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Abstract 

Multifragmentation in Intermediate Energy 129Xe-Induced 

Heavy-Ion Reactions 

by 

Kin Tso 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor Luciano G. Moretto, Chair 

1 

The 129Xe-induced reactions on natcu, 89Y, 165Ho, and 197 Au at bombarding 

energies of E j A = 40 & 60 MeV have been studied theoretically and experimentally 

in order to establish the underlying mechanism of multifragmentation at intermediate 

energy heavy-ion collisions. 

Nuclear disks formed in central heavy-ion collisions, as simulated by means 

of Boltzmann-like kinetic equations, break up into several fragments due to a new 

kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-

interacting surfaces, is shown to become unstable due to surface-surface interactions . 
. 

The onset of this instability is determined analytically. A thin bubble behaves like 

a sheet and is susceptible to the surface instability through the "crispation" mode 

(modulated thickness). The Coulomb effects associated with the depletion of charges 

in the central cavity of nuclear bubbles are investigated. The onset of Coulomb insta­

bility is demonstrated for perturbations of the "radial" mode (constant thickness). 

Experimental intermediate-mass-fragment multiplicity distributions for the 
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129Xe-induced reactions are shown to be binomial at each transverse energy. From 

these distributions, independent of the specific target, an elementary binary decay 

probability p can be extracted that has a thermal dependence. Thus it is inferred 

that multifragmentation is reducible to a combination of nearly independent emission 

processes. If sequential decay is assumed, the increase of p with transverse energy 

implies a contraction of the emission time scale. The sensitivity of p to the lower 

Z threshold in the definition of intermediate-mass-fragments points to a physical 

significance. Poisson simulations of the particle multiplicities show that the weak 

auto-correlation between the fragment multiplicity and the transverse energy does 

not distort a Poisson distribution into a binomial distribution. The effect of device 

efficiency on the experimental results has also been studied. 

A strong thermal signature is found in the charge distributions associated 

with multifragmentation from these 129Xe-induced reactions. Then-fold charge dis­

tributions are reducible to the 1-fold charge distributions through a simple scaling 

factor e-cnZ that is dictated by fold number and charge conservation. Experimentally, 

c starts from zero at low values of the transverse energy and reaches a saturation value 

at high transverse energy. In a liquid-gas phase diagram, c = 0 for the saturated va­

por, while c > 0 for the unsaturated vapor. It is suggested that in the c ~ 0 regime 

the source evaporates down to a sizable remnant, while for c > 0 the source vaporizes 

completely. Percolation and nuclear evaporation calculations of finite systems portray 

a behavior similar to that observed experimentally. 
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Chapter 1 

Introduction 

Heavy-ion collisions have been commonly used to study the formation and 

the decay of highly excited nuclear systems. In particular, the emission of complex 

fragments (Z ~ 3) has been a subject of great interest, since the emitted fragments 

may bear information about the system before decay. Experimentally, the emission 

of complex fragments ( CF) or intermediate mass fragments (IMF) has been observed 

pervasively in heavy-ion reactions over a large range of bombarding energies and 

combinations of projectile and target [Kort 73, Goss 77, Meye 80, Bord 84, Sobo 84, 

McMa 85, Char 88a, Char 88b, More 88, Guer 89, Gutb 89, Gros 90, Bowm 91, Bowm 

92, More 93, Rous 93, Peas 94, Tso 95]. 

Figure 1.1 shows a schematic representation of the evolution of the heavy­

ion reaction mechanism with bombarding energy and impact parameter b. It essen­

tially illustrates the formation of different emission sources in the various regimes of 

heavy-ion collisions. When two heavy nuclei collide with each other at low bom­

barding energies, they fuse together to form a hot transient object known as com­

pound nucleus (CN). In other words, the nuclei stop each other and the translational 

kinetic energy is transformed into randomized microscopic motion. Sometimes, a 
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Figure 1.1 : A schematic representation of the evolution of the heavy-ion reaction 

mechanism with bombarding energy and impact parameter b. The different regimes 

are (a) complete fusion plus deep inelastic collision, (b) incomplete fusion, and (c) 

the fireball regime. 
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dinuclear transient system may be formed when .the two nuclei just barely touch 

each other in a "deep-inelastic" collision [Schr 77, More 81] at large impact parame­

ters. At higher bombarding energies, the probability of complete fusion decreases, 

since the collision occurs at such a high speed that only a piece of the smaller 

nucleus is absorbed by the larger nucleus. This is the incomplete fusion regime 

[Char 88a, Char 88b, Colo 89, Bowm 89, Hano 93], and the excited incomplete fusion 

product becomes a source of complex fragment emission. At even higher energies', the 

colliding system is divided into three pieces: the projectile spectator, the target spec­

tator, and the "fireball" that arises from the overlapping region of the target and the 

projectile. In this fireball picture [Goss 77, West 76], the spectators are the emission 

sources of complex fragments, while the fireball, with thermal energy much larger 

than the nuclear binding energy, is likely to disintegrate completely into nucleons. 

Although the formation of these excited emission sources of complex frag­

ments is of great interest, the focus of this work is not on the dynamics of their 

formation, but rather the mechanism of their subsequent decay. A brief review is 

given in section 1.1 for the binary decay processes associated with complex fragment 

emission in the low energy regime ( E I A ::; 30 MeV). These decay processes have been 

studied extensively, and their binary nature has also been confirmed by experiments 

[More 88]. The picture becomes less clear for complex fragment emissions at higher 

bombarding energies. The binary nature of the decay disappears and several exper­

iments have shown the formation of many fragments [More 93] after the collision of 

two heavy nuclei at interme9-iate energies ( 30 ::; E I A ::; 100 MeV). This process of 

multifragment emission, also known as multifragmentation, is the theme of this the­

sis. A brief summary of the theoretical studies and the experimental investigations 

to understand multifragmentation is given in section 1.2, and the goal of this thesis 

is presented in section 1.3. 
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·1.1 Complex Fragment Emission in Low Energy Reactions 

In the low energy regime (E/A < 30 MeV), complex fragments are produced 

as the binary products of "deep-inelastic" and compound nucleus decay processes 

[Kauf 59, Gali 70, More 75, Schr 77, More 81]. In a "deep-inelastic" collision at rel­

atively large impact parameters, the two nuclei just barely touch each other to form 

a transient dinuclear system which eventually separates. The properties of the decay 

products depend strongly on the exchange of nucleons during the interaction between 

the two nuclei. In general, these binary decay products resemble either the target or 

the projectile. 

On the other hand, the decay of a compound nucleus is statistical in nature, 

and the underlying mechanis~ for the production of complex fragments is well un­

derstood. At relatively low excitation energies, the statistical decay of a compound 

nucleus occurs in the form of particle evaporation and of fission [Weis 37, Bohr 39). In 

the first case, very light particles are emitted (neutrons, protons and alpha particles); 

in the second case, sizable fragments of approximately half the mass of the compound 

nucleus are observed. At higher bombarding energies, the emiss1on of intermedi­

ate mass fragments associated with higher barriers becomes more probable. Conse­

quently, the binary statistical decay of compound nuclei produces complex fragments 

that cover the entire range of mass-asymmetry [More 72, More 75, Sobo 83, More 88]. 

Unlike the projectile-like or .target-like fragments observed in deep-inelastic colli­

sions, complex fragments associated with compound nucleus decays bear no obvious 

genetic relationship to either the target or the projectile. 

In this low energy regime, two sources of compound nuclei have been es­

tablished: complete fusion and incomplete fusion. At very low energies ( E j A < 

10 MeV), only complete fusion is observed [Birk 83]. However, as the bombard-
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ing energy increases (E/A > 10 MeV), the probability of complete fusion decreases 

especially when the overlap of the two nuclei is not complete at relatively large im­

pact parameters. The incomplete fusion sets in when the collision occurs with such 

speed that only a piece of the smaller nucleus is absorbed by the larger nucleus 

[Char 88a, Char 88b, Colo 89, Hano 93]. Still, the product of the incomplete fusion 

can relax into a hot compound nucleus. 

1.2 M ultifragmentation in Intermediate Energy Reactions 

In the 1980's heavy-ion beams became available in the previously unex­

plored intermediate energy region. At intermediate bombarding energies (30 MeV 

< E/A < 100 MeV), a transient nuclear system with an excitation energy compa­

rable to its binding energy is formed and may eventually break up into many frag­

ments. Indeed, evidence for such a multifragmentation scenario has been established 

in numerous experiments involving a wide range of excitation energies and reactions 

[Guer 89, Gutb 89, Gros 90, More 93]. However, the underlying mechanism of this 

multifragment emission process remains an unresolved puzzle. For instance, it is still 

unclear whether multifragmentation exists as a distinct simultaneous break up pro­

cess, or if it is reducible to a sequence of binary decays similar to those observed 

at lower energy reactions. The issue whether the decay is driven by dynamics or 

statistics is also hotly debated theoretically, and is the object of intense experimental 

studies [Aich 91, Bord 92, Baug 93, Bowm 93, Ethv 93, Fox 93, Sang 93, Abou 94, 

Glas 94, Ller 94, Louv 94, Scha 94]. 
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1.2.1 Theoretical Approach 

Multifragmentation has stimulated theorists to put forth a variety of theo­

ries ranging from statistical to dynamical models. Statistical theories begin at the 

disassembly stage where the transient nuclear system is assumed to have attained 

equilibrium prior to its decay. These models have been successful in describing the 

equilibrium features of fragments emitted from equilibrated systems characterized by 

some conserved quantities such as the total mass (charge), the excitation energy, and 

the angular momentum. Some of these models assume a sequential approach while 

others portray a simultaneous break up. Dynamical theories, on the other hand, are 

designed to describe the entire evolution of the reaction from collision to fragmenta­

tion. Therefore, they are often used to account for the pre-equilibrium emission of 

light particles and other entrance channel effects observed in these reactions. These 

models have also demonstrated instabilities associated with the transient nuclear sys­

tem. A brief description of the commonly used models is given in the following 

section. 

1.2.1.1 Statistical Theories 

Generally, statistical models can be classified as either "sequential" or "si­

multaneous". The former treats multifragmentation as a result of sequential emission 

of fragments; the latter describes a simultaneous break-up into many fragments. The 

sequential model is essentially an extension of the well established binary compound 

nucleus decay. The simultaneous models, on the other hand, study the probabilities 

of multifragment configurations under various conditions and assumptions about the 

system's equilibrium. In a different approach, the percolation model (with no time 

aspect) is used to explore phase transitions in highly excited nuclear systems. 
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A. Sequential Binary Decay When the excitation energy of a nuclear system 

is large enough, the primary binary-decay products, either from direct reactions or 

compound nucleus decays, may also be very excited and subjected to further binary 

decays. In this way, the process of multifragment production is reduced to a sequence 

of binary decays. [More 88]. This is a very common process observed in low and 

intermediate energies heavy-ion reactions [Olmi 87, More 88, Bord 90, Toke 92]. At 

rather low energies, the excited projectile-like or target-like fragments produced in 

direct reactions such as deep-inelastic collisions may have a significant probability of 

further decay [Olmi 87, Bord 90, Toke 92]. Similarly, the binary-decay products of 

completely fused nuclei may also be sufficiently excited to break up into additional 

fragments. When incomplete fusion sets in at intermediate energies, the resulting 

incomplete fusion product can also relax to a compound nucleus and undergo further 

statistical decay [More 88]. At higher energies, the picture stays unchanged even 

though the resulting decay chains can become very long. 

This process of sequential-binary decay relies on the formation of an initial 

compound nucleus. From the mass (charge), the excitation energy, and the angular 

momentum of this compound nucleus, the probability of decaying into two fragments 

with a given partition of excitation energy and angular momentum can be derived. 

This branching is continued until all the fragments can no longer decay. At each stage, 

the decay process is controlled by the compound nucleus branching ratios [More 88]. 

This simple picture however is bound by two main physical limitations. Like other 

statistical models, the system is assumed to have attained equilibrium prior to its 

decay. In a sequential model, equilibrium is required not only for the initial compound 

nucleus, but also for the subsequent intermediate relaxed systems. Therefore, the 

decay chain may be interrupted when the system fails to form a compound nucleus 

at a certain stage. In other words, the dynamics may lead the system to a different 
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state even before it fully relaxes. 

The other limitation has to do with the interaction between sequential de­

cays. When two sequential binary decays occur very close in space-time, their inter­

actions are strong as if the fragments had been formed simultaneously. However, the 

essence of "sequentiality" should be the binary nature at each stage of emission rather 

than the emission time scale. For example, the interaction between two successive 

emissions with very short separation time may be strong enough to perturb the col­

lective degrees of freedom such as the angular distributions. The intrinsic degrees of 

freedom that determine the level densities may not be disturbed seriously, and hence 

the corresponding decay probabilities may preserve their binary nature. In this case, 

the branching ratios of the multifragment events may still be binary, while the angu­

lar distributions are substantially perturbed. Therefore, the excitation functions of 

n-fold events, which are sensitive indicators of the statistical nature of the branching 

ratios, rather than the emission time scale should be examined in order to establish 

the binarity and thus the sequentiality of a reaction. In fact, it is simply a matter of 

semantics to argue that when the times become short, sequential becomes the same 

as simultaneous. A clear distinction then becomes unavailable when the criteria is 

based on the emission time scale only. 

B. Simultaneous Multifragmentation The simultaneous model has several ver­

sions which depend upon the specific kind of equilibrium being assumed in each model. 

For example, fragment formation in a liquid-vapor equilibrium model is related to 

vapor condensation near the critica~ point. In other models, Coulomb interactions, 

nuclear masses, and level densities are incorporated; an ad-hoc critical volume is 

postulated in which fragments are assumed to attain chemical and physical equilib­

riUm. In a somewhat different approach, nuclei are assumed to break up on impact 
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and shatter like a piece of brittle material, and the resulting mass distribution is 

described with a statistical ansatz. 

Liquid-Vapor Equilibrium The success of the Liquid Drop Model in 

describing the macroscopic properties of nuclear system reflects the' similarity be­

tween nuclear matter and ordinary fluids. If the Coulomb interaction is neglected for 

the moment, nuclear matter bound by nuclear forces with long-range attraction and 

short-range repulsion, behaves just like a Van der Waals gas. In fact, Fermi-Thomas 

[Barr 80, Barr 81] and Hartree-Fock [Saue 76, Lamb 81] calculations for nuclear mat-

ter produce isotherms that are quite similar to those of the Vander Waals equation. 

This similarity suggests that nuclear matter should be able to undergo a liquid-gas 

phase transition as observed in an ordinary fluid. In this spirit, much effort has been 

put forth to relate the occurrence of nuclear multifragmentation to the spectacular 

phenomenon of critical opalescence observed in an ordinary fluid at the critical point. 

The probability P(A) for a cluster of A particles to exist in equilibrium with 

other clusters in a fluid is given by [More 93]: 

P(A) A
-T -~A2f3 (1-'-1-'L) A 

ex ·e T ·e T • (1.1) 

The first term A_,. arises from the energy independent statistical weight of a clus-

ter size A, and r is a critical exponent that depends on the dimensionality of the 

cluster. The second term accounts for the temperature dependence of the surface 

energy associated with cluster formation; 1 and T are the surface energy coefficient 

and temperature respectively. This surface term favors the formation of clusters at 

high temperatures since the surface energy coefficient decreases with increasing tern-

perature. The third term describes the chemical potential difference between the gas ' 

and the liquid phase; J.l and J.lL are the chemical potential of a particle in the gas and 
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the liquid phase respectively. When J.L < J.LL for a stable gas phase, the exponent of 

this chemical potential term becomes negative and the formation of large clusters is 

suppressed. On the other hand, when J.L > J.LL, the liquid phase becomes stable and 

the probability of cluster formation increases with the size A. 

At the critical point, there is no distinction between the two phases and 

J.L = 1-"Li the densities of the liquid ~nd gas are equal and thus 1 = 0. Therefore, both 

the surface and the chemical potential terms of Equation 1.1 are reduced to 1 in this 

limit. The distribution of cluster size at the critical point then follows a power-law: 

(1.2) 

This power-law distribution has been identified in a variety of inclusive nuclear ex­

periments, and has lead to the claim that multifragmentation can be pictured as 

formation of nuclear droplets via vapor condensation near the critical temperature 

[Finn 82, Chit 83, Mahi 88, Trau 93]. However, several investigations have shown 

that the power-law dependence is not a unique signature of liquid-gas phase tran­

sition, but rather a generic feature associated with statistical equilibrium models 

[Hufn 86, Lync 87, More 88, Aich 91]. For example, a power-law dependence has also 

been observed in the fragment mass distributions obtained from chemical equilibrium 

models [Rand 81, Gros 82, Bond 85b] and percolation models [Baue 85, Baue 86]. Be­

sides nuclear matter, similar power laws have also been observed for collision debris 

of stones and for the distribution of asteroids in the planetary system [Hufn 86]. 

Chemical Equilibrium The above liquid-vapor equilibrium model es­

sentially describes the phenomenon of critical opalescence in a neutral fluid. This 

has raised questions concerning its applicability to finite systems of charged nuclei. 

Other chemical equilibrium models have thus beerr developed to incorporate Coulomb 
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interactions, nuclear masses, and level densities. These models assume that the re­

action dynamics drives the system to a simple geometric configuration, within which 

statistical equilibrium is established with respect to the "fragmentation" degrees of 

freedom. In particular, spherical fragments are randomly distributed inside a sphere. 

The "freeze out" volume of the sphere is preassigned arbitrarily and the fragments are 

separated by a minimum distance that is also arbitrarily chosen. The statistical weight 

of each possible fragmentation configuration can then be evaluated using the micro­

canonical ensemble [Gros 86, Gros 87], canonical ensemble [Bond 85b, Bond 85a], and 

grand canonical ensemble [Rand 81] formalisms of statistical mechanics. 

As an example, Figure 1.2 shows the results of the microcanonical calculation 

[Gros 87] for 131 Xe. In this approach, the statistical weight for each configuration of 

fragments inside the sphere is evaluated microcanonically by distributing the available 

energy using the internal and collective degrees· of freedom. The relative yields of 

decays of 131 Xe into different final channels are plotted as a function of excitation 

energy E* on the top panel of Figure 1.2. The events are classified by the number of 

intermediate mass fragments (IMFs) with mass A ~ 10 in the final channels. More 

specifically, events with 0, 1 and 2 intermediate mass fragments are called vaporization 

(V), evaporation (E) and fission (F), respectively. Finally, multifragmentation (M) is 

used to describe events with 3 or more intermediate mass fragments. In this particular 

case for 131 Xe, the excitation energy is not high enough to produce vaporization of 

the system, and thus only three decay channels are observed. The decay is dominated 

by evaporation (E) of light charged particles until the excitation energy is sufficiently 

high (250 MeV) for fission (F) to set in. At still higher energies, multifragmentation 

(M) sets in and the cracking of the nucleus into three or more pieces becomes the 

dominant mode. To study the effect of the Coulomb interaction on the onset of 

multifragmentation, the calculation for 131 Xe was performed excluding the Coulomb 
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Figure 1.2 : Microcanonical calculation for 131 Xe. (Top) Calculated yields for the 

evaporation (E), fission (F), and multifragmentation (M) processes as a function of 

excitation energy. (Bottom) The multifragmentation yields with (solid squares) and 

without (open squares) the Coulomb interactions are compared: 
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interaction, and the resulting yield of multifragmentation is shown on the bottom 

panel of Figure 1.2. An increase in the excitation energy threshold (from 500 MeV 

to 700 MeV) for the onset of multifragmentation is clearly observed. This result 

suggests that the repulsive long range Coulomb interaction significantly enhances 

multifragmentation in this model. 

The results of these models are very sensitive to the specific shape and size 

chosen for the "freeze out" configuration, from which the potential energy and thus 

the decay probabilities are calculated. For example, the overall Coulomb energy of 

the system is diminished significantly when the fragments are placed in an elongated 

rather than a spherical shaped container. If this shape degree of freedom is included 

in the model, the system will choose a stretched shape with the fragments infinitely 

far apart in order to minimize its energy. The conclusions regarding the significance 

of the Coulomb force are clearly incomplete, since the ad-hoc assumption made for 

the shape and volume of the "freeze out" configuration does not consider the effect 

of the Coulomb interaction. Indeed, major criticisms of these models have pointed at 

the arbitrary selection of these "freeze out" parameters that may not be well justified. 

Nuclear Shattering In this model, multifragmentation results from the 

shattering of brittle nuclei under a sufficiently hard impact like two glass balls thrown 

at each other. The similarity between the resulting fragment mass distributions from 

nuclear multifragmentation and shattering of fragile material were first studied by 

Aichelin & Hufner [Aich 84a). Empirically, the mass distribution of fragments gener­

ated from shattering was also found to approach a simple power-law dependence on 

the fragment size. In an attempt to derive such a distribution, Aichelin and Hufner 

assumed that all possible fragmentation configurations occur with equal probability. 

Sobotka & Moretto [Sobo 85) further showed that this approach is similar to Euler's 



14 

problem of number partition (i.e. the least biased breaking of an integer Zo into n 

integers). An approximate solution of Euler's problem gives the following integer 

distribution: 
nZ 

P(n, Z) <X e- Zo. (1.3) 

In the context of nuclear fragmentation, Z is the charge of an emitted frag­

ment, n is the fragment multiplicity and Zo is the total charge of the system. This 

approach, however, does not account for any kind of energy dependence and the 

above equation does not relate the charge distribution to other observables. A rem­

edy suggested by Moretto et al. incorporated an energy dependence through the extra 

surface associated with fragment formation [More 86]. The charge distribution, eval-

uated with an additional constraint of a fixe~ amount of surface generated, has a 

similar functional form as the droplet size distribution in liquid-vapor equilibrium 

(Equation 1.1): 
1 

P(Z) = I . 
exp[DZ + AZ2 3)- 1 

(1.4) 

The constants D and A can be calculated for a system of fixed total charge and total 

energy (surface). 

C. Percolation In a somewhat different approach, the percolation model is used 

to study the possibility of observing a second order phase transition of nuclear matter 

in multifragmentation [Baue 85, Camp 85, Baue 86, Camp 86, Desb 87, Baue 88]. In 

this model, the nucleus is treated as a lattice of nucleons connected by bonds. The 

probability to break a bond Pb is related to the excitation energy or temperature of 

the nucleus. When the nucleus is cold, the bond breaking probability is small and a 

large cluster extending throughout the lattice exists (percolating cluster). However, 

when the excitation energy of the system increases, the bond breaking probability 

increases accordingly. Eventually, the excitation energy and thus the bond breaking 
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probability reaches a critical value beyond which the percolating cluster no longer 

exists. The nucleus at this critical point (pb"it) breaks into many smaller clusters 

similar to those observed in nuclear multifragmentation. 

The evolution from a large percolating cluster to a system of many fragments 

beyond a percolation threshold is similar to the behavior of systems undergoing liquid­

gas phase transitions. In particular, the mass distribution of the clusters near the 

percolation threshold is given by a power-law consistent with the distribution of 

droplet size near the critical point in a liquid-vapor equilibrium. This observed 

similarity suggests that the percolation theory may be used to study phase transitions 

at criticality. One specific method that makes use of the percolation model is to search 

for observable quantities that behave in a qualitatively different way at the critical 

point. One of these quantities proposed by Campi [Camp 86] is the event-by-event 

moment of the fragment size distribution. The ith moment of the charge (mass) is 

defined as: 

(1.5) 

where the sum is extended to all the fragments of the event except the largest one. 

The exclusion of the largest fragment is justified as an attempt to eliminate the 

"percolating" cluster. In other words, the heavy nuclear residue (when present) is 

associated with the "infinite" percolating cluster and the lighter fragments with the 

finite clusters. The percolation theory predicts that the ratio M2/ M1 diverges at 

Pb = p//it. The two branches identified in a scatter plot of ln( M2/ MI) vs Pb have been 

attributed to subcritical and supercritical events [Baue 88]. When the average value 

of M2/ M1 is plotted as a function of Pb, .a singularity is thus observed at Pb = pf"it 

indicating a second order phase transition. However, theories of phase transitions are 

generally formulated for practically infinite systems. When the size of the system 



16 

decreases, a broad maximum instead of a singularity is observed due to the finite size 

effect. This illustrates how the signals of the critical behavior in a large system are 

smoothed when decreasing the size (Baue 88]. 

In a similar approach, combinations of moments have been studied. For 

example, an interesting combination of moments, 12 , is given by 

(1.6) 

where u2 is the variance and (Z) is the average charge of fragments in the event. 

When 12 is plotted versus the bond breaking probability Pb, 12 = 1 for Pb = 0 and 

Pb = 1, while it goes to infinity at criticality (Pb = pfit). This singularity at pgrit 

reflects the large fluctuations ( u2 ) in the fragment size distributions near the critical 

point. On the other hand, the value of 12 approaches 1 when the fluctuation in 

the fragment size is minimized as the system disassembles completely into nucleons 

at large Pb· Similarly, when the bond breaking probability is small and the heavy 

residue is dropped as the percolating cluster, the size fluctuation becomes minimal 

for the light evaporated particles, and 1 2 approaches 1. 

The above result shows that the observed singularity near the critical bond 

breaking probability pgrit can be used to observe and verify second order phase transi­

tions in nuclear multifragmentations. In practice, a variable strongly correlated with 

Pb like the excitation energy, or the total charge particle multiplicity is used in the 

above analysis. Sometimes, one uses the number of nucleons bound in clusters Zbound 

that may go as 1/ Pb. The charge (mass) of the largest detected fragment Zmax has 

also been used as a measure of Pb, but it is more vulnerable to the experimental de-

tection efficiency, since the heaviest fragment generally has a very small velocity in 

the laboratory frame. 
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1.2.1.2 Dynamical Theories 

The dynamical descriptions of energetic heavy-ion collisions are generally 

based on one-body transport models, which are designed to describe the entire evolu-

tion of the reaction from collision to fragmentation. In the low energy regime, where 

the Pauli blocking effectively hinders the two-body collisions, the interaction of nu­

cleons is dominated by the nuclear mean field. This characteristic feature of relatively 

cold nuclear systems is reflected in the rather long mean free path for the individual 

nucleons. At these energies, self-consistent theories of the nuclear mean field such 

as Time-Dependent Hartree-Fock (TDHF) calculationshave been successful in de­

scribing fusion reactions and deep-inelastic scatterings [Davi 78, Nege 82]. On the 

other hand, pure kinetic models such as the Vlasov equation serves as another basis 

for describing heavy-ion reactions. The following expression for the Vlasov equation 

describes the propagation of the phase space distribution function f(r,p, t) under the 

influence of the mean field U: 

(1. 7) 

In a semi-classical approach, the phase space distribution function f(r, p, t) is viewed 

as an ensemble of pseudoparticles moving along the classical trajectories in a potential 

dominated by the nuclear mean field U. 

At higher energies, however, a larger domain of the available phase space 

becomes accessible to the scattered nucleons, and the two-body collisions (residual 

interactions) can no longer be neglected. The Pauli blocking becomes less effective 

as evidenced by a shortening of the mean free path for the individual nucleons. As a 

result, application of TDHF could become problematic at these energies. On the one 

hand, the requirement that the time scale for the mean field evolution is long compared 

with the time scale of the collisions may no longer be valid. On the other hand, the 
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enormous mathematical complexity involved in quantum corrections to the mean field 

theory by a collision integral is very difficult to carry out numerically. Similarly, the 

collisionless Vlasov equation fails to account for the non-negligible contributions from 

the two-body collisions. To account for the nucleon-nucleon collisions, the Vlasov 

equation has been augmented with a Pauli blocked collision term D~oll f(r, p, t) of the 

Boltzmann form: 

(1.8) 

Such an approach was first proposed by Nordheim [Nord 28] for the treatment of an 

electronic gas in solids and later taken by Uehling and Uhlenback [Uehl 33]. More 

recently, this general method has been adapted to nuclear dynamics. A series of mi-

croscopic dynamical theories, differing in ingredients and methods of solution, have 

been evolved along this semi-classical line [Bert 88, Bona 89, Schu 89, Bona 90b, 

Bona 90a]. They are variously labeled as the Boltzmann-Uehling-Uhlenbeck (BUU), 

Vlasov-Uehling-Uhlenback (VUU), and Boltzmann-Nordheim-Vlasov (BNV) equa­

tions, to indicate that a Pauli blocked Boltzmann collision term has been added to 

the Vlasov equation. An example illustrating the onset of multifragmentation in the 

BNV model calculations is shown in Figure 1.3 f~r the reaction 129Xe + 197 Au at 

E/A=60 MeV. Computer simulations of heavy-ion collisions based on these kinetic 

equations will be discussed in some detail in Chapter 2. 

In these dynamical models, the dynamics becomes dominant and drives the 

system into regions of instabilities that lead to multifragmentation. One instability 

that may play .an important role in multifragmentation is the spinodal instability. 

This instability develops when a system of homogeneous fluid enters into a region of 

negative pressure, which leads to its breaking up into droplets of denser liquid em­

bedded in a lower density vapor. In the case of heavy-ion reactions at intermediate 
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Figure 1.3 : BNV calculations of the time evolution of the reaction 129Xe + 197 Au 

at E /A = 60 MeV for several different impact parameters b. The calculations were 

performed with an incompressibility coefficient of I< = 200 MeV. Each row contains 

a different impact parameter and each column a different time step in units of fmjc. 
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energies, violent collisions may lead initially to a hot, compressed system of nuclear 

matter. This compressed system expands until the density is so low that the super­

cooled system reaches the spinodaL region of negative pressure, where instabilities 

with respect to density fluctuations can cause prompt multifragmentation. Since the 

spinodal instability can occur in an infinite system, it is often called a bulk, or volume 

instability. 

Another class of instabilities has to do with the presence of a surface endowed 

with surface tension in finite nuclei. These instabilities of the Rayleigh kind [Rayl 64) 

have been observed in the BNV calculations of heavy-ion collisions at intermediate 

energies [More 92). In a head-on collision, a "disk" develops due to the side-squeezing 

of nearly incompressible nuclear matter. The thickness of the disk decreases while 

the diameter increases monotonically with increasing bombarding energy. When it 

becomes sufficiently thin, it breaks up into several fragments. This disk fragmentation 

has been analyzed in terms of the new Rayleigh-like surface instability, in which the 

proximity force plays an essential role. Ordinarily, a disk is at most metastable due 

to the energy barrier associated with the increase in the surface area of a modulated 

disk. This barrier prevents the system to escape from the high surface energy of a disk 

by breaking up into a number of spherical fragments with less overall surface. When 

the disk becomes thin enough, the proximity potential due to the surface-surface 

interaction is sufficient to overcome the sharp surface barrier and trigger the surface 

instability, which causes the breaking of the thin disk into several fragments. 

In addition to nuclear disks, other exotic shapes such as bubbles have also 

been observed in the Boltzmann-like calculations [Baue 92). A bubble behaves much 

like a sheet, and is susceptible to the surface instability when its thickness is of the 

order of the proximity interaction range. However, the Coulomb energy has not 

been incorporated in the above discussion on the surface instability. For compact 
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shaped nuclear disks, the Coulomb contribution to the deformation energy may be 

small compared to the surface and proximity contributions. In the case of a nuclear 

bubble, the depletion of charges in the central cavity reduces the Coulomb energy 

significantly and this Coulomb effect should not be neglected. In Chapter 2, the 

Rayleigh-like surface instability and the effect of the Coulomb energy on the stability 

of nuclear bubbles will be discussed in detail. 

The main drawback of these dynamical theories is that they are equations 

for the average one-body distribution function. They neglect fluctuations and cor­

relations apart from incoherent two-body scatterings and Pauli principle correla­

tions. Although some of the simulation results have shown that the algorithmic noise 

is sufficient to trigger instabilities and to break symmetries, the subsequent results 

are unphysical and are probably machine dependent [More 92]. There are,generally 

many different final channels available in typical nuclear collisions at intermediate 

energies, and the actual fluctuations can be important in dictating the evolution 

of the system in a region of instability. Theoretical efforts have thus been made 

to introduce truly physical fluctuations based on the theory by Ayik and Gregoire 

[Ayik 88, Ayik 90). To be more specific, the time dependent field is decomposed into 

an average part (mean field) and a fluctuating part in the spirit of the Langevin 

approach [Rand 90, Burg 91, Chom 91, Sura 92). 

The above discussion suggests that the algorithmic noise is good only to 

show the underlying instabilities but not to generate realistic results. However, truly 

physical fluctuations are not necessary for some instabilities whose onset is indepen­

dent of the noise that triggers them. One simple example is the Rayleigh instability 

of a cylinder of liquid [Rayl 64). Rayleigh showed that a cylinder of fluid is unstable 

with respect to perturbations of wavelength ..\ 2:: 21r R, and that the growth is fastest 

for ..\ = 9.11R, where R is the radius of the cylinder. This maximum instability at 
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>. = 9.11R dominates exponentially in time over all the other wavelengths and thus 

determines the size of the droplets. As a result, the breaking up of the cylinder into 

droplets is practically independent of the noise that triggers the instability. In ad­

dition, manifestation of instabilites of the resonant type is also independent of the 

noise. For instance, a violin string struck by a bow sets up a stick-slip instability that 

always produces the same note, independently of the violinist. Of all the frequencies 

contained in the noise, only the resonant frequencies survive and have a chance to be 

amplified by the instability. The others are cancelled by negative interference. 

1.2.1.3 Dynamical-Statistical Theories 

Although the dynamical models such as the Boltzmann-like calculations can 

account for the pre-equilibrium emission of light particles and other entrance channel 

effects, they cannot always realistically describe the decay of hot nuclei at the late 

stages of the reaction, because they do not include physical fluctuations. In References 

[Snep 90, Colo 92a, Colo 92], this difficulty has been circumvented by coupling a 

dynamical calculation that describes the formation of the primary fragments, to a 

statistical model that simulates the decay of the excited fragments during the final 

stages. In practice, the excitation energy, the mass and the angular momentum of 

each primary fragment are extracted from the dynamical calculation .and are used as 

input parameters for the subsequent statistical simulation. In such a hybrid model, 

it is essential to ensure equilibrium for the primary fragments before switching to a 

statistical calculation. Hence, the key problem in this dynamical-statistical coupling 

is the uncertainty in the determination of the "relaxation" time, the time at which 

energy relaxation (equilibrium) has occurred. 

This practical limitation associated with a hybrid model has called for the 

development of a unified theory to incorporate both dynamics and statistics consis-
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tently. In this direction, one schematic model has been developed by coupling statisti­

cal emission features to dynamical features associated with the density changes of the 

emitting source driven by the thermal pressure [Frie 90). In this model, a dynamically 

expanding nucleus is allowed to evaporate particles of any size during its dynamical 

evolution. At low energies, the expansion features have little effect on fragmentation, 

but with increasing energy they provide dramatic effects. In particular, the model 

demonstrates that the evolution to a low density region is necessary for the onset 

of multifragmentation, indicating that dynamics may play an important role in this 

phenomenon. 

1.2.2 Experimental Investigation 

Many experiments were performed in the past decade trying to understand 

the mechanism and to characterize the source of multifragmentation. Most of the 

experimental conclusions rely strongly on comparisons with theoretical calculations. 

While the various models mentioned above may be sound in their essence, inevitable 

limitations make their applications to actual data somewhat problematic. Difficulties 

may occur for the theoretical variables or observables that cannot be accurately mea­

sured experimentally, and sometimes, different theories suggest different variables. 

Moreover, these models often contain adjustable parameters ~hat are chosen to fit 

the experimental data and may not be well justified. As a result, bias associated 

with assumptions of individual models may be carried into the interpretations of the 

experimental data. 

A less biased approach is to examine the data themselves and to search 

for signatures that may reveal the mechanism of the decay process. For example, 

the statistical origin of the a-induced fission probability P1 was demonstrated by 
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the presence of a thermal energy dep~ndence [ ln( Pi) ex 1/ ~], where E* is the 

excitation energy of the system [More 69]. The following derivation shows that this 

characteristic energy dependence is a generic attribute of statistical decay and is 

independent of any theoretical models. 

In a statistical decay, the fission probability should be proportional to the 

level density of the system p(E*) at an excitation energy equal to the available energy 

minus the fission barrier: 

PJ(E*) ex p(E*- B1 ). (1.9) 

For a Fermi gas level density, 

(1.10) 

where a is the level density parameter. For E* ~ Bf one obtains: 

(1.11) 

Therefore, the linear dependence observed in the plot of PJ(E*) versus 1/~ is 

empirical evidence for the statistical nature of a-induced fission [More 69]. 

In the fission studies, the focus is on the competition between the fission 

and neutron decay channels, but in principle this approach can be extended to multi­

fragmentation, where the competition between decay channels of different IMF mul­

tiplicity becomes more interesting. If the hot nuclear system formed in a heavy-ion 

reaction decays statistically, it is conceivable that the multifragment decay is an ex­

tension of binary decay, and is governed by an average barrier Bn for n-fragment 

emission. Similarly, the n-fragment emission probability Pn should be proportional 

to the level density of the system p(E*- Bn), and for E* ~ Bn, one obtains: 

(1.12) 
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This expression is similar to the above fission probability except that the fission 

barrier B 1 is now replaced with an average barrier· Bn for n-fragment emission. In 

the framework of the chemical equilibrium picture for a prompt multifragmentation, 

Bn can be considered as the potential energy of a n-body decay configuration. For a 

sequential picture, Bn is simply the sum of barriers b~, b2, b3 , ••• , bn for the successive 

binary decays under the assumption that the temperature is nearly constant at all 

stages of emission. This result suggests that the linear dependence of ln(Pn) with 

1/ V"fF is a generic attribute of statistical decay and it applies to both prompt and 

sequential multifragmentations governed by the statistics. 

In the last several years, researchers have succeeded in isolating what ap­

pears to be true multifragmentation sources formed in reverse kinematics intermediate 

energy heavy-ion reactions [Blum 91, More 93a, Rous 93]. In these experiments, the 

excitation energy of the source E* was estimated kinematically from the parallel 

source velocity assuming an incomplete fusion picture. To minimize the contamina­

tion from the pre-equilibrium emission of light charged particles, the source velocity 

was constructed on an event-by-event basis from the velocities and the masses of 

the detected fragments (Z 2: 3) only. The normalized probabilities P(n)/P(2) for 

detecting n fragments were obtained as a function of this excitation energy E*. These 

excitation functions were found to be independent of the specific target and even of 

the bombarding energy. At a given bombarding energy, the observed target indepen­

dence is consistent with the picture of incomplete fusion, in which the source can be 

characterized by the amount of mass transferred from the target to the heavier projec­

tile, and depends relatively little on the actual nature of the target. The bombarding 

energy independence also shows that once the excitation energy is determined from 

the source velocity, the probabilities for various decay channels are fixed no matter 

how the source is formed. This decoupling between the entrance and the exit channel 
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is a necessary condition for statistical decay. 

A most remarkable result is that, at a given value of n, a linear dependence is 

observed when the natural logarithm of the above normalized probability P(n)/ P(2) 

for detecting n fragments is plotted as a function of 1/.JiF [More 93a]. Since nuclear 

temperature is proportional to vflF in the Fermi gas model1 this linear dependence 

indicates a statistical energy dependence of the n-fragment emission probabilities. In 

other words, the dynamics of the reaction seems to be limited to the formation of a 

source, while the various fragment decay channels are dictated by the available phase 

space. However, it could not be decided by this approach whether the statistical 

emission is sequential or simultaneous. 

In summary, the observed linear correlation between the logarithm of the 

fission probability and 1/ vflF is a powerful way to demonstrate the statistical nature 

of the fission reaction, and this has also been extended to multifragmentation. One 

merit of this approach is its direct experimental findings independent of any theoret­

ical models. Essentially, an empirical conclusion is obtained by plotting the data in 

a particularly revealing way. 

1.3 Goal of Project 

At low (E/A < 30 MeV) bombarding energies, the binary nature of complex 

fragment productions associated with compound nucleus decays and deep-inelastic 

collisions has been studied extensively and is well understood. However, the origin of 

multifragmentation observed at at intermediate (30 < E/A < 100 MeV) bombarding 

energies is still a mystery. In particular the issue of dynamics versus statistics has 

been the subject of intense debate theoretically and experimentally. The goal of this 

thesis is to investigate the underlying mechanism of multifragmentation and to search 
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for signatures of dynamical or statistical effects. To this end, the reactions 129Xe + 
natcu, 89Y, 165Ho, 197 Au at bombarding energies of E/A = 40 & 60 MeV have been 

studied theoretically and experimentally. 

The heavy 129Xe projectile is used to bring large amount of mass, angular 

momentum and excitation energy into the center-of-mass of the colliding nuclei in 

order to probe the onset of multifragmentation. Moreover, the choice of targets 

provides a variety of projectile-target combinations ranging from reverse to normal 

kinematic reactions, and covers a large range of excitation energies. In particular, the 

excitation energy per nucleon available in the center-of-mass system increases from 

8.9 MeV for natcu (E/A = 40MeV) to 14.1 MeV for 197 Au (E/A = 60MeV). 

Recent calculations of central heavy-ion collisions at intermediate energies 

performed by means of Boltzmann-like transport codes, have shown the formation 

of rather peculiar shapes, like bubbles, donuts and disks, which then proceed to 

break up into several fragments [Baue 92, Gros 92a, More 92]. These results sug­

gest that multifragmentation may be due to the onset of static instabilities arised 

from the interplay of surface, proximity and Coulomb energies. In this spirit, the 

Boltzmann-Nordheim-Vlasov equation has been used to simulate the above 129Xe­

induced reactions. In particular, simulation results for central collisions have been 

studied in order to understand the underlying instabilities that trigger the onset of 

multifragmentation observed in these dynamical simulations. 

In addition to these theoretical studies based on complicated simulation 

codes, the experimental data have also be examined to search for simple regularities. 

As mentioned in section 1.2.2, a linear dependence is observed when the natural log­

arithm of the relative probability of emitting n fragments is plotted as a function of 

1/ v'JF indicating a statistical behavior [More 93a]. This experimental study seems to 

relegate the role of dynamics to the formation of sources, which then proceed to decay 
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in an apparently statistical manner. However, it could not be decided whether the 

emission is sequential or simultaneous. Another relevant question that remains unan­

swered is the fundamental issue of reducibility: can multifragmentation be reduced 

to a combination of independent emissions of fragments? In this project, the above 

excitation function analysis has been extended to the 129Xe-induced reactions with 

more complete measurements. In particular, excitation functions and charge distri­

butions have been constructed and studied in order to verify empirically whether the 

probability for the emission of n fragments can be reduced to the emission probability 

of just one fragment. 
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Chapter 2 

Surface and Coulomb Instabilities 

In this chapter, the multifragment production observed in intermediate en­

ergy heavy-ion reactions is studied theoretically by analyzing the simulation results of 

Boltzmann-like transport codes. A brief description of these Boltzmann-like kinetic 

equations and their implementations in numerical calculations are given in section 

2.1. These simulations of heavy-ion collisions have shown the formation of exotic 

shaped nuclei, like disks and bubbles [Baue 92, More 92]. Although disk, or bubble 

formation is of great interest, the main concern in this chapter is not the dynamics 

of their formation, but rather the mechanism of their fragmentati<?n· Disk fragmen­

tation and its relevance to the new Rayleigh-Like Surface Instability is discussed in 

section 2.2, and the Coulomb Instability of nuclear bubbles is studied in section 2.3. 

2.1 Boltzmann-Like Equations and Simulations 

Dynamical model calculations utilizing the Boltzmann-Nordheim-Vlasov 

(BNV), the Boltzmann-Uehling-Uhlenbeck (BUU) or the Vlasov-Uehling-Uhlenback 

(VUU) equations, have been widely used to simulate the evolution of heavy-ion 

collisions at intermediate energies [Gros 87, Bert 88, Schu 89, Bona 89, Bona 90a, 
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Bona 90b, Aich 91]. The two fundamental ingredients of these kinetic equations are 

the self-consistent nuclear mean field U, and the two body nucleon-nucleon collisions 

(residual interactions). For example, the following expression for the BNV equation 

describes the propagation of the phase space distribution function f(r,p, t) under the 

influence of the mean field U, and it also accounts for the nucleon-nucleon collisions 

by the collision integral n;oll: 

(2.1) 

The mean field for a system of nucleons is given by the Coulomb interac­

tion between protons, plus a nuclear potential approximated by a density dependent, 

Skyrme-like interaction of the following form: 

(2.2) 

Here p and Po are the local nucleon and normal nuclear densities respectively. The 

parameters A, B and u are chosen such as to reproduce experimental binding energies 

and other saturation properties of nuclear matter. As an example, the values of A, 

B and u for nuclear mean field of different "hardness" are listed in Table 2.1. The 

"hardness" of the nuclear equation of state is described by the adiabatic nuclear 

incompressibility coefficient K, which is defined in terms of these parameters A, B 

and u: 

(2.3) 

Table 2.1 : Coefficients A, B and u extracted for three different values of K. 

K(MeV) A B u 
200 -356 303 7/6 
380 -124 70.5 2 
540 -98.8 46.3 26/9 
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where PF and m are the Fermi momentum and mass of a nucleon respectively. The 

value of ]{ ranges from 200 MeV (soft equation of state) to 540 MeV (hard equa-

tion of state), as is currently believed to be appropriate for nuclear matter. The 

above equation says that the incompressibility coefficient ]{ depends not only on the 

fermi pressure associated with fermions, but it is also controlled by the details of the 

nucleon-nucleon interaction whose effects are contained in the paramters A, Band u. 

In fact, the coefficient ]{ is an input for the simulation to determine the values of A, 

B and u from a parameter table (e.g. Table 2.1) for the construction of a mean field 

according to Equation 2.2. Finally, it is noted that the mean field is deterministic in 

a sense that a given initial distribution fo(r, p, to) produces a single dynamical history 

f(r,p, t). 

The collision integral, unlike the mean field, is stochastic, and it accounts 

for the evolution of the phase space distribution induced by the residual interaction, 

D~oll f ( r1, PI, t) j dr2l(rbPb r2, t), 

j dp2dp3dp48(p1 + P2- P3- P4)8( E1 + E2- E3- E4)u~~f ·Pauli, 

Pauli (2.4) 

where Ei and Pi are the single-particle energy and momentum respectively. The 

indexes 1, 2, 3 and 4 are used to label the quantities associated with two nucleons 

before and after they collide: 1 + 2 --+ 3 + 4. The two 8 functions guarantee the 

momentum and energy conservation of the system. The effective nucleon-nucleon 

cross section is deduced from the energy dependent free cross section according to: 

eff_ (du)eff [du(E)lfree 
(jnn = df! nn = df! nn [1- Y(p)], (2.5) 

where Y(p), a density scaling factor, accounts for the in-medium correction. Y(p) 

is approximately equal to 0.5 at the normal density Po and reach almost 0.1 for 
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P = 1/2Po· 

The Pauli Block factor consists of both a "gain" and a "loss" term: 

gam, term: 

loss term: 

3+4--+1+2 

1+2--+3+4 

(1 - }t)(1 - J2)hf4, 

(1 - }3)(1 - J4)fih· 

Here fi is the phase space distribution and ]i is the corresponding occupation proba­

bilitiy. This phase space occupation probabilitiy is simply the phase space distribution 

fi divided by g / h3 , the maximal occupation allowed by quantum mechanics. In this 

case, the degeneracy factor g is 4 to account for the four possible states that are 

characterized by their spin ( + or -) and isospin (proton or neutron). To illustrate 

the implementation of this Pauli Blocking, the collision of two nucleons at initial 

states representated by 1 and 2 is considered. Then, what is the probability for this 

collision to occur and to produce final states 3 and 4? If the initial states 1 and 2 

are highly occupied, the probability of collision is also increased and this is shown by 

the factor f 1h in the loss term. On the other hand, when the final states 3 and 4 

are largely occupied, their occupation probabilities become close to one. The factor 

(1 - }3 )(1 - }4 ) is small, and the collision into these final states becomes unlikely. In 

the limit when either of the final states is completely occupied, the collision becomes 

impossible and is said to be Pauli blocked. 

In summary, this collision integral describes the change of states for two in­

teracting particles during a collision with blocking factors forbidding collision leading 

to occupied states. The important roles of probability in governing these residual 

interactions reflect the stochastic nature of these collisions. In other words, a given 

initial distribution fo(r,p, to) may lead to many different dynamical evolutions of 

f(r, p, t) as a result of the residual nucleon-nucleon collisions. 

The simulation results presented in the following section are obtained with 
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the Boltzinann-Nordheim-Vlasov (BNV) model. To study the time evolution of the 

nuclear phase space distribution, the function f(r,p, t) is decomposed as a superpo-

sition of coherent states: 

AxN 

J(r,p, t) = L w(rn,Pn) · 9r[r- R(rn,Pn, t)] · gp(p- P(rn,Pn, t)], (2.6) 
n=l 

where w( r n, Pn) is the static coefficient for each contributing coherent state, and 

9r[r- R(rn,Pn, t)], gp[p- P(rn,Pn, t)] are the uncorrelated .isotropic gaussians with 

frozen widths. The widths of these coherent states (gaussians) are obtained for their 

adequacy to give binding energies (mean field) and root mean square radii (surface 

diffuseness) as close as possible to the experimental values for nuclei being analyzed .. 

In these numerical calculations, Equation 2.1 is solved by the test particle method 

[Bert 88, Bona 89, Bona 90a, Bona 90b]. In this approach, the gaussians (gr,gp) peak 

at (R, P) can be considered as pseudo particles or test particles with position R 

and momentum P at timet. Thus the explicit time dependence of the phase space 

distribution function f(r,p,t) arises from the time dependence of R(rn,Pn,t) and 

P(rn,Pn, t). For the collision cross section, a system composed of Ap nucleons from the 

projectile and AT nucleons from the target is described as an ensemble of N(Ap+AT) 

test particles that hit each other with a cross section UnnfN. Finally, a sufficiently 

large value of N is chosen to provide convergent results. It has been checked that 

N = 40 provides a good description of nuclear collisions, since doubling this number 

does not significantly change the dynamical evolution of the system. These results 

are thus stable in comparison to larger values of N which require substantially more 

computing time. 

For the initial configuration, the test particles are assigned random positions 

in a sharp sphere of nuclear radius ("" A113). Momentum is also randomly assigned 

to each test particle within a local sphere in the momentum space of radius PF· The 
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radius PF is given by PF = (37r2 p )1131i, where p is the local density. Finally the 

momenta of these test particles in the projectile and target are boosted towards each 

other with their respective center-of-mass momenta determined from the incident 

energy, and the masses of the projectile and target. Once the initial condition (i.e. 

the value of w(rn,Pn)) is fixed, Equation 2.1 is solved by following the trajectory of 

the phase space gaussian cells which play the role of a moving basis for the problem. 

The first moments of these gaussians R(rn,Pn, t) and P(rn,Pn, t), which contain all 

the time dependency, are solutions of the Hamilton equations: 

(2.7) 

For the sake of simplicity, the first order difference approach is used to solve the 

Hamilton equations for the evolution of momentum and position of each test particle, 

which actually has second order accuracy when the momentum is evaluated at time 

points half way between the times of the position determinations: 

P(t1 + 0.5~t) (2.8) 

2.2 Formation and Fragmentation of Nuclear Disks 

Recent simulations of heavy-ion collisions with the Boltzmann-like kinetic 

equations have shown that under a variety of conditions, exotic shaped nuclei like 

disks and bubbles can be formed[Baue 92, More 92]. To investigate which reaction 

system, and at which bombarding energy one might expect to observe such exotic ob­

jects, extensive model calculations were performed for the reaction dynamics with the 

Boltzmann-Nordheim-Vlasov reaction model described in section 2.L More specifi­

cally, the BNV model was used to simulate central collisions of 129Xe-induced reac-
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tions on natcu, 89Y, 165Ho and 197 Au targets at various bombarding energies (E/A = 

40, 60, 75 MeV), and with different values of incompressibility coefficients I< (200, 

380, 540 MeV) to cover the range currently believed to be appropriate for nuclear 

matter (see Table 2.1). Central collisions are studied because they are the most 

violent and hence are most likely to decay through multifragmentation. 

2.2.1 Disk Formation in BNV Calculations 

One common interesting feature of the simulation results is that a "disk" 

develops during the collision process due to the side-squeezing of nearly incompress­

ible nuclear matter. Moreover, the thickness of the disk decreases while the diameter 

increases monotonically with increasing bombarding energy. When it becomes suf­

ficiently thin, it breaks up into several fragments of a size commensurate with the 

thickness of the disk. For the sake of illustration, the simulation results for head-on 

collisions of 129Xe + 197 Au at two extreme values of ]{ are shown as a function of 

bombarding energy in Figures 2.1- 2.3. Both the front and side views of the colliding 

systems are shown in the rows for four different times at 20, 60, 120 and 180 fm/c 

(1 fm/ c is simply the time that light needs to travel through a distance of 1 fm or 

10-15m in vacuum). 

At the lowest bombarding energy of 40 MeV (Figure 2.1), the two colliding 

nuclei fuse together to form a "disk" shaped object at time = 180 fm/c for both 

values of I<. To study the development of these disks in more detail, their central 

densities (radius < 3 fm) are also plotted as a function of time in Figure 2.4. In 

the beginning, the impact of the collision squeezes and compresses the fused nuclei 

to higher densities (p > p0 ). A positive pressure associated with this higher density 

begins to build up in the system, which slows down the compression. Eventually, 

the system reaches its maximum density at which the pressure is sufficiently large 
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Figure 2.1 : BNV calculations for a head-on collision (impact parameter = 0) of 

the reaction 129Xe + 197 Au at a bombarding energy of B/A = 40 MeV. Results at 

four indicated time steps are shown on four different rows. The front and side views 

of the colliding systems are given in columns 1 and 2, respectively, for a value of the 

incompressibility coefficient, K = 200 MeV. Similar views are shown in columns 3 

and 4 for K = 540 MeV. 
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Figure 2.2 : Same as Figure 2.1 for the reaction 129Xe + 197 Au at a bombarding 

energy of E/A = 60 MeV. 
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Figure 2.3 : Same as Figure 2.1 for the reaction 129Xe + 197 Au at a bombarding 

energy of E/A = 75 MeV. 
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to stop the compression and the system begins to expand. In order to conserve 

energy, the expanding nuclear matter must acquire a radial velocity outwards. As 

the system expands, its density and thus the positive pressure decreases. When the 

system reaches the normal density corresponding to the lowest internal energy, the 

pressure vanishes, but the radial velocity drives the expansion further. The density 

is now lower than the normal nuclear density, the pressure becomes negative and 

the expansion is slowed down. This cycle continues until a normal nuclear density 

is restored at equilibrium or it may be interrupted if the system runs into a region 

of instability and breaks. For the simulation of 129Xe + 197 Au reaction at E /A = 

40 MeV, the nuclear disks for both values of I< do not break, and their densities 

indeed converg~ to nearly the normal density at the latter stage of their dynamical 

evolutions (t > 150 fm/c). However, the system governed by a "soft" equation of 

state (I< = 200 MeV) tends to reach higher central densities during the compression 

stage but lower densities' in the following expansion, as expected. On the other hand, 

the density oscillation observed in nuclear disks associated with the "hard" equation 

of state (I< = 540 MeV) is minimal at later time steps (t > 100 fm/c). 

As the bombarding energy is increased to 60 MeV (Figure 2.2), fragment 

formation occurs for I< = 200 MeV in contrast to the high incompressibility case, 

where the thinner disk at t = 180fm/ c is still well defined in spite of some mottlings. 

For the highest bombarding energy atE/A= 75 MeV, disk fragmentation is observed 

in both cases, but the disk for I< = 540 MeV is much thinner and sharper. In the 

latter case, the mottling develops rapidly into a crown of fragments which gradually 

separate due to the mutual coulomb repulsion and the residual kinetic energy of the 

disk. In fact, the disk formed for I< = 200 MeV is much fuzzier and the fragments seem 

to form within its thickness in a volume like process. This may be associated with 

the spinodal instability mentioned in Chapter 1. In other words, the system governed 
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Figure 2.4: Average central density (r ~ 3fm) of the colliding system as a function 

of time for the indicated values of the incompressibility coefficient I< used in the BNV 

calculations. 

by the "soft" equation of state may enter into a region of instability associated with a 

negative incompressibility during its expansion, and the system breaks into droplets 

of denser liquid (fragments) embedded in vapor (light particles). However, the effects 

of compression and expansion associated with the "hard" equation of state is rather 

weak. Then, what causes the thin disk to break? 

2.2.2 Disk Fragmentation and Surface Instability 

In the Liquid Drop Model, nuclei are treated as drops of nuclear matter, and 

their binding energies can be calculated as the sum of volume, surface and Coulomb 

energies. This macroscopic approach suggests that the energy, and thus the stability 



I 

\ i 

0.125 

0.100 

0.075 

0.050 

0.025 

Xe + Au K=540MeV T=120fm/c 

+ 

+ 

+ 
+ 

+ 

+ 

0. 0 00 !-l--l......L--'-.J.....L_J_L......J...~---L.:.J....I.J..~~...I.-f--1-~...L......L--L....J'-'-..L..:..J..!...L-J--'--'j 

0.125 

0.100 

0.075 

0.050 

0.025 

+ 

+ 

+ + 
+ 
+ 

+ 

o.ooo~~~~~~~~~~~~~~~~~~~~ 

0.125 

0.100 

0.075 

0.050 

0.025 

+ + 

+ 

0. 000 ._.__.__._,_....__,__._.__._ ............ _._.L.......L.....L.....J'-'-~-'--'-'-...L......L-'--''--'-I..L.......L.-'--'......._.. 
0 5 10 15 0 5 10 

Rxy (fm) Rz (fm) 

M 

> 
II 
m 
0 
~ 
(t) 

< 

41 

Figure 2.5 : Density profiles of nuclear disks along the beam axis ( Rz) and the plane 

perpendicular to the beam axis (Rxy) at time= 120 fm/c. Disks are observed in the 

simulation results for head-on collisions of 129Xe + 197 Au at the indicated bombarding 

energies and I< = 540 MeV. 
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of a nuclear disk, d~pends significantly on the dimen~ion of a disk. 

To compare the dimension of the nuclear disks observed in the BNV cal­

culations, their density profiles along the beam axis (z coordinate) and the plane 

perpendicular to the beam axis ( xy plane) are plotted as a function of bombarding 

energy in Figure 2.5. These densities are extracted from the simulation results for the 

reaction 129Xe + 197 Au with a "hard" equation of state (I<= 540 MeV) at time= 120 

fm/ c. A well defined disk with a diameter I'V 20 fm and a thickness I'V 8 fm is observed 

for the system at E /A = 40 MeV (top panel). The disks become larger at higher 

energies (middle and bottom panel), but their density profiles are strongly modulated 

by surface oscillations, and the maxima of these oscillations seem to determine the 

positions of the fragments. Furthermore, the disks appear to be thinner even though 

the density profiles along the beam axis do not have a sharp fall off. 

The above qualitative features associated with the disk dimension suggest 

that disk fragmentation is caused by a surface instability. More precisely, the system 

seems to escape from the high surface energy of a thin disk by breaking up into a 

number of spherical fragments with less overall surface. Thus, fragment formation in 

this picture depends solely on the presence of a surface energy term. (In the static 

limit, the BNV model reduces to a semi-classical approximation to the Hartree-Fock 

model, which can reproduce the nuclear masses throughout the periodic table and. 

thus expresses a good surface energy.) This observed instability may be akin to the 

Rayleigh instability of a cylinder of liquid [Rayl 64]. The cylinder is unstable with 

respect to small perturbations of wavelength ..\ 2: 21r R, where R is the radius of the 

cylinder. But, is a disk of liquid, or more generally, a sheet of liquid, truly unstable? 

I. 

\ J 
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2.2.3 Metastability of a Sheet of Liquid 

For the sake of simplicity, a sheet of liquid instead of a finite disk is studied. 

On a sheet of thickness d, let us identify square tiles of side A. A square tile can 

favorably collapse into a sphere of equivalent volume when the lateral surface area of 

the tile (top + bottom) is greater than the surface area of the sphere. The volume 

of the tile is simply dA 2 and its surface area equals 2A2
• The radius (Rs) and the 

corresponding surface area (Ss) of the equivalent sphere can be expressed in terms of 

d and A: 

(2.9) 

To determine the condition for the instability of this square tile, the ratio between 

the surface areas of the sphere and the square tile is evaluated, 

(2.10) 

When this ratio is less than 1, the square tile becomes unstable with respect to the 

equivalent sphere and this occurs when, 

A ~ ..;'2;(3d/2). (2.11) 

This surface instability seems to solve the puzzle of disk fragmentation ob­

served in the BNV simulations. However, the above condition of instability is de­

termined merely from the energy difference between the initial (square) and final 

(sphere) configurations. This derived instability condition (Equation 2.11) may actu­

ally refer to metastability only since there may be a barrier that prevents the sheet 

from reaching the more stable configurations. Indeed, the length of the sinusoid of a 
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modulated sheet increases with increasing amplitude of the modulation (Figure 2.6). 

Therefore, any modulation of finite wavelength A increases the surface area of a sheet, 

regardless of its thickness. A second order approximation (see Appendix A) for the 

dimensionless surface energy increase is simply 

(2.12) 

where A and A are the wavelength and the amplitude of the perturbation. The 

coefficient of A2 is always positive, and this increase in energy clearly indicates the 

presence of a barrier for any perturbation of finite wavelength. So why do the disks 

observed in the BNV simulations develop what appears to be a genuine instability? 

2.2.4 New Rayleigh Instability of a Sheet of Liquid 

Thus far sharp surfaces (no surface diffuseness, no surface-surface inter­

action) have been assumed in the derivations. This assumption is reasonable for 

ordinary fluids because a sheet of liquid is sufficiently thick that the skin thickness of 

the surface (surface diffuseness) is negligible; the surface-surface interaction is also 

suppressed by the large separation distance between the two surfaces. However, nu-

clear surfaces are not sharp, and more importantly, the surface-surface interaction 

may not be negligible for a thin nuclear disk. In fact, nuclear surfaces interact with 

each other through an interaction of finite range known as the proximity force. A 

dimensionless proximity potential function ~( s) is defined such that the proximity 

energy per unit area between two interacting surfaces separated at a distance s is 
/ 

21~(s), where 1 is the surface energy coefficient [Bloc 77]. The dimensionless prox-

imity energy (see Appendix A) of a sheet, subjected to a perturbation of wavelength 

A and small amplitude A, is 

E = ~ f' ""( )d rv 2P(A) Q(A) A2 
P ). lo ':1.' s x ). + ). ' (2.13) 
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Figure 2.6 : Schematic illustration of the perturbation of a thin sheet of liquid. 
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where 

(2.14) 

with s = d + 2Asinkx, <1>0 and <1> 2 being the zeroth and second order coefficients 

of the Taylor expansion of <I>( A, x) about A = 0, and k = 21r /A. The proximity 

energy for the two surfaces of an unperturbed sheet can be derived by setting A = 0, 

and is simply equal to2P()..)/ A. Thus, the change in proximity energy due to the 

perturbation is: 

(2.15) 

Therefore, the overall energy change of a modulated sheet can be calculated 

as the sum of a positive contribution from the surface energy (Equation 2.12), and a 

negative contribution from the proximity energy (Equation 2.15): 

(2.16) 

When the coefficient of A2 becomes zero or negative, the system becomes unstable, 

since the perturbation decreases the overall energy. In other words, a critical wave­

length can be defined by equating this coefficient to zero: 

(2.17) 

Any perturbation with A 2: Ac will grow spontaneously and exponentially due to this· 

surface instability, and thus cause the sheet to break up into smaller fragments. When 

the function derived from the Thomas-Fermi Nuclear Model is used for the proximity 

potential [Bloc 77), the following expression for Ac is obtained: 

2d 
Ac = 1.1 b · e 3b , (2.18) 

where b is the range of the proximity interaction and d is the thickness of the sheet. 
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When the thickness of a sheet becomes much greater than the range of the 

proximity interaction, the critical wavelength tends to infinity. This is just the trivial 

result for infinitely sharp surfaces. However, when the thickness of a sheet becomes 

comparable to the proximity range, the critical wavelength decreases rapidly. To 

observe this surface instability in a finite disk, the disk must then be thin enough 

to allow the critical wavelength to fit within its diameter. In fact, this is consistent 

with the observations in the BNV simulations. By studying the disks formed for K 

= 540 MeV, surface effects are isolated from those associated with compression and 

expansion. The disk formed at 40 MeV is relatively thick and it does not break. A 

. thinner disk at 60 MeV shows some mottling, and eventually a thin disk at 75 MeV 

breaks up into many fragments. This interesting result says that the surface-surface 

interaction is essential to the sheet instability. In this sense, the sheet instability is a 

new kind of surface instability since the Rayleigh's cylinder instability can exist with 

pure surface tension and does not require the proximity interaction. 

In summary, the results of these BNV calculations show that the surface 

instability should be pervasive in intermediate energy heavy-ion collisions. In the 

context of a nuclear disk, when the disk is thin enough, the proximity potential due 

to the surface-surface interaction is sufficient to overcome the sharp surface barrier 

to trigger the surface instability, which causes the breaking of the system into several 

fragments. 

2.3 Stability of Nuclear Bubbles 

Besides disks, bubble shaped nuclei have also been observed in the BUU 

calculations [Baue 92]. A bubble behaves much like a sheet, and is susceptible to the 

surface instability when its thickness is of the order of the proximity interaction range. 
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However, the Coulomb energy has not been incorporated in the above discussion on 

the surface instability. For compact shaped nuclear disks, the Coulomb contribution 

to the deformation energy may be small compared to the surface and proximity 

contributions. In the case of nuclear bubbles, the depletion of charges in the central 

cavity reduces the Coulomb energy significantly and this Coulomb effect should not be 

neglected. Moreover, a saturated vapor fills the cavity of an excited bubble (T > 0), 

and the vapor pressure would also affect the stable configuration of a bubble. These 

additional considerations have made the study of nuclear bubbles more complicated, 

but interesting. In fact, the stability of nuclear bubbles has been discussed in a variety 

of contexts [Wong 73, Wong 85]. Here the relevant degrees of freedom and the physical 

quantities that affect their stability are analyzed. The physical quantities that are 

considered are the Coulomb force, the surface tension, and the pressure difference 

across the walls of a bubble. The bubble degrees of freedom can be divided into 

two classes: the radial modes and the crispation modes. The distortions on the two 

surfaces of a bubble are in phase with each other for·a radial mode of perturbation, 

and they are out of phase for a crispation mode. 

Let us consider a nuclear bubble whose interior and exterior surfaces are 

distorted by small perturbations. The notations R1 ( (), </>) and R2 ( (), </>) are used to 

describe the interior and exterior radii of a perturbed bubble. The() and</> dependence 

of R1 and R2 reflect the functional form of the perturbations on these surfaces. For 

the sake of simplicity, a kind of perturbation that preserves the azimuthal symmetry 

is studied so that the perturbed surfaces are functions of the polar angle () only: 

Exterior Sur face 

Interior Sur face (2.19) 

Here (R1), (R2 ) are mean radii of the interior and exterior surfaces; A~, A2 are am-
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plitudes of the perturbations and Pn( cos()) is Legendre Polynomial of nth order: 

I 

1 dn ( n 
Pn (!1-) = 2n I d n /1-2 - 1) ' n. 11-

where 11- = cos(). (2.20) 

A perturbation of this kind is called the "Spheroidal Deformation". Expressions of 

Legendre Polynomials for n = 0 - 4 are shown below: 

Po( cosO) - 1, 

P1 (cosO) cosO, 

P2(cosO) 
1 
2"(3cos20- 1), 

1 
P3 (cos0) - 2"(5cos3

() - 3cos0), 

P4 (cos0) 
1 
S(35cos40 - 30cos2() + 3). 

Since the perturbation of each surface is independent, the ratio of their 

amplitudes At/ A2 can be used to characterize the deformation. In the following 

derivations, this ratio is defined as the spheroidal deformation parameter A= At/A2. 

Schematic diagrams of perturbed bubbles are shown in Figure 2. 7 for the radial mode. 

In these panels, slices through the center of these perturbed bubbles are shown for the 

indicated order of Legendre Polynomial perturbation. The two-dimensional geometric 

cross sections for the unperturbed and perturbed bubbles are represented by solid and 

dashed curves respectively. .Their shape dependence reflects the functional form of 

the corresponding Legendre Polynomial. Since the distortions of the two surfaces are 

in phase with each other for a radial mode, A > 0, and the thickness is kept nearly 

constant throughout the bubble. Similar diagrams are shown in Figure 2.8 for the 

crispation mode. In this case, the distortions of the the two surfaces are out of phase 

with each other, then A < 0, and the perturbation modulates the thickness of the 

bubble's walls. 
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Radial Mode Perturbations of nth order 

n = 1 

n 3 

n = 2 

n 4 

'\ 

\ 

I 

. Figure 2. 7 : Slices through the center of nuclear bubbles associated with perturba­

tions of the radial mode for the indicated Legendre Polynomials. The two-dimensional 

geometric cross sections for the unperturbed and perturbed bubbles are represented 

by solid and dot-dashed curves respectively. 
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Cris ation Mode Perturbations of nth order 

n 1 n = 2 

n 3 n = 4 

Figure 2.8 : Slices through the center of nuclear bubbles associated with pertur­

bations of the crispation mode for the indicated Legendre Polynomials. The two­

dimensional geometric cross sections for the unperturbed and perturbed bubbles are 

represented by solid and dot-dashed curves respectively. 
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2.3.1 Radial Monopole Oscillations and Coulomb Bubbles 

The simpliest perturbation associated with the zeroth order Legendre Poly­

nomial is considered. The appropriate expressions for the radii of the perturbed 

surfaces are: 

It is noticed that both the interior and exterior surfaces are spherical and are defined 

by their constant radii R10 and R20 respectively. Clearly, this perturbation is the 

most important bubble degree of freedom, which defines the bubble itself. In other 

words, it describes the expansion and contraction of a bubble under the constraint of 

volume conservation. This process is also known as monopole oscillation. Since both 

surfaces must either expand or contract in phase with each other in order to conserve 

volume, only the radial mode exists for this degree of freedom. 

To describe a bubble formed at a given stage of expansion or contraction, 

a monopole oscillation parameter P defined as the ratio of the two radii R10/ R20 is 

introduced. As a bubble contr~cts, its interior surface (radius) must contract at a 

faster rate in order to conserve volume, and thus P becomes smaller. Eventually 

P = 0 when the cavity vanishes (R10 approaches 0), and the bubble is simply reduced 

to a sphere of equivalent volume. On the other extreme, as the interior surface (R10 ) 

approaches the exterior surface (R20 ) at the end of its expansion, P becomes close 

to 1, and this configuration describes an infinitely thin bubble under the condition 

of volume conservation. To determine the stabilities of these bubble configurations, 

their energies are calculated as a function of P. 

Since volume is conserved during the oscillation, the relevant energies within 

the Liquid Drop Model are the shape dependent surface, and Coulomb energies. For 
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the sake of simplicity, the energy of an equivalent spherical nucleus is used as a 

reference energy state. Let Ro be the radius of this equivalent sphere; its relation with 

RIO and R20 is derived from the constraint of volume conservation (i.e. R~0 - Rio = 

.m). Hence, RIO and R20 can be expressed in terms of Ro and P: 

(2.21) 

In the following derivation, the energies of various bubble configurations are expressed 

in terms of P and Ro such that they can be compared readily. 

The surface areaS of a bubble is simply the sum of the two spherical surfaces: 

S 47r (Rio+ R~o) 
47r R~ [p2 ( 1 - p3) -2/3 + ( 1 - p3) -2/3] 

- 47r~ (1- p3)-2/3 (1 + p2). (2.22) 

To calculate the corresponding surface energy, S is multiplied by a temperature de­

pendent surface energy coefficient 1. Thus, the expression for the surface energy 

becomes: 

147r ~ (1- p3) -2/3 (1 + p2) 

E; (1- p3)-2/3 (1 + p2). (2.23) 

This derived surface energy is plotted as a function of P in Figure 2.9a. Here the 

energy unit E~ = 147r R5 is the surface energy of the equivalent sphere. At the limit 

of P = 0, the bubble is reduced to the equivalent sphere, and Es is indeed equal 

to E~. As a bubble develops from a sphere and continues to grow with increasing 

P, its surface area and thus its surface energy is found to increase continuously and 

indefinitely. 
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Figure 2.9 : Surface (a) and Coulomb energies (b) of bubbles subjected to monopole 

oscillations are calculated as a function of P according to Equations 2.23 and 2.24. 

The surface and Coulomb energies are expressed in units of E~ and E~ respectively. 
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To calculate the Coulomb energy of a charged bubble, its simple spherical 

symmetry is considered. Let us assume that a bubble with a uniform charge density 

distribution Pc has an interior radius R10 and an exterior radius r. The total amount of 

charge in this bubble is q = ( 4/3)7rpc(r3
- Rr0 ). Now, consider an infinitely thin shell 

of thickness dr surrounding this bubble with the same charge density distribution. 

The volume of this thin shell is dV = 47rr2 dr, and the charge is dq = PcdV = 47rr2 Pcdr. 

For the charge dq in this spherical shell, the charge q in the bubble can be treated as 

a charged particle q at the origin as far as their interaction is concerned. Therefore, 

the interaction energy between the bubble and this thin shell is dE= (qjr)dq. This is 

essentially the energy needed to bring the spherical shell from infinity to the surface 

of the charged bubble. By repeating this procedure, the exterior radius of the bubble 

can be expanded to reach R20 • The associated self-Coulomb energy of such a bubble 

is then the sum of the shell-bubble interaction energies of all stages: 

The constant charge density Pc can be replaced by 41T"(~o~Rfo), where Q is the total 

charge of the bubble. Then 

(2.24) 

Similarly, this Coulomb energy is plotted as a function of P in Figure 2.9b, and 

the energy unit E~ = 3Q2 /5Ro is the Coulomb energy of the equivalent sphere. At 

the limit P = 0, Ec is reduced to E~ for a spherical nucleus. On the other hand, 
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Ec becomes essentially zero for a very thin bubble when P approaches 1. In other 

words, as a bubble expands, the charges are brought farther apart due to the growing 

diameter of its central cavity, and the Coulomb energy decreases accordingly. 

The above derivation suggests that the Coulomb energy, which favors con­

figurations of large P, is indeed the driving force for the formation of a thin bubble; 

the surface energy however tends to reduce the size of the bubble's cavity, since it 

increases monotonically with P. It is thus possible that an interplay between the 

Coulomb and surface energies may generate a minimum energy point along the coor-

dinate P. To search for such an energy minimum, the sum of the Coulomb and surface 

energies (E = Ec + Es) is evaluated as a function of P. At this point, recall that E~ 

and E~ are related by the fissility parameter of a nucleus defined as X= 0.5(E~/ E~). 

If E 0
- E~ + E~, then 

Eo 1 
1 +2X' 

Eo 2X 
1 +2X 

(2.25) 

Therefore, the sum of the Coulomb and surface energies can be expressed in terms of 

E 0
, P and X: 

E = E~ [(1- P3)-513 (1- ~P3 + ~ps)] + E~ [ (1- P3)-213 (1 + P2
)] 

1 :;x (1- p3)-2/3 [(1 +P2) + 1 ~xp3 (1- ~p3 + ~ps)]. (2.26) 

Figure 2.10 plots this energy E as a function of P for a selected range of 

fissility parameters (1.98 ~ X ~ 2.26). A sharp rise in the energy E is observed for 

all the selected values of X in the early development of a bubble from an equivalent 

sphere. This reflects a tremendous increase in the surface area associated with the 

generation of an additional interior surface for a bubble. As a bubble continues to 

expand, its central cavity grows and the decrease in the Coulomb energy begins to 
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Figure 2.10 : (Top) Sum of the surface and the Coulomb energies of a nuclear 

bubble as a function of P calculated for the indicated values of fissility parameter X. 

(Bottom) Correlations between X and P for stable configurations of nuclear bubbles. 
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compensate for the gain in the surface energy. However, for small X, the contribution 

of the Coulomb energy is not large enough to completely offset the surface term. In 

this case, a minimum energy point does not exist and the energy of the bubble, 

dominated by the surface term, continues to grow as it expands. As the amount of 

charge stored in a bubble increases with X, the Coulomb contribution becomes more 

important and eventually when X reaches 2.02, it is sufficient to overcome the surface 

term and the energy curve begins to run downhills. However, a minimum is reached 

pretty soon, since the Coulomb energy levels off rapidly for a large thin bubble, 

whereas the surface energy continues to grow indefinitely. Eventually, the surface term 

takes over and the energy curve is running uphills for thin bubbles with large values of 

P. At a given fissility parameter X, the value of P that corresponds to the minimum 

energy state represents a stable configuration since bubbles of other dimensions will 

either expand or contract to attain this optimum configuration. Since the Coulomb 

energy is the driving force for the stability of these bubbles, they are called the 

"Coulomb bubbles". It is noticed that the minimum point at P = 0.41 for X = 2.02 

is actually a secondary minimum since the energy of an equivalent spherical nucleus 

at P = 0 is even lower. As more charge is brought into the bubble with increasing 

X, the energy difference between the Coulomb bubble· and the equivalent sphere 

becomes smaller. Indeed, for X > 2.20, the energy of the Coulomb bubble becomes an 

absolute minimum, and this bubble configuration is not only stable against monopole 

oscillations, but it is also more stable than the equivalent spherical nucleus. 

The values of P for these Coulomb bubbles can be extracted by equating 

the first derivative of Equation 2.26 to zero; a positive second derivative is required 

to ensure that the extracted P corresponds to a minimum energy. The correlation 

between the optimum values of P and X for stable bubble configurations is plotted 

in Figure 2.10. This plot shows that the size of a Coulomb bubble increases with 
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the fissility parameter X. Intuitively this can be explained in terms of the driving 

force behind the expansion and contraction of a bubble. The two relevant forces 

are the Coulomb force and the surface tension. The Coulomb force tends to drive 

the bubble to expand, while the surface tension acts to contract the bubble. Thus a 

stable configuration is achieved only when these two forces balance each other. As the 

charge of a nuclear bubble increases with increasing X, the increased Coulomb force 

drives the bubble to grow to larger radii such that additional surfaces are generated 

to balance the increase of the Coulomb force. Consequently, a more heavily charged 

bubble becomes stable at a thinner configuration. 

It is noticed that the threshold fissility parameter X= 2.02 (see Figure 2.10) 

for the formation of a Coulomb bubble is rather high and is impossible to attain for 

cold nuclei. However, one can reach higher excitation energies and temperatures in 

heavy-ion reactions. The surface tension is weakened with increasing temperature, 

and thus the surface energy coefficient becomes smaller. Therefore, the Coulomb 

contribution to the total energy becomes stronger at a higher temperature, and thus 

the fissility parameter X increases accordingly. Moreover, a saturated vapor fills the 

cavity of an excited bubble (T > 0). The vapor pressure is equal to the saturation 

pressure, which increases with temperature. At first sight, one would not expect a 

pressure acting upon the outer surface, which is facing the vacuum. However, this is 

not the case. The inner surface has an outgoing flux of evaporated particles, and an 

ingoing flux of vapor particles. At equilibrium the two fluxes are equal: they impart 

the same impulse to the surface, and thus contribute equally to the pressure. The 

outer surface, however has only the outgoing component, and thus feels a pressure 

equal to half of the inner pressure. A net outward pressure hence drives the cavity to 

grow even further. 

The energy associated with this pressure is simply equal to the work done by 
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the system to generate a central cavity of saturated vapor from a solid sphere. Since 

the pressure of the saturated vapor depends solely on temperature and not volume, 

a constant pressure during the expansion is assumed. Thus, the required energy is 

simply a product of this constant pressure and the volume of the cavity, 

(
4 3 ) Rio Evap = p 31rR10 = pVo R5, (2.27) 

where Vo is the volume of a bubble or an equivalent sphere. To compare this energy 

with the Coulomb and surface energies, Evap is expressed in terms of £ 0
: 

Evap = 

(2.28) 

Here Pv = pVoj E~. Since work is done by the system during an expansion, the sign of 

of this energy Evap should be negative. In other words, this outward pressure lowers 

the energy of a bubble with respect to that of an equivalent sphere. This effect is 

stronger with increasing P since more work is done for a thinner bubble with a larger 

cavity. As an illustration, Figure 2.11 shows the energy of a bubble as a function of 

P for X = 2.26 with Pv = 0 and 0.3 respectively. The energy curve for Pv = 0 (solid) 

is clearly lowered and shifted to the right when a pressure of Pv = 0.3 (dashed) is 

included in the energy calculation. It is noted that this energy shift is independent of 

the fissility parameter. Consequently, a secondary minimum may eventually become 

an absolute minimum at high enough pressure, and the threshold of X for a stable 

nuclear bubble is thus lowered. Moreover, the stronger pressure effect with increasing 

P drives the Coulomb bubble to a thinner configuration. These two effects are shown 

in the bottom panel of Figure 2.11 with a dashed line for Pv = 0.3. 

Thus far, the Coulomb force has been shown to be the driving force for 

the formation of Coulomb bubbles that are stable against monople oscillations. For 
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Figure 2.11 : (Top) Total energy including (dashed) and excluding (solid) the pres­

sure effect as a function of P for a nuclear bubble with X = 2.26. (Bottom) Cor­

relations between X and P for stable configurations of nuclear bubbles including 

(dashed) and excluding (solid) the pressure effect associated with the vapor in the 

central cavity. 
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Coulomb bubbles that are not heavily charged (2.02 < X < 2.20), they exist as ex­

cited states (secondary minimum) and may be formed at the expense of the system's 

excitation energy. On the other hand, the energies of Coulomb bubbles formed at 

higher fissility parameters (X > 2.20) are actually lower than the energy of an equiv­

alent sphere. However, this stability of a bubble towards monopole oscillation is not 

a sufficient condition for the stability since there are higher order modes that must 

be checked. 

2.3.2 Higher Order Perturbations and Coulomb Instability 

The approach to calculate the energy of a nuclear bubble against higher 

order perturbations is similar to the above method used for a Coulomb bubble. The 

mathematics becomes more complicated, since the spherical symmetry of a Coulomb 

bubble does not exist for a perturbed bubble. However, in considering the stability of a 

nuclear bubble, one needs only to study the effect of small perturbation. Accordingly, 

one can expand various physical quantities in powers of A1 and A2 , and retains only 

the leading terms (up to 2nd order). An outline of these calculations is given in 

Appendix A, and the results for the surface and Coulomb energies are shown below: 

[ ( 1 - p3) -5
/

3 
( 1 - ~ p3 + ~ p5)] + 

A2 [~(2n + 1)P3 + 5- 5n- 15APn+3 + 15 A2 P5] (
1

- P
3

)-

513 

.(2.29) 2 2 2 (2n + 1)2 

One simple limit to verify these derived equations is the case of a Coulomb bubble 

with A2 = 0. Indeed, the expressions in the first brackets of the above equations are 

r 

r 
I i 

I 

,_ 
I 

\ I 



-. 

\ 

63 

identical to Equations 2.23 and 2.24 derived for the surface and Coulomb energies 

of a nuclear bubble. Therefore, the terms in the second bracket of these equations 

must account for the energy change associated with a perturbation described by the 

Legendre Polynomial of nth order. Equation 2.29 shows an A dependence for the 

Coulomb energy of a perturbed bubble indicating that the Coulomb perturbation 

energy is different for the radial and crispation modes even when other parameters 

are identical. On the other hand, an A2 dependence is observed for the surface energy 

since the two modes differ only in the relative orientation of their surfaces, and this 

does not affect the surface area (energy). 

Thus far, the value of A has been a free parameter in these calculations. It 

will be interesting to study a perturbation in which A1 and A2 are constrained to 

yield the least Coulomb energy. It will be shown later that this is indeed the most 

damaging perturbation as far as the stability is concerned. The coefficient of A~ in the 

Coulomb energy expression is found to be minimized for A = pn-2. In the following, 

the stability of a nuclear bubble is studied using this input for A, and the expressions 

for the change in the surface (~Es) and Coulomb energies (~Ec) associated with the 

perturbation become: 

~Es = A2 [(I_ p3) - 2/3 (I+ p2n-2) n
2 

+ n- 2] 
E~ 2 2(2n + I) ' 

(2.30) 

~Ec 
Eo -

c 
A2 [5-5 IOn+ 5 p3 45 p2n+I] (I - p3)-s/3 

2 n+ 2 + 2 (2n+I)2 
crispation mode, 

~Ec 
Eo c 

A2 [5- 5n IOn+ 5 p3- I5 p2n+I] (I - p3r5/3 
2 + 2 2 (2n+I)2 

radial mode. 

The coefficients of A~ of these perturbation energies are plotted in Figure 2.I2 as a 

function of P for the indicated orders of Legendre Polynomials. These coefficients of 

the surface and Coulomb perturbation energies are expressed in units of E~ and E~ 
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perturbations are calculated as a function of P according to Equation 2.30. The 
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respectively. The Coulomb perturbation energies are shown to be different for the 

radial (Figure 2.12b) and crispation modes (Figure 2.12c) as expected. 

Interestingly, the surface energy plot shows that a dipole oscillation ( n = 1) 

, does not affect the surface energy of the bubble at all. Intuitively, this is expected 

since Figure 2. 7 shows that a radial dipole oscillation involves only the motion of the 

center-of-mass. In fact, the Coulomb perturbation energy is zero for such a radial 

dipole oscillation (Figure 2.12b ). For the more interesting crispation dipole oscillation, 

it can be viewed as the motion of a negative sphere moving inside a larger sphere of 

positive charge (Figure 2.8). In this case, the coefficient of A~ for the Coulomb energy 

becomes a positive increasing function of P, and thus a nuclear bubble is always stable 

with respect to a dipole perturbation of the crispation mode. When a neutral bubble 

is considered, this Coulomb barrier disappears, the inner sphere then moves freely 

until it bursts when it moves sufficiently outwards to touch the outer surface. 

For higher order perturbations, the positive surface perturbation energy co­

efficient of Equation 2.30 suggests that any mode of distortion (radial & crispation) 

will increase the surface energy of a bubble. This effect becomes stronger for thin­

ner bubbles and higher order perturbations as the perturbation energy increases with 

both P and n (Figure 2.12a). In the limit of P = 0, the surface perturbation energy is 

reduced to D..Es = A~(n-l)(n+2)(4n+2t1 E~, which agrees with Rayleigh's surface 

energy derivation [Rayl 64a) for higher multipole perturbations of a solid sphere. On 

the other hand, the Coulomb perturbation energy is negative when P is small, and 

it behaves rather differently for the radial and crispation modes when P becomes 

larger for thinner bubbles. In the case of a crispation mode, the positive terms of the 

Coulomb energy increase with P until they are sufficiently large that the Coulomb 

perturbation energy crosses the zero line and continues to grow (Figure 2.12c). This 

large Coulomb perturbation energy at large P is expected since it requires work to 
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clump charges of an infinitely thin bubble into local clusters. Mathematically, this 

effect is partly accounted for by the large positive coefficient of P 2n+l in Equation 

2.30 for the crispation mode. For a radial mode of perturbation, the coefficient of 

P 2n+l is negative such that the overall increase in the Coulomb energy with P is not 

dramatic, and the Coulomb perturbation energy remains negative (Figure 2.12b) for 

thin bubbles with large values of P. 

In summary, the surface perturbation energy is always positive while the 

Coulomb perturbation energy starts at negative values and may become positive at 

large values of P. This interplay between the Coulomb and surface perturbation 

energies implies the existence of a critical fissility parameter (X critical) at a given 

P at which the positive surface energy balances the negative Coulomb energy. A 

bubble with X > Xcritical becomes sufficiently charged for the negative Coulomb 

energy to offset the positive surface term to produce a net perturbation energy that 

is negative. This is indeed the onset of the Coulomb instability since a negative 

perturbation energy drives the distortion to grow spontaneously and exponentially. 

On the other hand, when X < Xcritica/, the perturbation dominated by the positive 

surface energy increases the overall energy, and thus the nuclear bubble is stable at 

this configuration. In short the values of Xcritical defines the boundary condition for 

the Coulomb instability. 

Values of Xcritical are extracted by equating the sum of the Coulomb and 

surface perturbation energies to zero. The extracted values of Xcritical are plotted 

as a function of P in Figure 2.13 for the indicated orders of Legendre Polynomial 

perturbations qf the radial and crispation modes. Each curve essentially defines the 

boundary conditions of the bubble stability against perturbation of nth order Legendre 

Polynomial. It is noted that the same critical values are observed for the radial and 

crispation modes in the case of a solid sphere (P = 0), because the two modes are 

·. _/ 
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Figure 2.13 : Correlations between the critical values of P and X, which define the 

boundary conditions of bubble stability against the indicated higher order perturba­

tions of radial (a) and crispation (b) modes. 
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indifferent. In this case, a solid sphere with X < 1 is stable against any mode of 

perturbations. At X = 1, the quadrupole mode for n = 2 becomes unstable, and this 

is the onset of the fission instability. As more charges are brought into the sphere 

with increasing values of X, the onset of instability occurs progressively for higher 

order modes. So, a highly charged sphere will not merely fission, but will break up 

into many fragments due to the instability of higher order modes. In other words, 

the perturbation modes are destabilized by the Coulomb interaction. This explains 

why the distortion A = pn-2 with the least (most negative) Coulomb energy is the 

most damaging perturbation. Similarly, a nuclear bubble with P > 0 is stable unless 

it is sufficiently charged (X > Xcritical) for the negative Coulomb perturbation energy 

to trigger the Coulomb instability. The fact that these critical fissility parameters 

increase with n for the radial mode implies that any bubble configuration that is 

stable against nth order perturbation is also stable with respect to any higher order 

perturbation. Unlike the radial mode, the Coulomb perturbation energy of thin 

bubbles at large P becomes positive for the crispation mode. This is why some 

of the thin bubbles that are unstable against the radial mode (e.g. P > 0.8) are still 

stable against the crispation mode. 

In considering the stability of a nuclear bubble, one must examine its sta­

bility against monopole oscillations and higher order perturbations simultaneously. 

To truly verify and search for a stable nuclear bubble, the configurations of Coulomb 

bubbles (bottom panel of Figure 2.10) that are stable against monopole oscillations 

are plotted in Figure 2.14 together with the values of Xcritical (Figure 2.13) that de­

fine the stability conditions for higher order perturbations. It can be seen that a 

relatively thick Coulomb bubble (P < 0.5) is unstable with respect to both the radial 

and crispation modes. On the other hand, thinner Coulomb bubbles with P > 0.5 be­

come stable with respect to the perturbations of the crispation mode. However, these 

i ,I 
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Figure 2.14 : Same as Figure 2.13 except that the stable configurations of Coulomb 

bubbles are also shown with dashed curves. 
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thin bubbles can not get away from the unstable region of the Coulomb instability for 

the radial mode. For example, the bubble at X = 3 is stable with respect to monopole 

oscillation but unstable against the radial quadrupole (n = 2) perturbation. 

Consequently Coulomb bubbles are always unstable with respect to some 

higher order spheroidal deformations. In other words, there is always one kind or 

another deformation against which the bubble configuration is unstable. However, so 

far the effect of the pressure difference across the walls of an excited bubble has not 

been considered. Recall that the resulting pressure differential acts on the monopole 

mode by driving the Coulomb bubbles to thinner configurations. Since, only changes 

in volume of the bubble cavity will affect the energy associated with the vapor pres­

sure, this pressure effect is minimal when the volume of a bubble's cavity is nearly 

unchanged in the case of higher order perturbations. Therefore, the correlations 

between P and Xcritical for the boundary conditions of the Coulomb instability as­

sociated with these higher order perturbations remain unaffected by the pressure. 

Consequently, a sufficiently large pressure may drive the Coulomb bubble to a thiri 

enough configuration that is beyond the onset of quadrupole instability as shown in 

Figure 2.15. However, when a bubble becomes very thin, the surface-surface inter­

action may not be neglected and the proximity energy may play a significant role in 

determining its stability. 

2.3.3 Proximity Effects and Surface Instability 

It was mentioned in section 2.2.4 that a bubble behaves much like a sheet, 

and is subject to the surface instability. Therefore, a thin bubble that is safe from the 

Coulomb instability of both the radial and crispation modes may still be susceptible to 

the surface instability when its thickness is comparable to the range of the proximity 

interaction: 
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Recall that the proximity energy can be calculated from the integral of the 

dimensionless proximity potential ci>( s) over the area subjected to this surface-surface· 

interaction: 

Ep = j 21ci>( s )dA, (2.31) 

where s = R2 - R1 is the separation distance between the two interacting surfaces. 

In the case of a thin bubble, the surface element of the above integral can be approx-

imated by the inner surface of the bubble: 

(2.32) 

Similarly, the function derived from the Thomas-Fermi Nuclear Model is used for the 

proximity potential: 

4• 
ci>( s) = -4.5827 e- 3b. 

Then, the corresponding proximity energy Ep is Taylor expanded with respect to a 

perturbation of small amplitude and only the leading terms in A~ are retained. An 

outline of the derivation is given in Appendix A, and the. coefficient of A~ associated 

with the change in the proximity energy due to the perturbation is shown below: 

Here Ro/b is a parameter used to account for the thickness dependence of the prox­

imity interaction. In other words, the larger the ratio Ro/b, the thicker the bubble at 

a given P and the weaker the resulting proximity interaction. In fact, when Ro/b is 

small, the thickness of an equivalent bubble becomes comparable to b, and thus the 

system is more susceptible to the surface-surface interaction. 



73 

Figure 2.16 shows the effect of this proximity interaction on the stability 

of bubbles for an example of f4J/b = 15. For both the radial and crispation modes, 

the effect of the proximity interaction on relatively thick bubbles (P < 0.55) are 

minimal as expected. This effect becomes significant at thinner bubble configurations 

(large P) especially for the crispation mode, which involves thickening and thinning 

of the bubble's walls. The proximity energy is effective in offsetting the extra surface 

energy associated with the perturbation, and hence the value of Xcritical decreases 

at a given P. This result is similar to the proximity effect observed for a thin disk 

in section 2.2.2. Therefore, when the thickness of an expanding bubble becomes 

comparable to the range of the proximity interaction, it becomes susceptible to the 

surface instability and breaks up into several fragments. In fact, BNV calculations for 

very heavy systems at low bombarding energies show the formation of a thin bubble 

that seems to burst under the action of the surface instability. 

In summary, exotic shaped nuclei such as "disks" and "bubbles" have been 

observed in dynamical calculations of intermediate energy heavy-ion collisions. For 

example, a "nuclear disk" develops during the collision process due to the side­

squeezing of nearly incompressible nuclear matter. The subsequent decay of the disk 

into several smaller fragments has been analyzed in terms of the new Rayleigh-like 

surface instability, in which the proximity force plays an essential role. In these con­

siderations, the effect of Coulomb energy has been neglected because of its limited 

contribution to the deformation energy of compact shaped nuclear disks. However, 

. the contribution of Coulomb energy should not be ignored in the study of "nuclear 

bubbles", since the depletion of charges in the central cavity of nuclear bubbles re­

duces the Coulomb energy significantly. In fact the Coulomb energy is the driving 

force for the stability of "Coulomb" bubbles against monopole oscillations. The vapor 

pressure in the central cavity of an excited bubble provides an additional force that 
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drives the Coulomb bubbles to thinner configurations. These Coulomb bubbles how­

ever are susceptible to higher order perturbations. To be more precise, the Coulomb 

instability can be easily triggered by a perturbation of the radial mode when a bubble 

is thick. On the other hand, a thin Coulomb bubble behaves like a sheet and becomes 

susceptible to the surface instability via the crispation mode when its thickness is 

comparable to the range of the proximity interaction. 
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Chapter 3 

Experimental Method 

The experimental data presented in this thesis were obtained from the reac­

tions 129Xe + natcu, 89Y, 165Ho and 197 Au at bombarding energies of E/A = 40 & 60 

MeV. The data were collected over a 192-hour running period (during June of 1992) 

at the National Superconducting Cyclotron Laboratory of Michigan State University. 

A detail description of the experimental setup is given in section 3.1. The techniques 

used to extract particle identification, position and energy are described in section 

3.2. 

3.1 Experimental Setup 

To probe the onset of nuclear multifragmentation, the heavy 129Xe projectile 

was used to bring large amount of mass, angular momentum and excitation energy 

into the center-of-mass of the colliding nuclei. The choice of targets provided a 

variety of projectile-target combinations ranging from reverse to normal kinematic 

reactions, and covered a large range of excitation energies. The excitation energy 

(MeV) ayailable in the center-of-mass system is listed in Table 3.1 for the four targets 

at both bombarding energies. 
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Figure 3.1 : Photograph of the detector configuration. The multidetector system 

couples the MSU Miniball Array and the LBL Si-Si(Li)-Plastic Array. 
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Table 3.1 : Excitation energy (MeV) available in the center-of-mass system. 

I Targets I Ap +AT IE/A= 40MeV IE/A= 60MeV I 
Cu 193 1710 (MeV) 2600 (MeV) 
y 218 2100 3140 
Ho 294 2900 4320 
Au 326 3120 4600 

Reaction products were detected with a multidetector system consisted of 

the MSU Miniball Array [deSo 90] and the LBL Si-Si(Li)-Plastic Array [Keho 92]. 

Photograph of the detector configuration is shown in Figure 3.1. Near complete cov­

erage of the solid angle (89% of 47r) and good granularity of this combined detector 

system allowed simultaneous detection and identification of numerous and vastly dif-

ferent fragments over the entire emission phase space. The detector array was actively 

cooled and temperature stabilized in order to suppress radiation damage of the sili­

con detectors, to minimize scintillation efficiency variation of the phoswich detectors, 

and to remove heat generated by the photomultiplier voltage divider network. To 

prevent interactions of the beam and reacti~n products with atmospheric gas atoms, 

a vacuum of about 5 x 10-6 torr was maintained inside the scattering chamber by 

means of a cyro-pump and a turbo-pump. 

3.1.1 Beams and Targets 

40 and 60 MeV /nucleon 129Xe beams were extracted from the K1200 cy­

clotron at the National Superconducting Cyclotron Laboratory. The 129Xe ions were 

stripped to charge states of + 26 and +30 for E j A = 40 and 60 MeV, respectively. 

The beam energy, with an estimated uncertainity of ±1 %, was determined from the 

cyclotron field and from the radial position at extraction. The beam was delivered 
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to the 92-inch scattering chamber with an intensity of about 107 particles per second 

and with a typical beam spot diameter of 3-4 mm. 

Table 3.2 : Ion and molecular beams for detector calibrations. 

I Detectors Calibration Beams I < qjm > I E/A (MeV) I 
LBL Silicon 6scu+I3 ssMn+n socr+Io 

' ' 0.200 40 
I29Xe+30 86Kr+20 43Ca+IO 

' ' 0.233 60 
9ozr+21 6oNi+I4 3osi+7 

' ' 
0.234 60 

160 +4 12c+3 
' 0.250 60 

LBL Plastic 4HeH+ 0.202 ~ 40 
with 5 mm Si(Li) H2D+ 0.248 < 60 
LBL Plastic and 6Li+ 4HeD+ 

' 
0.166 ~ 22 

Miniball Phoswich 18o+3 12c+2 
' 0.167 ~ 22 

Besides the 129Xe ion beams used for the data runs, other ion beams (see 

Table 3.2) atE/A= 40 and 60 MeV were used for the calibration of the LBL silicon 

detectors. Since the detected fragments had a large range of energy and mass, it was 

useful to calibrate each silicon detector with a number of calibration beams of different 

energies and masses. In order to minimize the time spent on calibrations, some of 

these ion beams were extracted simultaneously by combining them into a single triplet 

or quadruplet beam. This was feasible for those ion beams with the same charge­

to-mass ratio ( q / m) at all stages of the acceleration [McMa 86]. Molecular beams of 

4HeH+ and H2D+ at E/A = 40 and 60 MeV respectively were also used to calibrate 

the LBL plastic scintillators. Aluminum degraders of various thickness (0.015 - 0.15 

inch) were used to produce a range of beam energies and to split Hell and H2D 

molecules into He, H and D ions. Similarly, these aluminum degraders were used 

with light ion beams ( 180+3, 12C+2, 6Li+, 4HeD+ ) at E /A = 22 MeV to produce 

more calibration points for the LBL Plastic and the MSU Miniball detectors. 

The targets and the Miniball target insertion mechanis·m used in this exper-
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iment are shown in Table 3.3 and Figure 3.2 respectively. The target thickness (areal 

density) was chosen such that no more than 1% of the beam energy was lost in the 

target. The targets were mounted on frames made of flat shim stock (0.2 mm thick). 

Each target frame was attached to an insertion rod, which was mounted on a tray 

that can be moved parallel to the beam axis. An electromagnetic clutch provided the 

coupling between the insertion and retraction drives, and a third drive allowed rota-

tion of an inserted target about the axis of the insertion rod. The remote computer 

control of this target mechanism allowed the targets to be changed quickly without 

opening the scattering chamber. 

Table 3.3 : Thickness of Targets. 

I Target I Z I A I mgjcm2 I 
Cu 29 64 2.0 
y 39 89 1.0 
Ho 67 165 2.0 
Au 79 197 1.3 

3.1.2 MSU Miniball Phoswich Array 

An artist's .perspective of the three-dimensional geometrical assembly of the 

Miniball Array and a half-plane section in the vertical plane which contains the beam 

axis are shown in Figures 3.3 and 3.4. The array consists of 11 independent rings 

coaxial about the beam axis, and individual rings are labelled by the ring numbers 

1 -11 which increase from forward to backward angles. The detectors of a given ring 

are identical in shape and have the same polar angle coordinates. In this experiment, 

ring 1 and four detectors of ring 2 were removed from the Miniball Array to provide 

space for the LBL Array, and one detector of ring 8 was also removed to make room 
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MSU-90-043 

Figure 3.2 : Isometric view of the Miniball target insertion mechanism. 

Figure 3.3 : Artist's perspective of the assembly structure of the Miniball 47r frag­

ment detection array. For clarity, electrical connections, the light pulsing system, and 

the cooling system have been omitted. 
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Figure 3.4 : Half-plane section of the Miniball Array. Individual detector rings are 

labelled 1 through 11. Numbers of detectors per ring are given in parentheses. The 

polar angles for the centers ·of the rings are indicated. The dashed horizontal line 

indicates the beam axis. 
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Figure 3.5 : Schematic of phoswich assembly of a Miniball detector. 
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for the target insertion mechanism. In this configuration, 171 phoswich detectors of 

the Miniball Array with a total solid angle coverage of approximately 87% of 47r were 

used to identify charged particles (Z = 1 - 20) emitted between 16° and 160° with 

respect to the beam axis. Identification thresholds for Z = 3, 10, and 18 fragments 

were approximately 2, 3, and 4 MeV /nucleon respectively. 

Each Mini ball phoswich detector consisted of a 40 1-Lm ( 4 mg/ cm2
) thick 

plastic scintillator foil backed by a 2 em thick Csi(Tl) crystal. The scintillator foils 

were spun from Bicron BC-498X scintillator solution, and they were selected to have a 

uniformed thickness of 4.0 ± 0.12 mg/cm2
• Previous experience with Csi(Tl) crystals 

had revealed difficulties in the production of scintillators with uniform scintillation 

response [Gong 88, Gong 90]. This nonuniformity of the scintillation efficiency can 

be detected very sensitively by scanning the Csi(Tl) crystals with a collimated a­

source in vacuum. Good quality Csi(Tl) crystals with a uniformity of scintillation 

response better than 2.5% were selected by scanning the surface of crystals along two 

perpendicular axes. 

A schematic of the detector design is given in Figure 3.5. Each detector had 

an aluminized mylar foil (0.15 mg/cm2 mylar and 0.02 mg/cm2 aluminum) placed 

in front of the plastic scintillator foil. In order to retain flexibility in the choice 

of scintillator foil thickness, the scintillator foil was placed on the front face of the 
' 

Csi(Tl) crystal without bonding material. The back face of the Csi(Tl) crystal was 

glued to a flat light guide made of UVT Plexiglas which, in turn, was glued to a second 

cylindrical piece of UVT Plexiglas. UVT Plexiglas rather than standard Plexiglas was 

used in order to minimize additional absorption in these light guides. The 10-stage 

photomultiplier tube manufactured by Burle Industries (Model C83062E) was chosen 

because of its good timiq.g characteristics ( TR :::::::: 2.3 ns ), its large nominal gain (:::::::: 107 ) 

and its good linearity for fast signals. 
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Figure 3.6 : Timing and widths of the fast, slow and tail gates of the Miniball 

phoswich detector signal. 

For each Mini ball phoswich detector, light from both the scintillator foil 

and the Csi(Tl) crystal was collected by the same photomultiplier tube. The light 

emission of the scintillator foil was much faster than that of the Csi(Tl) crystal, so 

that most of the plastic signal was collected before the slower Csi(Tl) signal became 

dominant [Gutb 89]. This large difference between the time characteristics of the 

two scintillators suggested that the plastic and the Csi(Tl) signals associated with an 

incident particle could be obtained by using different time gates as shown in Figure 

3.6. The "Fast" component (0-40 ns) was mainly contributed by the thin scintillator 

foil. The "Slow" and "Tail" components due to the Csi(Tl) crystal had typical ranges 

of 400 ns and 2 ps respectively. Two components were obtained for Csi(Tl) since the 

resulting signal could be approximated as the sum of two exponential decays [Helt 87]. 
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The relative intensities of the two parts were dependent upon the rate of energy loss 

of the incident particle. As a result, the "Fast-Slow" combination provided !lE and 

E signals for intermediate mass fragments (3 :S Z :S 20), while the "Slow-Tail" 

combination gave !lE and E signals for light charged particles (Z :S 2) as long as 

their energies did not go above the "punch through" energy at E /A = 75 MeV. 

In this experiment, a simple and compact light pulser system was installed 

at each ring to monitor gain drifts of the photomultiplier tubes. This light pulser 

system operated in vacuum was triggered by an external NIM logic signal at a rate 

of about 1 Hz. The gain variations were corrected in the off-line analysis according 

to information obtained by the light pulser system. Gain stability to better than 1% 

was achieved when the temperature of the Csi(Tl) crystals was kept constant. 

3.1.3 LBL Si-Si-Pl Array 

The LBL Array, consisted of 16 Si-Si(Li)-Plastic telescopes with a total 

geometrical efficiency of 64%, was used to detect charged particles at very forward 

angles, from 2° to 16°. In this configuration, two 3 x 3 arrays were placed one 

behind the other, and the array (downstream) farthest from the target subtended 

the central opening in the closer array (upstream). To be more precise, the distance 

from the target to the upstream and downstream arrays were 35.0 em and 97.1 em, 

and their angular coverage with respect to the beam axis were 5° - 16° and 2° - 5°, 

respectively. This forward angular coverage thus allowed the detection of very heavy 

reaction products that were emitted at small angles with near beam velocities. The 

array with good segmentation was also efficient to detect several complex fragments 

in coincidence. 

The individual components of a telescope are shown in an exploded view 

m Figure 3.7. A square geometry was chosen f'?r the detectors to facilitate close 
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Figure 3.7: Exploded view of the Si-Si(Li)-Pl Array telescope showing the compo­

nents of the detector packages. 
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packaging of adjacent telescopes. Each telescope consisted of a 300 pm .and a 5 mm 

thick silicon detector followed by a 7.6 em thick plastic scintillator. Such a three 

element telescope has a large dynamic range to measure the energy, position and 

charge of reaction products from protons up to the projectile charge. In particular, 

the three detectors were employed in two successive D..E- E telescopes with the 5 

mm silicon detector common to both telescopes. The first and second detectors were 

used to identify fragments with Z ;::: 4, and the.second and third detectors to identify 

fragments with Z < 4. Representative detection thresholds for fragments of Z = 2, 
; 

8, 20, and 54 were approximately 6, 13, 21, and 27 MeV /nucleon respectively. 

The 300 pm detector is an oxide passivated diffused junction n+p diode 

fabricated from 5000 !1-cm p-type silicon. The 5 mm detector is a lithium-drifted 

silicon diode, Si(Li), fabricated from 1000 !1-cm p-type silicon. The front faces of the 

silicon detectors are 50.8 x 50.8 mm2 squares, and have active areas of 44.8 x 44.8 

mm2
. Both of these detectors were fabricated by the Silicon Detector Laboratory 

at Lawrence Berkeley Laboratory. The 300 pm detectors were reversed biased with 

voltages ranging from + 70 to + 150 V, and the 5 mm detectors were biased with +600 

V. The 7.6 em plastic scintillator purchased from Bicron (Model BC-400) has a high 

light output and good light transmission properties. The entrance window (52.1 x 

52.1 mm2
) was made light tight by evaporating a very thin layer of aluminum on 

it. An RCA model 2060 photomultiplier tube (PMT) with a ten stage dynode was 

coupled to each plastic scintillator, and was operated with +600 to +800 V. 

3.1.4 Data Acquisition Electronics 

Figure 3.8 shows a simplified electronic scheme for the multidetector system 

coupling the MSU Miniball Array and the LBL Si-Si(Li)-Pl Array. In this experi-

ment, the two arrays ran as independent devices, and an event was taken when there 
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Figure 3.8 : Schematic electronic diagram for the multidetector system coupling the 

LBL Si-Si(Li)-Pl Array and the MSU Miniball Array. 
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was either a LBL event trigger or a MSU event trigger. The LBL trigger required at 

least one fragment ( Z > 2) being detected, while a multiplicity of charged particles 

(Z;:::: 1) above a set threshold was required for the MSU trigger. When a valid event 

trigger was received, the ADCs, TDCs and FERAs corresponding to the channels with 

set bits were read out. The event trigger was vetoed by the computer deadtime. The 

signals from both the MSU Miniball and LBL Array were written event-by-event on 

magnetic tapes for off-line analysis and to disk for on-line monitoring by a dedicated 

computer. 

3.1.4.1 MSU Miniball Array 

The anode current from a photomultiplier is split via passive splitters into 

the "fast", "slow", "tail", and "logic" branches. The slow and tail signals are con-

nected directly from the splitter to their respective fast encoding readou~ analog-to­

digital converters (FERAs ). The gates shown in Figure 3.6 for the "slow" and "tail" 

FERAs are 400 ns and 2 Jl-S wide and open 200 ns and 2 Jl-S after the leading edge 

of the linear signal, respectively. In order to gate individual "fast" channel, a linear 

gate is inserted between the passive splitter and the "fast" FERA. This linear gate . 
is opened 5 ns prior to the leading edge of the linear signal and for a duration of 

35 ns. The "fast" FERA is gated by a common gate of 100 ns width which begins 

approximately 35 ns prior to the leading edge of the linear input signal. 

The "logic" signal is reamplified by a fast amplifier and fed into a leading 

edge discriminator module. One output is then used to provide the stop signal for the 

time-to-FERA converter and another opens the linear gate for the "fast" channel. 

The sum output for the 16 channels of each discriminator module is proportional to 

the number of channels that have been triggered. By setting a discriminator level on 

the linear addition of all discriminator sum outputs, a simple multiplicity trigger is 
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obtained. 

3.1.4.2 LBL Si-Si-Pl Array 

Each fired detector sets a bit in a bit register and stops a time-to-digital 

converter (TDC). The timing of the telescopes is limited by the 5 mm Si(Li) detector 

signal which has a slow risetime. In addition, the signal risetime has a strong position 

dependence due to the substantial resisitive layer on the detector. Energy signals from 

the two silicon detectors of each telescope are sent to peak-sensitive analog-to-digital 

converters (ADCs). To improve the energy measurement and particle identification 

of relatively light fragments, a high-gain signal from each silicon detector is also sent 

to a peak-sensitive ADC. The high-gain signals are obtained by post amplifying the 

linear output of the shaping amplifier by an additional factor of 10 to 40. The plastic 

signal which is essential for the identification of energetic light charged particles is 

sent to a charge-to-digital converter (QDC). 

To trigger the LBL Array, a coincidence between the 300 J-tm Si and the 5 mm 

Si(Li) detector signals of any of the array telescopes is required. Constant fraction 

discriminators on the 300 J-tm detectors are set to exclude particles with Z < 3. 

Therefore, these light charged particles with sizable signals on the 5 mm Si(Li) and 

the plastic detectors are not taken unless accompanied by a heavier fragment. In fact, 

a fast clear is employed to reject these uninterested events that only trigger a plastic 

detector. 

3.2 Calibrations 

The raw energy and position signals collected during the experiment must 

be converted to physical units such as MeV, f) and ¢>in the laboratory frame. This 
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conversion must be calibrated with reference points of known energy and position. 

In practice, this was done by measuring the position of each detector with respect to 

the center of the target and by exposing the detectors to calibration beams of known 

energy and charge. The calibration techniques used to extract positions, energies and 

particle identifications are described in the following section. 

3.2.1 Position Calibration and Resolution 

For the MSU Miniball Array, the position of a detected particle was given by 

the coordinate corresponding to the center of th~ fired detector. Hence the laboratory 

angles () and <P of an incident particle were extracted readily from the geometry of 

the Array and the configuration of the detectors. On the other hand, the position 

information of a particle that hit a LBL telescope was obtained from the position 

sensitive (one dimension) silicon detectors by the method of resistive charge division. 

The front side of each silicon detector was divided into 15 high conductivity Au 

strips of 2.42 mm and 14 high resistivity gaps of 0.607 mm. Electrons created by 

the passage of a charged particle through the detector were then collected at a Au 

ohmic contact ( n + contact) on the back face of the detector. This signal essentially 

measured the deposited energy (E) of the incident particle. The holes collected on 

the front through the resistor-divider p contact gave a signal X E proportional to the 

position. In particular, the side of the front face that was closer to the beam was 

terminated to ground through a 50 n resistor, and the position X of the incident 

particle was simply proportional to the hole signal divided by the electron signal (i.e. 

X ex: XE/ E). In this experiment, the strips of the 300 J-lm detector were arranged 

orthogonally to the strips of the 5 mm detector within each telescope so that both X 

and Y position signals were obtained for each detected particle. 

Density plots of the raw position signals (X .6..E, Y E) versus the correspond-
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Raw Position Signals 
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Figure 3.9: Raw position spectra for a 300 Jlffi Si detector (top) and a 5 mm Si(Li) 

· detector (bottom) in the 129Xe + natcu reaction at EjA = 60 MeV. The Xtl.E andY E 

position signals (holes) are plotted versus the tl.E and E energy signals (electrons)­

The 15 diagonal lines that are well separated correspond to the 15 discrete position 

elements of the devices. 
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ing energy signals (D..E, E) are shown in Figure 3.9 for a 300 pm D..E detector and a 

5 mm E detector. Lines associated with the 15 discrete Au strips are clearly visible. 

Following the method outlined by Kaufman et al. [Kauf 70], X and Y positions can 

be determined from the ratios: 

with 

X,Y 

Y= YE-Po 
E-Eo' 

horizontal and vertical distances from the grounded end of detectors 

raw position signals for the 300 pm and 5 mm detectors 

raw energy signals for the 300 pm and 5 mm detectors 

electronic base-line offsets (pedestals). 

Therefore, the lowest line in both panels of Figure 3.9 corresponds to the strip farthest 

away from the signal contact and vice versa. The resulting spectra of X and Y 

positions are shown in Figure 3.10. The position of each peak is given by the center 

position of the associated Au. strip. In other words, these silicon detectors are self-

calibrating in position, and no special runs are required for the position calibration. 

Since the total width of a strip and a gap is (2.42 + 0.607)mm, the theoretical position 

resolution of these silicon detectors is ± 1.5 mm or 0.1°. 

3.2.2 Energy Calibration and Resolution 

The MSU Miniball Array had been extensively calibrated in an earlier ex­

periment [Kim 92]. In this previous run, the energy calibration of the Miniball de-

tectors was obtained by measuring the elastic scattering of several light ion beams 

(2::; Z::; 18) from a 197 Au target at relatively low incident energies (E/A::; 20 MeV). 

In these calibrations, the following functional form was assumed for the energy (Ecsi) 
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Calibrated Positions 
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Figure 3.10 : The calibrated X (top) and Y (bottom) positions are shown for one 

of the LBL Si-Si(Li)-Pl telescopes in the 129Xe + natcu reaction atE/A= 60 MeV. 

Each peak corresponds to a different strip on the detector. The position is expressed 

as the distance, in mm, from the center of the detector. 
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dependence of the light output (L) measured in QDC channel numbers ( CQDC): 

The values of a, /3 and 1 were extracted as a function of Z, and the energy calibration 

was estimated to be accurate within 5%. In this experiment, the energy calibration 

was obtained by scaling the previous calibration [Kim 92] for every phoswich detector. 

The scaling constant was simply the ratio between the corresponding hydrogen punch-

through points of a given detector in the two experiments: 

Co C CHPT 
QDC = QDC ' -C · 

HPT 
(3.1) 

Here CHPT and CHPT are the hydrogen punch-through points of a given detector in 

the previous calibration run and in this experiment, respectively. The light output 

measured in this experiment ( CQDC) was first converted to CQDC using Equation 3.1. 

Then the parameters a, /3 and 1 determined in the previous calibration were used to 

give the desired relationship between the light output ( CQDC) and the energy (Ecsi ): 

CQDC = 1Ecsi + /3 ( e-aEcsi- 1). 

This procedure was checked for a subset of 8 Miniball detectors that were calibrated 

by sweeping the qjm = 1/6 light ion beams (180+3 , 12C+2 , 4HeD+, 6Li+) across their 

surface. For this limited subset of detectors, satisfactory agreement with the existing 

calibration was found. 

The energy calibration of the LBL silicon detectors was performed by di­

rectly exposing the silicon detectors to low intensity calibration beams of different 

energies and masses. The intensity of the calibration beams was kept at less than 100 

particles/second in order to minimize radiation damage to the silicon detectors. As 

mentioned in section 3.1.1, multiple beams with ions of the same charge-to-mass ratio 
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(q/m) were used to reduce the calibration time. An example of a triplet beam that was 

used in the calibration consisted of 129Xe+30, 86Kr+20 and 43Ca+1° ions (q/m = 0.233). 

These ions were stopped directly in a 5 mm Si(Li) detector without the 300 pm Si 

detector in front. Figure 3.1la shows the corresponding energy spectrum, in which 

the energy is expressed in units of ADC channel numbers (Echannei)· 

Since a 5 mm Si(Li) detector is sufficiently thick to stop the incident ions 

of the calibration beams, the channel numbers of the three peaks in Figure 3.1la 

correspond to the measured energies of 129Xe, 86Kr and 43Ca ions. The measured 

energy Em in MeV is less than the true beam energy Etrue due to the pulse-height­

defect Ephd (i.e. Em = Etrue- Ephd)· Correction was made for this pulse-height-defect 

in the 5 mm Si(Li) detectors based on the systematics of Moulton et al. [Moul 78]. 

A simple power-law formula given in reference [Moul 78] was used to calculate the 

energy loss due to the pulse-height-defect as a function of Em and Z of the ion. The 

contributed uncertainity in the energy due to this procedure was estimated to be less 

than 1% of the total energy. The measured energy Em was then plotted as a function 

of the averaged Echannel for the corresponding ions. The best linear fit through the 

points gave the desired relation between the deposited energy in MeV and the ADC 

channel number: 

Em(MeV) =a+ b · Echannel· (3.2) 

An example of a raw ADC energy spectrum for the above triplet calibration 

beam in a 300 pm Si detector is shown in Figure 3.11 b. Again the channel numbers of 

the three peaks correspond to the measured energies deposited by 129Xe+30, 86Kr+20 

and 43Ca+1° ions in a 300 pm Si detector. This deposited energy D.Em in MeV was 

determined from the measured energy difference in a 5 mm Si(Li) detector with and 

without a 300 pm detector in front. Similarly, the energy D.Em (MeV) for each ion 
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Calibration Beams 

a) E 
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Channel Number 

Figure 3.11 : Energy spectrum of a) 5 mm and b) 300 J-tm silicon detector exposed 

to a triplet beam of 129Xe, 86Kr and 43Ca ions. These three ions with the same 

charge-to-mass ratio (qjm = 0.233) were simultaneously accelerated to EjA = 60 

MeV. 
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was plotted versus the mean value flEchannel of the corresponding peak, and the 

best linear fit through the points gave the desired relation between flEm (MeV) and 

.D.Echannel· Since the puls~height-defect was thought to be primarily an end-of­

range effect, no correction was applied to the 300 p,m detectors in which the incident 

fragments were not stopped. However, the peaks in some of the energy ( ADC) spectra 

for the 300 p,m Si detectors were not sharp due to the thickness nonuniformity of these 

detectors. The variations in thickness were 2- 10% and $ 2% for the 300 p,m and 5 

mm silicon detectors respectively. A correction for the nonuniformity was performed 

by scanning the surface of each silicon detector with the calibration beams along two 

perpendicular axes. 

After the energy calibration for the silicon detectors was finished, scattering 

of molecular beams eHeH+ and H2D+) from a 197 Au target at relatively high incident 

energies ( E j A = 40 and 60 MeV) was used to provide some calibration points for the 

plastic detectors behind the silicon detectors. Since the 300 p,m silicon detectors had 

been removed, the energy deposited in a plastic scintillator was simply the difference 

between the incident energy and the energy loss in the 5 mm Si(Li) detector. The 

5 mm Si(Li) detectors had been calibrated and thus the corresponding energy loss 

could be calculated readily. In order to produce calibration points at lower energies, 

degraded beams were generated by placing aluminum foils of thickness ranged from 

0.015 to 0.15 inch at the target positions. 

Finally, the 5 mm Si(Li) detectors were removed and the plastic detectors 

were calibrated with the light ion beams of 180+3 , 12C+2 , 4 HeD+, and 6 Li+ at low 

intensities. These calibration beams atE/A= 22 MeV had also been used to calibrate 

the Miniball detectors. Similarly, the measurement of the light output was extended 

to lower energies by means of aluminum degraders. In practice, the degraded beams 

were first stopped by a well calibrated 5 mm Si(Li) detector in order to determine 
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their energies accurately. 

Like other scintillators, the light output from the plastic detectors exhibits a 

strong dependence on the atomic number and energy of the detected ion. Therefore, 

the functional form that was used to fit the response function of the Miniball Csl(Tl) 

crystals was assumed for the light output of the plastic scintillators: 

(3.3) 

Figure 3.12a shows the measured light output, in QDC channel numbers, as a function 

of energy (Ep1) for a set of representative ions from 2 D to 12C. The symbols that 

represent the experimental data agree very well with the curves obtained from the 

least square fits with the above functional form for the light output. The parameters 

a, (3 and 1 extracted from these fits were found to be functions of mass and charge 

of an incident ion. In fact, empirical expressions were given for the parameters a, f3 

and 1 in terms of Z and A: 

Ps 
a --

A·Z 

(3 (P3 ·A· Z) + P4 

pl 
I A· z +P2. 

Here P1 to P5 are the fitting parameters that reflect the different properties of in­

dividual scintillators. This charge and mass dependence of the response function 

essentially says that the deposited energy cannot be determined unless the incident 

particle is identified. This coupling between Z and Ep1 in the light output is a major 

drawback for the scintillator detectors. 

For each fragment detected by the LBL telescopes, small corrections were 

further applied using range energy tables for the energy losses in the target and in 

the 1.5 mg/cm2 Au foils that were used for electron suppression. The overall energy 
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Figure 3.12 : (a) Light output of a Plastic Scintillator as a function of energy for 

some representative ions. The solid curves are the results of fits with Equation 3.3. 

(b) Particle identification obtained from two-dimensional density plot of E (Plastic) 

vs !:iE (5 mm Si) signals for one of the LBL Si-Si(Li)-Pl telescopes in the 129Xe + 
natcu reaction atE/A= 60 MeV. 
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calibration was estimated to be accurate to approximately 1%. 

3.2.3 Particle Identification and Resolution 

The Z identification of a fragment detected by a D..E - E telescope is often 

achieved based on the expression of the classical Bohr equation [Bohr 48] for the 

energy loss of a charged particle in a medium. The Bohr equation predicts that the 

amount of energy lost (dE) by a particle after travelling a small distance ( dX) in 

some medium depends on the charge ( Z) and the velocity ( v) of the particle: 

dE Z2 MZ2 Z3 

- dX ex: ~ ex ~ ex: £· (3.4) 

Under the assumption that mass (M) is proportional to Z, this energy loss is shown 

to be inversely proportional to the total energy of the particle (E). For a thin D.E 

transmission detector, the deposited energy D.E can be equated to ~~. Consequently, 

the product D.E · E ex: Z3 becomes a hyperbola with a Z dependence. 

For the LBL Array, the 300 pm and 5 mm silicon detectors were used as 

D.E transmission and E stopping detectors respectively. The raw D.E and E signals 

were first converted to energy units in MeV with the procedures described above, and 

the total energy E was then calculated from their sum. The correlation between the 

total energy E and the energy lost in the transmission detector D.E is shown as a 

density plot in Figure 3.13. Clearly, an intensity pattern of alternating valleys and 

ridges is observed. According to Equation 3.4, each ridge corresponds to an element 

that essentially defines a "Z" line, and thus can be used to extract the atomic charge 

of the detected fragments. 

In practice, the curved ridges in the D.E - E plots were transformed to 

straight "Z" lines by constructing a Particle Identification function defined as : 

PID = [(D.E +a). (E + b)] 1
/

3
, (3.5) 
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Figure 3.13 : Density plot of E (total energy) versus !::::..E (energy loss in the 300 

pm Si) for one of the LBL Si-Si(Li)-Pl telescopes in the 129Xe + natcu reaction at 

E lA = 60 MeV. The individual ridge lines correspond to different elements. 

Figure 3.14 : Particle identification obtained from two-dimensional "tail vs slow·· 

and "fast vs slow" plots for one of the MSU Miniball detector in the 129Xe + natcu 

reaction at E lA = 60 MeV 
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where a and b were parameters chosen by trial and error in order to minimize the 

curvature of the "Z" lines. The "Z" lines for the above calibration beams were also 

constructed and used as reference points to check the atomic numbers assigned for 

individual "Z" lines. Finally, the mean PI D value of each "Z" line was fit as a 

function of Z in order to extract the desired relation between PI D and Z. Figure 

3.15a shows the extracted atomic numbers for one of the most forward LBL detector 

near the beam. Individual peaks corresponding to atomic number up to the projectile 

charge ( Z = 54) are visible. 

For light fragments that punched through the 5 mm silicon detectors and 

stopped in the plastic scintillators, their energy losses in the 300 pm silicon detectors 

were negligible. In this case, the 5 mm detector was used as the transmission detector 

and the plastic detector was the stopping detector. To identify the atomic number 

of these energetic light fragments, D.E - E plots were constructed by utilizing the 

high-gain signal from the 5 mm detector and the plastic signal as shown in Figure 

3.12b for a LBL telescope. However PI D functions were not constructed since the 

energy E deposited in a plastic scintillator could not be extracted from the light 

output unless the particle was identified. Alternatively, free form gates around each 

of the "Z" lines in the D.E- E maps were drawn to improve the Z resolution of light 

fragments. 

Like the plastic scintillators, the MSU Csi crystals are also limited by the 

Z dependence of their light outputs. Therefore, the standard method to draw free 

form gates around each of the "Z" lines in the D.E- E plots was used. Figure 3.14 

shows a typical two-dimensional slow-fast and slow-tail density plots for the Miniball 

detector. The slow-fast signals were used to identify fragments with Z ~ 2, while 

the slow-tail signals were used to identify light charged particles and their isotopes. 

Clearly, good isotope resolution is achieved for Hydrogen and Helium. However, the 
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Figure 3.15 : Particle identificatio~ spectra for a LBL Si-Si(Li)-Pl telescope (a) 

and a MSU Mini ball detector (b) in the 129Xe + natcu reaction at E j A = 60 MeV. 

Individual atomic numbers are resolved up to the projectile (Z = 54) for a LBL 

detector near the beam. 
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extrapolation of particle identification beyond the region in which the lines are visible 

is not very accurate. Figure 3.15b shows the charge resolution for Z up to 20 for a 

typical Miniball detector. 

Naturally, masses for light charged particles were obtained from their isotope 

resolutions. However, an average mass associated with each Z must be determined 

for heavier fragments. The evaporation code PACE had been used to estimate the 

secondary masses following sequential evaporation of light particles from the excited 

primary fragments [Char 88a]. The average mass for each Z determined from the 

PACE simulations (A = 2.08Z + 0.0029Z2 ) was used in this analysis. This mass 

parameterization was found to agree with average masses determined experimentally 

[Auge 87]. 
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Chapter 4 

Excitation Functions 

In this chapter, the excitation functions for multiple emission of fragments 

are presented for the 129Xe-induced reactions on natcu, 89Y, 165Ho and 197 Au targets 

at bombarding energies of E/A = 40 and 60 MeV. The excitation energy of the 

system is measured by the transverse energy introduced in section 4.1. In section 4.2, 

the multifragment emission probabilities as a function of transverse energy for the 

reaction 129Xe + 197 Au at both bombarding energies are shown to be binomial and 

reducible to an elementary binary decay probability that has a thermal dependence. 

The physical interpretation and significance of this thermal reducibility is explored 

in sections 4.3 and 4.4. The technical issue concerning the auto-correlation between 

the measured transverse energy and the observed fragment multiplicity is addressed 

in section 4.5, and the effects of the finite detection efficiency on the extraction of 

various binomial parameters are studied in section 4.6. Finally, the results for the 

129Xe-induced reactions on other targets are compared and presented in section 4.7. 
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4.1 Transverse Energy 

In the last several years, experimental studies have succeeded in isolating and 

characterizing what appear to be true multifragmentation sources formed in reverse 

kinematics intermediate energy heavy-ion reactions [Blum 91, More 93a, Rous 93]. In 

these experiments, the probability of emitting n fragments was studied as a function 

of excitation energy, which was determined kinematically from the parallel source 

velocity assuming an incomplete fusion picture [More 86, Bowm 89, Guer 89]. In these 

reverse kinematics reactions, the large velocity of the source dramatically increases 

the laboratory velocity of all fragments emitted in the source frame. This gives rise 

to a strong forward focusing of the reaction products, thus eliminating the need of a 

47r detection system. However, such a 47r detector becomes essential for the 129Xe-

induced reactions on various targets ranging from reverse to normal kinematics. In 

normal kinematics, the forward focusing effect is relatively weak because of the small 

source velocity. A complete angular coverage is then necessary in order to detect 

all emitted fragments. In this study of 129Xe-induced reactions, the MSU Miniball 

[deSo 90] was coupled with the LBL Array [Keho 92] to provide a large phase space 

coverage for fragments as well as light charged particles. 

In order to measure the excitation energy, the transverse energy is calculated 

for each event. The transverse energy Et is defined as the sum of the kinetic energies 

E, weighted by the sine squared of the detected polar angle() for all charged particles 

in an event: 

Nc 

Et = L Eisin2()i· (4.1) 

The kinetic energy Ei of a detected particle can be expressed in terms of its mass and 
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velocity, Ei = ! Mi ~2 , and the above equation for Et becomes . 

(4.2) 

where Vi is the velocity of the ith particle and l;£Y is the corresponding y-component 

of the velocity. This expression for Et shows no dependence on the x-component of 

the velocity (~x) indicating that the transverse energy is invariant with respect to the 

Galilean transformation from the laboratory to the center-of-mass frame. In other 

words, the transverse energy measured in the laboratory frame is essentially equal to 

the transverse energy in the center-of-mass frame. 

A question naturally arises whether the transverse energy Et is proportional 

to the excitation energy E*. For the sake of illustration, consider a· simple thermal 

model where the excitation energy is evenly distributed among the charged particles 

(i.e. Ei = E* j Nc), and the angular distribution of the particles is isotropic. Under 

these conditions, the average transverse energy for events of a fixed excitation energy 

can be shown to be proportional to the excitation energy, 

(4.3) 

An example of the Et spectra for the 129Xe-induced reactions on four tar-

gets at a bombarding energy of E/A = 40 MeV is shownin Figure 4.1. The dramatic 

decrease in the number of events with increasing Et is consistent with the decrease 

of the geometric reaction cross section from the most peripheral collisions (low exci-

tation energy) to the most central collisions (high excitation energy). For the sake of 

comparison, an upper limit of the measured Et is chosen to exclude 0.1% of the total 

integrated yield at the tail of the Et distribution. The observed target dependence 

in the end points of these Et distributions suggests a correlation between this upper 

limit of the measured Et and the available energy in the center-of-mass frame Ecm. A 
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Figure 4.1 : Transverse energy Et distributions observed for the 129Xe-induced 

reactions on natcu, 89Y, 165Ho and 197Au targets at a bombarding energy of E/A = 
40 MeV. 
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linear correlation between Ecm and Et is indeed observed in Figure 4.2 for the 129Xe­

induced reactions on four different targets and at two bombarding energies. This is 

consistent with the assumption that the transverse energy is proportional to the exci­

tation energy [Boug 94] . A similar correlation between the transverse energy and the 

excitation energy E* is assumed in the following analysis: Et = K ( Ebeam, Ap, Ar )E*. 

Here K is the proportionality constant that depends on the bombarding energy Ebeam, 

the mass of the projectile Ap and the mass of the target Ar. 

As mentioned earlier, the excitation energy can be determined kinematically 

from the source velocity in an incomplete fusion picture [More 86, Bowm 89, Guer 89]. 

In reverse kinematics reactions, the excitation energy E* is related to the parallel 

source velocity Vs by 

E* = Ebeam (1- T/'Vs ) , 
Ybeam 

( 4.4) 

where Vbeam is the beam velocity. Figure 4.3 shows the correlation between this 

calculated excitation energy and the measured transverse energy for the reaction 

129Xe + natcu at bombarding energies of E/A = 40 and 60 MeV. The observed 

linear correlation further justifies the assumption that the transverse energy is linearly 

related to the excitation energy. 

There are some advantages to use the transverse energy instead of the source 

velocity as a measure of the excitation energy. One advantage is the additional zero­

fold and one-fold probabilities in the excitation functions. Since at least two IMFs 

must be detected in· a given event for the construction of the source velocity, zero-fold 

and one-fold events must be discarded if the excitation energy is inferred from the 

parallel source velocity. Moreover, the distribution of the constructed source veloc-

ities might. be broadened considerably by contaminations from the pre-equilibrium 

emission of light charged particles. Even if this contamination can be minimized by 
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Figure 4.2 : The available energy in the center-of-mass frame Ecm as a function of 

the upper limit of Et for the 129Xe-induced reactions on four different targets (natcu, 
89Y, 165Ho, 197 Au) at bombarding energies of E/A = 40 MeV (open symbols) and 60 

MeV (solid symbols). The line is a linear fit to the data. 
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The excitation energy for the reaction 129Xe + natcu at EJA = 40 and 60 MeV is 

calculated from the parallel source velocity according to Equation 4.4. 
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excluding light charged particles in the source construction, contamination associated 

with the spectator nuclei may not be neglected. The target remnant nucleus is of­

ten a minor problem because it is usually not detected due to its slow speed. On 

the other hand, the fast massive projectile spectator is easily detected and severely 

con~aminates the resulting source velocity. Since these contaminations are dominant 

at forward angles, their contributions to the transverse energy are significantly sup­

pressed by the factor sin20. 

4.2 Binomial Reducibility and Thermal Scaling of multi-

fragment Emission Probability 

The probability Pn of emitting n intermediate mass fragments (IMF: 3 ~ 

Z ~ 20) was measured as a function of transverse energy Et for the reaction 129Xe + 
197 Au at bombarding energies of E/A = 40 and 60 MeV. Pn is defined as: 

_ N(n) 
Pn=L,N(n)' ( 4.5) 

where N(n) is the number of events with n IMFs. The excitation functions (Pn versus 

Et) for both energies are plotted in Figure 4.4 from n = 0 -10. At both bombarding 

energies, the value of n that corresponds to the most probable n-fold event at a given 

Et increases with Et. This suggests that the average fragment multiplicity increases 

smoothly and substantially with Et. 

An interesting result is obtaine? when the natural logarithm of the probabil­

ity for n-fragment emission is plotted as a function of 1/ VJh in Figure 4.5. A linear 

dependence on 1/ VJh is observed for the 3-, 4-, 5- and 6-fold normalized probabil­

ities. Since nuclear temperature T is proportional to v'JF in the Fermi gas model, 

this observed linearity indicates a statistical energy dependence of the n-fragment 
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Figure 4.4 : The probability Pn to emit n intermediate mass fragments (IMF : 3 

:=:; Z :::; 20) as a function of Et for the reaction 129Xe + 197 Au at bombarding energies 

of E /A = 40 MeV (top panel) and 60 MeV (bottom panel). 
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Figure 4.5 : The natural logarithm of the ratio of the 2, 3, 4, 5 and 6-fold to the 

2-fold probability (symbols) as a function of Et - 112 for the reaction 129Xe + 197 Au 

at bombarding energies of E/A = 40 MeV (top panel) and 60 MeV (bottom panel). 

The lines are linear fits to the data. 
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emission probabilities under the assumption that Et ex E*: 

( 4.6) 

Accordingly, the slopes in Figure 4.5 are proportional to the average n-fragment decay 

barriers Bn· Although the extracted slopes are not comparable with barriers since an 

absolute scale for the excitation energy is not yet available, the fact that they become 

steeper with increasing values of n further reinforces the above statistical interpreta­

tion. The barrier Bn can be considered as the "potential energy" of then-fragment 

configuration in a prompt multifragmentation picture. The same energy dependence 

can also be derived for a sequential decay, in which the system undergoes successive 

binary decays with barriers b1 , b2 , b3 , ... , bn. In this case, Bn is simply the sum of the 

one-fragment emission barriers, Bn = b1 + bz + b3 + ... + bn under the assumption 

that the temperature is nearly constant at all stages of emission. Therefore, this ap-

proach cannot conclude whether the statistical multifragment emission is sequential 

or simultaneous. 

Another relevant question that remains unanswered is the fundamental issue 

of reducibility: can multifragmentation be reduced to a combination of independent 

emissions of fragments? More specifically, can the probability for the emission of n 

fragments be reduced to the emission probability of just one fragment? A system 

which emits "inert" fragments independently with constant probability pis a simple 

scenario that is consistent with this reducibility. The probability P:;: of emitting n 

fragments in m independent tries is given by the binomial distribution: 

(4.7) 

The average multiplicity is then 

(n) = mp, (4.8) 
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and the corresponding variance is 

u2 = (n)(1 - p). ( 4.9) 

To verify whether the excitation functions (Figure 4.4) follow the above binomial 

distribution, the values of p and m have been extracted from the experimental values 

of the mean and variance: 

and 

(n) 
m= 2 

1- .L 
(n) 

( 4.10) 

( 4.11) 

The extracted values of m and p are plotted as a function of transverse en­

ergy in Figure 4.6 for the reaction 129Xe.+ 197 Au at both bombarding energies. These 

values of p and m are then used in the binomial distribution (Equation 4. 7) to calcu-

late the corresponding excitation functions. Figure 4. 7 shows an excellent agreement 

between the experimental n-fragment emission probabilities (symbols) and the bino­

mial calculations (curves) for values of n up to 10 at both bombarding energies. This 

extraordinary quantitative agreement between the calculations and the experimental 

data over the entire range of measured Et confirms the binomiality of the probability 

Pn and its reducibility to an elementary binary decay probability p. 

In a statistical decay, the probability p for the emission of a single fragment 

is connected with the corresponding partial decay width. The partial decay width 

associated with a given channel is approximated by 

( 4.12) 

where W 0 is a frequency characteristic of the channel under consideration, B is the 

barrier associated with the channel, and T is the temperature. For instance, in fission 

w0 is the collective frequency of assault on the barrier ("' beta vibration frequency) 
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Figure 4.6 : The extracted values of m = <J)~:2 and p = 1 - (:) as a function of 
Et for the reaction 129Xe + 197 Au at bombarding energies of E /A = 40 MeV (open 

symbols) and 60 MeV (solid symbols). 
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Figure 4. 7 : A comparison between the experimental probability (symbols) and 

the calculated probability (solid lines) to emit n intermediate mass fragments as a 

function of Et for the reaction 129Xe + 197 Au at bombarding energies of E /A = 40 

MeV (upper panel) and 60 MeV (bottom panel). For number of fragments n = 0-10, 

Pn is calculated assuming a binomial distribution (see Equation 4.7) with the values 

of p and m shown in Figure 4.6. 
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and B is the fission barrier. The elementary probability p for a binary decay to occur 

at any given "try" defined by the channel period 7 0 = 1/wo is: 

(4.13) 

This expected thermal nature is shown in Figure 4.6 where the extracted 
I 

. values of p increase rapidly as a function of Et until they gradually saturate at values 

of 0.43 and 0.51 for E I A = 40 and 60 MeV respectively. To make the temperature 

dependence of this elementary binary decay probability more apparent, the natural 

logarithm of 1 I p is plotted as a function of 1 I .J]I; in Figure 4.8 (Arrhenius plot). 

At both bombarding energies, the values of 1lp (symbols) collapse remarkably well 

onto the solid lines that are linear fits to the data. The linearity of this plot strongly 

indicates a "thermal" nature of p of the form e-B/T over the entire range of measured 

Et. In addition, the difference in the extracted slopes for the two bombarding energies 

suggests an energy dependent proportionality constant between Et and E*. 

Concerning the linearity of the above Arrhenius plots, our eyes may be 

mostly impressed by the tail of the data points at low transverse energy, but the data 

points at high transverse energy agree with the fit very well as shown in Figure 4.9. 

In fact, the fitting procedure unlike our eyes is dominated by the large amount of 

data available at high transverse energy. The good agreement between the fits and 

the data shown in the above Arrhenius plots clearly demonstrates the linearity over 

the entire measured Et range. 

The value of p can also be extracted "differentially" from any two consecutive 

excitation functions Pn, Pn+I as given below: 

1 pm m-n 
- = _n_ + 1. 
p P;:+1 n + 1 

(4.14) 

The values of p obtained "differentially" using Equation 4.14 are compared with those 

calculated "integrally" from (n) and u2 of the IMF multiplicity distributions. Figure 
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Figure 4.8 : The reciprocal of the binary decay probability 1/p as a function of 

Et - 112 (Arrhenius plot) for the reaction 129Xe + 197 Au at bombarding energies of 

E /A = 40 MeV (open symbols) and 60 MeV (solid symbols). The solid lines are 

linear fits to the data. 
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Figure 4.9 : The extracted values of 1/p as a function of Et -l/2 for the reaction 
129Xe + 197 Au at bombarding energy of E/A = 40 MeV. The data with Et less than 

700 MeV are not shown. The solid line is a linear fit to the data shown in Figure 4.8. 
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4.10 shows the differentially determined values of pup to n = 4 collapse onto the fits 

(lines) of Figure 4.8 for bombarding energies at E/A = 40 and 60 MeV. For n > 4 

(data not shown), good agreement is observed at high transverse energy ( Et > 400 

MeV) although scattering about the fitted line occurs at low transverse energy due 

to poor statistics. 

These two methods are not independent since the value of m needed for 

the "differential" derivation (Equation 4.14) must first be calculated from (n) and u 2 

using Equation 4.10. However, there is an independent method (neither (n) nor u 2 is 

used) for the extraction of p and m from any three consecutive excitation functions 

Pn, Pn+l, and Pn+2· In this approach, an equation similar to (4.14) can be constructed 

from the excitation functions Pn+l and Pn+2: 

1 P~1 m- n -1 - +1. 
p P;(+2 n + 2 

(4.15) 

By solving the two simultaneous equations ( 4.14 and 4.15), solutions for the two 

variables m and p are obtained: 

(4.16) 

and 

1 PnPn+l 
p (n + 1)(Pn+I)2 - (n + 2)PnPn+2. 

( 4.17) 

To minimize the statistical uncertainty associated with this approach, the value of n 

is taken to be the most probable n-fold event at a given transverse energy. Figure 

4.11 shows that the extracted values of p (symbols) for both bombarding energies at 

E /A = 40 and 60 MeV agree reasonably well with those obtained integrally (line) 

over the entire range of the measured Et. 

The observed agreement between three different methods for the extraction 

of p confirms: 1) The probability Pn of producing n fragments in a multifragmentation 
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Figure 4.10 : The values of 1/p extracted "differentially" using Equation 4.14 as a 

function of Et-112 for the reaction 129Xe + 197 Au at bombarding energies of E j A = 

40 MeV (open symbols) and 60 MeV (solid symbols). The different symbols represent 

the probabilities p extracted from the indicated values of Pn, and the solid lines are 

linear fits to the data shown in Figure 4.8. 

~-

'-/J 

\ ' 

\ ' 



"~ 

, I 

-
-~ 

I ' 

--' \ 

. ,. 

-. 

0.02 

129Xe 

1/p 

0.04 

Et-::: 1/2 

+ 197 Au 

T 

' 

o 40 MeV 

• 60 MeV 

0.06 0.08 

(Mev- 112 ) 

125 

20 

~ 10 

7 

5 

3 

2 

0.10 

Figure 4.11 : The values of 1/p extracted "independently" using Equation 4.17 as 

a function of Et - 1
/

2 for the reaction 129Xe + 197 Au at bombarding energies of E /A = 

40 MeV (open symbols) and 60 MeV (solid symbols). The solid lines are linear fits 

to the data shown in Figure 4.8. 
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event can be experimentally reduced to the probability p of emitting one fragment ac­

cording to the binomial distribution. 2) The probability p so obtained has a "thermal" 

energy dependence with the assumption that the excitation energy is proportional to 

the transverse energy. 

A natural interpretation of the binomiality and thus the reducibility is a se­

quential decay with constant probability at all stages. However, the binomiality may 

not necessarily be consistent with more general sequential descriptions of multifrag-

mentation. For example, if each emitted fragment is no longer assumed to be inert, 

it may in turn decay into two fragments and the subsequent decay chain can be very 

complicated. The resulting fragment multiplicity distribution from such a sequential 

model, associated with different decay branching, may be drastically nonbinomial. 

On the other hand, a non-sequential description may possibly be consistent with the 

binomiality. A simple example is a chain consists of m + 1 pre-fragments linked by m 

bonds. If p is interpreted as the bond-breaking probability, one obtains a binomial 

distribution for the probability that n links are broken (Equation 4. 7). Obviously, 

this chain model has no time aspect to it, and its relevance to multifragmentation 
' ' 

is rather unclear. Nevertheless, it stresses again that the essence of the observed 

binomiality is the fundamental reducibility of the multifragmentation probability to 

a binary break-up probability. 

4.3 General Interpretation of Reducibility 

. The observed reducibility implies that multifragmentation itself is empiri­

cally reducible to a combination of nearly independent fragment emissions. In other 

words, all the physics contained in Pn is reducible to the physical content of p. The 

thermal nature of this elementary binary decay probability (p = e-B/T) has already 

\ ' 
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been demonstrated by the observed linear dependence in the Arrhenius plots. The 

more directly interpretable physical parameter contained in this analysis is the bi-

nary decay barrier B which is proportional to the slope of the Arrhenius plot. One 

may wonder why a single barrier suffices, since mass asymmetries with many different 

barriers may be present. Let us consider a barrier distribution as a function of mass 

asymmetry x of the form B = Bo + axn, where Bo is the lowest barrier in the range 

considered. Then, 

( 4.18) 

The simple form of Equation 4.13 is retained with a small and renormalizable pre-

exponential modification. The average value of p essentially corresponds to the emis­

sion of the lightest fragment ( Zthreshold) with the lowest barrier in the range considered. 

Accordingly, the slopes of the above Arrhenius plots (Figure 4.8) are proportional to 

the barrier for Li emission, the lowest barrier in the range of fragments considered. 

In order to explore the dependence of the barrier upon Zthresho/d, the same 

analysis was performed by progressively increasing the values of Zthreshold. The ex­

citation functions and their corresponding Arrhenius plots with different values of 

Zthreshold (3 to 7) are shown in Figure 4.12 and 4.13 for the reaction 129Xe + 197 Au at 

bombarding energies of E /A = 40 MeV and 60 MeV respectively. A remarkable result 

is that these excitation functions though dramatically changed, retain their binomial 

reducibility. More specifically, the solid curves, which are binomial calculations of Pn 

using the values of p and m extracted from the mean and variance of the fragment 

multiplicity distributions, fit the corresponding data· (symbols) very well for all three 

values of Zthreshold at both bombarding energies. 

The resulting Arrhenius plots associated with different values of Zthreshold 

are also shown to be linear in Figure 4.12 and 4.13. The slope, which is proportional 
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5 (middle panel) and Zthreshold = 7 (top panel). (right column) The corresponding 

values of 1/p as a function of Et-112
• The solid lines are linear fits to the data. 
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to the barrier for emitting a fragment Zthreshold, becomes progressively steeper with 

increasing values of Zthreshold· Since the decay barrier, dominated by the Coulomb 

interaction, is proportional to the atomic number of the emitted fragment, the ob­

served Zthreshold dependence suggests that the decay is truly dominated by the lightest 

fragment. However, the units in which these slopes or barriers are measured are not 

clear since a quantitative relationship between the excitation energy and the measured 

transverse energy is not yet available. Nonetheless, the sensitivity of these slopes to 

Zthreshold is consistent with the Z dependence of the emission barriers B(Z), and this 

is a powerful signal for the physical meaning of p. 

The reducibility of the n-fragment emission probability to an elementary 

binary decay probability implies that one can derive the probability of emitting n 

fragments solely from the probability of emitting one. Hence multifragmentation 

does not exist as an independent process. The thermal behavior of p further shows 

the statistical nature of the emission, and the slope of the Arrhenius plot provides in­

formation for the decay barrier of relevant channels. These experimental observations 

are very important because they are direct findings that do not rely on any theory or 

assumption for the interpretation, but rely only on plotting the experimental data in 

a particularly revealing way. 

4.4 Sequential Interpretation of p and m 

In section 4.2, sequential decay with constant probability p has been shown 

as a possible interpretation for the binomial nature and thus the reducibility of the 

multifragment emission probability. This specific sequential decay is a rather simpli­

fied description of multifragmentation, since the emission probability is assumed to 

remain unchanged at all stages, and the emitted fragments are assumed to be inert 
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(they do not generate additional fragments or disappear). It will be shown in this sec­

tion that the emission probability p can be translated into the mean time separation 

between fragments in this framework of sequential decay. The physical significance 

of the other binomial parameter m is also explored. 

In a statistical decay, the lifetime T is related to the total decay width rtot 

by the uncertainty principle r = nfrtot· In the case of a compound nucleus, the total 

decay width is the sum of the widths of all channels, and the lifetime is calculated 

accordingly. This lifetime defines the survival of the initial unmodified compound 

nucleus. For sequential multifragmentation, only the decay width and lifetime for 

binary fragment formation need be considered, while the abundant light particle 

decay can be treated as a background that progressively decreases the temperature 

and possibly the barrier. 

The corresponding time associated with binary fragment decay derived from 

the uncertainty principle is 

n n 1 
T = - = = -eBfT = TaeBfT 

f ftW
0
e-BfT W

0 

( 4.19) 

This exponential dependence shows that the decay lifetime can be calculated from 

the elementary binary probability, 

!_ = eB/T = ~. 
To p 

(4.20) 

The above equation shows that the decay lifetime is dramatically affected even by 

moderate changes in temperature. For a binary fission-like decay with a barrier of 

approximately 20 MeV, a change in temperature from 2 to 5 MeV decreases the 

lifetime by a factor of 400 and increases the binary decay probability accordingly. 

Furthermore, as the temperature becomes much larger than the barrier, the binary 

decay probability approaches unity and the lifetime approaches the channel period 
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In a sequential description of multifragmentation, the decay lifetime T also 

reflects the time scale associated with subsequent fragment emission. Consequently, 

one can infer the mean time separation between fragments from the n-fragment emis­

sion probability through its reducibility to the binary decay probability. The observed 

linearity of the Arrhenius plot thus says that the emission time scale decreases ex­

ponentially with 1/ ..fEt even though the channel period T0 can not be determined. 

In the framework of sequential decay, this contraction of emission time with increas­

ing excitation energy is a natural consequence of the thermal dependence of 1/p 

(Equation 4.20). In other words, short emission time scales result from large ther­

mal probabilities and vice versa. Hence, a drastic decrease of the emission time with 

increasing excitation energy may not necessarily imply a transition from sequential 

to "prompt" multifragmentation. If this is indeed the case, a separate multifragmen­

tation theory may not be necessary, since this process is reducible to a sequence of 

binary decays that can be described in a standard way. In particular, the structure 

of the n-fragment probability remains "sequential" and the corresponding emission 

time follows directly from the thermal dependence of the binary decay probability p. 

The other parameter associated with a binomial distribution is m, the num­

ber of "tries" successful plus unsuccessful that a system has available in order to emit 

a fragment with fixed probability p in a sequential description. In this context, the 

product mT0 is the overall time available for fragment emission, and the parameter m 

can be interpreted as the total emission time measured in units of the channel period 

In section 4.3, the binomial reducibility and the Zthreshold dependence of the 

decay barriers have been demonstrated for various values of Zthreshold· The effect of 

raising Zthreshold on the extraction of m is studied in this section. In Figure 4.14, the 

extracted values of m are plotted as a function of Et for various values of Zthreshold 

I, 
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Figure 4.14 : The extracted values of m as a function of Et for the reaction 129Xe 

+ 197 Au at bombarding energies of E/A = 40 MeV (top panel) and 60 MeV (bottom 

panel). The different symbols represent values of m extracted with different values of 

Zthreshold (3, 5 and 7). 



134 

for the reaction 129Xe + 197 Au at bombarding energies of E/A = 40 & 60 MeV. 

A strong dependence of m on this lower threshold is observed, with m decreasing 

dramatically with increasing Zthreshold· Let us consider the following two explanations 

that are consistent with this observed Zthreshold dependence. The first is that the 

channel period T0 is constant and the overall emission time mT0 ex· m decreases with 

increasing Zthreshold· The second is that the overall time mT0 for multifragmentation 

is constant but the channel period T0 increases and thus m decreases accordingly with 

the mass of the emitted fragment. The second explanation is more reasonable since 

the dynamical frequency. of the channel W 0 is expected to have a mass dependence 

through the restoring force. If the simple model of the particle in a box is assumed, 

the period T0 is proportional to the mass, and the overall emission time mT0 should 

be proportional to the value of mZthreshold· When the quantity mZthreshold is plotted 

in Figure 4.15, the three different curves from Figure 4.14 collapse onto a nearly 

universal curve, consistent with the interpretation that the overall emission time is 

constant. This observed Zthreshold dependence on the extraction of m offers a glimpse 

of a possible functional form for the dynamical period T0 even though the absolute 

scale is still not determined. 

4.5 A uta-Correlation Effects 

In the above excitation function analysis, the transverse energy ( Et = 2::::: Ei 

sin2Bi, where Ei and ()i are the kinetic energy and the laboratory angle of each frag­

ment respectively) is used as a measure of the excitation energy E*. However, there 

may not be a one-to-one correspondence between E* and Et. Indeed, a distribution 

of E* can be constructed from events of a fixed value of Et and vice versa. Conse­

quently, event-to-event :fluctuations become inevitable when events are sorted by Et, 
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and this may place a limitation on the analysis. 

Recently, Del Zoppo et al. claimed that the use of global observables (e.g. 

Et), which exhibit event-to-event fluctuations, might introduce auto-correlations be­

tween pairs of observables that "may simulate specific signatures of particular physical 

regimes" [DelZ 95]. In their analysis of detected light charged particles (Z :.::; 2) emit­

ted from the reaction 132Xe + 158Gd at a bombarding energy of E /A = 44 MeV, they 

observed empirically that the light charged particle multiplicities (NLcP) are bino­

mially distributed as a function of the measured transverse energy. A Poisson origin 

for these distributions was assumed, and the observed binomial nature was shown 

to arise from the auto-correlation (whose origin will be explained later) between the 

measured transverse energy and the light charged particle multiplicity. 

In such an analysis, the very particles whose multiplicities are studied con­

tribute extensively to the measurement of the transverse energy. The measured value 

of the transverse energy becomes dependent upon the number of particles detected. 

This auto-correlation leads to narrow distributions of NLcP over the entire range of 

measured transverse energy. Consequently, the variance a 2 becomes smaller than the 

mean (NLcP) and this deviation from the Poisson distribution grows with increasing 

auto-correlation. Eventually, the binomial approach becomes more appropriate for 

describing the NLcP multiplicity distribution. This result has lead to Del Zoppo's 

conclusion that "the binomial-like multiplicity distributions do not necessarily imply 

evidence of reducibility to an elementary binary emission probability" [DelZ 95]. An 

immediate question was raised concerning the implications of the empirically observed 

binomial fragment multiplicity distributions, namely, would this observed binomial 

distribution also be Poisson in orgin? 
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4.5.1 Poisson Simulations 

In this section, the event fluctuations associated with the use of the trans­

verse energy are studied in order to investigate the conditions under which these 

fluctuations are sufficiently large to distort a Poisson distribution into a binomial dis­

tribution. In particular, simple Poisson simulations were performed for intermediate 

mass fragment (IMF), light charged particle (LCP), and neutron (NEUT) multiplic­

ities as a function of excitation energy. The resulting multiplicity distributions were 

studied as a function of transverse energy to assess the possible bias to the results 

which might arise from using Et as a measure of the excitation energy. 

Poisson distributions of IMF, LCP, and NEUT multiplicities were generated 

as a function of E* from input values of (NIMF), (NLcP) and (NNEUT) respectively. 

In Figure 4.16a, these quantities are shown as a function of E*. The inputs for 

(NIMF) and (NLcP) were taken from the experimental data of the 129Xe + 197 Au 

reaction at a bombarding energy of E j A = 60 MeV, assuming E* equals to 3E:XP, 

where E:xp is the experimentally measured transverse energy. For simplicity, the 

input for (NNEUT) was taken to be equal to (NLcP) with the same excitation energy 

dependence. The resulting distributions in NIMF, NLcP, and NNEUT were completely 

independent, since no charge or mass conservation was applied. In fact, no charge 

or mass information was used, and the distributions were identical except that they 

were generated from different mean values and labeled as IMF, LCP, and NEUT 

respectively. The polar ( 0) and the azimuthal angles ( ¢) of these emitted particles 

were distributed isotropically. The excitation energy was assumed to be thermal, and 

the kinetic energy of each particle was set equal to E = E* jN with N = NIMF + 

NLcP + NNEUT· For simplicity, no Co~lomb trajectory calculation was implemented, 

and the transverse energy of each particle was calculated according to its definition, 
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Figure 4.16 : a) The experimental input values of (NNEUT), (NLcP), (NIMF) as a 

function of E:xp taken from the data of the reaction 129Xe + 197 Au atE/A= 60 MeV. 

b) The logarithm contour plot shows the correlations between E* and Et (including 

neutron contribution) observed for the Poisson simulations of particle emissions. c) 

The correlations between E* and Ef' (excluding neutron contribution). d) The linear 

input values of (NNEUT), (NLcP ), (NIMF) as a function of E:xp. e) The correlations 

between E* and Et· f) The correlations between E* and Ef'. 
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E i E · 2() t = szn i· 

4.5.2 Event-to-Event Fluctuations 

The average transverse energy for events of a fixed excitation energy can be 

calculated according to Equation 4.3, 

The above equation clearly shows that the average transverse energy of a class of 

events depends solely on the excitation energy, and is independent of the number 

of particles emitted. This implies that there is no correlation between the particle 

multiplicity n and the transverse energy of an event other than their individual de-

pendence on the excitation energy. In this context, n can be NrMF, NLcP or NNEUT 

for fragment, light charged particle and neutron multiplicities respectively. 

The simulated correlation between Et and E* is plotted in Figure 4.16b. A 

linear correlation is observed and the value of (Et) is 2/3 E*, consistent with the 

prediction of Equation 4.3. This shows that the events of a given Et come from a 

rather narrow distribution of E* with centroid = 3/2 Et. Therefore, the resulting 

multiplicity distribution at a given transverse energy PEt ( n) is an average of mul-

tiplicity distributions PE· ( n) weighted by the excitation energy distribution at that 

transverse energy PEt(E*), 

( 4.21) 

The question naturally arises whether this folding procedure introduces large event 

fluctuations. In particular, under what circumstances will the mean and variance 

information of PE· ( n) be preserved in the resulting multiplicity distribution PEt ( n )? 
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A trivial case is considered by assuming the multiplicity distribution PE• ( n) 

to be energy independent. The resulting multiplicity distribution from the above 

folding procedure (Equation 4.21) simply preserves the mean and variance information 

as shown below, 

(4.22) 

For more realistic situations, the particle emission probability (in statistical decays) 

increases with nuclear temperature, and thus introduces an energy dependence to the 

multiplicity distribution PE· ( n ). In these cases, the fluctuations due to the spread 

in the excitation energy associated with events of a given transverse energy can no 

longer be neglected. In fact, the resulting variance u1t of PEt ( n) strongly depends on 

the variance u1•Et of the excitation energy distribution PEt(E*). 

When the correlation between Et and E* is strong, the distribution PEt(E*) 

becomes a 8 function and its corresponding variance u1•Et approaches zero, 

1 for E* = (3/2)Et 

0 for E• =1- (3/2)Et. ( 4.23) 

In this limit, the resulting multiplicity distribution preserves the mean and variance 

information, namely, 

PEt(n) - PE·(n) 

(n)Et (n) E• for E* = ~Et. ( 4.24) 

0"2 2 
Et uE. 

However, when the correlation between Et and E* is weakened, the spread in the 

excitation energy at a given. value of Et becomes broader (i.e. u1•Et > 0). The 

multiplicity distribution PEt ( n) is now an average over events with a range of E*, 
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and this introduces event fluctuations. When the excitation energy distribution is 

symmetric with respect toE* = ~Et, the information for the average multiplicity (n) 

is still preserved according to the above equation, but the corresponding variance 'is 

broadened by this folding procedure, namely, 

( 4.25) 

2 

As a result, the ratio (:}~~ becomes larger than the Poisson value of 1. Hence, this 

distortion of a Poisson distribution due to event fluctuations arising from the use of 

Et does not lead to a binomial distribution which is characterized by a ratio of fJ'
2 I (n) 

less than 1. 

To verify whether a Poisson distribution is distorted, several quantities that 

bear unique properties in the Poisson limit are examined. First of all, the ratio fJ'
2 I (n) 

and its deviation from the Poisson value of 1 is examined. Then the quantity of g(n) 

defined as follows is studied: 

( 4.26) 

where P( n) is the corresponding Poisson probability to observe an event of particle 

multiplicity n. The above equation shows that the quantity g(n) is independent of n 

in the Poisson limit. Therefore, the slope of g(n) vs. n is 0, and the corresponding 

y-intercept is equal to the average particle multiplicity (n). 

Transverse Energy Measured From All Particles The effect of event-to-event 

fluctuations on the NIMF and NLcP distributions is studied in the following. In Figure 

4.17, the ratio fJ'
2 I (n) along with the slope andy-intercept of g(n) vs. n are plotted 

as a function of transverse energy for both the NIMF and NLcP distributions obtained 

from the above Poisson simulations. In both cases, the ratios fJ' 2 I (n) are scattering 
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Figure 4.17 : For the NIMF (left column) and NLcP distributions (right column) 

generated from the Poisson simulations using the experimental inputs: the ratio of 

r:) (top panel), the slope (middle panel) and they-intercept (bottom panel) of g(n) 
vs n are shown as a function of Et. The solid curves on the bottom panels indicate 

the values of (NIMF) and (NLcP) as a function of Et. 
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around the value of 1. The plots of the slopes of g( n) vs. n are found to be flat and their 

y-intercepts agree reasonably well with the solid curves corresponding to the average 

particle multiplicities (n). These observations indicate that the Poisson nature of the 

NIMF and NLcP distributions is preserved when one uses Et as a measure of E*. 

This is indeed consistent with the above discussion that Et is not auto-correlated 

·with NIMF or NLCP· However, if Figure 4.17 is examined more carefully, a small 

systematic discrepancy is observed between the slopes (symbols) of g(n) vs. n and 

the dashed lines at low Et. The fact that the ratios a 2 I (n) are slightly larger than 1 in 

the same region suggests that this small deviation from the Poisson limit is not caused 

by auto-correlation, but rather by the random event fluctuations as a result of the 

folding procedure described by Equation 4.21. In this case, the distorted distribution 

might be well fitted by a negative binomial distribution characterized by a negative 

binomial probability (i.e. a2 I (n) > 1 ). 

The results of these Poisson simulations show that there is no auto-correlation 

between Et and NIMF or NLcP under the assumption that the excitation energy is 

thermal and evenly distributed among the emitted particles. The event fluctuations 

associated with Et will at most increase the ratio a 2 I (n) of the resulting multiplicity 

distribution PEt ( n ). Hence, this distortion of a Poisson distribution does not lead to 

a binomial distribution. 

Transverse Energy Measured From Charged Particles Only In the above 

analysis, an 100% efficiency in the measurement of Et is assumed. In actual exper­

iments the detection system is not perfect, and the measured transverse energy E;r" 

may be different from the true Et. For instance, neutrons have not been detected in 

many experiments even though they carry kinetic energy and contribute significantly 

to the transverse energy of a given event. In this case, the transverse energy of a 
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given event is substantially underestimated (i.e. E;n << Et)· 

In an attempt to study the effect of the missing neutrons on the measurement 

of the transverse energy, the above analysis was repeated with E;n calculated from 

. charged particles only. The simulated correlation between E;n and E* is plotted in 

Figure 4.16c, and is compared with the correlation between Et and E* plotted in 

Figure 4.16b. A linear correlation between (E'F') and E* still exists, but the E* 

distribution at a given E;n becomes broader. 

In Figure 4.18, the ratio a 2 
/ (n) along with the slope and y-intercept of 

g(n) vs. n are plotted as a function of E;n for both the NIMF and NLoP distributions 

obtained from the above Poisson simulations. For the NLoP distribution, the ratio 

a 2
/ (NLoP) is scattering around a value of 0.8. The slope of g(NLoP) vs. NLoP is 

found to be negative, and they-intercept is larger than the mean multiplicity (NLoP) 

at all values of E;,n. In other words, the Poisson nature of NLoP is not preserved ~tall 

values of E;n. Since the v~lue of No and thus of E;n arise mainly from LCP, a strong 

auto-correlation between NLoP and E;n is not unexpected. In this case, events of a 

given E;,n arise from a very narrow distribution of NLOP· Consequently, the variance 

becomes less than the mean, and the extraction of the binomial parameters p and 

m becomes feasible. These extracted quantities are plotted as a function of E;n in 

Figure 4.19. The probabilities of emitting n light charged particles for NLoP = 3-30 

are also plotted as a function of E'f using different symbols, together with the solid 

curves generated from the binomial calculations using the above extracted values of p 

and m. Excellent agreement between the data (symbols) and the calculations (curves) 

for the entire range of E;,n confirms the binomial nature of the distorted distribution. 

On the other hand, IMFs contribute very little to No and thus to E;n, so the 

auto-correlation between E;n and NIMF should be relatively weak. The y-intercept 

of the g(NIMF) vs. NIMF plot collapses onto the line corresponding to the mean 

I ' 

i I 
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Figure 4.18 : For the NIMF (left column) and NLcP distributions (right column) 

generated from the Poisson simulations using the experimental inputs: the ratio of 

r:) (top panel)' the slope (middle panel) and the y-intercept (bottom panel) of g( n) 
vs n are shown as a function of Ef'. The solid curves on the bottom panels indicate 

the values of (NIMF) and (NLcP) as a function of Ef'. 
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Figure 4.19 : For the NLcP distribution generated from the Poisson simulation: 

the values of p (top panel) and m (middle panel) are extracted from the mean and 

variance as a function of E;n. (bottom panel) The probability to emit n light charged 

particles as a function of E;n. The curves are binomial calculations. 
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fragment multiplicity (NIMF) at all values of Ef'. However, a small negative slope is 

observed, and the ratio a 2 I (NIMF) is found to be slightly less than unity except at the 

region of low Ef', where the slope and the ratio a 2 I ( N1M F) are just above zero and 

unity respectively. This suggests that at low Ef', the auto-correlation between NIMF 

and Ef' is negligible, and the residual event fluctuations slightly increase the variance 

of the NIMF distribution. At higher Ef', the auto-correlation becomes observable,· 

but the distortion of the Poisson nature is still very weak since the IMF contribution 

to Ef' is at most 20%. 

Thus far, these results are obtained based on the Poisson distributions gen­

erated from a specific set of inputs. In order to study the sensitivity of the multiplicity 

distributions to different inputs, and for the sake of comparison, Poisson simulations 

were performed with a new set of inputs that are linear functions of E*. More specif-

ically, in Figure 4.16d, the end points of the experimental inputs (Figure 4.16a) are 

joined with straight lines to be used as linear inputs. The simulated correlations 

between the transverse energies (Et & Ef') and the excitation energy (E*) are shown 

in Figure 4.16e and Figure 4.16f respectively. In both cases, the correlations are lin­

ear and consistent with the prediction of Equation 4.3. The effects of fluctuations 

associated with Et and Ef' on the resulting NLcP distributions were also studied. 

The results shown in Figure 4.20 are similar to those obtained earlier for the ex­

perimental inputs. The event fluctuations asso,ciated with Et clearly broaden the 
·.;~· 

NLcP distribution and thus increase the ratio,/J.2.j(N£cp). On the other hand, the 
. 

strong auto-correlation between Ef' and NLcP distorts the Poisson distribution in 

the opposite direction by decreasing the ratio a21 (NLcP)· Consequently, the rela­

tive magnitude of a21 (NLcP) can be used to distinguish the effect of random event 

fluctuations from that of auto-correlation. 

The above study suggests that the transverse energy serves as a good ob-
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Figure 4.20 : For the NLcP distribution generated from Poisson simulation using 

the linear input: the ratio of r:> (top panel), the slope (middle panel) and the y­

intercept (bottom panel) of g(n) vs n are shown as a function of Et (left column) 

and E;n (right column). The solid curves on the bottom panels indicate the values of 

(NLcP) as a function of Et and E;n. 
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servable for the measurement of the excitation energy. It has a sharp correlation with 

the excitation energy and has no auto-correlation with the fragment and the light 

charged particle multiplicities being studied. On the other hand, if the measurement 

of the transverse energy is not perfect (possibly due to finite detection efficiency), 

an auto-correlation between NLcP and the measured transverse energy E';_n may be· 

introduced. The experimental setup of Del Zoppo et al. [DelZ 95) does not measure 

neutrons, and the geometric acceptance for charged particles is rather limited due 

to the lack of forward angular coverage. As a result, the auto-correlation effect in 

their analysis could be strong, and this might be the reason for their observation 

of binomial distributions characterized by flat Arrhenius plots for the light charged 

particle multiplicities. On the other hand, IMF yields contribute at most 20% to the 

measured transverse energy E;: in the multifragmentation studies at intermediate 

energies. Therefore, the auto-correlation between NIMF and E;: is not sufficient to 

distort a Poisson distribution into a binomial distribution. 

4.6 Efficiency Effect on Binomial Parameters 

The above discussion demonstrates that the transverse energy serves as a 

good observable for the measurement of the excitation energy in multifragmentation 

studies. In particular, the mean and variance of the NIMF distribution are reasonably 

well preserved even when the measurement of Et is limited by the detection efficiency. 

This leads one to believe that the experimentally observed binomial fragment multi­

plicity distributions as a function of Et have indeed their origin from binomial parent 

distributions. However, it is still important to explore the effects of the finite de­

tection efficiency on the mean multiplicity, the variance, and the extraction of the 

binomial parameters p and m. 
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At intermediate energy heavy-ion reactions, the large source velocity consid­

erably increases the laboratory velocity of all fragments emitted in the center-of-mass. 

The constraint imposed by the detector's energy threshold becomes a minor problem 

compared to the limitation due to the incomplete geometric acceptance. In this par­

ticular experimental setup for the 129Xe-induced reactions, the combined detector 

system (MSU Mini ball + LBL Array) covers a large fraction of the available solid an­

gle as shown in Figure 4.21. The forward angular acceptance is especially crucial when 

the effect of forward focusing is very strong in case of a large center-of-mass velocity. 

However, the geometric efficiency of the forward LBL Array is only 64% since these 

detectors have relatively large dead area in comparison to the more efficient Miniball 

(89%) detectors at the back. This limited forward geometric acceptance causes an 

underestimate on the fragment multiplicity, but the effect of these undetected forward 

particles on the transverse energy measurement is reduced significantly by the factor 

In the following, the efficiency effect on the Et measurement is assumed to be 

minimal; details associated with anisotropies and multiple hits are also disregarded. 

While the number of tries m should be independent of the geometric efficiency E, the 

observed probability Pobs should be related to the true probability p by the relationship 

Pobs = Ep. ( 4.27) 

This observed probability Pobs combines exactly like p in the binomial distribution 

(Equation 4. 7), and the finite efficiency effect on the Arrhenius plot is straight forward 

smce 
1 1 1 1 1 

log - = log - = log - + log - = log - + B fT. 
Pobs · Ep € P € 

(4.28) 

The above equation shows that the linearity and the corresponding slope of the Ar-

rhenius plot are preserved, but the y-intercept is shifted upwards by an efficiency 
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Figure 4.21 :. Geometrical acceptance of the device (Miniball +Array) as a function 

of the polar angle(} (top panel) and the azimuthal angle <P (bottom panel). 
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dependent quantity log(1/t:). In other words, the extraction of the barrier for single 

fragment emission is independent of the geometric efficiency, while the absolute value 

·of the observed elementary probability Pobs is modified. 

To verify these ideas about the effect of instrumental efficiency on the ex­

perimental observables, selected Miniball detectors were deactivated (in software) in 

the measurement of fragment multiplicity. The results obtained by activating only 

one-third, one-half and all of the Miniball detectors were studied and compared. 

Only the Miniball detectors were used in this efficiency study because of their simple 

symmetries with respect to the beam axis. Since the above blocking was not applied 

to the measurement of the transverse energy, the results shown as a function of Et or 

1/#t can be compared readily. 

The resulting excitation functions Pn, the extracted binomial parameters 

m and p are shown as a function of Et in Figure 4.22 and 4.23 respectively for the 
' 

reaction 129Xe + 197 Au at a bombarding energy of E/A = 60 MeV. Excellent agree­

ment between the experimental n-fragment emission probabilities (symbols) and the 

binomial calculations (curves) is observed in Figure 4.22 independent of the geometric 

efficiency. Moreover, the values of m shown in the top panel of Figure 4.23 do not 

depend on the geometric efficiency at all values of Et, while the observed probabilities 

Pobs in the bottom panel decrease with increasing amount of detector blocking. When 

some of the Miniball detectors are blocked, the detection efficiency t: is reduced cor­

respondingly, and the gradual decrease in Pobs is thus consistent with Equation 4.27 

qualitatively. 

The Arrhenius plots associated with different geometric efficiency mentioned 

in the above are shown to be linear and parallel with each other in Figure 4.24. The 

absolute values of log(l/p) obtained by using only 1/2 and 1/3 of the Miniball detec­

tors are found to be shifted upwards by a value of log(2) and log(3) respectively. This 
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Figure 4.22 : The probability Pn of detecting n IMFs by using all (top panel), 1/2 

(middle panel) and 1/3 (bottom panel) of Miniball detectors is shown as a function 

of Et for the reaction 129Xe + 197 Au at a bombarding energy of E/A = 60 MeV. 

The solid curves are calculated Pn assuming a binomial distribution using extracted 

values of p and m shown in Figure 4.23. 
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Figure 4.23: The values of p (bottom panel) and m (top panel) extracted from the 

· NIMF distributions shown in Figure 4.22 as a function of Et for the reaction 129Xe + 
. 1~7 Au at a bombarding energy of E/A = 60 MeV. 
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Figure 4.24 : The values of 1/p extracted from the NIMF distributions shown in 

Figure 4.22 as a function of Et - 1
/

2 for the reaction 129Xe + 197 Au at a bombarding 

energy of E/A = 60 MeV. 
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quantitatively confirms the idea that Pobs = Ep, where the efficiency f. can be taken as 

1, 1/2 and 1/3 for the counting procedures including all, 1/2 and 1/3 of the Miniball 

detectors respectively. This excellent agreement with Equation 4.27 further reinforces 

the physical interpretation of p as the probability for single-fragment emission. 

The above exercise shows that the binomial nature of the fragment mul­

tiplicity distributions is independent of the device geometric acceptance under the 

circumstances that the transverse energy is reasonably well measured. In fact, the 

slope of the Arrhenius plot, which is proportional to the binary decay barrier for 

single-fragment emission, is unaffected by the geometric acceptance. However, to 

obtain the actual value for the barrier extracted from the slope, a quantitative rela­

tionship between the excitation energy and the measured transverse energy must first. 

be established. On the other hand, the extraction of the single-fragment emission 

probability depends on the geometric efficiency (Equation 4.27), but can be easily 

corrected if the efficiency is known. 

4. 7 Target Independence 

The empirical observation that multifragmentation is reducible to single­

fragment emission is intriguing. Thus far, the analysis has been focused on a single 

reaction of 129Xe + 197 Au. It is important to map out the extent of this phenomenon 

and to determine whether or not it is a universal feature of the multifragmentation 

process. In this section, the excitation function analysis is extended to the 129Xe­

induced reactions on natcu, 89Y and 165Ho targets. 

Figure 4.25 shows the excitation functions for the 129Xe-induced reactions 

on natcu, 89Y and 165Ho targets at a bombarding energy of E/A = 40 MeV. The 

values of the corresponding mean and variance of these fragment multiplicity distri-
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Figure 4.25 : The probability Pn for emitting n IMFs as a function of Et for the 
129Xe- induced reactions atE/A= 40 MeV on different targets: natcu (top panel), 89¥ 
(middle panel) and 165Ho (bottom panel). The solid curves are binomial calculations 

of Pn using values of p and m extracted from (NIMF) and the corresponding u2 shown 

in Figure 4.26. 
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Figure 4.26 : The values of (n) (top panel) and cr2 (bottom panel) as a function 

of Et observed for the IMF multiplicity distributions of the 129Xe-induced reactions 

at E/A = 40 MeV on natcu, 89Y, 165Ho and 197 Au targets represented by different 

symbols. 
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butions are plotted as a function of transverse energy in Figure 4.26. The binomial 

parameters p and m extracted from these mean and variance are used to generate the 

curves shown in Figure 4.25. The excellent agreement between the data (symbols) and 

the binomial calculations (curves) for the fragment multiplicity distributions demon­

strates the binomial nature of Pn and its reducibility to p independent of the specific 

target. 

Interestingly, the excitation functions (Figure 4.25) and thus their corre­

sponding values of (n) and CJ2 (Figure 4.26) are almost identical for all three targets 

over the entire range of measured transverse energy. Target independence was also ob­

served by others in the excitation functions for emission of n IMFs [Blum 91, Rous 93, 

More 93a] and in the dependence of the average IMF multiplicity on the total charged 

partic~e multiplicity [Bowm 92]. A most remarkable result shown in Figure 4.27 is 

that the Arrhenius plots for different targets collapse onto a nearly universal line, 

suggesting that the thermal properties of the emission sources are independent of 

the specific target. In other words, the sizes as well as the excitation energies ofthe 

emission sources are nearly identical. Similar results (not shown) are obtained for 

the 129Xe-induced reactions at the higher bombarding energy (E/A = 60 MeV). This 

observed target independence is interesting and may be used to test and to search for 

entrance channel mechanisms that are consistent with this experimental feature. 

The incomplete fusion model [More 86, Bowm 89] which incorporates kine­

matics into a standard geometrical picture of a nucleus-nucleus interaction is con­

sidered. The predictions of this model have been shown to be consistent with many 

experimental observations of heavy-ion collisions at intermediate energies [Char 88a, 

Char 88b, Bowm 89, Hano 93]. For the sake of illustration, two nuclei are assumed to 

collide with each other at a given impact parameter as shown in Figure 4.28. There 

will be a portion of each nucleus that is occluded by the other. In this simple pic-
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ture, one piece of the occluded portion is sheared off and attaches itself to the other 

nucleus, and the separation energy is taken as the energy necessary to create new 

nuclear surface. In the geometrical spirit of this model, it is "cheaper" to shear off a 

piece from the lighter nucleus since the truncation of a heavier nucleus creates a larger 

amount of surface and costs more energy. Therefore, the heavier projectile picks up 

mass from the lighter target to form a projectile-like incomplete fusion product in 

reverse kinematics; whereas a target-like incomplete fusion product is formed in nor­

mal kinematics by shearing off mass from the lighter projectile (Figure 4.28). In both 

cases, the excitation energy of the incomplete fusion product can be calculated from 

the momentum transfer and the new surface created. 

An example of this conventional incomplete fusion model prediction is shown 

in Figti're 4.29 for the 129Xe-induced reactions on natcu, 89Y, 165Ho and 197 Au targets 

at a bombarding energy of E /A = 40 MeV. In particular, the resulting velocity of 

the incomplete fusion product is plotted as a function of mass transfer in Figure 4.29. 

For natcu and 89Y, the velocity of the projectile-like incomplete fusion product is 

close to the beam velocity in the most peripheral collisions (small mass transfer), and 

it decreases with increasing amount of mass transfer until it reaches the center-of­

mass velocity in central collisions (complete fusion). On the other hand, for heavier 

165Ho and 197 Au targets, the velocity of the target-like incomplete fusion product 

starts at rest for the most peripheral collisions and increases gradually with increasing 

amount of mass transfer from the projectile. This result immediately suggests that 

the target independence observed in the Arrhenius plots for natcu and 89Y finds its 

natural explanation within the incomplete fusion model. Neglecting Q-values and 

recoil effects, the 129Xe-like source depends solely on the mass removed from the 

lighter target, and the reactions depend relatively little on the actual nature of the 

target. For the heavier 165Ho and 197 Au targets, the observed target independence 
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seems to imply a similar mass transfer to the 129Xe projectile. However, this suggested 

mass transfer from the heavier 165Ho and 197 Au targets to the lighter 129Xe projectile 

is contrary to the conventional incomplete fusion picture. In fact, a strong target 

dependence is expected for the target-like source formed in these normal kinematics 

reactions. 

The above discussion demonstrates the inconsistency between the experi­

mental observation and the conventional incomplete fusion picture, which predicts 

a target independence only in reverse kinematics reactions. This disagreement how­

ever, can be resolved if the thermal equilibration is achieved only in the vicinity of the 

overlapping region of the two nuclei (see Figure 4.28). In other words, the incomplete 

fusion product is only partially equilibrated and can be viewed as a composite of the 

relatively cold spectator matter attached to the equilibrated overlapping region. In 

this picture, it becomes essential to distinguish between the incomplete fusion prod­

uct formed by the mass transfer in the entrance channel and the equilibrated portion 

that undergoes statistical emissions. For example, Figure 4.29 shows that at a given 

amount of mass transfer, the velocity of the projectile-like incomplete fusion prod­

uct is always higher than that of the target-like incomplete fusion product. In other 

words, emitted fragments associated with natcu and 89Y reactions should be more for­

ward focused in the laboratory frame; whereas the fragment angular distributions for 

165Ho and 197 Au reactions are expected to be more isotropic. Despite the difference in 

their angular distributions, the thermal properties and the statistical nature of their 

emissions should be target independent, since they depend solely on the equilibrated 

overlapping portion determined by the amount of mass transfer. 

This target independence can still be achieved even if the cold spectator 

matter is completely detached from the overlapping portion of the incomplete fusion 

product. This becomes essentially a picture for the fireball model, which has been 
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predicted for reactions at high bombarding energies (E/A > 100 MeV) [West 76, 

Goss 77). A schematic diagram for the fireball model is also shown in Figure 4.28. In 

this model, the dynamical impact during the collision is sufficiently strong that the 

overlapping matter is sheared off both nuclei to form a hot emission source. Unlike 

the incomplete fusion product, the source velocity of the fireball is governed by the 

relative velocity of the two nuclei and their overlapping region is independent of the 

specific target. The laboratory angular distributions of fragments are thus similar 

between normal and reverse kinematics reactions. 

Thus far, both the incomplete fusion (partially equilibrated) and the fireball 

models are shown to be consistent with the target independence observed in the 

Arrhenius plots. In order to rule out one of these two models, the laboratory angular 

distributions are studied as a function of target mass. As an example, fragments 

emitted at polar angles less than 24° (arbitrary) are selected and their multiplicity 

distributions are studied. The corresponding values of mean and variance for these 

multiplicity distributions are plotted as a function of the transverse energy in Figure 

4.30. Since the primary interest is the target dependence, the above figures are 

truncated at Et = 600MeV, the value of Et beyond which no data point exists for the 

reaction 129Xe + natcu. The average fragment multiplicities measured in the forward 

angles for natcu and 89Y targets are nearly identical, and they account for about 40% 

of the average total fragment multiplicities. However, this target independence does 

not hold for 165Ho and 197 Au targets, where the contribution of forward fragments 

accounts for only 30% of the total number of emitted fragments. Fragment yields 

gated at other forward polar angles have also been studied, and similar results are 

obtained. 

This observed difference in the gated fragment yields (Figure 4.30) between 

normal and reverse kinematics is inconsistent with the fireball picture. On the con-
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trary, the strong forward focusing effect and the observed target independence for 

the reverse kinematics reactions (natcu and 89Y) suggest the formation of fast 129Xe­

like incomplete fusion products (Figure 4.29). Similarly, the relatively weak forward 

focusing effect observed in the normal kinematics reactions suggest the formation of 

relatively slow 165Ho- or 197 Au-like incomplete fusion products. Furthermore, the 

observed target independence in the ungated fragment yields (Figure 4.26) suggests 

that the incomplete fusion products are only partially equilibrated. In other words, 

thermal equilibration is achieved only in the vicinity of the overlapping region of the 

two nuclei such that the subsequent statistical emissions become independent of the 

specific target. 

In summary, the fragment multiplicity distributions as a function of the 

measured transverse energy observed for the 129Xe-induced reactions on natcu, 89Y, 

165Ho and 197 Au targets at bombarding energies of EjA = 40 & 60 MeV are well 

described by binomial distributions independent of the specific target. The ther­

mal nature of the elementary binary decay probability and its target independence 

are illustrated by the nearly universal linear Arrhenius plots observed for a variety 

of targets. These results demonstrate that the reducibility of n-fragment emission 

probability to a single binary decay probability is wide-spread in intermediate energy 

heavy-ion reactions, and may indeed be a universal feature of multifragmentation at 

intermediate energies. 
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Chapter 5 

Charge Distributions 

Historically the charge (mass) distribution has played and still plays a very 

important role in multifragmentation. The near power-law shape of the charge and 

mass distributions observed experimentally in light-ion and heavy-ion collisions was 

often taken as an evidence of critical opalescence in hot nuclear matter [Finn 82, 

Lync 87). More recent studies also attempt to extract possible signature of a phase 

transition from the moments of the charge distributions [Gilk 94). 

In this chapter, the charge distributions of intermediate mass fragments are 

presented for the 129Xe-induced reactions on natcu, 89Y, 165Ho and 197 Au targets at 

bombarding energies of E/A = 40 and 60 MeV. In particular, then-fold charge dis­

tributions are shown to be reducible to the one-fold charge distributions through a 

simple scaling factor of the form e-cnz. The extraction and interpretation of the 

quantity c are discussed in section 5.1 for the reaction 129Xe + 197 Au at both bom­

barding energies. The dependence of c on the transverse energy and its relevance to 

phase coexistence in multifragmentation are investigated in section 5.2. The residual 

dependence of c on Zthreshold in the IMF definition is studied in section 5.3. Finally, 

the results obtained for the 129Xe-induced reactions on other targets are presented in 
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section 5.4. 

5.1 Reducibility and Thermal Scaling 

In Chapter 4, the reducibility and thermal scaling of the multifragment 

emission probabilities were demonstrated with data integrated over a broad range of 

fragment atomic numbers (3 ~ Z ~ 20). In this approach, an average value of the 

elementary decay probability p = (p( Z)) was extracted and a strong dependence on 

Zthreshold was observed. This suggests that the lightest member (Zthreshold) of IMFs 

dominates fragment emission and the resulting charge distribution P( Z) should have 

a functional form that decreases dramatically with Z. In this section, the charge dis-

tributions of IMFs are studied as a function of Et, and the consequence of the observed 

reducibility and thermal scaling on the resulting charge distributions is explored. 

First, the aspect of reducibility as it applies to the charge distributions is 

considered. The physical implication of reducibility is that multifragmentation itself 

is reducible to a combination of independent fragment emissions. In its broadest 

form, this reducibility demands that the single fragment emission probability p(Z), 

from which an event of n fragments is generated by m trials, is the same at every ~tep 

of extraction. The consequence of this extreme reducibility is straightforward: the 

charge distribution for the one-fold events is the same as that for then-fold events 

and equal to the singles distribution, i.e., 

P(t)(Z) = P(n)(Z) = Psingles(Z) = p(Z). (5.1) 

Second, the consequence of the thermal dependence of p on the charge dis­

tributions is considered. If the one-fold = n-fold = singles distribution is thermal, 

then 
B(Z) 

P(Z) ex: e- r . (5.2) 
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Here B( Z) is the barrier for the emission of a fragment Z and T is the nuclear 

temperature of the emission source. This functional form of P( Z) suggests that, 

under the usual assumption Et ex E*, the expression 

fi lnP(Z) ex -B(Z) (5.3) 

should be able to collapse the charge distributions associated with different Et to a 

universal function of Z. 

5.1.1 Extraction of c 

Empirically the charge distributions for the reaction 129Xe + 197 Au are found 

. to be nearly exponential functions of Z except for events of relatively low transverse 

energy. The probability to emit an intermediate mass fragment of a given charge is 

shown in Figure 5.1 for different cuts on the transverse energy and fragment multiplic­

ity for the reaction 129Xe + 197 Au at bombarding energies of E/A = 40 and 60 MeV. 

The distributions are reasonably well described by the lines which are exponential 

fits for charges from 4 to 20 with an being the exponential fit parameter: 

(5.4) 

This observed exponential fall off of P( Z) with increasing Z shows that fragment 

emission is indeed dominated by the lightest fragment in the range considered, and 

this is consistent with the observed Zthreshold dependence of the elementary decay 

probability p discussed in section 4.3. 

If the charge distributions are thermal, then the exponential fits to the charge 

distributions should show a thermal behavior, and an would have a linear dependence 

on 1/v'Et, (see Equation 5.2): 

1 1 
an ex T ex v'Et,' (5.5) 
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Figure 5.2 plots the fitted values of O:n as a function of 1/ VB; for the charge distribu­

tions of the reaction 129Xe + 197 Au. The expectation of the thermal scaling appears to 

be met quite nicely. For each value of n, the exponent O:n shows a linear dependence 

on 1/v'E;. However, the condition of n independence (i.e. a:1 = a:2 = ... = O:n =a:) 

consistent with the extreme reducibility of Equation 5.1 is not met. Rather than col­

lapsing onto a single straight line, the values of O:n for different fragment multiplicities 

are offset one with respect to another by what looks like a constant quantity. 

In fact, all of the data are well fitted by assuming for O:n a functional form 

equal to a term proportional to 1/v'E; and ~nother term proportional ton: 

J(' 
O:n = fD + nc. 

vEt 
(5.6) 

Here c represents the constant spacing between these fitted lines and accounts for the 

observed n dependence. It is noted that over 80 different charge distributions at each 

bombarding energy are represented in Figure 5.2. The good agreement between the 

data (symbols) and the fit (lines) suggests the following reducible expression for the 

charge distribution: 

- K'Z -cnZ 
Pn(Z) oc e-anZ = e -;JE; . (5.7) 

Hone takes the log of both sides and moves terms around, one arrives at an expression 

that should scale for all fragment multiplicities n and transverse energies Et: 

[lnPn(Z) + cnZ] {i = -K'Z. (5.8) 

This equation indicates that it should be possible to reduce the charge distributions 

associated with any intermediate mass fragment multiplicity and transverse energy 

to a universal straight line. The slope of this universal line reflects the Z dependence 

of the barrier for a single-fragment emission. As a demonstration of this thermal 
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reducibility, the reduced quantity -I<' Z = [ln Pn ( Z) + cnZ] .jE; for the charge dis-

tributions shown in Figure 5.1 is plotted in Figure 5.3. The charge distributions in 

Figure 5.1 with different cuts on Et and n clearly have different slopes, and now they 

collapse onto a single curve confirming the thermal scaling and reducible nature of 

the charge distributions. 

5.1.2 Other Methods of c Extraction 

Thus far, the analysis has been focused on charge distributions of an expo­

nential form (see Equation 5. 7), in which the fragment emission barrier is linearly 

proportional to Z (i.e. B(Z) = I<'Z). For small values of Z, the barriers are domi-

nated by the Coulomb interaction, and are thus proportional to · Z. · However, other 

terms like the surface energy may start to set in for higher values of Z, causing 

a deviation from the linear Z dependence. Indeed, systematic deviations from the 

.exponential fits are observed for large Z values of the charge distributions at low 

transverse energies. 

Let us consider a charge distribution generated from fragment emissions 

associated with a barrier B( Z) of any functional form: 

(5.9) 

To extend the previous analysis to this general expression, a similar reduced quantity 

F( Z) is constructed, 

[lnPn(Z) + cnZ] {i = -B(Z) = F(Z). (5.10) 

The reduced quantity F(Z) should scale for all values of nand Et, but this procedure 

is now independent of the functional form of the charge distributions. 

To extract an optimum value of c to collapse the charge distributions associ­

ated with different values of nand Et, a x2 is constructed in terms of the difference in 
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Figure 5.3 : The "reduced" charge distributions (see Equation 5.8), are plotted for 

the same cuts on Et and n as Figure 5.1. The different data sets are normalized at Z 

= 10. The values of c = 0.012 and 0.013 are the spacings between the curves shown 

in Figure 5.2 for bombarding energies at E/A = 40 & 60 MeV respectively. 
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F( Z) between any pair of charge distributions under investigation. More specifically, 

the difference in F( Z) between pairs of charge distributions associated with different 

fragment multiplicities at a given transverse energy are accumulated and minimized 

as a function of c. The values of c that correspond to these minimum x2 are extracted 

and then averaged over the range of Et. When this x2 approach is applied to the set 

of charge distributions reported in Figure 5.2, the average values of c extracted are 

0.0123 ± 0.0039 and 0.0132 ± 0.0030 for the reaction 129Xe + 197 Au at bombarding 

energies of E /A = 40 and 60 MeV respectively. These values of c agree reasonably 

well with those extracted from the exponential fit parameters an (see Table 5.1) us­

ing the approach mentioned in section 5.1.1. This consistency observed for the two 

different methods supports that the charge distributions sQ.own in Figure 5.2 are in-

deed exponential and thus the extraction of c from an has not been biased by the 

exponential fitting procedure. 

Alternatively, one can construct from a pair of charge distributions of a given 

Et the ratio 

(5.11) 

The natural logarithm of this ratio is plotted in Figure 5.4 as a function of Z for two 

of the charge distributions shown in Figure 5.1. The data (symbols) agree reasonably 

well with the linear fits (solid lines) except for large values of Z, where the statistics 

is poor. A value of c is extracted from the slope of the resulting graph for each 

pair of charge distributions at a given n and Et. A weighted average of c (over all 

IMF multiplicities nand transverse energies Et) can then be constructed. When this 

procedure is applied to the set of charge distributions (Z = 4- 20) in Figure 5.2, the 

average values of c obtained are 0.0119 ± 0.0033 and 0.0133 ± 0.0025 for the reaction 

129Xe + 197 Au at bombarding energies of E/A = 40 and 60 MeV respectively (see 
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function of Z for the indicated cuts on transverse energy Et and IMF multiplicity n. 
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Table 5.1). 

The excellent agreement between the values of c extracted from three dif-

ferent procedures serves as a consistency test and substantiates the functional form 

of the scaling factor e-cnz. However, the extraction of c from an works for the ex-

ponential charge distributions only; whereas the ratio of Pn ( Z) / Pn+l ( Z) and the x2 

approach do not hinge on the functional form of the charge distributions. 

Table 5.1 : Coefficient c extracted by three different procedures . 

Method E/A = 40 MeV . E/A = 60 MeV 
an 0.0120 0.0130 
x2 0.0123 0.0132 

Pn(Z)/ Pn+I (Z) 0.0119 0.0133 

5.1.3 Origin and Interpretation of c 

The physical significance of the thermal reducibility observed experimentally 

in the charge distributions is explored in this section. In particular, what is the 

origin of c or the regular offset observed in the plots of an vs. 1/ ,;E; (Figure 5.2). 

The general form of Equation 5.9 suggests the presence of a temperature dependent 

enthalpy term and an entropy term that does not depend on temperature explicitly. 

In thermodynamics, the general expression for the free energy 

D.G = D.H(Z)- TD.S(n, Z) (5.12) 

leads to the following statistical distribution of Z: 

.O.H(Z) P(Z) ex e- T +~S(n,Z). (5.13) 

If the transverse energy is assumed to be proportio~al to the e:{Ccitation 

energy of the source, the empirically observed charge distribution of Equation 5.9 can 

:/ 
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be rewritten in terms of temperature and its connection with Equation 5.13 becomes 

more apparent: 
- B(Z)_cnZ B(Z) 

P(Z) ex e ..fE; = e- T -cnZ. (5.14) 

The first term in the exponent can be interpretated as an enthalpy term associated 

with the energy or barrier B(Z) for the formation of a fragment. On the other hand, 

the connection between the second term cnZ and the entropy change !::l.S needs further 

illustration. Typically, !::l.S is of topological or combinatorial origin. In this case, it 

may point to an asymptotic combinatorial structure of the multifragmentation process 

in the limit of high temperature. In other words, when T >> B(Z), the probability 

of emitting a fragment Z becomes nearly independent of Z, and the resulting charge 

distribution is constrained dominantly by charge conservation. As an example, the 

Euler's problem of breaking an integer into smaller integers in the least biased way is 

considered. Specifically, let us consider a nucleus of atomic number Zo to be broken 

into n smaller pieces of integer charge. To derive the functional form for the resulting 

charge distribution, let nz be the number of fragments with charge Z. If every 

configuration of breaking the nucleus is equally probable, the most likely value of nz 

can be obtained by extremization of the function: 

where the Lagrange multipliers K and 1 are associated with the constraints 

L:nz = n. 

From the extremization, one obtains 

or 

8! - = ln nz + K Z + 1 = 0 
8nz 

-Kz-,., nz = e ' 

( 5.15) 

(5.16) 

(5.17) 

(5.18) 
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The constraints now read 

--y 

Z "Z -KZ--y e 
o = ~ e rv ]{2 ' (5.19) 

" KZ e-"Y n = ~ e- --y rv ]{ , (5.20) 

from which one obtains 

(5.21) 

where cis defined as 1/Z0 • 

This expression has the correct asymptotic structure for T --+ oo required by 
J 

Equation 5.14 reinforcing the entropy interpretation. In this framework, the overall 

scale for the fragment charge distribution is set by the total charge Z0 • For a specific 

fragment multiplicity n, the scale is reduced by a factor n to the value Z0 jn. Thus 

the offset introduced in Equation 5. 7 with increasing multiplicity n may just be due 

to this scale reduction. If this is so, the quantity c in Equation 5. 7 takes the meaning 

c = 1/Zo, and it reflects the size of the source. The empirical values from Figure 5.2 

are c ~ 0.012 and c ~ 0.013 corresponding respectively to values of Zo ~ 83 and Zo ~ 

77, which are quite reasonable for the source size. 

The above discussion describes a scenario at high temperature, when the 

Z dependence of the emission barrier B(Z) has a minimal effect on the resulting 

charge distribution (i.e. e-B(Z)/T ~ 1 ). Under this condition, Euler's assumption of 

unbiased breaking of a source Zo is satisfied, and a quantity c related to the source 

size is extracted from the multiplicity dependence of the resulting charge distribu-

tions. Simultaneous emission controlled by n-fragment transition state is a simple 

example. In this case, fragments are strongly aware of each other and would reflect 

such an awareness through the functional form e-cnZ of their charge distributions. 

However, when temperature becomes comparable to the emission barrier B(Z), com­

petition between fragment emissions of different Z can no longer be neglected. In this 
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regime, the resulting charge distributions reflect the functional form of B(Z) under 

the constraint of charge conservation according to Equation 5.14. 

At very low temperature, emissions of IMFs are substantially suppressed by 

their large barriers and sizable residues are often found among the reaction products. 

In other words, Euler's assumption of unbiased partitioning of a source becomes 

inappropriate. The charge distributions are dominated by the term e-B(Z)/T, and 

the quantity c becomes essentially 0. In this case, the sizable remnant serves as 

a charge conserving residue, and the resulting charge distributions are nearly inde­

pendent of the fragment multiplicity. A nuclear system that undergoes sequential 

thermal emission is a simple illustration. Since fragment emissions are independent 

of one another, any fragment does not know how many other fragments will follow 

its emission. At each stage of the emission, charge conservation affects the charge of 

the emitted fragment minimally since the remaining sizable system serves as a charge 

conserving source. Consequently, the resulting charge distribution cannot reflect the 

requirement of an unbiased partition of the total charge among n fragments. This 

possibility of c = 0 suggests that while the form e-cnZ implies charge conservation, it 

is not necessary that charge conservation be implemented in this unique way. 

This predicted temperature dependence of c raises a question concerning 

the Et dependence of c extracted experimentally. In particular, can one identify 

experimentally a transition from a regime for which c = 0 to a new regime for which 

c > 0? In the previous sections, an average value of c over a range of Et has been 

extracted empirically and shown to be able to collapse the charge distributions of 

different n and Et onto a nearly universal curve. However, the charge distributions 

associated with events of relatively low Et have not been included in the previous 

extractions of c because they are not always exponential. Since methods have been 

developed to extract c from the charge distributions of non-exponential form (see 
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section 5.1.2), determination of c for events of low Et becomes feasible. In fact, the 

Et dependence on the shape or functional form of the charge distributions may be 

caused by an Et dependence of c. 

5.2 Transverse Energy Dependence of c 

In this section, the energy dependence of c is studied, and an weighted aver-

age of cover all fragment multiplicities is extracted as a function of Et over the entired 

measured range. For example, the extraction of c from the ratio of Pn(Z)I Pn+I (Z) is 

demonstrated in Figure 5.5 for an arbitrarily chosen value of Et. The charge distri­

butions at Et = 1000 MeV are shown in the top panel for the reaction 129Xe + 197 Au 

at a bombarding energy of E I A = 60 MeV. The log of the ratio Pn ( Z) I Pn+I ( Z) is 

evaluated from each pair of the charge distributions, and as an example, the result 

for n = 6 is plotted as a function of Z in the lower panel. The expected linear de­

pendence (Equation 5.11) is demonstrated by the good agreement between the data 

(symbols) and the fit (solid line). A value of cis extracted from the slope and an 

average over different values of n is found to be 0.015 at this Et. When this value 

of c is used in Equation 5.10 to calculate the reduced quantity F(Z), the. different 

charge distributions in the top panel are shown to collapse onto a universal curve 

in the middle panel. This confirms the reducible nature of the charge distributions. 

The value of c (0.015) extracted at this Et is slightly higher than the average value 

reported in Table 5.1, and this reflects local deviations in the charge distributions. 

The values of c extracted from the ratio of Pn ( Z) I Pn+I ( Z) and by the x2 

method are reported in Figure 5.6 as a function of Et for the reaction 129Xe + 197 Au 

at bombarding energies of E I A = 40 & 60 MeV. It is interesting to notice that the two 

procedures yield essentially the same results at both bombarding energies, namely, 
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Figure 5.5 : Top panel: the charge distributions Pn(Z) gated on n for the reaction 
127Xe+197 Au at E /A = 60 MeV. The charge distributions were constructed from 

events with Et = 1000 ± 20 MeV and n = 4- 8. Middle panel: the "reduced" charge 

distributions for the same data using the indicated value of c. (The data here are 

normalized at Z = 10). Bottom panel: the log of the ratio P6(Z)/ P7 (Z). The slope 

corresponds to c for n = 6 (see Equation 5.11). 
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Figure 5.6 : The coefficient c extracted by the x2 method (solid symbols) and 

from the ratio of Pn ( Z) / Pn+l ( Z) (open symbols) as a function of Et for the reaction 
129Xe+197Au at EjA = 40 (top panel) and 60 MeV (bottom panel). 
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the quantity c starts at or near zero, and it rises rapidly with increasing Et until 

it reaches a saturation value at high Et. Under the assumption that the transverse 

energy is proportional to the excitation energy, this observation is indeed consistent 

with the predicted temperature dependence of c in section 5.1.3. In other words, the 

c = 0 regime may signify an evaporative-like emission from a source which survives 

as a charge conserving residue, while the c > 0 regime may signify the complete 

vaporization of the source. 

To test these interpretations of c, a finite percolating system has been stud­

ied. To be more precise, percolation calculations [Baue 88] were performed for systems 

of Zo = 97, 160 and 400 as a function of the percentage of bonds broken (Pb)· This 

quantity Pb is related to the excitation energy or temperature of the nucleus. When 

the nucleus is cold, the percentage of bonds broken (Pb) is small and a large cluster 

extending throughout the lattice exists (percolating cluster). However, when the ex­

citation energy of the system increases, the percentage of bonds broken (Pb) increases 

accordingly until it reaches a critical value (prit) beyond which no percolating cluster 

exists and the nucleus breaks into many smaller clusters. 

The resulting fragment charge distributions of percolation calculations have 

the same n dependence of the form e-cnZ. Values of c are extracted as a function of 

Pb by the x2 method, and a similar dependence on Pb is observed for all three systems 

as shown in Figure 5.7a. For values of Pb smaller than the critical value (Pbrit ~ 

0.75), a large cluster exists and c is found to be 0. As Pb goes above its critical 

value, c is found to increase and eventually saturate in a way very similar to that 

observed experimentally. In fact, the extracted values of c decreases with increasing 

Zo as expected from the Euler's solution. However their saturation values are much 

larger than the corresponding values of 1/Z0 • This quantitative discrepancy possibly 

points out the sensitivity of c towards the dimensionality of the system. The Euler's 
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Figure 5.7 : The extracted values of c (top panel) and cZ0 (bottom panel) as a 

function of the percentage of bonds broken (Pb) for three different systems of indicated 

size Z0 • 

/-~'") 

\ i 

~-

,.,.-\ 



\ / 

\ ·) 
I 

187 

solution (Equation 5.21) and the associated dependence of c upon Zo have been 

derived for a one-dimensional percolation model. Therefore, it is possible that c is 

proportional, but not equal, to 1/Zo for the three-dimensional percolation calculation 

reported in Figure 5. 7a. Furthermore, the analysis is not directly comparable to 

the Euler's solution, since the study of how the source is partitioned into different 

IMF multiplicities is restricted to a limited region (3 < Z < 20) of the total charge 

distribution. The effect of this restricted partition will be discussed in section 5.3. 

The observed dependence of c upon Zo points out a possible misinterpreta­

tion of c when its value is very close to 0. There is no doubt that c = 0 in the presence 

of a charge conserving residue. However, when the size of an emission source is big, 

the extracted value of c also approaches 0 even if no sizable residue exists. These 

considerations suggest that cZ0 may be a better intensive quantity to probe the tran­

sition from the regime of c = 0 to c > 0. The idea is to scale the extracted values of c 

by the source size Zo in order to remove this leading dependence, and to evidentiate 

the true transition from the regime of c = 0 to c > 0. The resulting product cZo 

is plotted as a function of Pb in Figure 5. 7b for the above three systems of different 

source size. The region in which Pb is small and c = 0 remains unaffected by this 

procedure, but the different saturation values of cat high Pb are converged to a nearly 

universal curve confirming that cis indeed proportional to 1/Z0 • This observed uni-

versality also stresses that the observed non-zero value of c is not just a finite-size 

effect. It is certainly true that c approaches 0 as the source size Zo goes to infinity, it 

is also true that the product cZ0 tends to a finite limit nearly independent of Z0 • 

An evaporation calculation has also been carried out for the nuclei 64Cu 

and 129Xe according to the thermal binomial scheme [Ghet 95, More 95]. The only 

constraint introduced is to prevent at every step the emission of fragments larger than 

the available source. The resulting charge distributions are very well reproduced by 
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Equation 5.9. The extracted quantities c and cZ0 are plotted in Figure 5.8 as a 

function of excitation energy per nucleon. In both cases c goes from 0 to a positive 

finite value as the excitaiton energy increases. Similarly, the extracted values of c can 

be scaled by Zo. The region where c = 0 is readily identified with the region where a 

large residue survives. On the other hand when c > 0 there is no surviving residue. 

The results of these percolation and evaporation calculations demonstrate 

the sensitivity of c to the presence or absence of a charge conserving residue and 

reinforce the interpretations of c in two different regimes. Along this line, the evolution 

of c from zero to non-zero quantity can be compared to 1st order phase transition of 

a fluid moves from the region of liquid-vapor coexistence to the region of unsaturated 

vapor. As an illustration, Figure 5.9 shows a liquid-gas phase diagram of an ordinary 

fluid. The area below the dashed line is the region where mixtures of the liquid and gas 

phases coexist. In this coexistence region, the presence of the liquid phase guarantees 

mass conservation at all average densities for any given temperature. The saturated 

vapor pressure is solely a function of temperature, and thus for a given isotherm, a 

plateau is present in the coexistence region of the phase diagram indicating a constant 

saturated vapor pressure independent of the volume. In other words, a change in mean 

density (volume) merely changes the relative amount of the liquid and vapor, without 

altering the saturated vapor properties. Hence the vapor properties and in particular 

the cluster size distributions cannot reflect the total ma:ss or even the mean density 

of the system. This is the region for c = 0. On the other hand, in the region of 

unsaturated vapor, there is no liquid to insure mass conservation. Thus the vapor 

itself must take care of this conservation, at least grand canonically. Consequently, 

in this state when there is only one phase of vapor, the pressure becomes a function 

of temperature and volume. The properties of the unsaturated vapor then depend on 

the total mass of fluid, and thus c > 0. 
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Evaporation Calculations 
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Figure 5.8 : The extracted values of c (top panel) and cZ0 (bottom panel) as 

a function of the excitation energy per nucleon for 64Cu and 129Xe nuclei from a 

binomial evaporation calculation. 
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This description suggests a possible physical significance of the observed 

energy dependence of c in terms of thermodynamics of the liquid-vapor phase coex­

istence. To be more precise, c = 0 may indicate the presence of two phases (liquid­

vapor) while c > 0 may indicate the presence of one phase (unsaturated vapor) using 

the above analogy of liquid-vapor equilibrium. 

5.3 Zthreshold effect on the extraction of c 

In the above analysis, the scaling factor e-=Z used to account for the n 

dependence of the charge distributions was shown to arise naturally in the charge 

distribution obtained by the least biased breaking of an integer Z0 into n integers 

(Euler's problem): P(Z) = cn2e-cnZ (Equation 5.21). In the context of the charge 

distribution, n is the charged particle multiplicity and c = 1/Zo, where Zo is the total 

charge of the emission source. 

Experimentally, it is very difficult to isolate and eliminate the pre-equilibrium 

contribution associated with the light charged particle emission. This contamination 

overestimates the value of n, associated with the number of particles emitted from 

the thermally equilibrated source, and it also distorts the shape of the charge distri­

bution for the light charged particles. To reduce this pre-equilibrium contamination, 

the charge distributions of intermediate mass fragment (Zthreshold ~ Z ~ 20) were 

studied as a function of fragment multiplicity (NIMF) in the previous sections. The 

value of n in e-cnZ then became NIMF, and c was extracted by fitting the charge 

distributions of IMFs with e-cNIMFz. If c0 is the value of c extracted from the charge 

distributions of all particles, it can be related to c by their common exponential fit 

parameters, 

Co. n =c. NIMF· (5.22) 
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This equation simply says that c extracted experimentally from the charge distribu-

tions of IMFs is different from c0 , since n =J. NIMF when a constraint is imposed on 

the partitioning of the source by setting a lower Zthreshold in the IMF definition. In 

fact, this was one of the reason mentioned in section 5.2 for the discrepancy between 

1/Zo and the value of c extracted from the percolation data. In this section, the effect 

of Zthreshold on the extraction of c is studied in order to obtain a constant value for 

If the charge distribution Pn(Z) of a given particle multiplicity n is normal­

ized such that the total area under the curve Pn(Z) is equal to n, then the number 

of fragments (NIMF) is simply the integrated area bounded by Z = Zthreshold and 

Z = 20. In other words, NIMF can be calculated from n by integrating the charge 

distribution of Equation 5.21 from Z = Zthreshold to 20: 

(5.23) 

The exponential dependence on Zthreshold in the above equation suggests that it can 

be simplified if the values of Zthreshold are much smaller than 20. Under this condition, 

the above integral becomes independent on the upper limit of the IMF definition, 

NIMF .~ 100 Con2e-ConZ dZ = ne-conZthreshold. 

Zthreshold · 

(5.24) 

The above expression shows that NIMF is related to n with a strong dependence 

on the lower Zthreshold of the IMF definition. In the limit of small Zthresho/d, the 

exponential term of Equation 5.24 approaches one and NIMF approaches the value 

of n. However, as Zthreshold increases, NIMF becomes less than n and this deviation 

becomes progressively larger. 

Since NIMF can be determined experimentally, it would be more useful to 

express n in terms of NIMF· An approximation by a Taylor expansion of Equation 
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5.24 up to second order yields the following expression : 

(5.25) 

To study the effect of Zthreshold on the extraction of c, the variable n in Equation 5.22 

is expressed in terms of NIMF according to Equation 5.25, 

C • NIMF - Co· [NIMF + CoZthreshotdNIMF + 1.5( CoZthreshotd)
2 
N]MF] 

c Co· [1 + CoZthresholdNIMF + 1.5(coZthresholdNIMF)
2

] • (5.26) 

The above equation clearly indicates that an NIMF dependence is intro­

duced into the quantity c by setting a lower Zthreshold in the definition of IMF. The 

resulting value of c will always be larger than c0 , and this deviation increases with 

increasing values of NIMF and Zthreshold· To verify these ideas experimentally, values 

of c have been extracted by the x2 method from the charge distributions associated 

with different values of NIMF and Zthreshold· These extracted values of care plotted 

in Figure 5.10 as a function of Et for the reaction 129Xe + 197 Au at a bombarding 

energy of E /A = 60 MeV. In the top panel, average values of c have been extracted 

over several consecutive fragment multiplicities in order to minimize statistical uncer-

tainties. Clearly, the extracted values of c associated with events of higher fragment 

multiplicity are larger at all values of Et· In the bottom panel, the average value 

of c (over all fragment multiplicities), is found to increase with increasing Zthreshold. 

These results demonstrate the expected NIMF and Zthreshold dependence of c. 

In an attempt to eliminate the NIMF dependence of c in order to extract c 0 , 

n of e-cnZ is expressed in terms of NIMF and Zthreshold following Equation 5.25. The 

reduced quantity F(Z) of Equation 5.10 then becomes 

(5.27) 



194 

129Xe + 197 Au E/ A==60MeV· 

0 250 

f ~,''' ,,,,,,! f ! 
~~ Zthreshold - 5 

I • NIMF - 1-3 

0 NIMF - 4-8 

0 Zthreshold = 5 

500 750 1000 1250 1500 

Et (MeV) 

0.02 

0.01 

0.00 

-0.01 
0.020 

0.015 

0.010 

0.005 

0.000 

Figure 5.10 : The coefficient c extracted by the x2 method as a function of Et for 

the reaction 129Xe + 197 Au at a bombarding energy of E/A = 60 MeV. care extracted 

from the charge distributions associated with indicated values of NIMF (top panel) 

and Zthreshold (bottom panel). 
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where the variable c is replaced with C0 since the Zthreshold effect has been properly 

considered in the expression of n. A x2 is then constructed with this new functional 

form and c0 can be extracted using the same procedure. The top panel of Figure 

5.11 shows that C0 is now independent of the various NrMF cuts over a large range 

of measured Et. However, a slight increase in C0 with increasing Zthreshold is observed 

in the bottom panel indicating that the effect of Zthreshold has not been completely 

accounted for. This residual Zthreshold dependence may be related to the Z dependence 

of the detection efficiency in the experimental device which has not been accounted 

for. It is well known that the detection thresholds for the MSU Miniball phoswich 

array and the LBL silicon array depend strongly on the charge of the incident particles 

detected experimentally. 

It is observed that the extracted values of c remain constant over a large 

range of Et in Figure 5.11. Therefore, it may be statistically feasible to extract values 

of c associated with individual NrMF if events of different Et are binned together in 

this saturation region. For example, events with Et ranged from 800 to 1500 MeV 

are binned together to extract c using the x2 method. The diamonds in Figure 5.12 

show the expected NrMF dependence of c for Zthreshold = 3 (upper) and 5 (lower) as 

well. The result also illustrates the Zthreshold dependence since the extracted value of 

cis always larger for Zthreshold = 5 at a given NrMF· However, when n is expressed 

in terms of NrMF following Equation 5.25 in the x2 construction, the above NrMF 

dependence is eliminated as shown by the circles in Figure 5.12. The circles scatter 

around the weighted average (dashed lines) of C0 = 0.081 ± 0.0016 and 0.0098 ± 

0.0015 for Zthreshold = 3 and 5 respectively. Similarly, the discrepancy in the values of 

Co for two different Zthreshold may be due to other residual effects that have not been 

considered. 

Thus far, the fragment multiplicity (NrMF) dependence of the charge dis-
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Figure 5.11 : The coefficient C0 extracted by the x2 method as a function of Et for 
129Xe + 197 Au reaction at a bombarding energy of E/A = 60 MeV. In this extrac­
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tributions has been studied for the reaction 129 X e + 197 Au at a bombarding energy 

of E/A = 60 MeV. The empirically observed NIMF dependence of c is shown to 

be related to the lower Zthreshold of the IMF definition. To account for the effect 

of Zthreshold, the number of partitioned fragments n in Euler's problem is expressed 

in terms of the experimental fragment multiplicity defined by Zthreshold· A constant 

value of c0 is then extracted independent of the fragment multiplicity. This correction 

for the effect of Zthreshold may help to relate C0 extracted from the experiment to the 

size of the emission source. 

5.4 Target Independence 

In section 4. 7, the observed target independence in the Arrhenius plots was 

shown to be consistent with an incomplete fusion picture assuming that thermal 

equilibration is achieved only in the vicinity of the overlapping region of the two 

nuclei. In this scenario, the size and the thermal properties of the emission source 

become independent of the specific target. When this idea is extended to the charge 

distribution analysis, one expects a target independence in the extraction of c. In 

particular, the saturated value of c, which is proportional to the size of the emission 

source, is expected to be a constant independent of the specific target. 

In Figure 5.13, the values of c extracted by the x2 method (top panel) and 

from the ratio of Pn ( Z) / Pn+I ( Z) (bottom panel) are plotted as a function of Et for 

the 129Xe-induced reactions on natcu, 89Y, 165Ho and 197 Au targets at a bombarding 

energy of E I A = 60 MeV. The data for the lower bombarding energy are not shown 

since most of their maximum values of Et are not high enough for c to reach its 

saturation. At E I A = 60 MeV,· both extraction procedures produce essentially the 

same results for all four targets, namely, the quantity c rises rapidly with increasing 
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Et until it reaches a saturation value at high Et. The physical significance of this 

energy dependence has been discussed in section 5.2. A more interesting feature is 

that the extracted values of care independent of the specific target over a large range 

of Et. This again supports the idea that the thermal properties of the emission source 

are target independent. The nearly identical saturation values of c observed for the 

165Ho and 197 Au ta~gets also reflect the similar size of the emission sources. However, 

the rising values of c stop at thei~ highest Et before they reach a saturation for the 

natcu and 89Y targets. Deviations are also observed for the 89Y data at the region of 

high Et, and may be related to the poor statistics at the tail of the Et distribution. 

The implications of the experimental evidence presented above are far reach­

ing. On the one hand, the thermal features observed in the n-fragment emission prob­

abilities extend consistently to the charge distributions and strengthen the hypothesis 

of phase space dominance in multifragmentation. On the other hand, the reducibility 

of the n-fold-event charge distributions to a universal function of Z highlights the 

near independence of individual fragment emission, limited only by the constraint of 

charge conservation. Finally, the observed dependence of c on energy may have a 

very relevant significance on what a "1st order phase transition" might look like in a 

finite nuclear system. 
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Chapter 6 

Conclusion 

Nuclear multifragmentation is the most striking process observed in interme­

diate energy heavy-ion reactions. This work is motivated by the unsettled questions 

concerning the underlying mechanism of multifragment production: is the process si­

multaneous or sequential? Is the decay driven by dynamics or statistics? To this end, 

the 129Xe-induced reactions on natcu, 89Y, 165Ho, and 197 Au at bombarding energies 

of E/A = 40 & 60 MeV have been studied theoretically and experimentally. The 

summary of the results and the conclusions will be presented in this chapter. 

6.1 Theoretical Approach 

To investigate the effects of dynamics on nuclear multifragmentation, the 

Boltzmann-Nordheim-Vlasov (BNV) reaction model has been used to simulate the 

129Xe-induced reactions on various targets at intermediate energies. The results of 

these BNV calculations for central collisions show that a "nuclear disk" develops 

during the collision process due to the side-squeezing of nearly incompressible nuclear 

matter. The disk formed at 40 MeV is relatively thick and it does not break. A thinner 

disk at 60 MeV shows some mottling, and eventually a thin disk at 75 MeV breaks up 
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into many fragments. This disk fragmentation has been analyzed in terms of the new 

Rayleigh-like surface instability, in which the proximity force plays an essential role. 

Ordinarily, a disk is at most metastable due to the energy barrier associated with 

the increase in the surface area of a modulated disk. When the disk becomes thin 

enough, the proximity potential due to the surface-surface interaction is sufficient to 

overcome the sharp surface barrier and trigger the surface instability. To be more 

precise, the system escapes from the high surface energy of a disk by breaking up into 

a number of spherical fragments with less overall surface. This instability is a new -

kind of surface instability since the Rayleigh's cylinder instability can exist with pure 

surface tension and does not require the proximity interaction. 

In addition to nuclear disks, other exotic shapes such as bubbles have also 

been observed in the Boltzmann-like calculations [Baue 92]. A bubble behaves much 

like a sheet, and is susceptible to the surface instability when its thickness is of the 

order of the proximity interaction range. However, the Coulomb interaction has not 

been incorporated in the discussion on the surface instability. For compact shaped 

nuclear disks, the Coulomb contribution to the deformation energy may be small corn­

pared to the surface and proximity contributions. In the case of a nuclear bubble, the 

depletion of charges in the central cavity reduces the Coulomb energy significantly, 

and this Coulomb effect on the deformation energies should not be neglected. In fact 

the Coulomb energy is the driving force for the stability of "Coulomb" bubbles against 

monopole oscillations. In general, a more heavily charged bubble becomes stable at a 

thinner configuration. The vapor pressure in the central cavity of an excited bubble 

provides an additional force that drives the Coulomb bubbles to thinner configura­

tions. These "Coulomb" bubbles however are susceptible to perturbations of higher 

order. The bubble cannot get away from the region of Coulomb instability in the case 

of radial modes (constant thickness), and there is always one kind of deformation or 
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another against which the bubble configuration is unstable. For crispation modes 

(modulating thickness), a bubble becomes susceptible to the surface instability when 

it is sufficiently thin. 

In these dynamical models, the dynamics becomes dominant and drives the 

system into regions of instabilities. The results of these simulations suggest that the 

various kinds of instabilities associated with exotic shaped nuclei may conceivably be 

present in multifragmentation. However, the final proof must rest upon experimental 

verification. One feasible approach makes use of the coplanarity and sphericity of an 

event to discriminate between the formation of a disk or a sphere. It is expected that 

the trajectories of fragments broken from a spherical system tend to have an isotropic 

angular distribution. On the contrary, fragments broken from a disk, governed by 

their mutual Coulomb repulsion, will most likely lie on the plane of the disk. The 

orientation of this plane of the disk rotates depending upon the impact parameter. 

In order to analyze fragments originating from a specific plane, for example, a plane 

perpendicular to the beam axis in central collisions, events corresponding to a narrow 

range of impact parameters must be selected. Work in this direction is already in 

progress [Llop 95). 

6.2 Experimental Investigation 

Rather than dwelling solely on these complicated simulation codes, the ex­

perimental data have been analyzed and examined to search for simple regularities. In 

particular, the excitation functions for multifragment emission have been constructed 

and studied for the 129Xe-induced reactions. The n-fold charge distributions of in­

termediate mass fragments have also been analyzed. 
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6.2.1 Excitation Functions 

At any given transverse energy Et, the probabilities (Pn) of detecting n 

fragments are observed to be binomially distributed. Empirically, an elementary 

one-fragment emission probability p can be extracted according to the binomial dis­

tribution. These extracted elementary probabilities have a thermal dependence of 

the type p = e-B/T as demonstrated by their linear Arrhenius plots. Indeed, a nearly 

universal linear Arrhenius plot is observed at each bombarding energy, independent 

of the specific target. In this analysis, three different procedures have been used 

to extract p from the fragment multiplicity distributions. The observed consistency 

between these various methods confirms the binomial nature of Pn and the thermal 

dependence of p. This observed reducibility of the n-fragment emission probability 

to an elementary binary decay probability implies that one can derive the probability 

of emitting n fragments solely from the probability of emitting one. Hence multi­

fragmentation does not exist as an independent process. The thermal behavior of p 

further shows the statistical nature of the emission. 

The more directly interpretable physical parameter contained in this analysis 

is the binary decay barrier B which is proportional to the slope of the Arrhenius 

plot. A single barrier suffices since the extracted average value of p is dominated 

by the emission of the lightest fragment (Zthreshold) with the lowest barrier in the 

range considered. The same analysis has been performed by progressively increasing 

the values of Zthreshold from 3 to 7. A remarkable result is that the constructed 

excitation functions, though dramatically changed, retain their binomial reducibility. 

The resulting Arrhenius plots are also linear, and the slope becomes progressively 

steeper with increasing values of Zthreshold· The sensitivity of these slopes to Zthreshold 

is consistent with the Z dependence of the emission barriers B(Z), and becomes a 
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powerful signal for the physical meaning of p. 

One possible but not unique interpretation of the reducibility is a sequential 

decay with constant probability at all stages. In this framework, the emission prob­

ability p is inversely proportional to the mean time separation between fragments. 

The observed linearity of the Arrhenius plot thus says that the emission time scale 

decreases exponentially with 1/#t. In other words, the contraction of the emission 

time with increasing excitation energy is a natural consequence of the thermal de­

pendence of ljp. The other parameter associated with a binomial distribution is m, 

the number of "tries" that a system has available in order to emit a fragment with 

fixed probability p. Empirically, the quantity mZthreshold is found to collapse onto 

a nearly universal curve. This observed Zthreshold dependence offers a glimpse of a 

possible functional form for the dynamical period of a specific channel 7 0 under the 

assumption that the overall emission time mr0 for multifragmentation is constant. 

The technical issues concerning the event-to-event fluctuations associated 

with the use of Et have also been studied. The question whether these fluctuations 

distort a Poisson distribution into a binomial distribution is addressed by analyzing 

the results generated from the Poisson simulations of particle multiplicities. More 

specifically, Poisson distributions of the fragment, the light charged particle, and 

the neutron multiplicities have been generated as a function of excitation energy. 

The transverse energy calculated from all emitted particles is sharply correlated with 

the excitation energy and has no auto-correlation with the fragment and the light 

charged particle multiplicities. To be more realistic, neutrons are excluded from 

the measurement of Et, and a strong auto-correlation between the light charged 

particle multiplicity and the measured transverse energy is observed. In this case, 

the light charged particles whose multiplicities are studied contribute extensively to 

the measurement of the transverse energy. This auto-correlation leads to narrower 
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binomial distributions of the light charged particle multiplicities at a given Et. On 

the other hand; fragment yields contribute at most 20% to the measured transverse 

energy. Therefore, the auto-correlation between the fragment multiplicity and the 

measured transverse energy is not sufficient to distort a Poisson distribution into 

a binomial distribution. This suggests that the experimentally observed binomial 

fragment multiplicity distributions as a function of Et have indeed their origin from 

binomial parent distributions. 

To explore the effects of the finite detection efficiency on the extraction 

of the binomial parameters p and m, different geometric efficiency E are produced 

by deactivating (in software) selected detectors in the measurement of the fragment 

multiplicity. While the number of tries m is found to be independent of the geometric 

efficiency E, the observed probability Pobs is simply scaled by the geometric efficiency: . 

Pobs = Ep. Here p is the elementary probability extracted with no deactivation, and 

is analogous to the true probability obtained from a perfect detection system. The 

observed probability Pobs combines exactly like p in the binomial distribution. Indeed, 

the Arrhenius plots associated with different geometric efficiency E are shown to be 

linear and parallel with each other. In other words, the extraction of the barrier for 

single fragment emission is independent of the geometric efficiency, while the absolute 

value of the observed elementary probability Pobs is modified. 

The above experimental observations offer the first simplicity to be found 

in the rather unclear field of nuclear multifragmentation. They are direct findings 

that do not rely on any theory or assumption for the interpretation, but rely only on 

plotting the experimental data in a particularly revealing way. These findings say that 

multifragmentation is not a novel or special process, but is reducible to a combination 

of nearly independent fragment emissions. In other words, all the physics contained 

in the n-'-fragment emission probability Pn is reducible to the physical content of the 
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elementary binary decay probability p. 

6.2.2 Charge Distributions 

The reducibility observed in the fragment multiplicity distributions demands 

that the single fragment emission probability p(Z), from which an event of n fragments 

is generated, is the same at every step of emission. This reducibility feature is observed 

for the charge distributions of the 129Xe-induced reactions at relatively low transverse 

energies. To be more precise, the resulting fragment charge distributions for the n-fold 

events are the same as that for the onefold events. The thermal scaling is also shown 

by a thermal behavior of the Boltzmann type, P( Z) ex: e-B(Z)/T under the assumption 

that T ex: vf]h. For the charge distributions obtained at higher transverse energies, 

the thermal scaling is preserved but a dependence on n begins to surface. In fact, the 

n-fold charge distributions are well described by the following functional form: 

At a given Et, then-fold charge distribution is thus reducible to the one-fold charge 

distribution through a simple scaling factor of the form e-cnz. The value of c extracted 

empirically is very small indicating a rather weak dependence on n. Consequently, 

both the thermal scaling and the reducibility feature observed in the n-fragment emis­

sion probabilities extend consistently to the charge distributions. While the thermal 

features strengthen the hypothesis of phase space dominance in multifragmentation, 

the reducibility of the charge distributions highlights the near independence of indi-

vidual fragment emissions. 

The above expression of the charged distribution suggests the presence of 

a temperature dependent enthalpy term and an entropy term that does not depend 

explicitly on temperature. The first term in the exponent can be interpreted as an en-
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thalpy term associated with the energy barrier B(Z) for the formation of a fragment. 

The second term that is related to the entropy points to an asymptotic combinatorial 

structure of the multifragmentation process in the limit of high temperature. In this 

framework, the quantity c is inversely proportional to the emission source size. 

The energy dependence of c has also been studied. The quantity c starts 

at or near zero, and it rises rapidly with increasing Et until it reaches a saturation 

value at high Et. This evolution of c from zero to a non-zero quantity is compared 

to 1st order phase transition of a fluid that moves from the region of liquid-vapor 

coexistence to the region of unsaturated vapor. In the coexistence region, the presence 

of the liquid phase guarantees mass conservation. Hence the vapor properties, and in 

particular, the cluster size distributions cannot reflect the total mass of the system, 

and c = 0. On the other hand, there is no mass conserving liquid phase in the region 

of unsaturated vapor, and the vapor itself must take care of the conservation. The 

properties of the unsaturated vapor then depend on the total mass of fluid, and c > 0. 

The form e-cnZ thus implies charge conservation under the constraint of n fragments. 

To test these interpretations of c in finite systems, percolation· calculations 

[Baue 88] have been performed for systems of different size. The resulting fragment 

charge distributions have the same n dependence of the form e-cnZ. The extracted 

value of c starts at 0 for small bond breaking probability Pb and increases rapidly for 

Pb > pf:it. The quantity c eventually saturates at large Pb in a way similar to that 

observed experimentally. In fact, the saturation value of c decreases with increasing 

source size. The results of these percolation calculations demonstrate the sensitivity 

of c to the presence or absence of a charge conserving residue and reinforce the 

interpretations of c in two different regimes. In other words, the observed energy 

dependence of c may have a very relevant significance on what a "1st order phase 

transition" might look like in a finite nuclear system. 
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Appendix A 

Energy Calculations 

Nuclear force with a long-range attraction and a short-range repulsion be­

haves just like a Van Der Waals gas. This similarity suggests that nuclear matter 

shares the macroscopic properties of an ordinary fluid. Indeed, nuclei are treated as 

drops of nuclear matter in the Liquid Drop Model. In this approach, energy of a 

nucleus is calculated from the contributions of "volume" and "surface" terms. Also 

included is a Coulomb term to account for the presence of protons, and a symmetry 

term to correct for excessive neutrons. In the following, energies for nuclear disks and 

bubbles are calculated within the framework of the Liquid Drop Model. 

A.l Nuclear Disks 

In nuclear disk fragmentation, the volume and the contents of the disk are 

conserved during the perturbation, and hence the change in volume and symmetry 

energies assoicated with disk deformation is essentially zero. Since a nuclear disk 

has a rather compact shape, the change in the Coulomb energy associated with the 

perturbation is small compared to the change in the surface energy. For the sake 

of simplicity, the Coulomb perturbation energy is assumed to be negligible in the 
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Table A.l : Definition of symbols for energy calculations of a sheet of fluid. 

I Symbols I Definitions 

d thickness of sheet 
y width of sheet 
l length of sinusoid over one >. 
). wavelength of perturbation 
A amplitude of perturbation 

i surface energy coefficient 
JO 

). surface area of an unperturbed sheet over one ). 
1>. surface area of a perturbed sheet over one >. 
s~ surface energy of an unperturbed sheet over one >. 
S>. surface energy of a perturbed sheet over one >. 
Eo s dimensionless surface energy of an unperturbed sheet 
Es dimensionless surface energy of a perturbed sheet 

fj.Es dimensionless surface energy change due to perturbation 
<I>( s) dimensionless proximity potential function 
Ep dimensionless proximity energy 

jj.Ep dimensionless proximity energy change due to perturbation 
jj.E dimensionless total energy change due to perturbation 

following derivations. 

In these energy calculations for an ordinary fluid, surface--surface interaction 

is often neglected, since a disk of ordinary liquid is sufficiently thick that the skin 

thickness of its surface can only be measured in a microscopic scale. However, for 

a thin nuclear disk, this surface--surface interaction may not be negligible. In fact, 

nuclear surfaces interact with each other through an interaction of finite range called 

also the proximity force. In the following sections, expressions for both the surface 

and proximity perturbation energies of a disk are derived. As a reference, a list of 

relevant symbols and their definitions is shown in Table A.l. 

To arrive at analytical expressions, a sheet of fluid instead of a finite disk 

is considered. To be more precise, a sheet of thickness d and width y subjected to 
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a perturbation of wavelength ). and small amplitude A is studied. In considering 

the stability of a sheet, one needs only to study the effect of small perturbations. 

Accordingly, one expands the relevant physical quantities in powers of A and retains 

only the leading terms. 

A.l.l Surface Energy 

The surface energy S~ of an equivalent unperturbed sheet is simply the 

product of the surface area and the surface energy coefficient, S~ = 1!~. The surface 

area J~ which includes the top and bottom lateral surfaces is 2.\y. To express this 

surface energy in a dimensionless unit, it is divided by the surface energy of either the 

t9p or the bottom lateral surface (l>.y). Therefore, the dimensionless surface energy 

of an unperturbed sheet is: 

(A.l) 

Consider a simple perturbation on the sheet of the following sinusoidal form: 

Zt = ~ + Asinkx, (A.2) 

where x and Zt are the horizontal and vertical coordinates of the perturbed surface 

(top), and k = 21r j >.. When the same perturbation is applied to the bottom surface, 

the corresponding vertical coordinates for an out of phase mode and in phase mode 

of perturbations are (zb = -d/2- Asinkx) and (zb = -d/2 + Asinkx) respectively. 

Since these two modes differ only in the relative orientation of their surfaces, this 

does not affect the surface area. In other words, the area of the top and bottom 

surfaces are identical for both modes of perturbation, and the resulting total surface 

area is h.= 2ly, where lis the length of the corresponding sinusoid. An approximated 



212 

expression of l is shown below: 

The corresponding surface area and energy can then be calculated: 

S>. - "fl>. "' 

S>. 
Es = "' 

lAY 

41ry ( A
2
k

2
) ,- 1+--

k 4 

( 
A2k2) 2 1+-- . 

4 

(A.3) 

(A.4) 

(A.5) 

The surface energy of an unperturbed sheet can also be derived by setting A = 0, 

and is simply equal to 2 identical to Equation A.l. 

The dimensionless surface energy change of a sheet subjected to perturbation 

of wavelength ). and small amplitude A is simply the difference between Es and E~: 

(A.6) 

The positive coefficient of A2 simply reflects the increase in the surface area and thus 

energy of a modulated sheet. 

A.l.2 Proximity Energy 

The proximity energy is calculated from the integral of the dimensionless 

proximity potential <I>( s) over the area subjected to this surface-surface interaction: 

1 J 1 {). 2 {). 
Ep = 

1 
>.y 1<I>( s )2dA = 

1 
>.y lo 21<I>( s )ydx = ). lo <I>( s )dx, (A.7) 

where dA = ydx is the surface element of the integral and s is the separation dis­

tance between the two interacting surfaces. The denominator I >.y is used to express 



213 

the proximity energy in a standard dimensionless unit. For an in phase mode of 

perturbation, the separation distance is: 

s = Zt - Zb = ( ~ + Asinkx) - ( -~ + Asinkx) = d. 

This constant valu~ for the separation distance s indicates that an in phase mode 

of perturbation does not affect the thickness of the sheet, and thus the proximity 

energy remains unchanged. On the other hand, an out of phase mode modulates the 

thickness of a sheet, and the separation distance s is: 

s = Zt- Zb = (~ + Asinkx) - ( -~- Asinkx) = d + 2Asinkx. 

This A dependence for s suggests that the thinning and thickening of a sheet associ­

ated with an out of phase mode changes the proximity energy of a perturbed sheet. 

In the following, only this interesting out of phase mode is studied. 

To evaluate the proximity energy associated with small perturbations, ~( s) 

is expanded in terms of A using the out of phase mode expression for s: 

A2 
~(s) = ~(A,x) = ~0 (x) + T~2(x), (A.8) 

with ~o and ~2 being the zeroth and second order coefficients of the Taylor expansion 

of ~(A, x) about A= 0. The above integral for the proximity energy then becomes: 

Ep "' ~loA [~o(x) + ~
2 

~2(x)] dx, 

2 [A A2 fA 
Ep "' >: lo ~o(x)dx + T lo ~2 (x)dx, 

2 A2 

Ep "' ): P(..\) + ;:-Q(..\). (A.9) 

The proximity energy of an unperturbed sheet can be derived by setting A = 0, and 

is simply equal to 2P(..\)/ ..\. Hence, the dimensionless proximity perturbation energy 

Is: 

"E "' Q(..\)A2 
~ p- ,.\ • (A.lO) 
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A.1.3 Overall Energy 

. The overall energy change of a modulated sheet can be calculated as the 

sum of a positive contribution from the surface energy and a negative contribution 

from the proximity energy: 

When the coefficient of A 2 becomes zero or negative, the system becomes unstable 

since the perturbation decreases the overall energy. In other words, a critical wave-

length can be defined by equating this coefficient to zero: 

Any perturbation with ). ~ Ac will trigger this surface instability. When the function 

derived from the Thomas-Fermi Nuclear Model is used for the proximity potential, 

the following expression for Ac is obtained: 

4s 
~(s) = -4.58.27e-3b 

64 2 4d 
~2 (x) =- gb

2
sin kx(4.5827)e-3b 

2d 
=} Ac = 1.10be3b, (A.ll) 

where b is the range of the proximity in~eraction and d is the thickness of the sheet. 

A.2 Nuclear Bubbles 

Energy of a nuclear bubble whose surfaces are distorted by perturbations of 

small amplitudes is calculated in this section within the Liquid Drop Model approach. 

Unlike the compact shaped nuclear disks discussed in the above section, the depletion 

of charges in the central cavity of a bubble reduces the Coulomb energy significantly 
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and this effect can no longer be neglected. Therefore, the relevant physical quantities 

are the surface, Coulomb and proximity energies. The kind of perturbation that is 

considered here preserves the azimuthal symmetry so that both the interior ( RI) and 

exterior radii ( R2 ) are functions of polar angle 0 only: 

Exterior Sur face 

Interior Sur face 

(R2) [1 + A2Pn(cosO)], 

(RI) [1 + A1Pn(cosO)]. 

Here (R1), (R2 ) are mean radii of the interior and exterior surfaces; Ab A2 are am­

plitudes of the perturbations and Pn( cosO) is Legendre Polynomial of nth order: 

where p = cosO. 

Perturbation of this kind is called the "Spheroidal Deformation", and expressions of 

Legendre Polynomials for n = 0 - 4 are shown below: 

P0 (cos0) - 1, 

P1(cos0) 

P2(cos0) 

P3 (cos0) 

P4 (cos0) 

cosO, 

1 
2"(3cos20- 1), 

1 
2"(5cos30- 3cos0), 

1 
8(35cos40 - 30cos20 + 3). 

Since the perturbation of each surface is independent, the ratio of their 

amplitudes Ad A2 defined as the spheroidal deformation parameter A is used to char-

acterize the perturbation. For a perturbation of the radial mode, the distortions on 

both surfaces are in phase with each other and thus A > 0. On the contrary, A < 0 

for a crispation mode, where the perturbations on the two surfaces are out of phase. 

Furthermore, to describe an unperturbed bubble formed at a given stage of expansion 
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Table A.2 : Definition of symbols for energy calculations of nuclear bubbles. 

Symbols I Definitions 

Rt(O),R2(0) radii of interior and exterior surfaces of a perturbed bubble 
(Rt) , (R2) mean radii of interior and exterior surfaces of a perturbed bubble 
RIO, R2o radii of interior and exterior surfaces of an unperturbed bubble 

Ro radius of an unperturbed equivalent sphere 
A1,A2 amplitude of perturbation to interior and exterior surfaces 

A= At/A2 spheroidal deformation parameter 

P = RIO/R2o monopole oscillation parameter 
Pn(cosO) Legendre Polynomial of n tn order 

'Y surface energy coefficient 
X= E~/2E~ Fissility parameter 

Es,E~ surface energy of a bubble and an equivalent sphere 
Ec,E~ Coulomb energy of a bubble and an equivalent sphere 

.6.Es, .6.Ec change in surface and Coulomb energy due to perturbation 
Ep proximity energy of a perturbed bubble 

.6.Ep change in proximity energy due to perturbation 

or contraction, a monopole oscillation parameter P defined as the ratio of the two 

radii RIO/ R20 is introduced. In the limit of P = 0, the central cavity vanishes, and the 

bubble is reduced to a sphere of equivalent volume. To determine the stability of a 

specific bubble configuration, the relevant energies (surface, proximity and Coulomb) 

must be calculated in terms of P and A. These parameters and other relevant symbols 

are listed in Table A.2 with their definitions. 

A.2.1 Reference Energy State 

For the sake of simplicity, the energy of an equivalent spherical nucleus is 

used as a reference energy state. Let Ro be the radius of this equivalent sphere, E~ 

and E~ be their surface and Coulomb energies respectively. The relation between Ro 

and the radii of a perturbed bubble can be derived from the constraint of volume 



conservation. Volume of a perturbed bubble is equal to: 

V = 1::
1 
fo:o ~:: r2 

sin0drd8d¢> 

21r fo:o ( R~ ; Rr) sin8d8 27r 11 ( 3) - Hi- R1 dcos8. 
3 -1 
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To evaluate the above integral, the radii R1 and R2 are expanded in powers of A1 

and A2: 

R{ = (R1) 3 [1 -t A1Pn(cos8)]3 
"' (R1)3 [1 + 3A1Pn(cos0) + 3A~ (Pn(cosO)?], 

Hi= (R2) 3 [1 + A2Pn(cos8)]3 
"' (R2)3 [1 + 3A2Pn(cos0) + 3A~ (Pn(cos8))

2
]. 

Then, the expression for the volume of a perturbed bubble becomes: 

V = 47r (R )3 [1 3A~ ]- 47r (R )3 [1 3Ai l· 
3 2 + 2n + 1 3 1 + 2n + 1 

(A.12) 

Since one is only interested in small perturbations of these spherical surfaces, an 

assumption is made that whatever change of shape requires only the displacement or 

rearrangement of the nuclear matter on the surfaces and does not involve transmission 

through the bulk part of the bubble nucleus. This is equivalent to the assumption that 

(Ri) depends on Rio and Ai only, where Rio is the interior (i = 1) or exterior (i = 2) 

radius of the equivalent unperturbed bubble. By identifying the terms in Equation 

A.12 and the terms in the following expression for the volume of an equivalent bubble, 

v - 47r 1)3 - 47r If. 
- 3 .. "20 3 10' 

the relations between the mean radii of a perturbed ~nd an unperturbed bubble are 

obtained: 

and n3 ( 3 [ 3Ai l 
.niO = RI) 1 + 2n + 1 ' 

and [ 
3A2 l-I/3 

(RI) =RIO 1 + 
2
n; 

1 
, 

(RI) ~RIO [1 - Ai l· 
2n + 1 

and 
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Moreover, R2o and RIO can further be expressed in terms of Ro since they are also 

constrained by the volume conservation (i.e. R~0 - Rio= R~): 

. ( 3)-1/3 R2o = Ro 1- P ( ) 
~1/3 

and RIO = RoP 1 - P 3 
. 

Consequently, the mean radii of a perturbed bubble are expressed in terms of the 

radius of an equivalent sphere: 

(R,) Ro (!- p3r'/3 [1- 2nAlll' 
(R,) = RoP (I- p3f'/3 [~- 2nALl· (A.13) 

The above equation indicates that energies for perturbed bubbles of various config­

urations can be expressed in terms of P and Ro such that they can be compared 

readily. 

A.2.2 Surface Energy 

The surface energy of a perturbed bubble is the product of the surface 

energy coefficient 1 and the total area of the two perturbed surfaces. Since there is 

no spherical symmetry for a perturbed bubble, the general expression for the surface 

area is used: 

( dR)
2 

(dR)
2 

R4 sin20 + R2 - + R2sin20 - dOd¢> d¢> d() . (A.14) 

However, this integral is simplified due to the azimuthal symmetry associated with 

the Legendre Polynomial, and the integral for the interior surface becomes: 

. dPncosO 
[ ( )2] 1 + 2A1 (Pncos0) + AHPncos0)2 + A~szn20 dcosO dO. 
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Since one is interested only in perturbations of small amplitudes, this integral is 

To evaluate the above integral, the following properties of Legendre Polynomials are 

used: 

. 
0

dPncosO _ . 
0

dPncosO d() 
szn dcos() - szn d() dcosO and 

[21r 
lo Pn(cosO)d() = 0. 

Using the expression in Equation A.13 for (R1), the surface area of a perturbed bubble 

is expressed in terms of Ro, P and A1 : 

S = 47rR2 p2 (1- p3)-2/3 [1 + A~(n2 + n- 2)]· 
1 0 2(2n + 1) 

Similarly, the area for the exterior surface is expressed in terms of Ro, P and A2 : 

2 ( 3)-2/3[ A~(n2 +n-2)] 
S2=41rR0 1-P 1+ 2(2n+ 1) . 

Therefore, the surface energy Es of a perturbed bubble can be calculated: 

Es !(St + S2) 

Eo (1 - p3)-2/3 [p2 P2 A~(n2 + n- 2) 1 A~(n2 + n- 2)] 
- s + 2(2n+1) + + 2(2n+I) 

- Eo (1- p3)-2/3 [I+ p2 + A2 (1 + A2p2) n2 + n- 2] (A.I5) 
s 

2 2(2n+I) ' 

where E~ = !47r R5 is the surface energy of an equivalent sphere. The surface energy of 

an unperturbed bubble can be derived by setting A2 = 0, and the resulting expression 

is identical to that derived in chapter 2. Therefore, the coefficient of A~ is the change 

in surface energy (ilEs) associated with the ·perturbation: 

ilE =Eo A2 [(I- p3)-2/3 (I+ A2 p2) n2 + n- 2]· 
s s 2 2(2n+I) (A.l6) 
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A.2.3 Coulomb Energy 

The Coulomb energy Ec of a perturbed bubble with uniformed charge dis­

tribution is evaluated using the following general expression: 

(A.17) 

Here p is a constant charge density and U(r0 , 80 , <Po) is the Coulomb potential at a 

point (ro, 80 , <Po) inside the bubble, whose interior and exterior radii are R1 and R2 

respectively. To be more specific, the functional form for U(r0 , 80 , <Po) is shown below: 

(A.18) 

Here w!r-;,i is the Green's Function and is expanded in spherical coordinates: 

r < r0 

r > r0 

where P;:"( cosB) is Legendre Function of the First Kind, and fm is the Neumann 

Factor: 

\ fo = 1, €m = 2 (m = 1,2,3 ... ). 

The two cases for the above Green's Function show that the contribution of 

charges to the Coulomb potential at a point (r0 , 80 , <Po) is different for the two regions 

(r < ro) and (r > r0 ). Hence, the integral for the Coulomb potential at a point 

(r0 , 00 , <Po) inside the bubble must be evaluated separately for the two regions based 

on the boundary at r 0 : 

Let us consider the integral over the azimuthal angle </> first. Since f cos[m( </> -

<l>o)]d</> #- 0 only if m = 0, this simplify the integral tremendously as one needs 
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to consider only the case for m = 0. In fact, when m = 0, only the Legendre 

Polynomials P~ (cosO) = Pn (cosO) are involved. Moreover the Neumann Factor Eo = 1 

and f:~:~: = 1. The simplified integral is shown below: 

Then an approximation for U(r0 , 00 , </>o) to the second order in A1 or A2 is obtained: 

Q { [3 2 1 2 Rio] U(ro, Oo, </>o) = R3 R 3 -2R20- -2ro--;-
20- 10 0 

3Pn(cos0o) [A rnR2-n _A R~J-3 ]- 3A~R~0 } • 

+ 2n + 1 2 0 20 1 r~+l 2(2n + 1) 

where Q is the total amount of charge in the bubble. When this functional form of 

U(r 0 , 00 , </>o) is used in Equation A.17 to evaluate the Coulomb energy for a perturbed 

bubble, one obtains the following result: 

Ec = E~ (1- P3)-~ { [1- ~p3 + ~ps] 

,. + SA~ [(2n + 1)P3 + 2- 2n- 6APn+3 + 3A2 P 5]}. 
2(2n + 1)2 

Here E~ = 3Q2 /5Ro is the Coulomb energy of an equivalent sphere. When A2 is 

set equal to 0, the above expression for Ec is reduced to the Coulomb energy of 

an equivalent unperturbed bubble. Therefore, the coefficient of A~ is the change in 

Coulomb energy (b..Ec) due to the perturbation: 

b..E =Eo (1- P 3)-t SA~ [(2n + 1)P3 + 2- 2n- 6APn+3 + 3A2 P5] 
c c 2(2n+1)2 • 

A.2.4 Proximity Energy 

The proximity energy is calculated from the integral of the dimensionless 

proximity potential q,( s) over the area subjected to this surface-surface interaction: 

Ep = j 21q,(s)dA, (A.19) 
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where s is the separation distance between the two interacting surfaces. In the case 

of a thin bubble, the surface element of the above integral can be approximated by 

the inner surface of the bubble: 

(A.20) 

Since the spheroidal deformation preserves the azimuthal symmetry, R1 does not 

depend on the azimuthal angle ¢, and the above expression for dA is simplified: 

dA = 

For the proximity potential, the function derived from the Thomas-Fermi Nuclear 

Model is used: 
4• 4(.Rz-RJ) 

<P(s) = -4.5827e-3b = -4.5827e- 3b • (A.21) 

Here the separation distance between the two interacting surfaces is simply the dif-

ference between the two radii : s = R2 - R1 . 

To evaluate the proximity energy associated with small perturbations, <P(s) 

is expanded in terms of A1 : 

(A.22) 

where <P0, <P1 and <P2 are the zeroth, first and second order coefficients of the Taylor 

expansion of <P(A, 0, A1 ) about A1 = 0: 

<Po(A,O) 

<P1 (A, 0) 

-4.5827e ;t ((R2 }-(Rl}), 

-4.5827 e :;: ((R,) -(R,)) [ ;: C R,) ~n cosO - ( R,) P n cosO) ] , 

-4.5827 e :;: ((R,)-(R,)) [ ;: CR,) ~.cosO - (R,) P.cosO) r 

I 
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With the above approximations for dA and <P(s), one obtains the following 

expression for the proximity energy Ep: 

Eo p2 (1 - p3) -~ ( -4.5827)e -!:0 (l-P3rt (1-P) {2 + [ A~ 8Ro (1- p A2) l 
s (2n + 1) 3b (1- P3) 113 

+ 2 __ o A + __ + n2 + n _ 2 . A2 A2 [16R
2 (P- 1.)

2 

16Ro (P -1) l } 
2n + 1 9b2 (1- P3)213 3b (1- P3/13 

Similarly, when A2 is set equal to 0, the above expression for Ep is reduced to the 

proximity energy of an equivalent unperturbed bubble, and the coefficient of A~ is 

the change in proximity energy (~Ep) associated with the perturbation: 

Eop2 (1 - p3)-~ (-4_5827)e -!f<'(l-P3rt(l-P) {[ A~ 8Ro (1- PA
2
) l 

s (2n+1) 3b (1-P3)1/ 3 

+ 2 __ o A + -- A + n2 + n - 2 A2 A2 [16R2 (P- 1.)
2 

16Ro (P- 1.) l} 
2n + 1 9b2 (1 _ p3)213 3b (1 _ p3)1/3 . 
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