boundary condition Equation 24 
applies , then an RR is impossible according to the theory of von Neu
mann. 

5.2 Numerical results for an ideal gas 

The diffractions that we have discussed above have also been studied 
numerically by Professor P. Colella, but he used the Euler equations 
instead of the N a vier-Stokes equations. He treated the argon as though 
it were an ideal , inviscid, and non-heat conducting gas . As a conse
quence of the ideal gas assumption, the following boundary conditions 
are satisfied at the ramp surface, 

ou = O = 8T 
oy oy · (25) 

Some of these results are presented in Figure 16 for the trajectory 
angle x of the shock triple point N (Figure 1b) versus B. Some exper-
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Figure 14: Flow near pre-cursor regular reflection for 1 = 5/3, Mi = 2.327, 
e = 52°. Each display is 247 X w-6 meters long and 57 X w-6 meters 
high. At this time the shock has traversed 0.0128 meters of computational 
domain. The quantities shown are a) v in m/ sec; b) u in m/ sec; c) pressure, 
in Pa; d) internal energy, in (m/sec) 2 . 
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Figure 15: Boundary layer profiles at 0 = 52°. Location of profiles is 41 x 
w-6 meters behind shock in preceding figure. Horizontal scale is distance 
above surface in microns. Temperature is measured in degrees Kelvin, p 
measured in kgjm3 , u in mjsec. 

imental data are shown for comparison. A quadratic curve of best fit 
through the Euler calculations is, 

X = 26.4137- 0.6369770 + 0.0030180202
• (26) 

When this equation is solved to find the intercept with x = 0, one gets 
56.699° which is close to the von Neumann point at ON = 57.02P. 
There is a clear systematic discrepancy between the numerical Euler 
predictions and experimental results shown in Figure 16 such that the 
Mach shock grows a little more slowly (smaller x) for the real gas of 
the experiments than it does for the ideal gas of the Euler numerical 
computation. 

In the numerical simulations of the Euler equations it is found that 
the triple point trajectories are negligibly different from a straight line. 
The Mach shock thus grows uniformly with time; it is self-similar. 
More generally the results show that the flow is everywhere closely self
similar and that the diffraction pattern is a CMR. These results also 
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Figure 16: Trajectory angle x of the shock triple point versus ramp angle 
8 for 1 = 5/3, Mi = 2.327. Data from experiment, Euler calculations, and 
Navier-Stokes calculations are shown. Experimental data shows measure
ment error bars. A quadratic fit to the Euler calculations is shown as well 
as a linear fit to the Navier-Stokes results. The three transition criteria are 
indicated on the graph. 

mean that the parallax assumption is obeyed. Another consequence of 
the ideal gas assumption is that Equation 24 is satisfied at the ramp. 
surface. 

5.3 Numerical results from the Navier-Stokes cal
culations with isothermal and non-slip boundary con
ditions 

The numerical simulation of the Navier-Stokes equations takes into 
account the real gas properties of shear viscosity _and thermal conduc
tivity. The boundary conditions on the ramp surface are isothermal 
and non-slip, 

u = 0, T =To= 293.15° K. (27) 
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These boundary conditions force the existence of a boundary layer on 
the ramp surface. 

When measuring x from experimental data, the parallax assump
tion is sometimes made implicitly, in fact it is practically unavoidable 
if only one photograph is taken for each experiment. This was the case 
for the experimental data shown in Figure 16. The photographs were 
taken after the incident shock i had traveled about 4 em along the 
ramp, and x was measured from the photograph by using the parallax 
assumption. 

In the numerical simulations of the Navier-Stokes equations, this 
same measurement process was repeated in order to make a correct 
comparison of simulation with experiment. From each simulation, the 
(x,y) coordinates of the shock triple point N were extracted as the 
incident shock traveled up the ramp. Generically the trajectories had 
the form of a curve which asymptotes to a straight line at large x. The 
asymptote corresponds to the self-similar later portion of the triple 
point's trajectory. Figure 17 shows triple point trajectories for several 
ramp angles measured from the Navier-Stokes simulations. Ideally one 
would extract from the simulation trajectory the y position of N at 
x = 4 em. However, in order to minimize computational effort, most 
simulations were terminated before the incident shock had traveled 
more than 2.5 em. The asymptoting line was then used to extrapolate 
the y position of the triple point to x = 4 em along the ramp. Care 
was taken to run each simulation long enough to accurately determine 
the asymptoting line. Figure 9 demonstrates the extrapolation. The 
results of measurement of xis presented in Figure 16 and the quadratic 
curve of best fit through these data is 

X = 19.44145- 0.3590698- 5.1896210-582
. (28) 

The quadratic fit intersects x = 0 at 8 = 53.727°, which is close to the 
detachment point at Be = 53.776. 

Figure 9 also demonstrates the differences between three angles 
which characterize the trajectories. The angle x is the experimentally 
observable angle that is plotted in Figure 16. The angle 'lj; is the angle 
of the self-similar portion of the triple point trajectory. The angle t: is 
the parallax displacement error. 

Thus subject to the parallax assumption the effect of the viscosity 
and thermal conductivity upon the computations is to reduce x for a 
given 8, as compared to the ideal (Euler) gas numerical calculation. 
The real gas properties slow the rate at which the length of the Mach 
shock increases, and also apparently shift the transition criterion from 
the von Neumann point to the detachment point. Additionally, the 
agreement with the experimental data has been improved. 
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Figure 17: Numerical triple point trajectories for viscous, heat conducting 
argon, 1 = 5/3, Mi = 2.327, at several wedge angles B. 

5.4 Numerical test of the parallax assumption 

It is of interest to examine the parallax assumption in more detail. 
The (x, y) coordinates of the triple point N were extracted from the 
Navier-Stokes numerical simulations at each time step to find out if 
the trajectory of N was in fact a straight line through the apex. _Some 
results are presented in Figure 17 and it is clear that every trajectory 
is curved. For example, it has been mentioned that for () = 52° the 
Mach shock erupts not at the apex but at about 1.5 em down the 
ramp, corresponding to the ninth frame of Figure 12. After eruption 
the trajectory is curved for a time, but soon becomes a straight line, 
although not of course through the apex. Once th·e trajectory becomes 
straight the Mach shock length grows uniformly in time, that is, it 
becomes self-similar and indeed the whole system becomes self-similar. 
All of the trajectories have the same kind of behavior. This phenomena 
has been reported in experiments with shocks in low density gases 
(Seiler & Schmidt, 1978; Walenta, 1987). It is concluded that the 
parallax assumption that the trajectory of the shock triple point is a 
straight line through the apex of the ramp is incorrect for a viscous, 
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heat-conducting gas with isothermal and non-slip boundary conditions. 

5.5 The self-similar trajectory angle '¢ 

There is of course nothing special about x = 4 em. It was merely the 
approximate position of the shock system on the ramp when the pho
tographs were taken in the experiments. But because the trajectories 
are curved, the values of x will not be independent of this length scale, 
see Figure 9. A trajectory angle .1/J which is independent of the obser
vation position x can be defined by the slope of the straight portion of 
the trajectory; it will be called the self-similar trajectory angle. The 
scale-free 1/J extracted from the Navier-Stokes calculations is presented 
in Figure 18. The quadratic curve of best fit through the data is, 

1/J = 25.1069- 0.6476998 + 0.0035933882
. (29) 

The intersection of the quadratic fit with the line 1/J = 0 is B = 56.429° 
which clearly favors the von Neumann point BN = 57.021°. It was 
impractical to extend the calculations into the decisive range Be < 
B < BN because of computational cost. The computation forB = 52° 
which came closest to this critical range required 30 hours of CPU time 
on a Cray-YMP. Nevertheless the results do support the conclusion 
that the von Neumann point is the criterion for regular ~ irregular 
transition for self-similar strong shock diffraction over a rigid ramp 
with isothermal, non-slip boundary conditions. 

As shown in Figure 9, it is possible to define an angle of parallax 
error t:, 

E::: 1/J- X· (30) 

At later times when the trajectory has become straight and the system 
self-similar, the parallax error t: tends to zero, so x --* 1/J. In fact, 
according to Equations 28 and 29, the parallax error is less than one 
per cent when B ~ 43.4°. To understand this, one can calculate the 
intercept Xint that the self-similar trajectory makes with the ramp 
when its tangent is extrapolated toy = 0. Similarly Yint can be defined 
from Figure 9 as 

Yint = Xint tan 1/J. (31) 

Table 3 shows the analysis of Navier-Stokes calculations at six angles. 
The viscous/thermal properties of the gas introduce the length scale 

Xint into each flow, but for fixed B the effect becomes negligible at later 
times or larger distances when x » Xint· By comparing the numerical 
and experimental results only the two experimental data points for 
49° < B < 50° are affected by the parallax error. Consequently for 
these two experimental data points x = 4 em was too small a distance 
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Figure 18: Self-similar trajectory angle 'lj; of shock triple point. For the Euler 
calculations where the diffraction is self similar, 'lj; is the same as X· For the 
Navier-Stokes calculations, 'lj; differs from x particularly as the transition is 
approached. The three transition criteria are indicated on the graph. 

at which to take the photograph, for this angle of () we needed to do 
the experiment at about 8 to 10 em. However, the parallax error is 
negligible for the rest of the experimental data. 

5.6 Dependence of Xint upon () 

We have previously stated that the Navier-Stokes calculations sup
port the conclusion that the von Neumann point is the criterion for 
regular ~ irregular transition for self-similar strong shock diffraction, 
i.e. that 'ljJ --+ 0 as () --+ () N, see Figure 18. We have also stated that 
measurements of x are not always good estimates of the self-similar 
trajectory angle because of the failure of the parallax assumption. In
deed, in general x will depend upon the distance along the ramp where 
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B 34.6 38.6 44 47.28 50.5 52 
'ljJ 6.990 5.603 3.593 2.405 1.535 1.209 

Xint 81.8 220 560 1200 5500 21200 
Yint 10 21.6 35 50 150 447 

Table 3: Xint and Yint of the self-similar trajectories with the ramp. 'ljJ and 

x are measured in degrees, Xint and Yint are measured in microns. 

it is measured. However, it is evident that the x angles obtained from 
the Navier-Stokes calculations, see Figure 16, appear to go to zero as B 
approaches the other criteria angles, Bs and Be. We now consider this 
effect. 

In Figure 19 we have plotted Xint as defined in Figure 9, as a 
function of B. The measured Xint 's give every indication of becoming 
singular at a finite value of B. Figure 19 shows that a very good fit to 
the available data is 

0.054066 
Xint ~ (53.6 - B)2. (32) 

The choice of 53.6° as the singular angle is not meant to exclude other 
angles, in particular Bs or Be. For the simple functional form of Equa
tion 32, 53.6° gives the best fit, but other functional forms cannot be 
excluded with the available data. 

Let us assume that Xint does in fact become singular for B in the 
neighborhood of 53.6°. Consider any fixed distanced (4 em say) along 
the ramp, and suppose that the ramp angles Bare such that Xint(B) < 
d, and also such that the trajectory becomes self-similar before reaching 
distance d on the ramp, as in Figure 9. Then one has the relation 

x = arctan (tan 'ljJ ( 1 - X:t ) ) . (33) 

When Xint « d, x ~ '1/J. But as Xint increases and becomes comparable 
to but still less than distanced, Equation 33 shows that x < '1/J. Finally 
as Xint approaches distance d, then the y coordinate of the trajectory 
at d will become smaller and approach zero. Therefore, x will be 
driven to zero even while '1/J remains finite. This is possible because 'ljJ 
is independent of d while in general x depends on d. By our assumption 
that Xint diverges near 53.6°, we are led to the conclusion that x is 
driven to zero at the same angle. 

The intercept Xint is similar in scale to the distance the shock trav
els along the ramp before the Mach shock erupts. We have already 
described the eruption of the Mach shock as occurring when the cor
ner signal cs overtakes the reflection node. If we further assume, as 
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Figure 19: X intercept Xint versus ramp angle () for 1 = 5/3, Mi = 2.327. 
Also shown is fit to data of form 0.054066/(53.6- ()) 2 . 

seems unavoidable, that the distance of overtaking also is singular near 
53.6°, this suggests that the speed of the corner signal becomes equal 
to the speed of the reflection node at that angle. 

5. 7 The effects of the boundary layer on the rate 
of growth of the Mach shock 

It is also possible to obtain self-similar strong shock diffraction by using 
internal cavities as in Figure 2b. Experiments with these devices have 
been done by Smith (1979), Henderson & Lozzi (1975), and Virgona 
(1994). It is clear that for symmetric cavities the temperature and-the 
velocity vector are the same for any two points (x, ±y) that are reflected 
in the plane of symmetry S S. So S S is a perfect adiabatic boundary 
with no viscous shear along it, thus no boundary layer. Therefore the 
boundary conditions Equation 25 apply along SS. Additionally SS 
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Figure 20: Conception of a self-similar, symmetric reflection without a 
boundary layer. 

behaves as though it is an infinitely rigid wall. Thus even for a real 
gas, the plane of symmetry is a perfect adiabatic, slipping, infinitely 
rigid surface with boundary conditions Equation 25, and which can be 
closely realized physically. 

The boundary conditions can now be applied to the ramp by imag
ining a mirror image of the diffracting system in which the ramp sur
face is now the plane of symmetry SS, as in Figure 20. This proce
dure simulates the self-similar cavity diffraction. If the previous ramp 
Navier-Stokes calculations are now repeated using the new boundary 
conditions Equation 25 instead of the physical ramp boundary condi
tions Equation 27, then the net effect will be to remove the viscous, 
heat-conducting boundary layer even though we are retaining the fi
nite viscosity and thermal conductivity of the argon. The results for 
triple shock point trajectories Bless than or approximately equal to Be 
are presented in Figure 21. When B «Be, the trajectories are straight 
lines which pass through the apex with great precision, for example 
for x = 0 the discrepancy in y is about 3.3 micron when B = 50.5°. 
It follows at once that such systems are immediately irregular when 
B < Be and self-similar CMR's. There is then no parallax error € and 
x = 7/J. Since the boundary layer has been removed these conditions 
imply that Equation 24 applies locally on the ramp instead of Equation 
23. 

As the ramp angle B approaches Be, the trajectories become dis
torted from straight lines. This will be discussed in the next subsec-
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Figure 21: Numerical trajectories of the shock triple point in a viscous, 
heat-conducting gas with adiabatic/slip boundary conditions on the ramp 
surface. () is in the neighbor hood of Oe = 53.776°. Note in particular () = 54 °. 

tion. 
When we plotted these 1j; versus () N a vier-Stokes calculations we 

obtained the extraordinary result that they were in close agreement 
with the results from the ideal gas Euler calculations, see Figure 22. 
There is actually a small systematic displacement of approximately 
0.1° from the Euler results such as to reduce the rate of growth of the 
Mach shock slightly. 

On comparing the results of the Navier-Stokes simulations for bound
ary conditions Equations 25 and 27 it is concluded that, the viscous, 
heat conducting boundary layer is the dominant influence in reducing 
the self-similar rate of growth of the Mach shock. This fact has long 
been suspected by some researchers. The small discrepancy between 
the Euler and the Navier-Stokes adiabatic/slip results is attributed to 
momentum and heat transfer in the diffusing contact discontinuity, 
although this is an open question. 
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Figure 22: Self-similar trajectory angle '1/J for Euler equation and Navier
Stokes equations with two different boundary conditions on the ramp. Lines 
indicate best quadratic fit to Euler data and to Navier-Stokes with isother
mal and non-slip boundary conditions. The three transition criteria are in
dicated on the graph. Dashed line shows abrupt transition of Navier-Stokes 
with isothermal and non-slip boundary conditions near 54°. 

5.8 The range Be ~ e ~ eN 
In this range Equation 24 can be satisfied for an ideal gas, while a 
real gas satisfies Equation 23. In either case, a regular reflection is 
now possible. The Euler calculations in this range still support the 
von Neumann point, see Figures 16, 18, and 22. Although the Navier
Stokes calculations with the isothermal/non-slip boundary conditions 
Equation 27 also support this point once self-similarity is established, 
the prohibitive cost of the calculations made it impracticable to extend 
the '!jJ versus 8 curve into the range. 

However for the adiabatic/slip boundary conditions Equation 25 it 
is possible to economically perform the computations in this angular 
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range, and for this range the calculations produced a regular reflection. 
The 'ljJ versus B curve was explored numerically near the Be point. In 
particular 'ljJ was calculated for B = Be± 0.1 o, and it was concluded that 
the Navier-Stokes calculation indicated a discontinuity in the 'ljJ at Be. 
Figure 22 shows the discontinuity in trajectories forB near Be = 53.776. 
As B approaches Be from below, the triplepoint trajectories increasingly 
deviate from straight lines. Because of the adiabatic, slip boundary 
conditions, there is no physical boundary layer in these calculations. 
Examinations of the velocity and temperature fields from the Navier
Stokes calculations do not show any evidence of a numerical boundary 
layer. 

As discussed· above, Euler calculations in this range of B do form a 
Mach shock, while the Navier-Stokes calculations do not. It is interest
ing to ask whether the Navier-Stokes calculation can support a Mach 
shock if it already exists. This is accomplished numerically by run
ning an Euler calculation for a few steps until it has formed a Mach 
stem 5 microns high. The data from the Euler calculation is then 
used to initialize the Navier-Stokes calculation, see Figure 23. Clearly 
the Navier-Stokes calculation can support a Mach shock once it has 
formed. 

The numerical results and experiments suggest the intriguing pos
sibility that in the range Be :::; B :::; BN with slip, adiabatic boundary 
conditions, there are two stable configurations, corresponding to regu
lar reflection and Mach reflection. The regular reflection configuration 
is only slightly stable and is not observed experimentally because slight 
perturbations either from imperfections in the experimental apparatus 
or statistical fluctuations in the gas move the state out of the region 
of stability. The Navier-Stokes calculations have neither imperfections 
in the surface of the ramp nor fluctuations in the gases, and thus can 
produce a regular reflection. However, if the Navier-Stokes calculation 
is initialized with a configuration closer to the Mach reflection than 
the regular reflection, it quickly relaxes into the Mach reflection form. 

This hypothesis would further suggest that the regular reflection 
configuration is less stable for the Euler equation than for the Navier
Stokes equations because the Euler calculations always produce Mach 
shocks in this angular range. In this case, the perturbations which 
destroy the RR configuration would arise from the numerics. In con
trast, the Navier-Stokes calculation is stabilized by the presence of 
momentum and heat diffusion. Numerical perturbations, if they are 
sufficiently small, can be diffused away in the Navier-Stokes simulation 
before they can cause a major deviation in the solution. 

If experimental or statistical fluctuations are responsible for the 
observation of the Mach stem in cavity experiments in the range Be < 
B < B N, this opens the possibility that such fluctuations may also affect 
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Figure 23: Triple point trajectory for Navier-Stokes equation with adiabatic 
and slip boundary conditions on ramp surface. Navier-Stokes calculation 
was initialized with data from inviscid ca,lculation which had Mach stem 5 
microns high. 

the eruption of the Mach stem in experiments when () < Be, even for 
ramp experiments. This is an open question deserving serious study. 

5.9 Heat transfer versus viscosity effects 

In order to obtain an estimate of the relative magnitude of these effects 
on the eruption of the Mach shock, the () = 52° calculations were 
repeated with different boundary conditions. In the first of them, the 
ramp was made adiabatic and non-slip, 

and then conversely, 

8T 
u=O=-, 

8y 

au= 0 
8y , 

(34) 

(35) 

that is a slip boundary with an isothermal surface. The results are 
presented in Figure 24 as curves C and D respectively. The eruption 
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Figure 24: Effects of various boundary conditions on the trajectory of the 
shock triple point when()= 52°. (x,y) are the shock triple point coordinates. 

begins at about 0.65 em for curveD and at about 0.21 em for curve C. 
So in this case the heat transfer delays the eruption about three times 
as much as the viscosity does. 

5.10 On the criterion for RR-+ CMR transition in 
a real gas 

An extraordinary result is that a tangent to the real gas curve 1/J versus 
8 for angles 8 < 45° will, if extended to 1/J = 0 pass through or very 
close to the ideal gas Be point, see Figure 18. This is further support 
for the conclusion that a CMR comprises an SMR followed by a wave 
composite r'- cs which acts like a detaching shock. For the self-similar 
conditions of 1/J versus 8, the parallax error is of course zero. The 
parallax error for xis negligible when 8 < 45°, because then x » Xint, 

when x ~ 4 em. Thus the blockage to the flow due to the ramp is the 
dominant effect when 8 < 45°, the real gas only causes the Mach shock 
to grow somewhat more slowly than in an ideal gas. 

In order to explore the matter further, some data for the angle 1J 
that the contact discontinuity cd makes with the ramp is presented in 
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() 34.6 38.6 44 47.28 50.5 52 53.776 57.021 
bn 16.4 13.7 9.83 7.59 5.11 3.89 2.61 0 
1] 23.4 19.3 13.4 10.0 6.65 5.10 3.28 0 

Table 4: Impact angle 1J of the contact discontinuity on the ramp surface. 

X 

/ 

Figure 25: Relation between impact angle 7], self-similar trajectory angle 'lj; 
and Mach shock, particle path, deflection angle c5n. 

Table 4. From Figure 25, 

(36) 

and bn is the particle path deflection through the Mach shock at the 
triple point. In order to calculate a particular bn, the angle wo from 
Figure 3a was extracted from the Navier-Stokes data, and used as 
input to the inviscid von Neumann theory to find bn. At () = 34.6° 
the contact discontinuity cd and its nearby particle paths impact on the 
ramp at the comparatively steep angle of 1J = 23.4°, but this becomes 
steadily smaller as() -+ ()e· If the curve were extended to ()N, then 
TJ = 0 = 'ljJ = bn, and the cd would not only then be parallel to 
the ramp, but would coincide with its surface. This means that the 
local flow about the shock triple point is increasingly influenced by the 
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surface boundary conditions at B gets smaller, and consequently less 
influenced by the ramp blockage. 

Now the detachment condition is only available forB ::; Be, so if a 
CMR is to exist in the range Be ::; B ::; BN, then some other dynami
cal process must induce the transition RR ~ C MR. It is noted that 
since the theory allows either of these systems to occur, then the one 
that actually occurs will have its stability under constant test by the 
fluctuations which are invariably present for a real gas flow. Now the 
two-state flow along the cd in a Mach reflection has both a tempera
ture and a velocity discontinuity across the cd, so the two-state flow is 
not even in thermal or dynamic equilibrium, Jet alone stable. However 
the shock system is stable even though the two-state flow downstream 
is not. Otherwise a Mach reflection could not exist and this would 
contradict experiment. It seems plausible therefore that if an RR ap
pears in the range, then the fluctuations could cause transition to the 
CMR by "discovering" the thermodynamically and dynamically unsta
ble two-state flow, but this is also an open question. 

6 Conclusions 

1. • When a strong shock propagating in a viscous, heat-conducting 
gas diffracts over a smooth rigid isothermal ramp with B < 
Be, the effects of the properties of real gas is to curve the 
shock triple point trajectory and to delay the onset of the 
irregular (Mach) reflection. 

• ForB <Be, the diffraction comprises a pre-cursor regular re
flection which moves at a uniform speed along the ramp and 
is followed by a corner signal which is a sonic compression 
and eventually overtakes the pre-cursor also at a uniform 
speed and forces the eruption of a Mach shock. 

• Even though B < Be, the eruption occurs at, or near, the 
instant that the detachment condition is attained at the pre
cursor reflection point R. 

• The Mach shock moves faster than the corner signal, and the 
unsteady system evolves into a self-similar complex Mach 
reflection. 

• The interaction of the corner signal with the reflected shock 
causes it to bend smoothly into a stronger shock and produce 
a local irregularity analogous to a von Neumann reflection 
with the difference that the corner signal arrives at the inter
action zone, whereas in a von Neumann reflection it leaves 
the zone. 
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2. Properties of the corner signal with B < Be, and before overtaking 

• It is a smooth isentropic compression. 
• Relative to it, the flow is supersonic on its upstream side 

and sonic on its downstream side. 
• It is generally oblique to the flow, and unsteady. 
• It is driven from the rear as though it were a shock detaching 

from a blunt body. 

• The gradients across it may be substantial enough to be 
easily detected by schlieren apparatus. 

3. The assumption that the trajectory of the shock triple point is 
a straight line through the ramp apex (the parallax assumption) 
is wrong for a viscous, heat-conducting gas with isothermal and 
non-slip boundary conditions. 

4. There is strong, but not yet conclusive evidence that the criterion 
for the regular :;= irregular transition of a self-similar, strong 
shock diffraction over a rigid ramp with isothermal and non-slip 
boundary conditions is the von Neumann criterion. 

5. The viscous, heat-conducting boundary layer is the dominant in
fluence which reduces the self-similar rate of growth of the Mach 
shock as compared to an ideal gas. 
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