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Abstract 

Polarization Dependence of Two-Photon Transition Intensities 

in Rare-Earth Doped Crystals 

by 

An-Dien Le Nguyen 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Sumner P. Davis, Chair 

A polarization dependence technique has been developed as a tool to investigate 

phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption 

(TP A) transition intensities in vanadate and phosphate crystals. A general theory for the 

polarization dependence (PO) of two-photon transition intensities has been given. 

Expressions for the polarization dependent behavior of two-photon transition intensities 

have been tabulated for the 32 crystallographic point groups. When the wavefunctions 

for the initial and final states of a rare-earth doped in crystals are known, explicit PD 

expressions with no unknown parameters can be obtained. 

A spectroscopic method for measuring and interpreting phonon and ERS 

intensities has been developed to study PrV04, NdV04, ErV04, and TmV04 crystals. 

Relative phonon intensities with the polarization of the incident and scattered light 

arbitrarily varied were accurately predicted and subsequently used for alignment and 

calibration in ERS measurements in these systems for the first time. Since ERS and PS 
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intensities generally follow different polarization curves as a function of polar angles, 

the two can be uniquely identified by comparing their respective polarization behavior. 

The most crucial application of the technique in ERS spectroscopy is the establishment 

of a stringent test for the Axe theory. For the first time, the FiF2 ratio extracted from 

the experimental fits of the ERS intensities were compared with those predicted by 

theories which include both the second- and third-order contributions. Relatively good 

agreement between the fitted values of Ft!F2 and the predicted values using the second-

order theory has been found. 

Two-photon absorption has been observed to the crystal-field levels of the 50 0 

and 502 multiplets of Eu3
+ in LuP04 as well as the 60 712, 

6P512 , and 60 712 ' multiplets at 

16800, 19900, and 27900 cm-1
, respectively, of Cm3

+ in LuP04. Polarization isotropy 

and non-zero backgrounds have been observed in several TP A transitions in both 

materials. The theory of two-photon absorption was re-examined and extended beyond 

the electric-dipole approximation scheme to account for both the polarization isotropy 

and non-zero background observed. For the TP A transitions where non-zero 

background was not observed, second-order theory was adequate to account for the 

polarization dependen,t behavior and relative intensities among transitions. 
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Introduction 

Crystals doped with rare-earth (RE) ions play an important role in applied 

physics and optical technologies. The sharp intra-configurational f-f transitions of RE 

impurities in insulators and semiconductors are utilized for developing lasers and 

amplifiers in the near UV, visible, and IR regions. The short-decay time characteristics 

of the electric-dipole allowed f-d transition levels in several RE ions have made wide 

band-gap insulators doped with these RE ions potential candidates for scintillators for 

medical-imaging and high-energy physics detection applications. RE orthophosphates 

have been a potential advanced-ceramic medium for the encapsulation and permanent 

disposal of high-level radioactive wastes~ due to their long-term stability [ 1 ,2]. Because 

of these technologically important implications, we have investigated the electronic 

energy levels and transition intensities in RE ions doped in crystals using two-photon 

spectroscopy. 

The main achievement of this dissertation is the accurate prediction of the 

Raman scattering and two-photon absorption transition intensities in vanadate and 

phosphate crystals, using a theoretical formalism proposed in chapter two. In particular, 

a polarization dependence (PD) theory has been developed as a tool to study two-photon 

processes such as two-photon absorption (TPA), phonon scattering (PS), and electronic 

Raman scattering (ERS) which take place between Stark levels in rare-earth doped 

crystals. The PD expressions have been tabulated for all 32 crystallographic point 
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groups. When applied to a crystal of a particular symmetry with known wavefunctions 

for the initial and final states, explicit PD expressions with no unknown parameters can 

be obtained. 

Following the PD theory, a new spectroscopic method has been suggested for 

accurate measurement and interpretation of the PS and ERS intensities. The new 

method is significant in a number of ways. Firstly, for the first time relative phonon 

intensities of incident and scattered light with polarization arbitrarily varied in spherical 

polar coordinates are predicted, measured, and subsequently used for alignment and 

calibration in ERS intensity measurements. Secondly, the method offers a reliable way 

to identify ERS transitions. Since ERS and PS intensities generally follow different 

polarization curves as a function of the polar angles associated with the polarization unit 

vectors, the two can be distinctly identified by comparing their respective polarization 

behaviors. Finally, the PD technique offers a stringent test for the Judd-Ofelt-Axe 

theory, which has been the foundation for quantitative studies of two-photon 

spectroscopy in rare-earth materials [3-5]. This is in fact the most crucial application of 

the new technique in rare-earth spectroscopy. 

The thesis contains two main parts. The first part is the theoretical development 

of the PD theory for PS, ERS, an~ TP A processes. The results are appli~d to study the 

PD intensities in various RE crystals in the second part. The frrst two chapters of this 

thesis provide the theoretical background for the study of the PD technique. The next 

three chapters are devoted to the experimental verification of the theory from observed 

ERS and PS data in PrV04, NdV04, ErV04, and TmV04, and from observed TPA data 

in Eu3+:LuP04, and Cm3+:LuP04. For Pr3+, Nd3+, Er3+, and Tm3+ in vanadate crystals, 
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second-order perturbation theory is sufficient to explain the two-photon intensities. But 

for Eu3+ and Cm3
+ in LuP04 one has to include third-order contributions in order to 

adequately explain the data. A revisited TPA theory is given in chapter five to explain 

the isotropy and a non-zero background observed in the intensities of several TPA 

transitions of Eu3
+ and Cm3

+ in LuP04. 
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Chapter 1 

Fundamental Concepts in Rare-Earth Spectroscopy 

1.1 Historical Background and Overview 

The rare earth elements, also known as the lanthanides, begin with the element 

cerium (Z = 57) and end with the element lutetium (Z = 71). The lanthanides are 

associated with the filling of the 4f-shells of their electronic configurations. The neutral 

lanthanides possess the common core of a xenon structure of electrons 

(ls22s22p63s23p63d104s24p64d105s25p6
) with two or three outer electrons (6s2 or 5d6s2

). 

In a crystalline environment containing rare earth ions, the rare earth ion commonly 

exists in the trivalent state, in which two electrons in the outer 6s2 shell and one in the 

4rN+1 
( N = 0, ... ,13) or 5d shell are removed. The electronic configuration of the trivalent 

rare earth ion in its ground state is thus [Xe]4rN (N=0, ... 13) .. 

The distinctive sharpness of the spectral lines of rare earth salts was probably 

first noticed by J. Becquerel in the early 1900's [1-4]. For the first time, it was possible 

to recognize that the absorption spectra of some of the rare earths consist not of bands, 

as expected for most solids, but of lines approximating in sharpness the absorptio~ and 

emission lines of gases. Linewidths as narrow as a tenth of a wavenumber at helium 

temperature, and a few wave numbers at room temperature, are commonly observed in 

5 



the absorption and emission spectra. The theoretical explanation for the unusual 

sharpness of rare earth spectral lines, however, had not been available until the advance 

of quantum mechanics. 

By applying the Thomas-Fermi model of atomic theory into the 4f group 

elements, in 1941. Maria Mayer [5] and, in following years, others [6.7] have shown 

that the energy and spatial extension of the 4f-eigenfunctions dramatically drop at the 

commencement of the lanthanides. From the calculation of the effective radial potential 

in the Thomas-Fermi model, Mayer found that at the commencement of the lanthanides 

a potential well developed near the nucleus becomes deep and large enough that it 

draws the 4f-electrons from the outer shells of the atom into the interior. The 

contraction increases throughout the entire 4tN -shell as the effective nuclear charge 

increases. The so-called lanthanide contraction arises from the imperfect shielding of 

one 4f-electron by another 4f-electron [8]. The contraction remarkably reduces the 

interactions between the 4f-electrons with neighboring atoms. As a result the 4f

electrons have very little tendency to participate in chemical bond formation and thus 

possess atomic-like spectral structures. 

The first excited configurations of rare earth ions is 4tN-15d1
• Figures 1.1 and 1.2 

shows the radial distribution functions of the 4f, 5s, 5p, 5d, and 5g orbitals for the Pr3
+ 

and Tm3
+ free ions, respectively, as obtained from Hartree-Fock calculations [9]. The 

radial distribution function is defined as the square of the radial wavefunction times the 

squared radius. In contrast to the ground configuration, the 5d and 5g orbitals are spread 
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Fig. 1-1: Radial distributions of the 4f, 5s, 5p, 5d, and 5g orbitals for the 

Pr3
+ free ion, from Hartree-Fock calculations [9]. Top: 4f, 5s, and 5p 

orbitals of the ground configuration 4f25s25p6
• Bottom: 4f, 5d, and 5g 

orbitals of the configurations 4f5d, and 4f5g, respectively. 
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Fig. 1-2: Radial distributions of the 4f, 5s, 5p, 5d, and 5g orbitals for the 

Tm3
+ free ion, from Hartree-Fock calculations [9]. Top: 4f, 5s, and 5p 

orbitals of the ground configuration 4f125s25p6
• Bottom: 4f, 5d, and 5g 

orbitals of the configurations 4f115d, and 4f115g, respectively. 
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out over a broad range relatively far from the nucleus. The mean radial position of a 4f 

electron is shown to be closer to the nucleus than that of a 5s or 5p electron. 

1.2 Energy Levels and Wave Functions 

1.2.1 The Free Ion 

The free-ion Hamiltonian that determines the 4f energy level can be written as 

[10]: 

n ~ .f. .f. z· ~ ~ 2 ~ 
HFI = __ - L!!.;- L_!.:.._+ L!!.._+ L~(lj )S; ·I;, 

2m i=J i=J 'i i<i 'ii i=J 

( 1.1) 

where N=l, ... ,l4 is the number of the 4f electrons, z•e the screened charge of the 

nucleus, and ~(r;) the spin-orbit coupling function 

r 11 2 dU(r;) 
-::.(r)= 2 2 

' 2m c 'i dr; 
(1.2) 

where U(r;) is the potential in which the electron is moving. 

The Hamiltonian ( 1.1) can be rewritten: 

(1.3) 

where Ho is the first two terms in (1.1), the first of which represents the kinetic energy 

of the 4f electrons and the second their Coulomb interaction with the nucleus; He and 

Hso are the third and fourth terms in ( 1.1 ), which represents the mutual Coulomb 

interaction of the 4f electrons and their spin-orbit interaction, respectively. 

When Hso is small compared to He, we have the so-called Russell-Saunders 

coupling, where the spin-orbit interaction is treated as a small perturbation on the 
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energy level structure which has been detennined from the diagonalization of He. The 

good quantum numbers for the Russell-Saunders coupling scheme are LandS. For rare 

earth ions, however, He and Hso are of approximately equal magnitude and the energy 

level calculations involve simultaneous diagonalization of both He and Hso· It is the 

common practice to use a basis set of Russell-Saunders eigenfunctions for the 

diagonalization. The new eigenfunctions are now a linear combination of states (terms) 

with different Land S but the same J, since the Hamiltonian He +Hso is diagonal in J. 

Without the presence of a crystalline environment the new states are still degenerate in 

M1• Sometimes a new quantum number 't is introduced to distinguish configurations 

with the same LandS that occur more than once [11]. 

We can now. proceed to calculate the energy levels of the rare earth ions. The 

first term in (1.3), H0 , contributes to the energy shifts that are the same for all the levels 

belonging to a given configuration without affecting the energy-level structure of the 

configuration. The second and third terms, He and Hso. will be different for different 

states of the same configuration. We first consider the repulsive Coulomb interaction of 

the 4~ electron, He. 

The matrix elements corresponding to He is written [12]: 

2 

(t,SUMIL~t',S'L'J' M'). (1.4) 
i<j 'ij 

Since the electrostatic Hamiltonian commutes with the angular momentum 

operators corresponding to L 2, S2
, J, and M, the matrix elements will be diagonal "in L 

and S (although not in 't) and independent ofJ and M. Thus (1.4) becomes 
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(1.5) 

The interaction between each pair of electrons can be expanded using Legendre 

polynomials of the cosine of the angle S;j between the vectors from the nucleus to the 

two electrons [13]: 

(1.6) 

where r< is the distance from the nucleus to the nearer electron and r> the distance from 

the nucleus to the further away electron. Using the spherical harmonic addition theorem 

[13] we can write 

(1.7) 

where the c ~k >are defined by 

c<k) = -- Y.. ( 41t J'2 

q 2k + 1 kq 
(1.8) 

Expression ( 1.5) becomes 

(1.9) 

The evaluation of ( 1 :9) can be made by use of the tensor operator m~thods of 

Racah [ 14]. We only consider here the simple problem of 2-electron configuration. The 

extensions to more complex configurations can be found in reference [12]. The matrix 

element of electrostatic interaction between the two configurations can be written as 
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e2 
(nala ,nblb; SLJ-Inclc,ndld; SL) = L[/1 (la, ll>;lc,ld )Rk (n)a, nblb; n)c, ndld) 

'i2 k . (1.10) 

+ gk (la, lb; ld, lc )Rk (n)a, nblb; ndld, nclc )], 

where the Jk and gk represent the angular parts of the matrix elements of Eq. ( 1.1 0) and 

the K' s, the Slater radial integrals, arise from the radial parts of the one-electron 

eigenfunctions. The angular factors can be expressed as 

(1.11) 

and 

(1.12) 

where the reduced matrix element {lllc<k>lll') is defined by 

(
[ k l'J (liiC<k>lll') = (-1) 1[(21+1)(2l'+1)f'2 O O O. (1.13) 

The last factor in equations (1.11) and (1.12) are the 6-j symbols, and the last 

factor in equation (1.13) is the 3-j symbol. Properties of these symbols can be found in 

Appendix A. The numerical values of the 3-j and 6-j symbols have been tabulated by 

Rotenberg et al [ 15]. 

The Slater radial integrals It are defined by [13] 

(1.14) 

We thus have obtained general formulas for the evaluation of the electrostatic 

interaction matrix elements within and between ali· possible two-elecctron 

configurations. A complete tabulation of the electrostatic energy matrices for all the ~ 
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configurations has been made by Nelson and Koster [ 16]. In their tabulation, however, 

the matrix elements are expressed in terms of four parameters, E' (k = 0, ... ,3): 

(1.15) 

where ek 's are the angular parts and E' are radial parts which are related to the Slater 

integrals r in the following expression [16]: 

F! = ~- 2P/45- P/33- 50P/1287 

£ 1 = 14P 1405 + 7P 1297 + 350P/11583 

E! = P 12025- P/3267 + 175PI1656369 

E! = P 1135 + 2P!1089- 175P142471, 

and 

(1.16) 

(1.17) 

We now consider the spin-orbit intera.ction, Hso· The spin-orbit coupling 

N 

Hamiltonian L s(r; )s; ·I; is a tensor product of two rank-one tensors, one of which acts 
i=l 

only on the spin, the other only on the orbit. Using formulas (A 7) and (A9) in Appendix 

A, we obtain the matrix elements of spin-orbit interaction in an IN configuration: 

~ {L L' 1} (lNaSUMls,.rf::<s;·l;)IINa.·s·L'J'M')=s,.r<-1)'+L+s· s· s 
1 

x [l(l + 1)(21 + 1)]1
'
2 (1NaSo/ 01 >jzNa.• S' L'), 

Here the double tensor v<Ix) is defined as 

vox)= L..<su.r)j, 
i 
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(1.18) 

(1.19) 



where ux is a unit irreducible tensor operator, which operates on the spatial coordinates 

and is normalized such that [14] 

(nl u(k) Ill)= 1 (1.20) 

An example for k even is 

(1.21) 

The complete V01> matrices for all ~ configurations has been tabulated by 

Nielson and Koster [ 16]. 

Having constructed the energy matrices of a particular configuration we can 

obtain the energy level of that entire configuration, if the Slater and the spin-orbit radial 

integrals are known. In the absence of reliable wave functions, the radial integrals have 

traditionally been treated as adjustable parameters. In a least-squares method, the 

parameters are usually chosen to fit the few known levels of the configuration being 

studied. The resulting energy-level scheme is then used to make further level 

assignments, after which the parameters may be refined. A correct fit should also yield 

eigenfunctions that can be used to calculate other physical observables with a 

comparable precision. 

The Coulomb and the spin~orbit interactions are the most important ones for 

describing rare earth free ion energy levels. Discrepancies of the order of 100 cm"1
, 

however, still remain in comparing experimental and theoretical results [10]. In order to 

reduce these discrepancies, additional interactions need to be taken into account. The 

most important one is the configuration interaction via the Coulomb interaction. It can 

be put into parameter form with three two-body integrals, denoted by ex,~. y [17], and 
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six three-body integrals, denoted by T2 to T8 [18].· The next additional interactions are 

the spin-spin interaction and the spin-other-orbit interaction, which are absorbed into 

three parameters,~. M2
, and M4

• Finally because of the configuration interaction, the 

spin-orbit coupling can no longer be described by a single constant ~. and this effect can 

be put into three parameters, p2, P4
, P6[19, 1.20]. Altogether, we have up to 21 

parameters with which to describe the free ion spectra. 

1.2.2 Ions in the Static Crystal Field 

For a free ion, each energy level is (21+1) fold degenerate because of the 

spherical symmetry. On placing the ion in a crystal, the ion experiences the crystal field, 

which is produced by the charge distribution in the crystal. The crystal field destroys the 

spherical symmetry and removes the Mj degeneracy of the free ion energy levels. The 

symmetry about the ion will be reduced from spherical symmetry to the ·symmetry of the 

position the ion occupies in the crystal. The free ion levels will split into a number of 

sublevels that may be characterized by the irreducible representations of the group 

associated with the point symmetry of the ion in the crystal. If the point symmetry is 

well defined, the new basis for the perturbed Hamiltonian will be lcxSLJ orr). where orr 
\ 

are the irreducible representations of the point group. 

The extent of the removal of the Mj degeneracy depends on the crystal 

symmetry. The number of levels into which free ion J terms are split in a crystal field of 

a given symmetry is completely known and weB-documented (see, for example, 
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references [12] and [21]). We are now only concerned with the problem of calculating 

the actual size of the crystal field splitting. 

The Hamiltonian for an ion placed in a crystal field may be written as: 

H=HF+ V, (1.22) 

where HF is the Hamiltonian of the free ion and V the potential provided by the crystal 

environment about the ion being studied. We will assume that the eigenvalues and 

eigenfunctions· of HF are known and regard V as a perturbation. The unperturbed 

eigenfunctions will have complete spherical symmetry, and we will try to expand V in 

terms of spherical harmonics. We may expand the potential in terms of the tensor 

operators C/k) to give 

V = ""'Bk (C<k>). ~ q q •• (1.23) 
k.q.i 

where the summation involving i is over all the electrons of the ion of interest. The 

quantities Bq k can be regarded as coefficients of expansion to be determined empirically 

from the experimental data without assuming any details of the model. For the ~ 

configuration the matrix elements of V is given by 

(JNaSUMIVI!Na'S'L' J' M')= LB;<JNaSUMIU~Ic>IJNa·s·L' J' M')(JIIC<Ic>llf) 
lc.q 

(1.24) 

where u<kJ is a symmetric unit tensor operator defined as [22] 

(1.25) 
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Equation (1.24) can be further evaluated using (1.13), (AlO), and the Wigner-

Eckart theorem, (A4): 

The reduced matrix elements of cfk> may be obtained directly from the tables of 

Nielson and Koster [16]. From the symmetry properties of the 3-j symbol in (1.26) we 

can immediately see that the matrix elements of V are non-zero only if k is even and 

k::56. The number of nonzero terms (k,q) of the series is further restricted by the point 

symmetry at the site of the rare-earth ion of the crystal. In experimental spectroscopy, Bq 

k are treated as adjustable parameters. In an actual crystal field analysis, the observed 

energy levels are fitted to a Hamiltonian that contains the free parameters, ~. F2, F4, F6, 

etc., and the crystal field parameters Bq k's. Except for cases of very low symmetry, 

involving a great many crystal field parameters, there are generally more experimental 

data than crystal field parameters and therefore a reliable set of crystal field parameters 

can be obtained. 

1.3 Intensities 

1.3.1 One-Photon Spectroscopy 

The one-photon intensities of an absorption or emission radiative transition are 

often expressed in terms of oscillator strengths, fnm, where n and m are initial and final 

states of the transition. In purely atomic transitions,/nm is defined as 
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81t 2mv 
f 11m = h l(n1Pim)l2 

for electric or magnetic dipole transitions, and 

121t 4mv 4 

f 11m = h 2 2 l(nlQim)f 
e c 

(1.27) 

(1.28) 

for electric quadrupole transitions, where vis the frequency of the transition i->f, P the 

electric dipole ormagnetic dipole moment, and Q the quadrupole moment tensor. 

For allowed transitions in free atoms, the electric dipole oscillator strengths are 

of the order of magnitude one in the visible, and the magnetic dipole or electric 

quadrupole oscillator strengths are of the order w-s or smaller. The electric dipole 

transitions between the levels of the 4t' configurations, which are responsible for the 

free ion spectra, are forbidden, because the electric dipole operator has odd parity and 

the transition matrix _element must have even parity (Laporte selection rule). The · 

experimental data on the crystal spectra of rare-earths, however, show that the radiative 

transitions are mostly electric dipole in nature, though in some cases the magnetic 

dipole transitions are also observed. Van Vleck [23] was first to point out that electric 

dipole radiation can occur if the 4(' states have admixtures of 4t'-1nl configurations, 

where 4('·1nl are chosen such that it has opposite parity from 4t'. The admixture of the 

4('-I wavefunctions into the 4(' wavefunctions is produced by interactions that have 

odd parity. In crystals where rare earth ions occupy noncentrosymmetric sites, odd 

parity components of the crystal field mix states from opposite parity configurations 

into the 4(' wave functions. This mechanism of "forbidden electric dipole transitions", 

as first proposed by Van Vleck, turned out to be the dominant source for the one-photon 

intensities in the rare earth spectra. 
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Van Vleck's proposal of forbidden electric dipole transitions was developed into 

a quantitative theory of rare earth transition intensities in 1962 by Judd [24] and Ofelt 

[25]. Using frrst order perturbation theory. the 4rN initial li) and final If) state 

wavefunctions of the rare earth ion can be expressed as: 

(! Na.TMIVoda'l ")("I 
(il= (f Na.TMI+ I CF J J. 

i Eii 

I")( "IVoda'lfNa.'J'M') 
lf)=lfNa.'J'M')+I J J CF • 

i E if 

(1.29) 

where the symbol I stands for the sum over the Ia." ,J" ,M") states of the n "I" 
j 

excited configuration whose parity is opposite to that of the rN configuration. Here the 

unprime, prime, and double prime symbols denote the initial, final, and intermediate 

. states, respectively, a. denotes the quantum numbers other than total angular 

momentum J and the azimuthal component of angular momentum M needed to 

completely specify the wave functions in the intermediate coupling scheme, and Ejx=Er 

Ex. where x = i or f. 

For an electric dipole transition from crystal field state li) to If) the oscillator is 

given as [24] 

(1.30) 

where X= n(n2 + 2)2/9, a correction for the refractive index n of the crystal, and D/1
J is 

the electric dipole operator. defmed by 

v; = Lrj c~J)(6pcp). 
j 

where cl> is defined in ( 1.8). 

(1.31) 
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For transitions between energy levels i and fin an anisotropic medium eq. ( 1.31) 

is written 

_ 81t 
2
mv ~ . O> 2 /if - 3h(2J + 1) X _£..J l(ziDq 1/)1 

l,f .q 
(1.32) 

In any case the oscillator strength is proportional to 

(1.33) 

in the electric dipole approximation. 

The explicit computation of the sum in (1.33) is unmanageable because of the 

infinite number of levels in the intermediate configurations. If the denominators in 

(1.33) are regarded as constant, however, the closure relation Llj)(jl= 1 can be 

invoked. This closure approximation was introduced by Judd and Ofelt in 1962 in order 

to transform (1.33) into a more tractable form. In its mildest form the closure 

approximation regards all excited configurations E(n"l" ,a." J") as independent of J", 

as the splittings within multiplets of the excited configurations are supposed to be 

negligible compared with the energies that the configuration as a whole lie above 1N[24], 

and the sums in (1.33) can be performed over J" and M". In its most sweeping form the 

closure approximation simply regards all excited configurations as completely 

degenerate, leaving only a single constant energy denominator. A common 

approximation regards the lowest energy configuration 4:f'l-15d as degenerate and most 

significant, and neglects the contribution of other intermediate configurations. After the 

summations are performed we obtain [24] 
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(1.34) 

where 

and (1.35) 

H~ =2_ I{1 

£/'/ n'l' J 
A. k} I' f (flrln' l')(fiiC OJ lll')(fiiC <kl Ill'). 

Equation (1.33) is key to quantitative study of radiative one-photon processes. 

The reduced matrix elements of cf'A> in equation (1.34) can be evaluated in the same 

manner as mentioned in section 1.2.2. The coefficients n~.. are called the Judd-Ofelt 

(JO) parameters, as their values are usually determined by fitting experimental oscillator 

strengths. Typically a single set of n~.. are used to fit all observed oscillator strengths of 

a particular rare earth ion in a given host crystal or solution. The oscillator strengths of 

numerous one-photon transitions in all trivalent rare earth ions have been analyzed 

according to such a fitting. The phenomenological treatment has successfully accounted 

for the intensities of a majority of transitions in each rare earth ion. The most extensive 

work has been done by Carnal! et al. [26,27] on the aqueous solutions of trivalent rare 

earths. References on analyses of rare earth oscillator strengths can be found in review 

papers such as that of Peacock [28]. 

1.3.2 Two-Photon Spectroscopy 

Unlike one-photon spectroscopy, which had been well-established by. the 

commencement of this century, most of the studies of two-photon spectroscopy had to 
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await the advance of lasers. Two-photon transitions are second-order processes, and are 

therefore much weaker than their one-photon counterpart. We will discuss two different 

mechanisms contributing to two-photon processes. 

1.3.2.1 Two-Photon Absorption 

One of the two-photon processes is two photon absorption (TP A), a process in 

which two photons are simultaneously absorbed. TP A has been used to locate and 

determine the symmetry of the crystal field wavefunctions and their energy levels in the 

UV and near-UV region [29]. Since the selection rules for two-photon absorption 

processes are different from those for single-photon processes, transitions that are 

forbidden in linear absorption may be explored by two-photon absorption. The first 

observation of two-photon absorption was the experiment of Kaiser and Garrett [30]. 

Since then two-photon absorption has been used as an important tool to study phonons, 

polaritons, excitons, and intra- and inter-configurational electronic transitions in a wide 

variety of solids [29, 1.31]. 

1.3.2.2 Raman Scattering 

Another two-photon process is Raman scattering, which includes phonon 

scattering and electronic Raman scattering. This light scattering phenomenon was first 

discovered by Raman in 1928 [32]. He investigated light scattered from a clear 

substance and found that its frequency was shifted in such a way to correspond to the 

rotational and vibrational energy characteristic of the substance. The amount of the 

scattered light is quite small compared to that of the light passing through the material 

without deflection. Furthermore, most of the scattered light was frequency unshif:ted -

the so-called Rayleigh scattering. Only approximately one percent of the scattered light 

was frequency shifted- the Raman scattering. For a liquid sample only I0-5 to I0-7 of 
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the amount of the incident light beam is scattered as Raman light. This explains the 

difficulty in detection and measurement of the Raman scattering technique in the early 

days. However, with the advance of the intense and highly coherent light produced by a 

laser, Raman spectroscopy has become one of the powerful techniques in detennining 

the rotational, vibrational, and electronic energy levels of molecules, which 

traditionally had been detennined only by infrared spectroscopy. 

If the scattered light frequency is shifted to the lower energies, the spectral line 

is called the Stokes line. The spectrum line corresponding to the higher energies is 

called the anti-Stokes line (fig. 1.3). The Stokes lines come from the inelastic collision 

of the incident light and the molecule of the excited sample material bringing the 

molecule to a higher energy level. In the quantum language the molecule absorbs a 

photon coming from the laser, jumps to an excited level, and induces a photon of lower 

frequency, with the difference in frequency corresponding exactly to the difference in 

energy between the initial and final states of the molecule. The anti-Stokes lines result 

from the deexciting the molecule from a higher to a lower energy level. Thus Raman 

scattering is a two-photon phenomenon, one photon being destroyed and the other 

created out of the vacuum. 
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Fig. 1.3: Stokes and Anti-Stokes spectral lines in Raman scattering. In a 

Stokes shift, the molecules are excited to a state of higher energy. In an 

Anti-Stokes shift, the molecules are deexcited to a state of lower energy. 
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a. Phonon Raman Scattering 

If the molecule is excited to a new vibrational level of the same electronic state, 

the scattering is called phonon scattering. It is merely the interaction between the 

incoming light and the phonons of the medium. In solids there are optical and acoustic 

modes of vibration. Only optical modes can be Raman active, due to their ability to 

interact with light via induced dipole moments. For non-resonant phonon scattering - in 

which the incoming light frequency does not match any electronic level of the medium-

the phonon modes have to be symmetric to be Raman active. 

b. Electronic Raman Scattering 

When a Raman scattering transition occurs between two electronic states of the 

medium, the transition is called the electronic Raman transition. Rare earth crystals are 

good candidates for the electronic Raman technique because their crystal field energy 

levels of the ground multiplet are generally quite sharp and fall well into the infrared 

region. Thus a laser with an optical frequency can probe the low-lying levels of a 

multiplet (usually the ground multiplet) to reveal the energy separation between these 

crystal field levels. The first electronic Raman scattering experiment was reported by 
"' 

Hougen and Singh in 1963 [33]. From the measured intensities of the electronic Raman 

transitions, one can study the mechanisms of the interaction between the lanthanide ion 

and the radiation field [34]. 

c. Selection Rules and Symmetry in Raman Spectroscopy 

The selection rules for the vibrational and electronic Raman scattering processes 

are determined by the symmetry of the crystal lattice. The phonons of the rare earth 
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vanadate crystal medium are classified by the irreducible representations of the group 

D4h· which is the synnnetry group of the unit cell [35]. The electronic levels are 

classified by the irreducible representations of the point group D2d· which is the site 

synnnetry group of the lanthanide ion in the zircon structure crystal lattice. In Raman 

scattering processes, in which an incident light wave of polarization 0' is inelastically 

scattered into a light wave of polarization p, the amplitude of a Raman scattering 

transition is determined by CXpo, where p and 0' connnonly represent Cartesian 

coordinates [36]. 

i) Selection rules in phonon scattering: 

For (RE)V04 crystals there are two molecules per primitive cell; hence there are 

36 phonon modes, 33 of which are optical. Of these 12 are Raman active: 2A Ig+ 4B lg 

+ B2g+ 5Eg· Except the Eg mode, which is doubly degenerate, all other modes are non-

degenerate. The polarization dependence of these Raman modes is contained in their 

respective Cartesian Raman tensors listed below in Table 1.1 [37]. 

Table 1.1: Cartesian Phonon Raman scattering tensors for the zircon structure (D4h). 

(~ 
0 

~J (c 0 OJ (~ 
d 

~J Alg a Big 0- -c 0 B2g 0 

0 0 0 0 0 

(~ 
0 

~J (~ 
0 

~J Eg 0 and 0 

0 f 

ii) Selection rules in electronic Raman scattering: 
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The symmetry of the electronic Raman Cartesian tensor Clpcr is determined by 

requiring that the direct product ri® r(apcr)® rf contain the totally symmetric 

representation, where ri and rf are the irreducible representations of the initial and final 

electronic states, and cr and p are the polarizations of the incident and scattered light, 

respectively. Here the notation used for the irreducible representations is that of Koster 

et al [21]. This means that the allowed tensor is given by the decomposition of ri ® r f 

into irreducible representations. In practice ri is usually known from absorption data, 

r(apcr) is determined from the experiment, and rf is found by the requirement stated 

above. 

" The electronic levels of the rare earth (RE) ion in the vanadate crystal host are 

classified by the irreducible representations of the point group D2d· which is the site 

symmetry group of the lanthanide ion in the zircon structure (RE)V04 crystal lattice. 

The Cartesian electronic Raman scattering tensors are listed in Table 1.2. Note that a 

transformation is needed to express the scattering tensors in the crystallographic X, Y, Z 

frame, which can be readily observed from the experiment, while the symmetry 

properties of the scattering tensors are derived in the local D2d symmetry (the x, y, z 

frame). A scattering tensor Clpcr observed in the X,Y,Z frame is related to the tensor 

aA_J.L expressed in the rotated x,y ,z frame by the equation: 

Clpcr = Rt CXAJ.t R (1.36) 

where R is the matrix of a 450 rotation about the Z axis, Rt its transpose, p,cr = X,Y,Z, 

and A,J.L=x,y,z 
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(

cos(7t I 4) sin(7t I 4) 0) 
R= -sin(7tl4) COS(7t/4) 0 

0 0 1 

(1.37) 

The z axis is parallel to the Z axis, and the x and y axes are rotated in the X-Y 

plane by 45° relative to the X and Y axis. In the Cartesian coordinates, x and y (X and 

Y) are completely interchangeable for D2d symmetry. The effect of the rotation of the 

tensors is that some tensors having diagonal elements may be transformed into tensors 

having elements equal to zero, and vice-versa. Note also that since x and y are 

equivalent one must have 

(1.38) 
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Table 1.2: Cartesian electronic Raman scattering tensors for D2d 

Symmetry labels Axes x,y,z AxesX,Y,Z 

a 0 0 a 0 0 
ri 0 a 0 0 a 0 

0 0 b 0 0 b) 
0 c 0 0 c 0 

r2 -c 0 0 -c 0 0 

,o 0 0 0 0 0) 

d 0 0 0 d 0 
r3 0 -d 0 d 0 0 

,0 0 0 0 0 0~ 
0 e 0 e 0 0 

r4 e 0 0 0 -e 0 

0 0 0) 0 0 0 

0 0 f 0 0 f I ..fi 

0 0 0 0 0 -JI..fi. 

rs v 0 0 ' f I ..fi -JI..fi 0 -' 
(symmetric) (o 0 

~J [~.lh 0 f•th] 
l~ 0 0 f"l..fi 

f" 
f" I ..fi 0 

r o o g 0 0 glhl 
lo o 0 0 0 -gl..fi 

rs -g 0 0 ,-gl..fi gl..fi 0 ) 

( antisymmetric) [0 0 0 J [0 0 g· I h J 0 0 g" 
0 0 g" I ..fi 

0 -g· 0 
-g· l..fi -g· l..fi 0 
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1.3.2.3 Two-Photon Transition Intensities 

The derivation of two-photon transition intensities in the framework of time 

dependent perturbation theory can be found in advanced textbooks on quantum 

mechanics (see, for example, references [38] and [39]), and a rather detailed discussion 

on its application to rare-earth ions was given in Downer's thesis [40]. We will only 

discuss important results for rare-earth ions which will be useful for our theoretical 

treatment of two-photon transition intensities in subsequent chapters. 

The total Hamiltonian of N atomic electrons of the configuration f'l interacting 

with electromagnetic radiation can be written: 

(1.39) 

where the Ho term includes the central, field term, the p2/2m term, the Coulomb 

interaction, spin-orbit interaction, crystal field interaction, and other terms not included 

in radiative interaction term. The V0 term represents the interaction Hamiltonian, which 

can be written: 

(1.40) 

where the vector potential A(rn) satisfies the transversality condition V ·A= 0, often 

known as the Coulomb gauge. In a general two photon process the vector potential can 

be regarded as superposition of two plane waves of frequencies ro1 and C1>2 and unit 

polarization e 1 and e 2: 

(1.41) 

30 



In the time-dependent perturbation language, the linear (A.p) term in ( 1.40) 

makes no contribution in first order to a two-photon process. The first-order TPA 

transition amplitude from i to f thus comes only from the quadratic (A.A) term in 
/ 

(1.40): 

(1.42) 

(1.43) 

The signs in front of k and co for two-photon emission, would be opposite to 

those for TP A. For Raman scattering, one photon is absorbed and the other emitted, 

thus the signs would alternate. The exponential operator in (1.42) can be expanded in 

the series 

(1.44) 

In the expansion (1.44) the frrst term only contributes to Raleigh scattering. For 

rare-earth transitions between states of the 4f configuration, the second term of the 

approximation is smaller than the first term by approximately a factor of 10·5• This is 

because (k I + k 2 )· < 4 fl L rn 15d > is on the order of 10"2 for excitation in the optical 
n 

range and assuming < 4 /I L r n 15d > to be of the same magnitude as atomic level 
n 

spacings. In addition, due to the small amount of opposite-parity configurational mixing 

of the 5d states into the 4f states, the matrix element< 4/IL rnl4f > is smaller than 
n 

< 4/IL rnl5d > by a factor of w·3
, but non-zero, making the total magnitude of 

n 
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(k I + k 2 )- < 4 /I L r 1114 f > to be approximately 10"5
• The last term also gives a 

II 

contribution on the order of w-s. -Both of these latter terms tum out to be negligible 

compared to the second-order contributions to the two-photon transition probability. It 

should be noted that although having the same magnitude order, the second term differs 

from the third term in (1.44) by an imaginary factor. 

The A.p term in (1.41) can be taken twice in the second order to give a 

.contribution to two-photon amplitude. The second-order transition amplitude c<2>(t) for a 

TPA process between states i and f is given by 

(1.45) 

where the summation is performed over all intermediate states j, and 

A 
M <q) = _q < al~ e'"'q·r·e · p lb > 

ab 2 £..J q n • 
II 

(1.46) 

where q is 1, 2, a is i,j, and b isjf. 

In the case of resonant excitation where co if -C02 = 0 (or co if -co1 = 0), the 

denominator in ( 1.45) must be modified to include the linewidth of the excited state, i.e. 

The exponential operator in (1.46) can again be expanded via (1.44). The first 

term in the expansion can be written 

A ~ imco A D 
<aleq · £..J p

11
lb>=---<aleq · lb>, 

, e 
(1.47) 
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where D =I r,. An approximation in which only the e .p term is kept is called the 
II 

electric dipole (E1) approximation. When the electric dipole term is sufficiently small, 

the second term of (1.44) may be taken into account: 

(1.48) 

where the first term on the right hand side of (1.48) is the quadrupolar term (E2) and the 

second term the magnetic dipolar term (Ml). These are the terms responsible for the 

electric quadrupole and magnetic dipole transition in one-photon absorption. The 

transition probabilities corresponding to these terms are of the order 10-4 smaller than 

for the electric-dipole term. The E2 tennis in general out of phase with the El term and 

M 1 term, except in the case of circular polarization, in which the magnetic dipole term 

is also OUt of phase with the electric dipole term, since (k X e±) = +ie±, where e+ and 

e _ are the polarization vectors of right ( +) and left (-) circularly polarized light. In most 

cases where the second-order electric dipole term is sufficiently large, the electric 

quadrupole and magnetic dipole terms can be neglected. 

The quantitative study of two-photon processes began when Axe [31], using the 

Judd-Ofelt closure approximation, derived an explicit expression for the second-order 

two-photon line strength, in a manner analogous to Judd and Ofelt's formula for single-

photon line strength. The expression for two-photon absorption line strength, however, 

generally contains only one parameter, instead of three, as in the one-photon expression. 

As a result, the ratio of the line strengths of two-photon transitions can be computed 

without the need for phenomenological parameters. Experimental measurements of line 
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strength ratios and polarization dependence of line strengths therefore provide rigorous 

tests of the second order theory of two-photon absorption. More details of the 

quantitative derivations of the two-photon absorption and electronic Raman scattering 

· are provided in the next chapter, where the treatment of the polarization dependence of 

the two-photon transition intensities in crystals is given. 

We have just built the foundation for understanding the energy levels of a rare 

earth ion in a crystal and the corresponding crystal field eigenfunctions. We have also 

provided the theoretical framework for one-photon intensities of rare-earth transitions, 

and contrasted the two-photon with the one-photon spectroscopy. In the next chapter we 

will study the quantitative two-photon transition intensities in crystals and provide the 

theoretical analysis for the polarization dependence technique. 
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Appendix A 

The following definitions and fonnulas have been used in the tensor operator 

recoupling techniques. We will employ the following abbreviated notation: 

(11 = 2j+l 

1. Definition of the 3-j Symbol 

2. Definition of the 6-j Symbol 

3. Definition of the 9-j Symbol 

{

j1 j2 

h 14 

j13 j24 

112} 
. - (-1)jl+h+h+j[ . . . . ]-1/2 

h4 - 112• 134• 113• h4 

j 

X ( (j1 j2 )jl2(j3j4 )j34jl (j1j3 )jl3(j2j4 )j24j) 

(AI) 

(A2) 

(A3) 

Symmetry properties of the 3-j, 6-j, and 9-j symbols can be found in many 

textbook references on tensor operators such as [11],[16], and [22]. 

4. The Wigner-Eckart Theorem 

a. Single Tensor Operators 
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b. Double Tensor Operators 

(asm lm IT<kk'Jia' s' m 'l 'm ') = (-l)s+l-m,-m, 
s I ~· s I I . 

(
s k s'Il k' l') x a.sl liT <kk'JIIa' s' l') 
-ms q m' -m1 q' m' 

(A5) 

5. Product of Tensor Operators 

a· 

{

jl jl' 

[ 
• •t .k]J/2 • • I 

X ],] , h h 

j j' 

(A6) 

6. Scalar Product of Two Tensor Operators 

T<k). tJ<k) = L<-l)qT~k)v~~ 
q (A7) 

= ( -l)k (2k + 1Y'2(T(k) X u<kJ yo) 

Setting K = 0 and k1 = k2 =kin (A.6) we get 

(A8) 

Setting k2 = 0 and then k1 = 0 in (A.6) we get 

(A9) 

and 



(AIO) 

7. Useful Reduced Matrix Elements 

a. (lllllll') = [l(/+1)(21+1)]112 0(/,l') (All) 

b. (sllslls') = [s(s+l)( 2s +1)] 112l>(s,s') (Al2) 

c. (Al3) 

8. Useful Formulas for Reduced Matrix Elements 

(Al4) 

(INaSUII(Ucr>wo 1>0 )1llNa· S' L' J') 

= [Jr1
'
2 L (lNaSUIIU<r>lllNa" SL' J" )(INa" SL" J'IIW01 >

0 lllNa· S' L' J') 
ljl" 

(Al5) 

(Al6) 

37 



References 

[1] J. Becquerel, C.R. Acad. Sci. 142, 775 (1906). 

[2] J. Becquerel, Le Radium 4, 328 (1907). 

[3] J. Becquerel and H. Kammerlingh Onnes, Proc. Acad. Amsterdam 10,592 (1908). 

[4] J. Becquerel and H. Kammerlingh Onnes, Le Radium 5, 227 (1908). 

[5] M. Mayer, Phys. Rev. 60, 184 (1941). 

[6] R. Latter, Phys. Rev. 99, 510 (1955). 

[7] C. A. Coulson and C. S. Sharma, Proc. Phys. Soc. (London), 79, 920 (1962). 

[8] C. K. J!3rgensen, J. Inorg. Nuclear Chern., 1, 301 (1955). 

[9] N. Edelstein (private communication). 

[10] S. Hiifner, Optical Spectra of Rare Earth Compounds (Academic Press, New York, 

1978). 

[11] B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill Book Co., 

New York, 1963). 

[12] B. G. Wyboume, Spectroscopic Properties of Rare Earths (Interscience Publishers, 

New York, ·1965). 

[13] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge 

University Press, Cambridge, 1935). 

[14] G. Racah, Phys. Rev. 62,438 (1942). 

[15] Rotenberg, Bivins, Metropolis, and Wooten, The 3-j and 6-j Symbols (M.I.T. Press, 

Princeton, 1959). 

[16] c. w. Nielson and G. F. Koster, Spectroscopic Coefficients of the pn, cr. and I 

Configurations (The M.I.T. Press, Cambridge, Massachusetts, 1963). 

38 



[17] K. Rajnak and B. G. Wyboume, Phys. Rev. 132,280 (1963). 

[18] B. R. Judd, Phys. Rev. 141, 4 (1966). 

[19] B. R. Judd, H. M. Crosswhite, and H. Crosswhite, Phys. Rev. 169, 130 (1968). 

[20] H. Crosswhite, H. M. Crosswhite, and B. R. Judd, Phys. Rev.l74, 89 (1968). 

[21] G. F. Koster, J. 0. Dimmock, R. G. Wheeler, and H. Statz, Properties of the 

Thirty-Two Point Groups (M. I. T. Press, Cambridge, Massachusetts, 1963). 

[22] R. D. Cowan, The theory of Atomic Structure and Spectra (University of California 

Press, Berkeley and Los Angeles, California, 1981). 

[23] J. H. van Vleck, J. Phys. Chern. 41,67 (1937). 

[24] B. R. Judd, Phys. Rev. 127, 750 (1962). 

[25] G. S. Ofelt, J. Chern. Phys. 37,511 (1962). 

[26] W. T. Camall, H. Crosswhite, and H. M. Crosswhite, Energy Level Structure and 

Transition Probabilities of Trivalent Lanthanides in LaF3 (Argonne National 

Laboratory Report, 1977). 

[27] W. T. Camall, Pr. Fields, and B. G. Wyboume, J. Chern. Phys. 42,3797 (1965). 

[28] R. D. Peacock: Struc. Bonding 22, 83 (1975). 

[29] M. Downer, in Laser Spectroscopy of Solids II, edited by W. M. Yen (Springer 

Verlag, New York, 1989). 

[30] W. Kaiser and C. G. B. Garrett, Phys. Rev. Lett. 7, 229 (1960). 

[31] J.D. Axes, Phys. Rev. 136A, 42, (1964). 

[32] C. V. Raman and R. S. Krishnan, Nature 121, 501 (1928). 

[33] J. T. Houghen and S. Singh, Phys. Rev. Lett. 10, 406 (1963). 

39 



[34] R. J. H. Clark and T. T. Dines, in Advances in Infrared and Raman Spectroscopy, 

edited by R. J. H. Clark and R. E. ·Hester (Heyden, London, 1982), Vol. 9, p. 282. 

[35] M. Cardona, in Light Scattering in Solids II (Springer-Verlag, Berlin, 1982), p. 19. 

[36] J. A. Koningstein, Introduction to the Theory of the Raman Effect (D. Reidel 

Publishing Company, Dordrecht, Holland, 1972). 

[37] R. Loudon, Adv. in Phys. 13,423 (1964). 

[38] J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley Publishing 

Company, Inc., Redwood City, California, 1987). 

[39] R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1983). 

[40] M.C. Downer, Ph.D. thesis, Harvard University, Cambridge, 1983. 

40 

/ 

I 



41 



Chapter 2 

Theory of Polarization Dependence of Raman 

Scattering and TPA Intensities in Rare-Earth Doped 

Crystals 

2.1 Overview 

Two-photon spectroscopy has emerged as an important tool in the study of 

electronic states of ions in crystals. There are two types of two-photon spectroscopy. 

The first type is two-photon -absorption (TP A), in which both photons are 

simultaneously absorbed by the ion. The second type is electronic Raman scattering 

(ERS), in which a photon is inelastically scattered from an ion such that the ion is 

excited to a different electronic state. Both types of spectroscopy are considered 

complementary to linear spectroscopy. TP A has provided access to higher energy 

absorption bands than single-photon absorption, and ERS has been used to probe low 

energy levels near the ground state. Since the selection rules for two-photon processes 

are different from those for single-photon processes, transitions that are forbidden in 

linear absorption may be explored by TP A. The freedom to independently vary each of 

the two polarizations in two-photon processes has provided a powerful tool to study the 

symmetries of the initial and final states in a transition. Among the important 
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applications of two-photon spectroscopy one may include the study of phonons, 

polaritons, excitons, and intra- and inter- configurational electronic transitions in a wide 

variety of solids [ 1-4]. 

• 
The theory of two-photon processes owes much of its origin to the theory of 

one-photon processes. The quantitative theory of single-photon transition intensities 

was developed by Judd [2] and Ofelt [3] in 1962. By introducing the so-called "Judd-

Ofelt closure approximation" Judd and Ofelt were able to derive an expression in which 

the oscillator strengths of the one-photon transitions of rare earth (RE) ions in host 

lattice crystals are described in terms of a radial factor, which can be estimated for a 

particular rare earth, and only three parameters. The values of these so..:called Judd-Ofelt 

parameters are usually determined by fitting experimental oscillator strengths. 

Typically, a single set of Judd-Ofelt parameters are used to fit all observed oscillator 

strengths of a particular RE ion in a given host crystal or solution. The 

phenomenological treatment has successfully accounte~ for the intensities of a majority 

of transitions for each RE ion. The most extensive work has been done by Carnal! et al. 

[5,6] on the aqueous solutions of trivalent RE's. References on analyses of RE oscillator 

strengths can be found in review papers such as that of Peacock [7]. 

The quantitative study of two-photon processes began when Axe [4], using the 

Judd-Ofelt closure approximation, derived an expression for the second-order two-

photon line strength, in a manner analogous to Judd and Ofelt' s formula for single-

photon line strength. The expression for TPA line strength, however, generally contains 

only one parameter, instead of three, as in the one-photon expression. As a result, the 
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ratio of the line strengths of two-photon transitions can be computed without the need 

for phenomenological parameters. Experimental measurements of line strength ratios 

and the polarization dependence of line strengths therefore provide rigorous tests of the 

second order theory of TPA. Axe's theory, however, is traditionally applied t? intra

configurational transitions from one multiplet to another, with the polarization of the 

excitation photons being either parallel or perpendicular to the z-axis of the lanthanide 

complex, where the z-axis is the highest symmetry [8]. 

The overwhelming success of the Judd-Ofelt theory when applied to RE 

materials has been the motivation for the intensive study of two-photon intensities using 

Judd-Ofelt-Axe's theory. Strong disagreement, however, was found when Axe's theory 

was applied to Gd3
+ ions in a number of RE hosts. In particular, the experimental results 

in Gd3
+:LaF3 reported-by Dagenais, Downer, Neumann, and Bloembergen [9] showed 

that two-photon transitions from the ground level 85712 of Gd3
+ to the first three excited 

levels, 6P712, 
6P5,2 and 6P312, were anomalously strong with respect to the predictions of a 

second-order theory, and that the angular momentum selection rule ill $ 2 broke down 

in several transitions (8S712 ~ 6113/2,15/2,1712· 6D112). In order to account for the anomalous 

intensity observed for 85712 ~ 6P712 in Gd3+, Judd and Pooler expanded Axe's second

order theory of TP A to include third-order terms involving the spin-orbit interaction 

[10], Downer and coworkers [11,12] later showed that the inclusion of third-order terms 

involving the crystal-field interaction among intermediate states could explain the 

anomalous intensity of the 8S712 ~ 611 lines in Gd3
+. A fuller analysis of the 

experimental results for the integrated and crystal component intensities for the 8S ~ 61 
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transitions in the Gd3+ ion using expressions which include up to the fourth order 

contributions involving spin-orbit and/or crystal-field interactions was given by Downer 

et al [12,13]. Ceulemans and Vandenberghe later presented a more general expression 

which can be applied to any RE ion [ 14]. 

Other third-order mechanisms in two-photon processes were also investigated by 

several workers. Reid and Richardson [15], for example, estimated the ligand

polarization contribution in two-photon processes. Sztuck.i and Strek [16,17], expanding 

Reid and Richardson's idea, proposed the third-order contributions to the TPA 

processes from the static and dynamic coupling mechanisms developed within the 

independent systems model. Smentek-Mielczarek et al. [18,19] examined the third

order electron-correlation and crystal-field contributions to the two-photon amplitude 

within the framework of double perturbation theory [20,21]. 

All of the mechanisms mentioned above have been applied to intra

configurational two-photon transitions, where the initial and final states both belong to 

the :eN configurations and the two-photon processes are therefore allowed because of the 

parity rule. TPA transitions from the 4:eN to the 4:eN- 15d have also been observed for Ce3+ 

ions in various crystals [22-26]. These transitions are parity forbidden in the second

order and thus are directly the effect of third-order contributions. A theoretical 

description of the cross section of the two-photon f-d transitions based on the 

perturbation coming from the rank-one component of the crystal field was first proposed 

by Gayen et al [24]. Their calculated polarization anisotropy for the zero-phonon 

~ransition in Ce3+:CaF2, however, were far from the observed values. Using the second 
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quantization techniques, Leavitt [27] later derived the static and dynamic contributions 

to the TPA cross section and applied the results to the lowest 4f->5d two-photon 

transition in Ce3+:CaF2. Leavitt's calculated values were closer to the experiment, 

compared with Gayen et al's value, but were still not satisfactory. Expanding the TPA 

cross-section theory to include arbitrary polarizations in spherical polar coordinates, 

Makhanek et al [28,29] showed that good agreement between calculated and observed 

values for the polarization anisotropy might be obtained if the third-rank component of 

the crystal field were the dominant term. Sztucki and Strek [17], using the independent 

systems model to describe the influence of crystal field and ligand polarization on the f

d two-photon transitions, obtained a cross-section value of the same magnitude as the 

experimental one, if the value of the magnitude of the crystal-field component B0 O> was 

properly chosen. From the values obtained for the polarization anisotropy, they 

concluded that the first-rank component of the crystal field should be the dominant 

term, in contradiction to the Makhanek et al's result. Finally, using the symmetry 

adaptation techniques developed by Kibler [30,31], Daoud and Kibler developed a 

formalism to determine the intensity of interconfigurational two-photon transitions. The 

model was then applied to the case of the Ce3
+ ion in CaF2 and LuP04 with reasonable 

agreement with observed data [32]. 

Except the derivations proposed by Makhanek et al [28,29] and Daoud et al 

[32]~ all of two-photon studies up to the fourth order mentioned above have been 

applied in the framework of the Cartesian coordinates or circular polar coordinates. The 

general study of polarization dependence behavior of the thirty two crystallographic 
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point groups was initiated by Inoue and Toyozawa [33]. Bader and Gold [34] later 

revised the theory and tabulated the results for TP A transitions between Stark levels. 

These are the most general polarization dependence formulas for two-photon intensities, 

in which the polarization vectors are described in the spherical polar coordinates. The 

major disadvantage of the Bader and Gold formalism is the presence of a number of 

phenomenological parameters, which in some cases weaken the predictive power. 

In addition to the second-order theory of polarization dependence of TP A cross-

sections developed by Manakhek [28,29], Kibler, Gacon and coworkers [33-40] have 

recently published a number of results in which the polarization dependence of the 

reported intra-configurational two-photon Stark transitions were compared with a new 

theory which made use of the symmetry adaptation technique and of the Judd-Ofelt 

approximation. The Manakhek's and Gacon -Kibler's formalisms are generally more 

useful than that of Bader-Gold's formalism, since in the former cases the two-photon 

intensities between Stark-levels and their corresponding polarization dependence 

. expressions for a particular system contain only one or two parameters, which in turn 

can be further evaluated if the radial factors are known. Their polarization dependence 

expressions are in good agreement with the more general forms given by Bader and 

Gold, once the parameters' values in the latter's expression are appropriately assigned. 

The major disadvantage of the Gacon-Kibler theory is that its computation appears to be 

complicated. As a consequence, the theory has been applied to only a few particular 

systems, rather than being tabulated for the 32 crystallographic point groups a~ did 

Bader and Gold. 

' i 
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In this chapter another formalism for obtaining the polarization dependent 

pehavior of two-photon intensities between the Stark levels is developed. The general 

expressions for the polarization dependent two-photon intensities are tabulated for the 

32 point groups, ~hose parameters can be calculated explicitly when· applied to a 

particular system. The proposed theory is derived from a formalism in which the two

photon scattering tensors in polar coordinates are expressed in terms of the irreducible 

representation of the scattering tensors. The explicit expressions for the irreducible 

scattering tensors can be obtained by applying the second-order theory of Axe for the 

TP A processes within the framework of the electric-dipole-interaction perturbation 

theory [43-45] and/or by expanding perturbation theories which include higher-order 

mechanisms [10-21]. Since Axe's theory is based on the Judd-Ofelt approximation, the 

theory provides a stringent test for the Judd-Ofelt theory. When applied to a given 

system, the expressions for the polarization dependent behavior of the TPA transition 

intensities are identical to those of Gacon et al. The calculation using this proposed 

method is, howeve~. much more straightforward than that of Gacon et al [36,38]. The 

second-order intensity calculations using this new method are given in the electronic 

Raman framework, but can be applied to the TP A with little modification. 

Intensity calculations involving the irreducible scattering tensors in the proposed 

theory are straightforward and have been routinely practiced in ERS work. When 

explicit forms for the irreducible scattering tensors are not available, such as in the case 

of Raman phonon scattering, the table of the polarization dependent behavior for two

photon intensities are particularly useful, since this table was derived using the group-
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theoretical selection rules for two photon transitions and the special properties of the 

second-rank irreducible tensors without eliciting its explicit forms for a particular 

transition. 

By use of the irreducible representation of the scattering tensors, the proposed 

polarization dependence theory can be readily extended to include higher order 

interactions contributing to two-photon transition intensities. Using the standard tensor 

coupling technique, the explicit polarization dependence formulas for the third- and 

fourth- order contributions to the second-order two-photon intensities are obtained for 

the first time. The third-order contributions including the spin-orbit interaction, crystal

field interaction are discussed. The fourth-order treatment includes the spin-orbit and 

crystal field interactions. The polarization dependence of other higher-order interactions 

can be applied in the same manner. In addition the polarization dependence expressions 

for inter-configurational two-photon transition intensities are also given. 

2.2 Polarization Dependence - Second-Order Treatment 

2.2.1 Electronic Raman Scattering Theory 

We employ the conventional set up for the two-photon processes. In the ERS 

experiment, one beam is incident on the crystal, and the scattered light is collected at 

90° with respect to the incident beam. In the TP A experiment, two light beams are 

incident on the crystal. The z-axis is assumed to be parallel to the z-axis of the center 

ion. For a uniaxial crystal, the z-axis is the crystallographic c-axis. In the TP A case we 
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define by el and e2 the polarization unit vectors of the first and second beams, 

respectively. In the ERS case we use the commonly employed notation [43-45] in which 

el denotes the polarization of the incident beam and el the polarization of the scattered 

light. 

The ERS amplitude for a transition from state li> to state If> is given by [ 46] 

"'[(z1e 2 • Dl j)(jle1 • Dlf) (z1e1 • Dl j)(J1e2 • D If)] 
(CI2I}if =-kJ + • 

i hro i - hro1 hro i + hro2 

(2.1) 

where i,j, and fare the respective initial, intermediate, and final Stark levels of the two-

photon transition, 1 and 2 represent the polarizations of the incident and scattered 

photons [47], ei · D is the electric dipole operator of the i1
h polarization vector, hrol' hro2 

are the energies of the incident and scattered photons, and ,hrojare the energies of the 

intermediate Stark levels. 

The TP A amplitude for a transition from state li> to state If> is given by the 

second-order tensor: 

"'[(z1e2 • D lj)(jlel · Dlf) (zle1 _. Dlj)(jle2 • Dlf)J 
(ex ) =-kJ + . 21 if . hro. -hro hro. -hro 

J J I J 2 

(2.2) 

The result for the TP A intensity is the same as that for the ERS intensity, with a 

change of sign for hro2 in the denominator in the second term of expression (2.2). We 

thus only consider here the ERS theory and give the modification for the TP A theory at I 
the end. 

I ( 
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In the second-order quantized form the electric-dipole operator for a transition 

between the shell (nl) and the shell (n'l') can be expressed as [1] 

(2.3) 

where i denotes the electron participating in the transition, e is the unit polarization 

vector, Dis the sum Lfj of the position vectors for all elecrons i in the nl configuration 

[48], at and a are the creation and annihilation operators for the (nl) shell, and b t and b 

are those for the (n'l') shell. This expression results from the rules obtained by Judd 

[49] for finding the second quantized form of an atomic one-particle operator. For an 

initial and a final state belonging to the (nf) shell and intermediate states belonging to 

the (n'l') shell at and a become f+ and f, respectively, and 1 = 3. The radius operator D 

becomes 

I 

.!f 7(21'+ 1)12(311' J D = (2) 2L J x (nfl rl n' l')[(f+b )<OJJ - (b tf)<0ll] 
3 000 . 

(2.4) 

Substituting (2.4) into (2.2) we get 

"" " "" [(zl[(ftbyoJ> -(btf)<OJ>].e2<0JJij)(jl[(ftbyoJJ -(btf)<OJ>].e/Oillf) 
(a 21 )fi = -~C(n 1 )~ ~ ~ 

nT j rtOJ j - rtOJJ 

+ (il ((ftb )(01)- (b tf)(OI) ).e/01)1 j)(jl((ftb )(01)- (b tf)(OI)].e/01)1 j) J 
nro j + nro2 

(2.5) 
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where ei (i =, 1,2) denotes the unit polarization vector, j denotes any excited state 

different from the initial and final states, and 

C(n'l') =[ 1 4(2~'+1) H~ ~ ~'J x (nflrln'l')'. 

The Judd-Ofelt closure approximation [2,3] is now applied: 

(a2J).fi == LC(n'l')[ I (zl[e2<0J>.(ftbyoJ>][e/ol).(btf)<oJ>]If) 
n'l' En'/' - hrol 

+ I (zl[e/ol).(ftb)<OJ>][e2<0J>.(btf)<Oil]l/)], 
En'/'+ hro2 

where EnT is the average energy of the n'l' configuration. 

(2.6) 

(2.7) 

Through standard recoupling procedure we obtain the familiar result for the 

scattering tensor [44, 50]: 

(2.8) 

where u<t) is the unit tensor of rank t. 

In equation (2.8), the only non-vanishing terms occur for t = 0, I and 2. Other 

values oft vanish during the recoupling procedure. 

If we let 
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3 1 /' J F,=(-1)',.,~'1'7(21'+1 0 0 0 (nflrln'/')

2 

. .!.{1 3 /'[ 1 . (-1)' J x(2t+1)2 +---'---
3 1 t En'/' -hro1 En'/' + hro2 

(2.9) 

then a = ~(-l)1F(e e )< 1> · u<t> 
2] """ I 2 J " 

(2.10) 

' ' The Ft parameter, first introduced by Koningstein and Mortensen [43], can be 

treated as a phenomenological constant, which is dependent only on the energy of the 

n'l' configurations and the radial overlap between the n'l' and nl configurations. For the 

TP A transitions the expression of Ft is the same as in (2. 9), with the minus sign in front 

For intensity calculations the ERS tensors in the Cartesian coordinates are 

expressed in terms of the irreducible representation of the spherical scattering tensors 

defined by Mortensen and Koningstein [ 43] : 

• 

\ ' 
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1 1 1 1 
a = --a<0> +-a<2> +-a<2> --a<2> 

:u .J3 0 2 2 2 -2 .J6 0 

1 1 1 1 
a = --a<0> --a< 2> --a<2> --a< 2> 

yy .J3 0 2 2 2 -2 .J6 0 

1 2 
a =--a<0>+-a<2> 

zz .J3 0 .J6 0 

a = -i-
1-a0 >- i .!.a<2> + i .!.a<2> 

xy J2 0 2 2 2 -2 

1 1 1 1 
a = --a<n --a0 > --a<2> +-a<2> 

xz 2 I 2 -1 2 I 2 -1 

a = i .!.a<n- i .!.ao> + i .!.a<2> + i .!.a<2> 
yz 2 I 2 -1 2 I 2 -1 

a = i-
1
-a<n- i .!..a<2> + i .!.a<2> 

yx J2 0 2 2 2 -2 

1 1 1 1 
a = -a<n +-a0> --a<2> +-a<2> 

zx 2 I 2 -1 2 I 2 -1 

\ 

. 1 (I) • 1 (I) • 1 (2) • 1 (2) a =-1-a +1-a. +1-a +1-a 
zy 2 I 2 -1 2 I 2 -1 ' 

(2.11) 

. where the irreducible spherical scattering tensor has the simple form (see Appendix A) 

a.<t> = FU<t> 
q 1 q • (2.12) 

We now can determine the ERS amplitude for the transition between 

intermediate coupling states li> and If>. We write the initial state as 

li) = La(i;nfNaSUJ)InfNaSUJz), (2.13) 
o.SUJ, 

and the final state is written 

If)= L a'(j;njNa'S'L'J'J'z )lnfNa'S'L'J'J'z ). (2.14) 
a'S'L'J'J', 

The ERS amplitude for the transition between states li> and If> is given in ~erms 

of the matrix elements of the irreducible scattering tensor operators: 
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(z1cx~t)lf) = F, L L a(i;nfNaSUJz p'(f;nfNcx• S' L' J' J'z) 

where 

a.SUJ, a'S'L'J'J', (2.15) 
X (nfNaSUJziU~'>InjNcx• S' L' ]' Jz '), 

J' JL J S } (2.16) 
Jz, J' L' 1 (SLIIU<'>IISL')o(S, S'). . 

The values of the reduced matrix elements (SLIIU<r>IISL') are tabulated by 

Nielson and Koster [8]. The Raman amplitude can be readily evaluated once the 

coefficients of the initial and final intermediate coupling wavefunctions are known. 

These wavefunctions can be obtained from the crystal-field fits which are based on 

absorption and/or fluorescence spectra. 

The scattering intensity is proportional to the square of the absolute values of the 

scattering tensor: 

(2.17) 

where <;: is a constant, ~ is the laser's frequency and COr. = c.or - O)j is the frequency 

corresponding to the energy difference between the initial and final states [51]. 

These equations are generally used in ERS calculations, where the intensities are 

measured in the Cartesian coordinates. We can now express these equations in polar 

coordinates and obtain the polarization dependent forms for TP A and ERS intensities. 

2.2.2 Polarization Dependence 
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We consider the general case in which both polarization unit vectors are oriented 

in an arbitrary direction and independent of each other. In spherical coordinates a unit 

polarization vector is written 

e = zcos a+ ysin asin <p+ i sin acos<p. (2.18) 

By substitution of (2.18) into a general expression of the two-photon scattering 

tensor a 21 (e.g. equation (2.5)), it can be shown that the scattering tensor expressed in 

the polar coordinates has the fonn: 

ae
2
e

1 
= azz cos a2 cos a1 + aYY sin a2 sin a1 sin <p 2 sin <p 1 +au sin a2 sin a1 cos <p2 cos <p1 

+ azy cos a2 sin a1 sin <p1 + ayz sin a2 sin <p2 cos a1 

+ azx cos a2 sin a1 cos <p1 + axz sin a2 cos <p2 cos a1 

+ ayx sin a2 sin <p2 sin a1 cos <p1 + axy sin a2 cos <p2 sin a1 sin <pi' 

or, in a more compact fonn, 

a,
2

,
1 
= n2n1az.z +~~a)')'+ l 211a:u + n2~az.v + ~n1ayz 

+ ni1azx + Z2n1axz + ~11ayx + Z2~aX)., 

(2.19) 

(2.20) 

where we have used the same notation as given in Inoue and Toyozawa [33], in which 

(1, m, n) =(sin a COS<p, sin a Sin <p, cos a). (2.21) 

In tenns of the irreducible spherical scattering tensors: 
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'-' (2.22) 
.. I. 

The scattering tensor can be rewritten 

I 
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1 
a~2'' = (- .J3 )[n2nl + m2ml + 1211 ]a~o> 

1 (2) + J6 [2n2n1 - m2m1 -12l1]a 0 

1 . (2) + 
2 

[(n2m1 + m2n1 )t- (n2l1 + l2n1 )]a 1 

l . . (2) 
+ 2[(n2m1 + m2n1 )1 + (n211 + l2n1 )]a_ 1 

1 . . (2) 
+ 2[(12/1- m2m1)- (/2m1 + m211 )t]a2 

1 . (2) 
+ 2[(1211- m2m1 )+ (l2ml + m2/J )z]a_2 

i (I) 
+ J2 [m2l1 -12ml ]ao 

1 . (I) 
+2[(m2n1 -n2m1)z+(n211 -/2n1)]a1 

1 . (I) 
+2[(-m2n1 +n2m1 )z+(n211 -/2n 1)]a_ 1 • 

or, in a more compact form, 

= ~ ~ f...'a<t> L L q q , 
t=O q=-t 

where the polarization dependent coefficients f...q''s are defined by 
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0 1 
Ao =- .J3 [n2nl + m2ml + 1211] 

I 1 . 
A_ 1 = 2[( -~n1 + n2m1 )z + (n2 / 1 -l2n1 )] 

I i 
Ao = J2 £m2l1 -/2~] 

AI 1 [ . 
1 = 2 (~n1 - n2m1 )z + (n2/1 -/2n1 )] 

2 1 . 
A_2 = 2[(12/1- m2mJ )+ (l2m1 + m211 )z] 

'I 2 1 . 
11._1 = 2[(n2m1 + m2n1 )z + (n2/1 + /2n1 )] 

. 1 
A~ = .J6 [2n2n1 - m2m1 -1211] 

")..} 1 [ . 
1 = 2 (n 2m1 + m2n1 )z- (n 211 + /2n 1 )] 

' 1 A2 = 2[(/2/1- m2ml)- U2m1 + m2lJ )i]. 

- (2.25) 

Putting (2.12) into (2.24) we obtain the polarization dependence expression for 

second-order two-photon transition intensities: 

' 
(a2J )2nd= L ! A'q~u~~> . (2.26) 

t=O q=-t 

Equation (2.24) is the most general polarization dependence expression of two-

photon transition intensities between Stark levels. Further applications of (2.24) such as 

in the case of circular polarization and with various functional forms of· CXq <tl can be 

found in Appendices B and C. For clarity purpose we will use the symbol a~ to denote 

the matrix element of the irreducible scattering tensor a~>. For a particular transition 

between Stark levels only certain a~ are non zero, according to the Raman activity of 

the group corresponding to the Stark levels [51,52]. In particular, the following 
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comments apply. First, since a~0> is proportional to Uo<O> in the second order 

approximation, where Uo(O) is a number operator proportional to -N/(14)112 for the ~ 

configuration, Clo 0 is exactly zero for different initial and final states used in Raman 

transitions. We therefore will omit all ao0's for second-order calculations. As will be 

explained in the next section on the third-order theory of two-photon intensities, the 

third-order contribution associated with the a~0> term is not always zero, but in fact 

might be dominant for certain transitions. One must include the a~0> term in the third

order calculation in order to obtain meaningful results. Secondly, in the case of TP A 

where the two beams come from the same source, the a~> terms vanish. 

Table 2.1 gives the angular dependence functions for ERS and TPA transitions 

for all 32 crystallographic point groups. In table 2.1, we have labeled the irreducible 

representations by the usual symbols for molecular representations, in order to facilitate 

comparison with Bader and Gold [34]. In RE intensity calculations, however, the 

irreducibe representations of a point group G often appear [53] as ri. where i denotes 

the i1h representation of group G. Only transitions of the type r 1 <-> rj, where r1 is the 

totally symmetric representation and rj any irreducible representation, are considered. 

Other transitions can be calculated using the fact that the triple product r'~',. ® ra
21 

® r'~'1 

of any of the 32 point groups must contain the totally symmetric representation. The 

three terms appearing in the triple product are the irreducible representations of the final 

state, the Raman tensor, and the initial state. For a transition to an n-fold degenerate 

level the total intensity is proportional to the sum of the squares of each scattering 

amplitude corresponding to each degenerate state. In table 2.1 only contributions from 
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one of the degenerate levels is listed. The total contribution is the sum of each 

contribution coming from one of the n-fold degenerate levels. If the states of these 

levels are Kramers states, the two-photon contribution from an initial Kramers state (Y"i) 

to a final Kramers state(Y"r) is different from the two-photon contribution from (Y"i) to 

the Kramers conjugate state of the final state (Y"c~), i.e. Ja21(Y'i ->Y"r i :t; la21 (Y'i ->Y'cK 

)12; the two-photon contribution from Y'i to Y'c is however exactly equal to the two

photon contribution from y.riK to Y"l, i.e. ICI21(Y'i ->Y'r )t2 = la21CY'iK ->Y'l )12. For 

transitions between non-Kramers state, the TPA contributions from a singlet (Y"i) to 

each state of a doubly degenerate level (Y'rx or Y"ty) are equal, i.e. la21(Y'i ->Y'rx )f = 

la21 (Y'i -> ¥"" ty )12 (see proof in Appendix D). 

It can be noted that table 2.1 agrees with Bader and Gold [34], since the 

expression for the polarization dependence of the intensities of transitions between 

Stark levels only depends on the Cartesian Raman tensors and their corresponding 

irreducible spherical tensors whose non-zero values are predicted by group theory. No 

approximation has been required to derive the relationship between the intensities and 

the general form of the irreducible spherical Raman tensors a~l, which replace the 

parameters ~·sin Bader and Gold's theory. The explicit second-order expressions for 

a~l in (2.26), in terms of F1 and U q<tl, however, are derived using the Judd-Ofelt-Axe 

theory. Since U q <t> can be calculated for a particular transition, the expression for the 

intensities for two photon processes in terms of Ft provides a stringent test for the Axe 

theory. In the case ofTPA from the same source only F2 would appear in the expression 
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for intensities. Thus relative intensities between Stark levels can be calculated and 

compared with experimental values. For a single two-photon transition the polarization 

dependence of the intensities on e and cp can be directly compared with experimental 

data. 

Another test for the second-order theory of Axe may come from the ratio F1/F2, 

as first demonstrated by Becker et al. in the case of TmP04 and ErV04 [54]. Using 

Cartesian coordinates it is common to obtain ERS intensities corresponding to at most 

four polarization states. Asymmetry [44] can be measured by the ratio of two of these 

intensities, lxz (or lvz) and lzx (or lzy ), from which the value of F1/F2 can be obtained. 

From the Raman scattering intensities of light with incident and scattered polarizations 

being arbitrarily varied, a better fit for the ratio F1/F2 may be obtained. Thus this new 

analysis method should provide a more reliable value for the ratio F1/F2. 

In general the two-photon scattering tensor a 21 is related to the irreducible 

. representation of the scattering tensor CXq (t) by the relation I 

(2.27) 

where ( e 2e 1 )~is the coupled form of the polarization unit vectors. Equation (2.27) was 

derived by the use of the standard method of tensor operators. The complete derivation 

is given in Appendix B. The expression for the TPA amplitude in the case of circular 

polarization incident beams is also given in Appendix B. We will use this tensor 

coupling method when we derive the polarization dependence expressions for third-

order and fourth-order terms involving spin-orbit and crystal field interactions in the 
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next section. The same procedure can readily be applied to other third-order interactions 

such as ligand-polarization [15-17] and electron correlation [18-21]. The polarization 

dependence expression for interconfigurational TPA intensities will also be discussed in 

the next section. 

-
/ I 
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Table 2.1. Angular-dependence functions for RE ERS and TPA transitions. The 

symbols are defined in the text. 

A+-+A A +-+A 
I 0 I 2 

1<- .J3 )[n2nl + m2ml + 1211 Jao + (- .J6 )[-2n2nl + m2ml + 1211 Jao 
g g 

c s 

I 2 I 2 
+- [(n2ml + m2nl )i- (n2/1 + 12nl )]a) +- [(n2ml + m2nl )i + (n2/1 + /2nl )]a_) 

2 2 

I 2 I 2 
+ -((12/1 - m2m1)- U2ml + m211 )i]a2 +- ((12/1 - m2m1) + (l2ml + m211 )i]a_2 

2 2 

i I I I 
+; [m211 -12m! lao+; [(m2n1 - n2ml )i + (n2/l - l2n1 )]ex! 

I I 2 
+- ((-m2n1 + n2m1 )i + (n 211 -l2n1 )]ex_1 I 

2 

I 0 I 2 
A+-+AA+-+A A +-+A 1(- r:-)[n n +m m +I I ]a +(- rH-2n n +m m +I I ]ex 

g g ...;3 2 I 2 I 2 I 0 ...;6 2 I 2 I 2 I 0 

i I I 2 2 I · 2 22 
+- [m I -I m ]ex +-[(I m + m I )i](ex -ex ) +-[I I + m m ](ex +ex )I 

2 2 I 2 I 0 2 2 I 2 I -2 2 2 2 I 2 I -2 2 

ex2 - ex1 ex2 + ex1 ex2 - ex1 ex2 + a 1 

A+-+ B A'+-+ A" A +-+ B In m (~)+ m n (~)12+1n I(~)+ I n (..l.__j_)l
2 

g g 21 2 21 2 21 2 21 2 

ex 2 + a 1 a 2 - a 1 ex2 + ex1 a 2 - a 1 

+lnm(-1 -!)+mn(-1 -1)12+ln/(-1 -1)+/n(-1 -ll 
21 2 21 2 21 2 21 2 

A<-+A 
I 0 I 2 i I 2 

1(- r)[n n +m m +I I ]a +(- rl[-2n n +m m +I I ]a +-[m I -1m ]a I 
..;3 2 1 2 I 2 I 0 ..;6 2 I 2 I 2 I 0 2 2 I 2 I 0 

I I I I 2 2 
1-[n I -1 n ](a +a )+-[n I +I n )(a -a ) 

2 2 I 2 I -1 I 2 2 I 2 I -1 I 
A<-+E 

I 2 ·2 2 I 2 2 
+-(/ I -m m ](a +a )I +1-[1 m +m I ](a -a ) 

2 2 I 2 I 2 -2 2 2 I 2 I -2 2 

I I I I 2 2 2 
+-[n m -m n )(a -a )+-[n m +m n ](a +a )I 

2 2 I 2 I -1 I 2 2 I 2 I I -1 
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A+-+B 

A+-+E 

A'H A' 

A'.-.. E' 

I 0 I 2 i I 2 
1(- c)[n n +m m +I I )a +(- r)[-2n n +m m +I I )a +-{m I -1m ]a I v3 2 I 2 I 2 I 0 v6 2 I 2 I 2 I 0 2 2 I 2 I 0 

I 2 I 2 2 
J-[(1 I -m m )-(1 m +m I )i)a +-[(1 I -m m )+(I m +m I )i]a 1 
2 2 1 2 I 2 I 2 I 2 2 2 I 2 I 2 I 2 I -2 

A+-+A 

A+-+E 
I 

A+-+E 
2 

I 0 I 2 i I 2 
1(- rHn n +m m +I I )a +(- rH-2n n +m m +I I ]a +-[m I -1m ]a I 

..; 3 2 I 2 I 2 I 0 v6 2 I 2 I 2 I 0 2 2 I 2 I 0 

I 2 2 2 I 2 22 
1-[/ I -m m ](a +a )I +1-[1 m +m I ](a -a )I 
2 2 I 2 I 2 -2 2 2 I 2 I -2 2 

D2h(D2h = D2xC;) 

AHA AHA 
1 1 

I 0 I 2 
I<- .J3 )[n2n1 + m2m1 + 1211 lao+(- .J6 )[-2n2nl + m2m1 + 1211 lao 

I 2 2 2 
+- U2 11 - m2ml](ll2 + a_2 )I 

2 

I I I 2 2 2 
1- [m2t1 - 12m1 lao+- [12m1 + m2t1](a_2 - a 2 )I 

2 2 

I 2 2 I I I 2 
1- [n 2t1 + l2n1](a_1 - a 1 ) +- [n 2t1 - t2n1](a1 + a_1 )I 

2 2 

1 2 21 I 12 
l--[n2m1 +m2n1](a1 +a_1)+-[m2nl -n2m1](a1 -a_1)1 

2 2 
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A ·~A 
I I 

A ~A 
I 2 

A t+ E 
I 

A ~A 
I I 

A ~A 
I 2 

A +-+ B 
I I 

A +-+B 
I 2 

A ~£ 
1 

Ds.csv· 

D6.c6v 

A ~A 
I I 

A ~A 
I 2 

A ~£ 
I I 

A ~E 
I 2 

I 0 I 2 2 
1(-,c)[n n +m m +I I ]a +(- r>[-2n n +m m +I I ]a I 

"3 2 I 2 I 2 I 0 "6 2 I 2 I 2 I 0 

i . I 2 •-rm 1 -I m ]a 1 
2 2 I 2 I 0 

I I I I 2 2 
t-[n I -1 n ](a +a )+-[n 1 +I n )(a -a ) 
2 2 I 2 I -1 2 2 I 2 I -1 I 

I 2 221 2 2 
+-[II -m m ](a +a )I +1-[1 m +m I ](a -a ) 

2 2 I 2 I 2 -2 2 2 I 2 I -2 2 

I I I I 2 2 2 
+-[n m -m n )(a -a )+-[n m +m n )(a +a )I 

2 2 I 2 -1 I 2 2 I 2 I I -1 

I 0 I 2 2 
1(- r:-)[11 II +m m +I I ]a +(- rl[-211 II +m m +I I ]a I 

'13 2 I 2 I 2 I 0 '16 2 I 2 I 2 I 0 

i I 2 
1-[m I -I m ]a I 
2 2 I 2 I 0 

I 2 2 2 
1-[1211 -m2m1](a 2 +a_2 )1 
2 

a2 - al a2 + al a2- al a2 + al 
In m (...l..-l..)+m n ("~.L-~i+ln I (...L_l)+l n (...L_l)l2 

21 2 21 2 21 2 21 2 

a2 +a1 a 2 -a1 a 2 +a1 a 2 -a1 

+In m ( -1 -1)+m n ( -1 -1 2+1n I ( -1 -1)+1 n ( -1 -li 
21 2 21 2 )I 21 2 21 2 

D3h 

D4d 

A' ~A' A ~A 
I I I I 

A' ~A' A ~A 
I 2 I 2 

A +-+ E', ~ A'~£ 
I I 3 

+In m ( 
2 I 

A ~ £' A' ~£ 
I I 2 

D5h(D5h = D5xCi)' 

D6h(D6h = D6xCi) 

I 0 I 2 2 
1(- r:-l[n n +m m +I I ]a +(- rl[-2n n +m m +I I ]a I 

'13 2 I 2 I 2 I 0 '16 2 I 2 I 2 I 0 

i I 2 
1-[m I -1 m ]a I 
2 2 I 2 I 0 

a2 +al a2 -al a2 +al a2 -a:l 2 
-1 -l)+mn(-1 -l)l2+lnl(-l -l)+ln(-1

2 
")I 

2 21 2 21 2 21 

I 2 2 2 I· 2 2 2 
J-[1 I -m m )(a +a )I +1-[1 m +m I )(a -a )I 
2 2 I 2 I 2 -2 2 2 I 2 I -2 2 
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' ' 

I 

A +-+A 
1 1 

A +-+ E 
1 

A +-+ T 
1 1 

A +-+ T 
I 2 

A+-+A 

A +-+ E 
I 

b 
A +-+ T 

I 

1 0 2 
1(- .J3)[n2nl + m2ml + /2/l]cxOI 

1 2 1 2 2 2 
1(- r )[-2n2nl + m2m1 + 1211 lao+- [12/1 - m2m1 ](ex2 + ex_2 )I 

v6 2 

i 1 i 1 '1 2 l 1 1 2 
1- [m2/l -12m! lao +- [m2nl - n2ml ](ex! - ex_l )I +1- [n211 -12nl ](al + a_l )I 

2 2 2 

i 2 2 i 2 22 I 2 2 2 
1- [n2 m1 + m2 n1 ](ex1 + ex_1 ) +- [12 m1 + m211 ](ex_2 - ex 2 )I +1- Hn211 + 12 n1 )](ex1 - a_1 )I 

2 2 2 

i I i I I 2 I I I 2 
1- [m211 - 12 m1 ]ex0 +- [m2n1 - n2 m1](ex1 - ex_1 )I +1- [n2 !1 -12 n1](ex1 + ex_1 )I 
2 2 2 

i 2 2 i 2 22 I 2 2 2 
1- [n2 m1 + m2 n1](ex1 + ex_1) +- [t2 m1 + m211 ](ex_2 - ex 2 )I +1- [-{n 2 t1 + 12n1 )](ex1 - ex_1 )I 

2 2 2 
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2.3 Polarization Dependence Theory Higher-order 

Contribution 

2.3.1 Third-Order Contribution to Intra-Configurational Two-Photon 

Transition Intensities 

The line strength of a two-photon transition from an initial state li) to a final 

state If) shown up to the third-order is proportional to 

(2.28) 

where Ej and Ek are the average energy of the excited j and k configurations. 

Depending on the specific details of the interaction V; (i = 1, 2, or 3) and the 

initial and final states, expression (2.28) represents different third-order contributions to · 

the two-photon intensities. If the initial and final states are crystal field states belonging 

to the 4rN configuration, V1= V3= E · D, and V2 = Hso, expression (2.28) represents the 

third-order spin-orbit contribution. If V2 = Hei , however, the third-order contribution 

comes from the interaction between intermediate configurations via the crystal-field 

potential. When the wave functions i, j, k, and fare products of lanthanide and ligand 

wave functions, and V2 = He, where He is the Coulomb interaction between the 

electrons in the lanthanide ion and the ligand excited states, expression (2.28) represents 

the ligand-polarization third-order contribution [15-17]. This ion-ligand excitation 

mechanism is called the dynamic mechanism to distinguish it from the static mechanism 
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as it involves ligand excited states. Finally, a third-order contribution can come from 

electron correlation, if V2 = Vc non-central , where Vc non-central denotes the noncentral part of 

the Coulomb interaction: 

v. non-cellh'al _ 'I 1 _ U 
c .- rc ' 

where U stands for the potential of the central field approximation [18-21]. 

(2.29) 

In the independent systems model [15-17] and in the double perturbation model 

[18-21], the third-order terms in which V 2 is interchanged with V 1 or V 3 also arise, and 

the electric dipole operator E · D may represent the light-central ion or light-ligand 

interaction. 

2.3.1.1 Spin-Orbit Interaction 

Following Judd and Pooler [10], Downer and Bivas [11], and Ceulemans and 

Vandenberghe [14] the third-order spin-orbit operator can be expressed as 

(2.30) 

where ~1, ~I' are the spin-orbit coupling constants for I and I' electrons, respectively. 
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In expression (2.30) the only non-vanishing terms occur for t = 0, 1, and 2 and 

for A-=1, 2, and 3. The expression for the third-order two-photon scattering tensor can be 

recast in a more compact form: 

(a,)'"' = ~(-!)' (e,e, )'''-[ H(t) (a 'a)'"''(a 'a)'"10 + :fG(t,A.) (a 'a)""' }2.31) 

where 

~ (nil rl n/')
2 

{1 l l'} 
H(t)=3(-1f[i{l+1)(21+1)]112 

I 2 l 1 
E/'1 t , (2.32) 

and 

r (nllrlnl') 2 {1 l 
G(t,A.)=-3(-1)'[1(1+1){1+1/2)]112 

"'
1 

2 (-1)A+I(2A.+1)112 

En l: 1 ~}{: 
2 {1 l 

-3(-1)'[l'(l'+1)(1'+112)f2 ~r(nll:lnl') (-1l+1(2A.+1)112 1 l 
E/'1 

t A. 

1'} l' . 

1 

(2.33) 

Applying the procedure given in Appendix B, we obtain the two-photon 

scattering amplitude expressed in the third order: 

(a
21

)3rd =t t A.'q(a~'))3rd, (2.34) 
r=O q=-r 

where Aq" s are the polarization dependent coefficients defined in equations (2.25) and 

( aq <t>/rd is the third-order irreducible scattering tensor operator defined by 
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(a~'>)3rd = H(t) (a ta)/o'>'(a ta)OI>O + LG(l,A) (a ta)/IA)t . (2.35) 
A 

The matrix element of the third-order irreducible scattering tensor is given by 

(2.36) 

where 

I I 

(fN SUII(a<r> )3'dll fN s~ Ll 1 1
) = H(t) (fN SUII(a ta)<or>r(a ta)01>0 11 fN s~ Ll 1 1

) 

+ LG(t,A.) (fN SUII(ata)0 A>rllfN s~ L 1 
]

1 
). <2·37) 

A 

For 1=3 and 1'=2 we have the following values for H(t) and G(t,A.): 

6~ 6/6~ 
H(O)= E/ (jlndf, H(2) 

5
£ 2

1 (jlnd/, 
<! <! 

(6~ -4~ ) 
G\0,1) 1 

d (flncf'/ G\2,1) 
ME~ ' (2.38) 

1 -3/42~ 
G\2.2) 70£2 t (Jlnd)2, G\2,3) 

<! 

The reduced matrix elements in expression (2.36) can be evaluated by using the 

following formulas [49,55] 

{

jl 
( .. "IIW(II)kll I . I . I "1)- ( .. IIW(II)II I . I . I)[. •I k]112 • 
ClJ1h1 a 11 h 1 - 0.1!12 a 11 h 1.1, h 

j 

czNa.SUII(U(t>woi>O)IIZNa.l s~ Ll 1 1
) 

= [JT112 L (lNa.SUIIU(t)lllN a." SL" 1 1 )(IN a." SL" ] 1 11W0 1)
0 111N a.' sl L1 

]
1 )<2·40) 

'II" 
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and 

<a'a)'"'' ={212+1]' u"' 

(2.41) 

(2.42) 

(2.43) 

where the values of the reduced matrix elements of w(JI .. ) and v(ll) can be found in 

literature [8, 12]. 

Since the third order spin-orbit contribution to two-photon intensities can be 

expressed in terms of the second rank irreducible tensor form, with the same 

polarization dependent coefficients as the second-order contribution, one can just add 

the results for Oq1 calculated in the third order into the second-order results in (2.26) and 

square the resulting total amplitude (a21 )
10

taJ to obtain the TPA transition intensities 

calculated up to the third order involving spin-orbit coupling. Note from expression 

(2.37), because of the presence of the operator (a ta)<11
>
0

, the scattering tensor ao<o) is not 

a scalar, and its corresponding matrix elements are no longer zero for different initial 

and final states as in the case of the second order theory. It should also be noted H(O) is 

generally the largest term in equations (2.38). For this reason the third-order 

contribution corresponding to the ao (O) term may be dominant in transitions where its 

matrix elements have non-zero values [10]. 

2.3.1.2 Crystal-Field Interaction 
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The original expression for the third-order TPA operator involving crystal-field. 

interaction has been worked out by Downer and coworkers [12,13]. Its full expression 

has the following tensorial form: 

. (n11rlnl' )
2 

(1 1 l' J -(-1/~1 [(2/+1)(21'+1)2 ] 2 
J2En 0 0 0 

XL( -1)k (2k + 1)112 (2t + 1)112 
I (

l' h I'll 1 l' }{1 l 
t.k.h 0 0 0 h 1 k 1 k 

(2.44) 

where h, k, t are tensor ranks and B(h) is the crystal field tensor corresponding to the 

third-order crystal field interaction acting between excited configurations lj> and lk> in 

expressions (2.28). 

Specific results for tJ transitions, with intermediate states tJ·l d, can be readily 

obtained by substituting 1=3 and 1'=2 in equation (2.44). The matrix element of the third 

order crystal-field tensor is given by 

(il(a)3rdl f)= (zl LK(h, k, t)(e/1J(B(h>e/1>)<k>yt) · (U)<'>If), 
t.k.h 

where 

. (nil rl nl' )2 (1 
K(h,k,t)=-(-1)1

+
1 [(21+1)(21'+1)2

] ..fi 2 O 
2£/'1 

(1' h l'11 X ( -1)k (2k + 1)112(2t + 1)112 

0 0 0 h 
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As can be seen from expression (2.44), the crystal field tensor operator a<h> is 

coupled to the electric field vectors. By further recoupling the electric field tensors, 

Ceulemans and Vandenberghe have obtained an expression in which the electric field 

tensors are directly coupled and all the 6-j symbols are combined into a single 9-j 

symbol [14]. We neverththeless will develop the polarization dependent form for 

Downer et al's expression, so that comparison can readily be made between the two 

theories in the case of parallel and circular polarized beams. Since the unit polarization 

vectors are coupled to the crystal-field tensor, a<h>, in expression (2.44), we have to 

resort to the method of tensor operators to derive the polarization dependence for the 

third-order crystal-field term. The decoupling procedure for all possible values of h, k, 

and q is, however, quite tedious; we therefore only consider the special case in which 

the only crystal-field term appearing in (2.45) is the fourth rank crystal field term B0<
4>. 

Putting h = 4, 1 = 3, and I' = 2, expression (2.45) becomes [13] 

(il(a)3'dlf) = (iiLL(t,k)(e/>(B<4le/J>)<k>)<tl. (U)<tllf), 
t,k 

where 

Fork= 5 and t = 6, the tensor operator in (2.47) can be written 

( e/l(BC4le/ll )(S) )(6). u<6J = ( -1)2(e2 (I)(B(4)e/ll )(S) )~6)U~~l 

+( -1)1 ( e2 o>(B<4>e/J> )<s> )~6>u~~> + ( -1)o(e2 o>cs<4>el <J> )<s> )~6>u~6> 

+( -1)-1 (e2 o>(B<4>el o> )<s> )~~>u~6> + ( -1)-2(e2 n>(B<4>el <I> )<s> )~~U~6>. 
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After decoupling and rearranging, the right-hand side of (2.49) has the form: 

B~4 ) { (14/99)112 (e2 )I (e) )I u~~)- (35/198)112 [( e2 )o( e) )I + (e2 )I (e) )o]U~~) 

+(5/66)112[(e2)_J(el )I+ (e2)1(el )_I+ 2(e2)o(el )o ]Ub6l 

-{35/198)112 [( e2 )0(e1 }_1 + (e2 }_1 (e1 )0 )U~6 l + (14/99)112 (e2 }_1 (e1 }_1 U~
6l}. 

(2.50) 

Using (B5) we have the final polarization dependent form for the crystal-field 

third-order contribution: 

B<4>{-
1-{J14"A? u<6> +.J35J..? u<6> + 3-/S! . .?u<6> +.J35"A?u<6> +MA.2Uc6>} (2.51) 

0 MJ -2 ·2 -1 ·I 0 0 I I 2 2 ' 

where ~..qt 's are defined in (B7). 

The crystal-field third-order contribution is proportional to (10/33)112 <iiU0<
6>1f> 

and (14/99) 112 <iiU}6)1f> for parallel and circular polarization, respectively. For the 

8S712 -> 611 transitions in Gd3+:LaF3, the ratio of the integrated two-photon line strength 

corresponding to parallel polarization to that corresponding to circular polarization is 

15/7, in exact agreement with Downer et al. [13]. 

2.3.2 Fourth-Order Contribution to Intra-Configurational Two-

Photon Transition Intensities Spin-Orbit and Crystal-Field 

Interactions 

The fourth-order contribution to two photon intensities is expressed as 

_ L (zlE · Dlj)(jlVIh)(hiV'Ik)(kiE · Dlf) 

i.h.k EiE«Eh · 

_ L (zlE · Dl j)(jiV' lh)(hiVIk)(kiE · Dlf) . 

j.h.k EiEtEh . 

(2.52) 
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Downer and Bivas [13] have explored the fourth-order terms with V=Hso and 

V'=Ha: for the case of 8S - 61. A more general expression was later given by 

Ceulemans and Vandenberghe [14]. Following Ceulemans and Vandenberghe's results, 

the expression for the fourth-order scattering tensor amplitude between states li> and If> 

taking into account spin-orbit and crystal field interactions can be written 

'·"·" (2.53) 
+ LN(t,k,n,A) (ata)0 i..>n + LP(t,k,n,A) (ata)0 i..>n ] If), 

i.. !.even · 

where t, k, n, and A are tensor ranks, B(k) is the crystal field tensor, 

_ _ r ~ 1 (21 + 1)(2l'+1)2(nllrlnl' )2 (l 1 l' J 
M (t, k, n) - 2( 1) Ei., O O O 

x [I (I+ 1)(21 + 1)]
1
" (-!)~' (2r + !)'"( ~ ~ ~ t :~ J (2.54) 

"' _ 112 l'+n+i..+k ~ 1 [l(l+l)f'2 (2/+1)312 (21'+1)2 (nllrlnl')2 (l 1 l'J 
N(t,k,n,A.)-2 (-1) Ei, 0 0 0 

(

!' k l' j 1 l' l}{l A } (2.55) 

x[(2A+1)(2t+1)]
1

" O O o~: :· nl I I~ , 

and 
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P(t k n A.)= 21,2(-1)1'+n+A+k ~r(21+1)[l'(l'+1)]112 (2l'+1)512 (nllrlnl')2 (1 1 l'J 
' ' ' £1~1 0 0 0 

(

l' k I' i 1 1 t n } (2.56) 
x[(2A.+1)(2t+1)]112 

0 0 0 
l l A. I', 

I' I' k 1 

where ~~· and ~~ are the spin-orbit coupling constants for I and I' electrons. 

As in the third-order crystal field analysis, we only consider the special case in 

which the only crystal-field term appearing in (2.53) is the fourth rank crystal field term 

Bo(4
). Appendix C and table 2.2 provide the decomposition of ((e

2
e

1
Ytl Bck>yn> .ocn> for 

different values of t and n corresponding to k = 4, where o<n) represents the tensor 

operator in the square bracket of equation (2.53). The corresponding polarization 

dependence expression is given therein. 

2.3.3 Third-Order Contribution to Inter-Configurational Two-Photon 

Absorption Transition Intensities 

The theory of static aad dynamic contributions to the two-photon f-d transitions 

has been developed by several workers [27, 32, 42]. Most of these works were 

developed for the special case of 4f -5d two-photon transition in Ce3+:CaF2. We will 

discuss the models given by R. C. Leavitt [27] and Sztucki and Strek [17]. Following 

Leavitt's result for Ce3+:CaF2, the static contribution is given by 

where 
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S' =L (2t+1)
112

(2k+1)(-1)'+q{3 3 t}{3 3 t}(t 1 k J 
9 

t 2( Ed + Ev )Ev 1 1 2 k 1 2 q 0 - q 

+L<2r+1)
112

(2k+1)<-1>,+q{2 2 1}{2 2 r}(r 1 kJ 
t EdEv 1 1 3 k 1 3 -q q q 

(2.58) 

~ (2t+ 1)
112

(2k+ 1) l+q{
1 1 

t }(t 1 kJ +""- (-1) 2 3 k 
1c (Ed + Ev )Ev -q 0 q 

3 2 1 

In expression (2.57), £ is the effective dielectric constant, r0 is the magnitude of 

ligand position ro, c0 > is a spherical tensor depending on the RE electron postion, and t 

can take the values 0, 1, or 2. In equation (2.58), the dominant configurations are 

assumed to be nf and n'd, and Ed and .Ev are the energies of the n'd configuration and 

the excitation beam. In Leavitt's derivation of the static effect, the RE ion and the 

nearb~ interstitial ligands (the charge compensating F ions in this case) are treated as 

static point charges. Odd-parity crystal field effects arise from interaction between the 

RE ion and these ligand ions. 

When the interaction between the ligand-electrons and RE electrons are taken 

into account, we have the ligand dependent effect [15]. Leavitt's expression for the 

dynamic coupling contribution to TPA intensities is given as follows 

(2.59) 

where a Lis the charge compensating interstitial ligand polarizability, E:~ is its the 

average excitation energy, and 
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D' = (diiC{2)11 f)(R lr2 1 R. ) "(2t + 1)
112

(
2k + 1)(-1)1+r+q 

q nJ nd ~ (E -E) 
k f v 

x{1 2 k}{1 1 t }{k k o}(r 3 kJ-
3 2 3 k 3 2 1 1 1 -q Oq 

(2.60) 

Expressions (2.57) and (2.59) already have the second-rank irreducible tensor 

form. Their corresponding polarization dependence expression is therefore given by 

equation (2.23), with CXq <t) being replaced by expression (2.57) for static contribution and 

expression (2.59) for dynamic contribution. 

The general formulae for the static and dynamic TP A transition amplitude can 

be described within the framework of the independent systems model [ 17]: 

(\jl 1 la5 1\jl d)= [(e2e1 )<'l BJd r"l · { (M;(f)l u<"ll M 1 (d)) 

x,,1 ~6(35[r][n])'" E,q'(~ ~ ~ )flr'ld) (2.61) 
odd kS.5 

+-!)"{: ~ :}{! ~ ~}-{~ ~ :}{~ ~ 3"}+(-1)"2{~ ~ :}] }, 

and 

(2.62) 
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where as and ao are the static and dynamic two-photon f-d transition amplitude, a is 

the average polarizability, IM1) is the free-ion eigenstates of theRE ion (denoted by M), 

which is related to IL1), the free-ion eigenstates of the ligands (denoted by L), and lcj>j). 

the zeroth-order states of the system, by the expression 

lcj>j) = IMj) ILJ). (2.63) 

Ilfd are the crystal-field parameters, and f'+ 1is the geometrical tensor defined by 

B;d = LT?>Cnflrkln'd). (2.64) 
L 

The polarization dependence of the static and dynamic two-photon f-d transition 

amplitude given by the Sztucki and Strek's model can be fourid by decomposition of 

tensor operators in the square brackets of equations (2.61) and (2.62), respectively. For 

a system such as Ce3+:CaF2, only terms associated with B0(1), B0(3), and T0<
3
) are relevant. 

The decomposition procedure for the case of k = 1 and 3 is given in Appendix C and 

table 2.2. 
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Table 2.2: Calculated values of D/)(k,n) 

k n D(2) 
2 

D(2) 
I 

D(2) 
0 

D(l) 
I 

D(l) 
0 

D(O) 
0 

1 
2/1; ~ I 3 .J3 0 0 0 

15 

-H 1 1 

-I% 2 -.[6 0 -/2 0 

0 -~ -H H 0 

I 
0 0 0 0 0 .J3 0 

I 
2H; ~ 3 5 .[6 0 0 0 

21 I 

-H -#. -#. 2' 
4 0 -/7 0 

I 1 2 1 
3 .[3 -./30 -j)S J2 0 

I ~ 1 ~ 2 -.Jl4 0 -/7 0 

-!£ 3 
0 

·~ 
0 0 0 

4 6 ]_I* ]_I* 
3 11 3 11 #, 0 0 0 

_].H J2 1 .J5 
5 0 -J3 0 

3 2 3 3 

3M -~1;4 -2~ I 
4 J2 0 
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I ]_H I 2 
3 - 0 -.[6 - 0 

3 3 2 3 

I 3.~ ~ 2 
3.Jl4 

0 0 0 
3 7 

where 

D/)(k,n) = ( -1)1 (t -q k 0 In -q) = ( -l)t+k+n D./)(k,n) 
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2.3.4 Relative Magnitude of Higher-Order Contributions to Second-

Order Contribution 

Finally, we consider the relative magnitude of the third (and fourth) order 

contribution to the second-order contribution. Using the intermediate coupling states we 

have 

<'I' I ( a<l) )'uh 1'1', > 
q -

<'I' l(a<'>)2ndl'l'' >
q 

/ J t J' 
La(SUM)a' (S' L' J' M' ~ -l)U-MJ < SUII(a<l))"rhiiS' L' J'> 

_su_.s_·L_.,_. ______ __,..._-_M_q_M_'_._ ___________ (2.65) 
J t J' ' 

La(SUM)a'(S' L' J' M' ~ -l)U-M> < SUII(a<'>)2ntJIIS' L' J'> 
SU.S'L'J' -M q M' 

/ 

where nth can be 3, 4, or any higher order contribution taken into account. 

If the SLJ mixing are negligible for the states 'Y and 'Y' the coefficients 

a(SLJM) and a'(S'L'J'M') are functions of J and M, i.e., a(SLJM) = a(JM), 

a'(S'L'J'M') = a'(J'M'). We then have 

J t J' 
< SUII(a<tl )"'hilS' L' J'> La(JM)a'(J' M' -I)U-MJ 

SU.S'L'J' -M q M' 
J t J' (2.66) 

< SUII(a<'>)2ntJIIS' L' J'> La(JM)a'(J' M' -I)u-M> 
su .s'L'J' - M q M' 

< SUII(a<r> )'"hilS' L' 1'> 

= < SUII(a<'>)2ndiiS' L' 1'>' 
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which is independent of q. For a TPA process with a single laser excitation wavelength, 

aq0 ) vanishes, and ao<O) also vanishes if J' is different from J. In this case the 

polarization dependence and relative amplitudes of TPA Stark intensities, which now 

depend only on aq<0, would not change when higher order contribution were included. 

We now apply the polarization dependence theory into a number of cases including 

intra- and inter-configurational TPA. 

2.4 Examples 

2.4.1 Intra-Configurational TPA . Application to Sm2
+ in BaCIF 

In the second-order approximation the polarization dependence functions of the 

TP A intensities are expressed in terms of 0q (t), s, which can be further evaluated in 

terms of the parameters Ft' s when one applies equations (2.12) - (2.16) to a particular 

TPA transition. The final polarization dependence functions are thus expressed in terms 

of the parameter F1's and can be compared directly with observed data. In this section 

we will provide examples on how to apply the master formula (2.23) to TPA transitions 

in a particular system. 

We now apply formulae (2.15) and (2.16) to the transition 7F0 -> 5D2 for Sm2
+ in 

BaClF (C4v site symmetry). Using the crystal-field parameters given by Gacon et al [38], 

we can obtain the crystal-field wavefunctions and coefficients for the initial and final 

states. 
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The initial state, which is the ground state, can be expressed as [56] 
' 

lrl> = .97 7F(O,O)- .17 5D1(0,0), (2.67) 

where we have used the 25
+

1Li(J,Jz) notation. 

The final states are 

1 s 1 s 1 5 1 5 
1r4> = -.74[- .fi D3(2,2) + .fi D3(2,-2)] + .6[- .fi D1(2,2) + .fi D1(2,-2)] 

lrsx> = -.74[- 5D3(2,1)] + .6[- 5D1(2,1)] 

lrsy> =- .74[- 5D3(2,-1)] + .6[- 5D1(2,-1)], (2.68) 

where rsx and rsy are the two components ofthe doubly degenerate rs states. 

For Sm2
+ (4f>) we have 

{.079 F for q=O 
<r11a~2> 1r1> = 

0 
5 2 

for q:;tO 

r9 for q=±2 -F 
<r11a~> 1r3> = ~.fi 2 

for q :;t ±2 

{_.079 F for q=±2 +-
<r11a~> 1r4> = 

0 
s..fi 2 

for q :;t ±2 

{ .079 F for q =1 <r11a~> lrsx> = ~-5- 2 

for q :;t 1 
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for q = -1 

for q:;t-1, 

(2.69) 

Equation (2.23) can be rewritten for the case ofTPA from the same source: 

3cos2 8-1 e-;cp e;cp 
a =( )a<2>-(-sin28)a<2>+(-sin28)a<2> 

'2" .J6 0 2 I 2 -1 · 

e-2icp e2;cp 

+ (--sin2 8)a<2> + (-sin2 8)a<2> 2 2 2 -2 

icp r 1 <2>1r e < 1 a_l sy > a · 
<r11ar r I rsy> = (sin 28) = - h (sin 28)e1

cp, 
21 2 -v2 . 

.079 
where a2 = ~ F2 • 

5-v2 

(2.70) 

(2.71) 

(2.72) 

The angular dependence of the TP A line strengths can be expressed in terms of 

the overall strength S0 of the 7F0 --?5D2 two-photon transition: 
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(2.73) 

Note that we can equivalently obtain (2.62) by using table 2.1 for the case of C4v 

and substitute the nonvanishing values of a~> given in (2.69) into the polarization 

functions for each two-photon transition. Table/2.1 is particularly useful when the 

intermediate coupling coefficients of the wavefunctions for the initial and final states 
- I. 

I 

are unknown. Once these coefficients are obtairied, and the corresponding a~> 's are 

determined, the master formula (2.23) can be used instead. The results in (2.73) are 

identical with those of Gacon et al [38], which were shown to agree well with 

experiment. As pointed out by Gacon et al, the results given in (2.73) agree with the 

. 
results of Bader and Gold and, furthermore, complete their results. 

2.4.2 Inter-Configurational TPA- Application to Ce3+:CaF2 

We can apply equation (2.23) to calculate the dependence of the TPA cross-

section on the directions of the electric field vector e and the wave vector k of the 

incident laser beam. For the Ce3
+ ion in CaF2 with site symmetry C4v, the TP A cross-
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section a for the zero-phonon transition from the 4f ground state to the lowest 5d state 

of the Ce3
+ ion is proportional to 

(2.74) 

For the case where kll [100] and e II [010] we have 

(2.75) 

where C = (2b-1/2)/(3a2 -2a+ 1 ), (2.76) 

with a = !+ .J2 ag and b = _!_(a12 J. 
3 3 a 2 6 a 2 

0 0 

(2.77) 

Similarly, we obtain 

3C . . 
cr ex: 1 +4sm 2 28 + C sm 28 for the case where k II [110] and e II [001], (2.78) 

and 

a ex: 1 + C for the case where k II [111] and e II [110]. (2.79) 

The fitted curves for (2. 75), (2. 78), and (2. 79) are shown in Fig. 2.1. The best fit 

for C is found to be I. 774. The polarization anisotropy for the case where k II [ 1 00] and 

e II [010] is 

(2.80) 

is 0.47, in good agreement with the observed value, which is 0.5 in this case. 
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The value for A calculated by Gayen et al [24] is 0.076. Taking into account 

only the Bo<3
> component of the crystal field and ignoring the dynamic effect, Makhanek 

et al. [28] obtained a value of0.47. Leavitt's calculated value for A is 0.32 [27]. Finally, 

Sztucki and Strek found A= 0.55, 0.15 and 0.52 for the static terms proportional to 

Bo(l), Bo(3), and the dynamic one, respectively. A recalculation based on the treatment 

given in section 2.3.3 of this chapter however shows that Leavitt's model gives A equal 

to 0.17 and 0.16 for the static and dynamic contributions, respectively. The reason of the 

discrepancies stem from the fact that the number of a1
2

' s WCiS being overcounted in 

expression 13b of ref. [27] . This is because a1
2 and a.} can not be both nonzero in one 

TPA transition from one component of a Kramers doublet to another. We also found 

that Sztucki and Strek's model [17] gives A equal to 0.815, 0.51, and 0.16 for the static 

terms proportional to B0°>, B0<
3>, and the dynamic one, respectively .. We conclude that 

the third-rank component of the crystal field was in fact the dominant term in the TPA 

transition intensity from the 4f ground state to the lowest 5d state of the Ce3
+ ion in 

CaF2, as was claimed by Makhanek et al. 
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Fig. 2-1: Polarization dependent behavior of the two-photon cross-section 

for the no-phonon transition of Ce3+:CaF2 at 6-K. The solid crosses 

represent the experimental measurements given in ref. [24] and the solid 

lines are the fits to the d~ta using the angular functions described m 

equations (2.75), (2.78), and (2.79). 
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2.4.3 Electronic Raman Scattering and Phonon Raman Scattering 

As in the case of two-photon absorption, the polarization dependence functions 

for ERS and phonon intensities are expressed in terms of the non-vanishing values of 

the matrix elements of the irre~ucible representation of the scattering tensors, CXq t. These 

polarization dependence functions can be directly compared with the observed 

intensities, from which the fitted values of CXqt can be obtained. In the ERS case, the 

more explicit expressions of CXqt in terms of the parameters ft. which arise in the second

order theory of Axe, can then be obtained from equation (2.12). In the second-order 

approximation, the final polarization dependence functions depend only on two 

parameters, namely, F1 and F2, which in general are simpler than the original 

polarization dependence functions expressed in terms of a.qt. The simple expressions of 

the final polarization dependence thus provide a crucial test for Axe's second-order 

theory. Another sensitive test for Axe's theory come from the ratio FdF2, which can be 

derived from the ratio exq1/a.q·2 obtained from the fit mentioned above. The ratio F1/F2 is 

predicted from the Axe theory to be aprroximately the same for all ERS transitions of a 

particular rare earth ion. Deviation from the value of the ratio F 1/F2 would provide 

insight to further revision of the second-order theory of Axe. Examples and applications 

of the master equation (2.23) in ERS and phonon Raman scattering processes are given 

in Chapter 3, where all the experimental Raman scattering data given have been 

obtained by our group. 
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2.5 Summary 

We· have proposed a theoretical framework for obtaining the polarization 

dependence formulae for two-photon transition intensities of rare-earths doped in 

crystals. The theory was developed based on the properties of the irreducible 

representation of the scattering tensors calculated up to the fourth order. A table of 

angular dependence functions for two-photon transitions for 32 crystallographic point 

groups was given. Our third-order expression for the TP A scattering tensor taking into 

account the crystal field interaction agrees with Downer et al's expression for the case 

of parallel and circular polarization [13]. We have applied our second-order polarization 

dependence formulae to the 7F0->
5D2 TPA transitions, and the results are identical with 

those given by Gacon et al [38]. Third-order inter-configurational two-photon 

absorption was also treated. Its applications in the case of Ce3
+ in CaF2 were given. An 

excellent fit to the experimental polarization dependence curves was obtained. From the 

fit we have calculated the polarization anisotropy using Sztucki and Strek's model, and 

we were able to show the dominance of the 4f-5d third-rank crystal field term in 

contributing to the 4f-5d TPA amplitude in the case of Ce3
+ in CaF2, which was in 

agreement with Makhanek et al [28]. 

The properties of the irreducible scattering tensor, aq<t>, have been exploited to 

derive the relationship between the two-photon scattering tensor, a 21 , and the coupled 

form of the unit polarization vectors, (e2ed0. This relationship has been particularly 

useful in deriving the explicit expression for the intra-configurational two-photon 

amplitude including the Judd-Ofelt-Axe's second-order term [2-4], Judd-Pooler's third-
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order spin-orbit tenn [10], Downer-Bivas's third-order crystal field tenn [11-13], 

Ceulemans-Vandenberghe's fourth order spin-orbit and_ crystal-field tenn [14], as well 

as the inter-configurational TP A amplitude using models given by Leavitt, and Sztucki 

and Strek [17, 27]. The relative magnitude of higher order contributions to the second 

order contribution was also discussed based on the properties of 0q <t) and the Wigner

Eckart theorem. Finally, employing the properties of 0q (t) and using the time-reversal 

in variance properties of the Hamiltonian, we have derived the general theorem proving 

the equality in magnitude for two-photon transition amplitude calculated either from a 

Kramers doublet pair or from its conjugate pair in the case of a system of odd number of 

electrons. Similarly, we have proved for the case of a system of even number of 

electrons the equal magnitude for t~o-photon transition amplitude calculated either 

from a singlet to a state of a doublet or from the singlet to the other state of that doublet. 
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Appendix A 

Using the standard tensor transformation [49] one can write 

(e2el yr>. u<t) = L(-1/ (e2el )(!). U_/l = LL(-1)9(1q)lq2111tq)(e2)q, (el)q2 u~~- (AI) 
q q q,q2 

The scattering tensor (2.1 0) would then be expressed as 

a2J = L:< -1)' ~L:I.<-I)9 (lq) lq2nlrq)(e2 )9, <e) )92 u~~- (A2) 
q q,q, 

By making the changes q1->-q1, q2->-q2, and q->q we obtain 

a2l =L { L(-IY~L u~>(l-q)l-q2111t-q) }(-1)9(e2Lq,(el)_q2• (A3) 
q,q, q 

The transformation from Cartesian to spherical coordinates for the scattering 

tensor in equation (2.10) is given by 

(A4) 

where q1+q2 = -q. 

J 

Comparing (A3) and (A4) we obtain the following expression for the scattering 

tensor expressed in the spherical coordinates: 

aq,q2 =L(-I)'~u~>(l-q1 1-q2lllr-q). (AS) 
t,q 
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The standard coupling technique of irreducible tensor operators gives 

«/1
> = L (lq1lq21lltq)a

9
•
92

, 

'h.l/2 

where a
9
<
1
> is a coupled form of the scattering tensor. We then have 

a
9 

<t> = L(-1l(lq,lq21lltq)L F,.U~:>(l-q',1-q'2 1llt'-q' ). 
9t ·92 l'.q' 

Using the properties of the 3-J symbols, we can write this as 

a/t> = L ( -1)''F~.u~:> L (lq,1q2111rq)(lq',lq'2 1llr' q' )( -1)'.+2
• 

t',q' q1q2 

The irreducible scattering tensor now becomes 

a~>= L(-1),.(-1( F,.u~>o(t,t' )O(q,q') = F,U~). 
r'q' 

(A6) 

(A7) 

(A8) 

(A9) 

Note the compact expression of the irreducible representation of the Raman 

scattering tensor. In order to obtain this compact form, a factor (-1}' is present in the 

expression for F,; Leaving out this factor in the expression for F1 has led to a sign error 

for the ratio FdF2 in several papers written by Smentek-Mielczarek [57-59]. The 

derivation for expression (A9) can also be found in Becker's thesis [50], in which 

Becker made an error in expression (8), where (e2et)' was given as (e1e2)
1 

, which is a 

factor of (-1}' different from ( e2e1)'. In equation (A4), however, Becker made another 

error, which accidentally cancels out the previous error he made. In the expression (A9), 
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(e 2 )-<~(e 1 )-<~. was written as (e 1 )-<~(e 2 )-<~.' where the latter is equal to the former 

multiplied by a factor of ( -1 )1
• 

L 
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AppendixB 

Consider the two-photon scattering tensor of the form 

a 21 = f(-1)' (e2e 1i'> · o<ll = (e2e1 )<
0> · o<o> -(e

2
e1 )

0 > · 0°> + (e
2
e1p> · 0(2) 

t=O 

= (e2e1 )~
0>0~0> + (e2e1 )~/01<0 - (e2e1 )~

00~1) + (e2e1 ):l)o_\1> 

+(e e )(2)0(2)~-(e e )(2) o<2>+(e e )(2)0(2)-(e e )(2)0(2)+(e e )(2)0(2) 
2 1 -2 2 2 1 -1 • I 2 1 0 0 2 1 I -1 2 1 2 -2 • 

Decou piing ( e2e1)q (t) in the circular polar coordinates gives 

(e2e1 )~
0 > = (3f112 (e2 )~

1 >(e 1 )~/ + (3f112 (e2 )~/(e1 ):1) -(3f112 (e 2 )~>(e 1 )~> 
( e2e 1 )~

1/ = (2f112 ( e 2 )~
1 >(e 1 )~/- (2f112 (e2 )~/( e 1 )~

1 > 

(e2et )61> = (2fu2(e2)~1>(et )~/ -(2fu2(e2 )~/(e1 ):1> 

(e2e1 ):
1> = (2f112 (e2):1)(e1 )~

1 > -(2f112 (e2 )g>(e1 ):
0 

( e2e1 )~;> = ( e2 )~/ ( e1 )~1> 
(e2e 1 )~~> = (2f112 (e2)g>(e1 )~/ + (2f112 (e2 )~/(e 1 )~1 > 

( e2e 1 )~
2 > = ( 6f112 ( e2 )~/( e 1 ):1) + ( 6r112 ( e2 )~/ ( e 1 ):1) + (2 I 3)112 ( e2 )6

1> ( e-;)61> 

(elet ):2> = (2fu2(e2):1>(et )~I>+ (2fu2(e2)61l(et ):1) 

( elet )~2> = ( e2 ):1> (e. ):1). 

(Bl) 

(B2) 

From (Bl) and (B2) we can obtain the transition intensity expressions for 

circular and parallel ( Ell z ) polarizations. For right circular polarization beams in TP A 

processes, all terms except (e2)1°> (e2)t0 ) in (B2) vanish. For left circular polarization, 

only (e2).J0 ) (e2)-t 0 ) term is non-zero in (B2). For parallel polarization, only (e2)o0 > 

(e2) 0°> term is non-zero. The two-photon scattering tensor becomes 

o<2>(e )0 >(e )0 ) 
-2 2 I 1 I for right circular polarization, (B3) 

0(2)(e )0 >(e )0 > 
2 2 -1 1 -1 for left circular polarization, (B4) 
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and ( f2o(2) __ I_o(o))(e )(IJ(e )(IJ 
''{31 

0 .J3 0 2 0 I 0 
for parallel polarization (B5) 

The spherical polar unit vectors are related to the circular polar unit vectors 

according to the transformation: 

(B6) 

where we have used the (1, m, n) notation given in (2.21 ). 

We now substitute (B6) into (Bl) to get 

= J...~OJOciOJ + J...~?o.(:J + J...~l061J + J...~IJOIO> (B7) 

+ A.(2)0(2} + J...(2) .0(2) + A.(2)0(2) + J...(2)0(2) + J...(2)0(2) 
-2 -2 -1 -1 0 0 1 1 2 2 , 

where the coefficients A.~ 's are defined by 

(B8) 

and 
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'I 0 1 
Ao = - J3 ln2n1 + m2ml + 12111 

I 1 . 
A_1 = 

2 
[(-m2n1 + n2m1 )z + (n 211 -12n1 )] 

I i 
A0 = "J2[m211 -12m1] 

A~ = ~ [(m2 n1 - n 2m1 )i + (n211 -12n1 )] 

1 
A:2 = 2[{12/1- m2ml )+ U2m1 + m211 )i] 

2 1 . 
A_l = 2[(n2ml + m2nl )z + (n2[1 + [2nl )] 

' 1 A0 = .J6 [2n2 n1 - m2m1 -1211] 

A~ = ~ [(n2m1 + m2 n1 )i- (n211 + 12n1 )] 

A~ = ~ [{1211 - m2ml)- U2m1 + m2ll )i], 

whi~h is identical to (2.25). 

(B9) 
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Appendix C 

Consider the two-photon scattering tensor of the form 

n,k,t n,k,t w 

= ~ ~ [ ;(e2e,)~B;{t q k II n -w)}-I)'O~''(k,t,n) (Cl) 

= L LLA.~(-1)'"1 B1k(tq k lin (q+l))o:;_~(k,t,n), 
n,k,t q I 

where we have used (B8) and the relation w = -q-1 to obtain the last step in (Cl). 

If we make the change q -> -q in (Cl) and define 

D/l(k,n,l) = (-1)"1 (t -q k II n -q+l) (C2) 

and 

a.~r)(k,t-, n) = L B1k D~1 J(k, n, It)~~; (k, t, n), (C3). 
I 

we then get the familiar polarization dependence relation 

If [(e 2e1YBk]<nJ.o<nJ=L f.!A.~a.~tl(k,t,n), (C4) 
n t=O n t=O q=-t 

where the two-photon scattering tensor has been expressed in terms of the polarization 

dependence functions A1q's defined in (B9) and the irreducible scattering tensor a.q<ths 

defined in (C3). 

For 1=0 the irreducible scattering tensor becomes 

a.<rJ(k t n) = Bk n<tl(k n) o<nl(k t n) q ,, 0 q ' q ,, • 

The values for Dq<tl (k,n) fork= 1,3, and 4 are tabulated in table 2.2. 
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AppendixD 

We will use the property of the time-reversal invariance T to prove the relation 

la21(¥'i ->Y'r )12= la21(¥'iK_>¥'rK )12 and a21(¥'i->¥' tx )12= la21(¥'i ->¥' ry )12 

By definition, the time-reversal operator T is defmed by 

TY'(ri, On, t) = Y'*(ri, On, -t), (Dl) 

where ri, On represent the electron coordinates and t represents time. The time reversal 

operator T transforms an eigenfunction of the form 

(02) 

into 

(03) 

so that both ¥' and T¥' belong to the same energy level E. If ¥' and T¥' are distinct 

eigenfunctions of the Hamiltonian which is time-reversal invariant, then the eigenstate 

T¥' is called the Kramers conjugate state of¥' and is denoted by Y'K. App1ying T to the 

spherical harmonics Y 1m we get 

TY1m = (Yim)* = (-l)mYI-m 

or, in the (J,M) basis, 

Tla,J,M> = la,J,-M>(-l)p+J·M, 

(04) 

(05) 

where pis the sum of the parities of the orbitals making up the state la,J,M>, namely 
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(D6) 
i=l 

For an odd electron system, 'l' and 'l'K are related by the relation 

'l' (K)= L 11,-M> a·(J,M) (-li-M, (D7) 
J,M 

where 'l' = L IJ,M> a(J,M). (D8) 
J,M 

For an even electron system, 'l'x and 'l'y are related by the relation 

'l'x = L IJ,-M> a(J,M), (D9) 
J.M 

where 'l'y = L IJ,M> a(J,M). (DlO) 
J,M 

A corrollary of (D8) and (D9) is that if 'l' is a singlet, then 

a(J ,M) = a(J ,-M) (Dll) 

l'l'> represents the ISLJM> intermediate coupling states. It can be shown that 
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J t J' 
La(SUM)a'(S' L' J' M' -If -M > < SUIIa<'>lls' L' J'> 

SU.S'L'J' -M q M' 

J t J' 
Lax (SUM')a'x (S' L' J' M' -It +M > < SUJia<'>IJS' L' J'> 

SU,S'L'J' M -q - M' 

= ( -I)2(J+J'+M-M')+r = (-I)' • 

(DI2) 

Similarly, it can be shown 

< \f' la<r>l\f'' > 
----=-q~_x_ = 
<\f' la<tJI\f'' > -q }' 

J t J' 'I 

"''a(SUM)ax '(S' L' J' M'; -I)u -M > < SUIIa<'>IIS' L' J'> 
su .n·r - M q M' 

J t J' 
La(SU- M)ay'(S' L' J' M' ~ t-If +M > < SUIIa<tJIIS' L' J'> 

SU.S'L'J' . .., M -q - M' 

= (-1)'. 

(D13) 
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Chapter 3 

Experimental Aspects 

This chapter and subsequent chapters present the experimental verification for 

the proposed polarization dependence theory given in chapter two. Most of the 

experimental work on phonon scattering and ERS has been done by myself, but the 

experiments on two-photon absorption have been the collaboration between myself and 

Dr. Keith Murdoch. This chapter deals with the experimental aspect of the polarization 

dependence method used in ERS and TP A experiments. Phonon scattering and ERS 

experimental results for PrV04, NdV04, ErV04, and TmV04 are discussed together in 

chapter four. TPA experimental results for Eu3
+ and Cm3

+ in LuP04 are discussed in 

chapter five. 

3.1 Polarization Dependence Spectroscopy - Overview 

3.1.1 General Approach to Raman Spectroscopy 

As discussed in chapters one and two, major developments of quantitative two

photon spectroscopic studies of rare-earth materials have been built upon the Judd

Ofelt-Axe theory. It is therefore an important undertaking to verify Axe's theory. The 

aim of this section is to discuss a reliable method for the test of this theory using the 

ERS polarization dependence technique which is a modified version of Becker et al. 's 
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technique [1,2]. The results will be applied to PrV04, NdV04, ErV04, and TmV04 in 

the following chapter. 

Becker et al's sensitive test of Axe's theory [3] comes from comparison between 

the observed and calculated intensities of the ERS transitions in rare-earth doped 

crystals. Following Koningstein and Mortensen [4], who observed that ERS spectra 

display asymmetric features (e.g., lxz:;tlzy, where the first and second subscripts 

indicate the polarizations of the scattered and incident photons, respectively), Becker et 

al showed that the ratio of the intensity corresponding to :XZ or YZ polarization to the 

intensity corresponding to ZX or ZY polarization may provide a sensitive test of the 

second-order theory. This is because this ratio is related to the ratio F1/F2, which iri turn 

can be directly estimated by Axe's theory. The value ofF 1/F2 obtained from experiment 

can then be compared with the value obtained ab initio using the seco.nd order theory of 

· Axe. Becker et al' s extensive study of ERS in rare-earth phosphate crystals, 

nevertheless, indicate poor agreements between calculated and experimental intensity · 

results [2]. This inadequacy of the second-order theory motivated further theoretical 

investigations in the third-order regime by Smentek-Mielczarek [5]. Even with the 

extension to the third-order theory, only moderate agreement with observed data was 

found. 

We have listed in chapter 2 the expressions for the polarization dependent 

behavior of the ERS and two-photon absorption transition intensities. The results can 

also be applied to phonon scattering, and a tabulation for two photon polarization 

dependence functions for the 32 crystallographic point groups has been produced. The 
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new results, when applied to a particular system, yield expressions of polarization 

functions that depend only on two parameters F1 and F2, which in tum depend only on 

the properties of the ion being considered and which can be treated as 

phenomenological constants or can be estimated if the energies of the excited 

configurations and the overlap integrals of the excited and ground configurations are 

known. These factors immediately suggest a new, more reliable method to obtain a fit 

for the value of the ratio t = FdF2• From the old method used by Becker and coworkers, 

this ratio was extracted from only two data points, namely lxz and lzx at 0° and 90° 

(parallel and perpendicular to the crystal axis). The new method, however, allows the 

extraction of the ratio from an unlimited number of ERS data points associated with 

1(8i,<l>i) and 1(8s.<l>s). where ej, <l>i. es. and <l>s describe the polarization states of the 

incoming and scattered photons, which can be arbitrarily varied. These ERS data points, 

furthermore, can be calibrated using phonon polarization dependent intensities to yield 

more accurate ERS polarization information. The calibration procedure will be 

described in detail in section 3.3.2. 

In order to extract the experimental values of 't = FdF2 for Pr3
+, Nd3

+, Er3
+, and 

Tm3
+ in PrV04, NdV04, ErV04, and TmV04, respectively, the crystal field 

wavefunctions for the ground multiplet of these ions must be known. The 

wavefunctions used in this work come from results published elsewhere or from crystal 

field fits whose crystal field parameters used as input have been taken from literature. 

Table 3.llists the parameters for crystal field fits for RE3
+ in REV04 or YV04, where 

RE represent Pr, Nd, Er, and Tm. Most of these crystal field parameters were derived 
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from diluted crystals, in which the rare earth ion in consideration has ·been doped into 

YV04. It is however expected that the energy level structure and wavefunctions of the 

diluted crystals will be approximately the same as that of the pure vanadate crystals, as 

it has been the case for phosphate crystals [2]. 

Table 3.1: Fitted parameters for RE3+ in REV04 or YV04 

RE3+ 4f' Crystal field parameters (cm'1) Spin-orbit References 

Bo2 
Bo

4 
Bo

6 
B4

4 
B/ S4f (cm-I) 

Pr3+ 4f -77 71 -68 970 -200 739 (*) [6,7] 

Nd3+ 4e 302 273 -1245 -777 -109 880 [8] 

Er3+ 4fll -218 322 -702 917 10 2366 [7,9] 

Tm:H 4fl2 -175 337 -612 832 -50 2642 [10] 

·3+ (*)denved from RE :YP04 

Table 3.2: Raman activity of D2d point group 

Symmetry of electronic transition CD2d Raman activity a.q 1 = <rii<Xq <r>l r r> 

point group) 

r1 0.00 ,CJ.o2 

r2 ·a.ol 

r3 2 2 a.2 ,a..2 

r4 2 2 a.2 ,a..2 

r <*> 2 I 
5x a.l ,a.) 

r <*> 2 2 
Sy a..l ,a..) 

(*)rsx and rsyrepresent the crystal field states of the rs doublet. 

Once the crystal field wavefunctions have been obtained, the explicit 

expressions for the matrix elements of the irreducible scattering tensors a.t s in terms of 

F1 can be determined. In general selection rules can be used to determine which a.t s are 

non-zero. The point group symmetry for Pr3+, Nd3+, Er3+, and Tm3+ in pure vanadate 
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crystals is D2d· Using table 2.1 we obtain the Raman activity for a rare-earth ion of point 

group symmetry D2d listed in table 3.2. 

From the selection rules given in chapter 1 and the Raman activity in table 3.2, 

the polarization dependence function for each ERS transition can be determined. The 

observed polarization dependence curves can then be fitted with the predicted curves. 

The relative values of a.q"s can be extracted, from which the experimental value of 't 

can be determined. The procedure stated above is summarized in the following diagram: 

Selection rules - D2d 

non-zero values of <ilaq <t)lf> 

Polarization dependence functions 11(8~. 82) 

Experimental curves H Least Square Fit I le(8J, 82) 

Relative values of <iiOq <t)lf> 

Crystal field <iiOq (t)lf> in 
wavefunctions - ~erms ofF, -

l't =F/F2j 
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3.1.2 General Approach to TPA Spectroscopy 

The experimental and data analysis procedures for polarization dependent TPA 

experiments are similar to that for ERS experiments. For the case of TP A from .the same 

excitation source, <Xq 1 = 0 for all transitions. The polarization dependence functions for 

TPA transitions can thus be expressed in terms of a/. The Raman activity listed in 

table 2.1 can be used to determine the nonzero rJ.q2 in TP A transitions for a rare-earth 

ion of point group symmetry D2d. With the crystal field wavefunctions provided, flq 2' s 

can be expressed in terms of F2• The observed polarization dependence curves will then 

be fitted with the predicted curves. The observed relative TPA intensities for different 

transitions can be compared with prediction. For a rare-earth ion with an even number 

of electrons in the outer shell, the polarization dependence formulas generally depend 

. on only one nonzero values of rJ.q2
. The polarization dependence expressions for this 

system would look the same regardless of whether or not <Xq 2 can be further expressed in 

terms of F2. The relative intensities among different transitions predicted from the 

second order theory, however, would depend only on F2, which is the same for all 

transitions of a particular system. The ratio of these intensities therefore would not 

contain any unknown parameters and could be compared with observation. For a 

transition with more than one nonzero a.q2 (such as a transition between Kramers states), 

the observed intensities can be fitted first with the theoretical polarization dependence 

expressions, which now depend on more than one nonzero rJ.q2
• The ratio of the relative 

values of <Xq 2 for different q can be extracted from the fit and compared with the 

calculated values. Both the fitted values of the relative <Xq 2 and the observed polarization 
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dependence .of TPA intensities for each transition will provide a sensitive test for Axe's 

second order theory. 

3.2 Applications to Polarization Dependent Intensities 

3.2.1 Phonon Raman Scattering 

The polarization dependence functions corresponding to phonon scattering 

intensities can be found in table 2.1. We denote by e1 and e2 the incident and scattered 

unit polarization vectors, respectively. Taking into account the 45° r~tation of the RE3
+ 

cet:Jter about the Z axis and the scattering geometry, in which scattered light is detected 

at 90° with respect to the incident beam (fig. 3.1), the required coordinate 

transformations are given by: 

(3.1) 

Noting that in nonresonant scattering, 0q 1 's vanish for all phonon modes, the 

formulas corresponding to the D4h point group become 

Eg mode: Ia, (£,, )12 = ( ~, J [sin 2(6, -e,) +sin 2(6 2 +6, )] (3.2) 
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incident photon 
(k1/IX) 

scattered photon 
CkviY) 

crystal 
sample 

Z (c axis) 
y 

X 

Fig. 3-1: Crystal orientation in Raman experiments. X,Y,Z represent 

the crystallographic axes; x,y,z ,represent the symmetry axes. 
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The polarization dependence functions corresponding to Eg modes at fixed 

values of 81 have the following simple forms: 

/(82 ,0) =[(a~ )2 I 2]sin 2 82 

/(8 2;±22.5°) =[(a~ )2 I 2](.85 sin 2 8 2+.15 cos2 82 ) 

/(8 2 ,±45°)=[(a~)2 12] 

/(8 2,±67 .5o)= [(a~ )2 I 2](.85cos 2 82+.15sin 2 82 ) 

/(8 2 ,±90°)=[Ca?)2 12]cos2 82 (3.3) 

A particularly interesting case for Eg mode is when 81 = · 45° the scattering 

intensity is a constant, independent of 82, and vice versa. This can be conveniently used 

as a guide to check the crystal alignment at both room and low temperature. 

3.2.2 Electronic Raman Scattering 

Following the development in chapter two, the general formula for the 

polarization dependence of the Raman scattering tensor is given by 
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1 . (2; + 2[(n2m1 + m 2n1 )z- (n 2l1 + l 2n1 )]a 1 

1 . (2) + 2[(n2m1 + m 2n1 )z + (n211 + 12n1 )]a_1 

1 . {2) 
+ 2[(1211 - m2mi)- U2m1 + m211 )z]a2 

1 
+2[(1211 -m2mi)+(l2m1 +m2 11 )i]a~;> 

i (I) 
+ 2 [m2/J -/2mi lao 

I . . <I> 
+2[(m2n1 -n2m 1)z+(n2l 1 -12n 1)]a 1 

I . o > 
+ 2[( -m2n1 + n2m1 )z + (n 2l 1 -l2n1 )]a_1 

(3.4) 

In equation (3.4), the terms a~l)·s, where t = 0, 1, 2 and q = -2, -1, ... , 2, are the 

irreducible second-rank tensors, and 

(3.5) 

where cei, <pi) are the polar angles of the unit polarization vector ei with respect to the 

crystallographic c-axis. 

The initial and final crystal-field levels can be written in terms of Russell-

Saunders coupled wave functions: 

li) = La(i;nfNJJ.SUJz)lnfNJJ.SUJ), 
a.SUJ, 

If)= L a'(f;nfNJJ.' S' L' J' J'z )lnfNJJ.' S' L' J' J'z ), (3.6) 
a'S'L'J"J", 
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The electronic Raman amplitude for the transition between states li> and If> is 

given by 

(lla.~'>l /) = F,ERS L L a(i;nfN JlSUlz1z' (f;nfN Jl' S' L' J' Jz') 
aSUJ: a'S'L'J'J': (3.7) 

X (njNJ,lSUJziU~>InfNJl' S' L' 1' Jz '), 

where 

J' ~L J S } 
Jz'AJ' L' 1 (SLIIU<'>IISL')o(S,S'). 

(3.8) 

and 

{
3 1 l'J F,ERs = (-1)' L 7(21'+1 (nflrln'l') 2 

nfN-ln'/' 0 0 0 

.!.{1 3 l'K 1 (-JY J x(2t+1)2 +-'----'--
3 1 t En'/' - fz(J)1 En'/' + tzro2 

(3.9) . 

It is instructive to examine the explicit expressions of F1 and F2. Making the 

approximations wi = W5 = w and ffi; << Edf we have 

' (3 I I' Jf 3 I'} 2Jiro 
F;ERs = -7(3)2 L (2l'+1)(4fl rln'l') 2 

41 N-ln'l' 0 0 0 3 1 1 E12. ' 

and 

' (3 1 I~J{~ 3 I'} 2 
F2 ERS = 7(5)2 4f~n'l' (2l'+1)(4flrln'l')

2 
O 

0 1 2 Er 
(3.10) 

119 



We now compare separately the contributions of the d and g orbital 

configurations. 

For the d orbitals: 

ERS ..J6 ~ 21iOO 
F;d = r;; £.. (4flrl5d) 2

- 2-, 
-v7 4JN-lsd Ed 

and (3.11) 

For the g orbitals: 

ERS 2.J3 ~ 2 21iro F;g =- r;-; £.. (4flrl5g) - 2 , 
-v14 41 N-lsg Eg 

and ERS 2.JS "". 2 2 F2g =,., r;-; ,£,. (4flrl5g) -. 
· .h'14 41N-tsg Eg 

(3.12) 

Assuming the degeneracy of the g- and d- orbital configuration energy levels, 

the ratio FdF2 is given by the simple relation: 

I< 4flrl5g >12 

where R =I< 4flrl5d >12. 

(3.13) 

(3.14) 

The irreducible scattering tensor corresponding to the third order spin orbit 

interaction has the form 

(a~tl)3rd = H(t) (a ta)/ot)t(a ta)ni>o + LG(t,A) (a ta)/IA.>t, 
A. 
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where at, a represent creation and annihilation tensors, t can be 0, I, or 2, and H(t), 

G(t,A.) have the following expressions for 1=3 and 1'=2: 

(3.16) 

The first term of the right hand side of equation (3 .15) is a scalar product of 

coupled tensors. Since this term can connect non-identical initial and final states, the 

matrix elements of aq <D> no longer vanish. For t = 0, we have two contributions 

(3.17) 

Since the eigenvalue of (a ta)600
l
0 is -N(14Y 112 when sandwiched between 

W 0°1
>
0 represents the standard sum of single-particle double-tensor operators. 

The total third order contribution for the case t=O is 

(3.18) 
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For t=I, we have three contributions 

[3 (J 1 J' ) uNaSUMIS1011Na.· s'L' J' M')= V"2H(l)(-1/-M -M q M' J'r1'2 

xL(lNa.SUII U 0 >111Na." SL" J' )(INa." SL" J'IIW01 >0111Na.• S' L' J') 
a"L" 

= f3 H(l)(-1)1-M(J 1 J' )J·rl'2 V2 -M q M' 

x(INa.SUIIU 0 >11zNa.SU)(lNa.SUIIW01 >0 111Na.• S' L' J') 

iii)SI2 = G(l,2)(a ta)~I2>I. 

For t=2, we have several contributions 

(I" aSUMI S,.ll" o.' S' L' J' M') = H H(2)( -1)'-M( ~ M 
2 

q -:.)1')-"' 
LUNa.SUII V( 2>11ZNa." SL" J' )(INa." SL" J'IIW01>0 IIZNa.· s· L' J') 
a"L" 

iv)S
23 

= G(2,3)(a ta)~13 >2 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

As explained in chapter two, the most significant third-order spin-orbit 

contribution comes from the terms for which t=O, when the matrix elements 
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corresponding to these term do not vanish. Since the third order spin-orbit contribution 

to two-photon intensities can be expressed in terms of the second-rank irreducible 

tensor form, the third order polarization dependence functions have the same forms as 

the second order. We therefore can just add the results for~~ calculated in the third 

order into the second-order results and square the final result to obtain the final 

intensities calculated up to the third order involving spin-orbit coupling. 

3.2.3 Two-Photon Absorption 

For the case of two-photon absorption from the ~arne source, the two photon 

scattering tensor corresponding to linearly polarized incident photons has the general 

form 

1 3 cos2 e -1 e-icp eicp 
a = --a<OJ +( )a<2J -(--sin28)a<2J +(-sin28)a<2

> 
TPA ..Jj 0 .J6 0 2 1 2 -1 

-2icp e2icp 

+ (-e-sin 2 8)a<2
> + (-sin 2 8)a<2

> 2 2 2 -2 

(3.26) 

where the values of e and <I> describe the orientation of the incident photon polarization 

in the polar coordinates, with the z axis being parallel to the crystallographic c-axis of 

the crystal. 

The two photon intensity is directly related to the matrix elements of the 

scattering tensor by 

(3.27) 

where Cis a constant, IDJ is the laser's frequency and COti =COr- (Oj is the frequency 

corresponding to the energy difference between the initial and final states i and f. 
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In the second order approximation the irreducible tensor Clq <th s appearing in 

equation (3.26) are related to the standard unit tensor U/'> by 

(3.28) 

where t can be 0 or 2 for the case of TP A from a single source, q can take the values 

-t, -t+ 1, ... , t, and 

{
3 1 /'J F/1'A=(-1)'nf#.'/'7(21'+1 O O O (5flrln'l')

2 

.!.{1 3 /'[ 1 J x(2t+1) 2 

3 1 t En'/' -1iro 

(3.29) 

where En'!' is the average energy of the n 'I' configuration and ro is the angular frequency 

of the incident photon. 

The irreducible scattering tensor corresponding to third order spin orbit TP A 

amplitude is the same for that corresponding to the ERS amplitude given in equation 

(3.15), except that the terms associated with t = 1 vanish for the case of two-photon 

"absorption from the same source. 

3.3 Raman Scattering - Experimental Aspects 

3.3.1 Experimental Setup 

Figure 3.2 describes the experimental set up for our Raman study. Incoming light 

with varied polarization is incident on the crystal sample, and the scattered light is 

collected for analysis at angle 90° with respect to the input beam direction. The main 

components of the set up consist of i)an argon cw laser; ii)a series of optical devices 
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including a polarization rotator, focusing and collimating lenses, a polarization analyser, 

a Dove prism, and a polarization scrambler; iii)a cryogenic system; iv)a spectrometer 

and a detection system including a photomultiplier, a preamplifier, and a photon counter 

connected to a PC. 

3.3.1.1 Laser 

The excitation for the ERS experiment is provided by a Coherent Innova model 

306 cw argon-ion laser. The laser can operate in multi-line operation or single-line 

operation. The single-line operation is achieved by placing a prism in the laser cavity. 

For ERS scans only the single-line configuration was chosen, with the output power 

strongest for the single-line 514 nm and single-line 488 nm. These are the two single

lines most commonly used in our ERS work. Other single-lines were also used for 

verification of the nature of the spectral lines, to determine whether they are truly 

Raman peaks, whose spectral positions are at a fixed distance with respect to the 

excitation spectral line. Weak plasma lines coming from the laser's plasma tube were 

also observed in 488 nm, 501 nm, and 496 nm excitation lines. These plasma lines have 

their own fixed polarization dependent behavior and therefore were readily catalogued 

for identification. Except for ERS transitions in NdV04, none of these plasma lines 

interfered with the reported transitions in our ERS work. The wavelengths and 

wavenumbers of the argon-ion laser lines are given in Table 3.3. 

The linewidth of an argon laser line is approximately 0.2 cm-1
• An intracavity 

etalon can be placed in the laser cavity to further reduce the laser linewidth and produce 

a single-mode output. This· was unnecessary for our ERS work on vanadate crystals 
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since the linewidth of most of the ERS transitions are on the order of 3 cm·1 or above. 

The beam diameter is· about 1.5 mm at the output mirror, and the virtual beam waist 

diameter is approximately 1.4 mm, with a beam divergence of 0.5 mrad. In the case that 

tight focusing is desired, the beam can be focused to a spot size as small as 50 microns 

at the center of the crystal sample, using a combination of a microscope and achromatic 

doublet lenses. This will be discussed in more detail in the next section. 

Table 3.3: Wavelengths and wavenumbers of argon-ion laser lines. 

Wavenumber (cm"1
) 

Wavelength (nm) Air Vacuum 

514.53 19435.1 19429.7 

501.71 19931.6 19926.0 

496.51 20140.6 20135.0 

487.99 20492.4 20486.7 

476.49 20986.9 20981.0 

465.79 21468.7 21462.7 

457.94 21837.1 21831.0 

The polarization of the output beam is primarily vertical, with approximately 

less than one percent horizontal leakage. The small intensity coming from this 

horizontal polarization leakage was one of the main causes for polarization leakage 

problems in our polarization dependent work. Other sources for polarization leakage 

include imperfect crystal alignment or multiple scattering of the laser beam along the 

beam path inside the crystal. The latter problem can be alleviated by choosing an 

appropriate set of collection optics so that only the narrow beam path on the crystal can 
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be imaged and analysed while stray light from multiple scattering or specular reflection 

inside the crystal is rejected. 

3.3.1.2 Optics 

a. Polarization Rotator: A Spectra Physics model 310-21 polarization rotator was 

chosen to vary the beam's polarization between 0 and 360 degree. This polarization 

rotator was preferred to a Soleil Babinet Compensator, since the former is known to 

give an output with fixed intensity and direction when the beam polarization is varied. 

A slight motion of the beam path on the crystal when beam polarization is changed, 

which usually occurs when a Soleil Babinet Compensator is used, can immensely affect 

ERS signals, whose intensities are extremely weak and sensitive to the beam path along 

the crystal. 

b. Focusing and Collimating Optics: In Raman scattering, signal coming from Raman 

light is much weaker than signal coming from Rayleigh and reflected light. In order to 

obtain the maximum amount of the wanted Raman light and reject most of the 

unwanted, great care needs to be exercised in arranging a suitable optical system. Two 

observations are made for attaining such a system. 

First, the system has to be prepared in such a way that good alignment can be 

achieved and reproduced with little effort. To meet this goal we have mounted every 

optical component that may be moved in the alignment procedure such as lenses and 

prisms in a two-dimensional translation stage which can be adjusted by a micrometer. It 

was found that collected signal is sometimes greatly enhanced with only a minute 

adjustment of the optics. 
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Secondly, most Raman signals are concentrated on the thin, narrow laser beam 

path on the crystal. The beam waist and beam diameter of the focused spot has to be 

chosen such that the beam path's image can fill the diffraction grating of the 

spectrometer. The spectrometer's slit widths are normally set at 250 microns in order to 

obtain maximum signal. Experimentally, we found that desired signal level can be 

obtained with a beam diameter of the focused spot between 50 and 200 microns and by 

choosing a collection optics with a magnification of less than or equal to 7. A beam 

diameter of 200 J.1II1 can be obtained by simply using an achromatic doublet focusing 

lens L1 with a focal length of 15 em, which actually was used in a majority of ERS 

experiments. When smaller beam diameters are desired, we used a series of components 

including a Newport Research Corporation model 900 spatial filter, which acts as an 

inverted microscope with a 0.5 em focal length objective, to expand the laser beam size, 

an achromatic doublet with a 15 em focal length to collimate the beam, and another 

achromatic doublet with a 15 em focal length to focus the beam to a spot size below 50 

microns. The beam diameter can be estimated by projecting the crystal image on a wall, 

and the size of the beam spot can be compared with respect to the size of the enlarged 

crystal image. The collection optics we have chosen were composed of two lenses L2 

and L3, one collimating and one focusing, respectively. The sample is placed at the focal 

point of ~. which is a Nikon camera lens with focal length of 5 em and diameter of 4 

em. The collimated light with an aperture of 4 em coming from L2 is focused on the 

spectrometer entrance slit by L3, which is an achromatic doublet with focal length of 33 

em and diameter of 4 em. L3 was so chosen to match the spectrometer's entrance f-
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number of 7.8. With a magnification of 6.6 coming from our collection optics, the 

scattered light image may overfill the spectrometer's entrance slits, and some signal 

may be lost. The signal level obtained, however, is sufficient for most of our Raman 

study. 

c. Polarization Analyser: A polarization sheet is placed right after the collimating lens 

to select and analyze the polarization of the scattered light. This polarization analyser is 

mounted on a rotator with marks from 0 to 360° for accurate polarization selection. 
J 

d. Dove prism: We have so far ignored one import~t fact in our discussions above. In 

our current setup, the laser path is horizontal, while the spectrometer's slit is vertical. In 

order to fix this problem, a Dove prism was used to rotate the laser path image by 90 

degree. Two major problems arise when a Dove prism is used. Firstly, it functions well 

only with parallel light. For this reason we placed the Dove prism between the 

collimating lens, L2, and the focusing lens, L3• Since light coming from L2 is parallel, 

the beam's image using the Dove prism would not be distorted. Secondly, due to 

multiple reflection, a Dove prism responds differently to the polarization of light being 

passed through, in a similar fashion that a spectrometer's diffraction grating would 

respond with respect to light. To eliminate this problem, the Dove prism was placed 

behind the polarization analyser, and a depolarizer was placed between the Dove prism 

and the polarization analyser. The depolarizer consists of a 2° crystal quartz wedge with 

a second compensating fused silica wedge. 

3.3.1.3 Sample Crystal and Cryogenics 
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a. Crystal Sample 

The samples used were grown by L. A. Boatner and M. M. Abraham from the 

Oak Ridge National Laboratory. All crystal samples have the form of a plate, with 

typical dimensions lmm x lmm x 4mm. The host crystal belongs to the D4h symmetry. 

The RE+3 ion is at a D2d -symmetry site. The x and y axes, which are the two-fold C2 

axes, are rotated in the X-Y crystallographic plane by 45° relative to the X and Y axes 

(fig. 3-1). The z axis is parallel to the crystallographic Z axis. 

All ERS spectra were taken at approximately 4.2 K, the liquid He temperature. 

At this temperature, only the ground state is populated for most rare-earth ions, and the 

scattering intensities come primarily from Stokes transitions, which originate from the 

ground state and end in the excited states of the ground multiplet. When the temperature 

is raised significantly above 4.2 K, the intensities corresponding to these Raman 

transitions are reduced according to the Boltzmann factor, due to thermal population. In 

addition to Stokes peaks, anti-Stokes can also be observed at high temperature. These 

anti-Stokes peaks arise from ERS transitions originating from excited levels. 

The cryogenics equipments required to maintain the crystal at 4.2 K are provided 

by Oxford Instruments. These equipments include a CF1204 continuous flow cryostat, a 

TTL low loss transfer tube, a VC30 flow control console, and a ITCV 4 temperature 

controller. 

b. Cryostat: The CF1204 cryostat contains a sample tube, a radiation shield, and a 

vacuum space. In the sample sp~ce enclosed by the sample tube, the sample is top

loaded through an access port on top of the cryostat. This port is sealed by a· plug 
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against an '0' ring, and the crystal sample is suspended from this plug by a rod of 

material with high thermal resistance. During an experiment, the sample space is 

evacuated and then filled with He exchange gas. The sample tube is surrounded by a 

radiation shield which intercepts room temperature radiation. Next to this radiation 

shield is the outer vacuum case, where high vacuum is kept at all time in order to 

maintain the thermal isolation of the liquid helium. The sample tube, radiation shield 

and outer vacuum case have positions for four radial and axial quartz windows. The 

clear diameters of these windows are 13 mm for the inner, 15 mm for the shield, and 25 

mm for the outer. It is recommended that these windows be checked for polarization 

behavior before each polarization measurement is taken. At one time we discovered that 

one of these windows behaved like a birefringent crystal, which is capable of changing 

the polarization of light passing through. The cause for such behavior were not clearly 

known. We suspect the presence of a strain induced birefringence. 

c. Transfer tube, flow controller, and temperature controller: Liquid He from a He 

vessel is delivered to the cryostat by a vacuum-insulated TTL transfer tube. A VC30 

flow control console consisting of a vacuum gauge, a needle valve and a flow meter is 

used to control the flow rate of the liquid He from the transfer tube into the cryostat. 

From the transfer tube, liquid He is transferred down the length of the cryostat in the 

vacuum space to a heat exchanger section. The heat exchanger is fitted with a 27 ohm 

Rhodium-Iron resistance sensor and heater. An ITC4 temperature controller connecting 

to the sensor and heater is used to measure and control the temperature of the sample 

chamber. During an experiment, due to laser heating, the actual temperature of the 
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crystal may be a few degrees Kelvin higher than the temperature read from the 

temperature controller display panel. 

3.3.1.4 Spectrometer and Detection System 

a. Spectrometer 

Scattered light collected is analysed by a Spex Industries model 1403 double 

monochromator. The spectrometer has an f-number of 7.8 and a focal length of 0.85 m. 

Finely ruled holographic gratings with 1800 grooves/rom are used. Similar to the case of 

a Dove prism mentioned in 3.3.1.2, these gratings have spectral response that depends 

on the polarization of the incident light. For this reason in every Raman scattering 

experiment, a polarization scrambler was placed in front of the Dove prism to correct 

for the different polarization efficiencies in both the Dove prism and the spectrometer. 

The spectral range of the spectrometer covers between approximately 300 and 1000 

nm. A stepper motor inside the monochromator was controlled by a Spex Compudrive 

control unit which drove the system through a selected spectral region. Typical scan rate 

was 0.01 cm-1/s. 

In most Raman scattering experiments, slit widths were set at 250 microns for 

the entrance and exit. slit widths. The intermediate slits are widely open. This setting 

results in a spectral bandpass of approximately between 2.5 and 3 cm·1 for the 514 nm 

and 488 nm excitations. The entrance and exit slits were closed down to 150 microns in 

cases the intensities of the ERS transitions were being swamped by the intensity of the 

Rayleigh scattered light, which happened when the spectral positions of these 

transitions were in the vicinity of the laser excitation. 
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b. Detection system 

A high gain, low dark count, photo-electrically cooled Hamamatsu model R375 

photomultiplier (PMT) tube was placed against the spectrometer's normal exit slit to 

collect light dispersed by the spectrometer. The voltage across the tube was 1000 V. The 

tube was placed in a housing which had water flowing at a rate of 2 liters/minute. The 

spectral range of the tube is 150 nm to 850 nrn. 

The photon signals from the photomultiplier tube were amplified by a factor of 

five by a Stanford Research model SR445 fast preamplifier and measured with a 

Stanford Research model SR400 photon counter. Most noise signals were rejected by 

setting the photon counter's discriminator level at about 6 V. Real signals were 

converted into NIM pulses, transferred to a PC 386 computer and then counted by a 

Tennelec/Nucleus Multi-Channel Scaler card, which was controlled by a program called 

MCS. The background count rate of the PMT tube when the spectrometer's entrance 

and exit slits are both 200 Jl.IIl is approximately 200 count/sec. The data was stored in 

51
/4 inches floppy disks as binary files, which were then converted into ASCII files by a 

program called SPM2ASC. The ERS transitions intensities were analysed using a 

GRAMS program and plotted using an ORIGIN program. 
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Fig. 3.2: Experimental set up in ERS measurements 
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3.3.2 Experimental Procedure 

Experimentally, Raman lines are determined from one of the following criteria: 

a. The Raman lines always appear with the same frequency shift relative to the laser 

excitation frequency, irrespective of the excitation. 

b. The Raman intensities have their own polarization dependence characteristic of the 

corresponding Raman transitions. Phonon lines have their own polarization dependent 

curves which are generally different from electronic Raman curves. 

c. Due to thermal population, electronic Raman transition intensities decrease as the 

temperature increases. Phonon intensities are only slightly dependent on temperature. 

The polarization dependence spectra were obtained by the following procedure. 

A total of 45 scans were recorded, each corresponding to a polarization state of the 

incident and scattered light. The incident polarization angle 91 was initially set to 0°, 

while the scattered polarization angle 92 was incremented for each successive scan by 

22.5°, from 0 to 180°. Then 91 was incremented to 22.5°, and the process repeated until 

91 reached 90°. For calibration purposes, a pair of electronic Raman and phonon 

scattering spectra with similar polarization dependence curves were taken concurrently 

for each polarization state (91,92) of the incident and scattered light. 

The observed linewidths were fitted using the computer program GRAMS. Most 

ERS transitions were fitted with Gaussians. For the phonon modes, approximately 

above 99 % Gaussian and less than 1% Lorentzian produced the best fits. The 

linewidths of phonon modes in the vanadate crystals vary between 2 cm-1 (Eg1
) to 20 

cm-1 (A1g
1
). The linewidths of ERS transition are typically between 3- 6 cm-1

• 
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The calibration was perfonned as follows. The observed intensities of the 

phonon mode selected for calibration were fitted using a least square fit analysis with 

the predicted polarization dependence functions given in section 3.2. Since the 

polarization dependence expressions for phonon modes always contain only one tenn, 

which is a constant multiplied by a simple function of el and e2. the constant factor in 

these expressions could be served as the fitting parameter. The best fit value of this 

fitting parameter would provide the fitted values for the phonon intensities for each 

polarization state (91,92). Each observed phonon intensity value corresponding to one 

polarization state (91,92) was then divided by the fitted value corresponding to that state. 

This ratio for each polarization state is called the scale factor for that state. For each 

polarization state, the observed ERS intensity was divided by the scale factor associated 

with that state. The final results were the calibrated ERS intensity values. By fitting 

these values to the theoretical polarization dependent curves, we obtained the best fitted 

value for the F1/F2 ratio. The following diagram summarizes the calibration procedure. 

136 

/ 

' 



\ . 

Calibration Diagram 

Fitted phonon intensities 
Predicted phonon intensities (from GRAMS) 
(equations (3.2)) 

Least square fit (LSF) 

Fitted phonon intensities and fitted phonon curves 
Scale factors calculated 

ERS intensities (from 
GRAMS) 

scale factors 

Predicted ERS intensities (equation 

ERS calibrated intensities j (3.4)) 

LSF 

Calibrated ERS intensities and fitted ERS curves 
Best fit for Ft!F2 obtained 

In the calibration procedure mentioned above it was assumed that the phonon 

curves were accurately described by the theory and that no interactions other than pure 

phonon scattering were involved. As will be reported in the discussion section, good 

agreement was found between observed and predicted phonon polarization dependent 

curves, justifying our use of the phonon data for calibration. Once a good fit for phonon 

intensities has been obtained, calibrating the ERS data using the phonon data may 

reduce systematic errors, since both ERS and phonon scattering data were taken with an 
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identical experimental set up, and therefore would suffer approximately the same 

systematic e~ors. In ERS experiments imperfect alignment of the crystal, defects in 

optical devices, multiple reflections from optical surfaces and the spectrometer's 

grating, all contribute to systematic errors in the observed data. Calibration procedures 

using the known behavior of the phonon modes would be more critical if these errors 

are significant, such as in the case where good crystal alignment is not possible or when 

the optical devices being used introduce unwanted polarization dependent behavior. 

3.4 Two-P~oton Absorption- Experimental Aspects 

3.4.1 Crystal Samples 

The Eu3+ :LuP04 sample was grown by L. A. Boatner and M. M. Abr~am from 

the Oak Ridge National Laboratory. It has the form of a plate with dimensions of 0.2 x 

1 x 6 mm3 
. The nominal Eu3+ concentration is approximately 6 mole %. 

The Cm3+:LuP04 sample was grown by doping a single crystal of LuP04 with 

almost isotopically pure 248Cm using a high-temperature melt [11,12]. It was relatively 

small, with dimensions of 0.5 X 2.0 X 1.0 mm3
• The nominal Cm3+ concentration is 

estimated to be less than 0.1 mole %. This radioactive sample was sealed in a quartz 

ampoule under a partial pressure of helium for containment purposes. 

3.4.2 Absorpsion Measurements 

Absorption measurements of Eu3+ in LuP04 have been carried out with a Cary 

17 spectrophotometer and with a Xe lamp source and the Spex monochromator. The 

Cary data were taken at room temperature as a quick check of the concentration of the 

crystal and the approximate energy levels of the 50 0, 
5D1. and 50 2 multiplets. The Xe 
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lamp gives the absorpti~n spectra of Eu3+ :LuP04 and the energy levels in the region of 

interest at 4K. Four filters were used in the absorption measurements using the Xe lamp. 

Light from the lamp is fitered by water and 4-96 and 4-76 Corning color filters. The 

intensity of filtered light passing through the crystal inside the Oxford cryostat is further 

reduced by a neutral density filter. The slit were open with slitwidths of 70 Jlm. 

Absorption, excitation, and emission measurements of Cm3+ in LuP04 have 

been reported by Sytsma et al [13]. 

3.4.3 TP A Experimental Setup 

Figure 3.3 shows the setup for the TPA experiments. In all Eu3+:LuP04 

experiments ~d most Cm3+:LuP04 experiments the excitation source was a Lambda 

Physik Scanmate optical parametric power oscillator (OPPO). This laser is a hybrid 

optical parametric oscillator (OPO), which uses a small dye oscillator as a seed laser, 

and was pumped by the third harmonic output of a Spectra Physics model GCR-3 

Nd:YAG laser. The output beam was passed through a 2-64 color filter. It had a 

sufficiently broad transverse mode for a Spectra Physics model 310-21 polarization 

rotator to be used to change the excitation polarization. The maximum excitation power 

used was 1mJ/pulse. A 25 em quartz lens was used to focus the beam onto'the crystal. A 

Hamamatsu R928 photomultiplier tube (PMT) was placed against the window of the 

cryostat to detect the fluorescence from the sample. Depending on the fluorescence 

wavelength, appropriate color and line filters were placed between the PMT and the 

window of the cryostat to filter the scattered light. The signal from the PMT was 
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preamplified by a Stanford Research model SR445 fast preamplifier and then measured 

using a Standford Research model SR400 gated photon counter. If a strong signal was 

detected, neutral density filters were used to avoid pulse pile-up. 

The TP A spectra of Eu3+ in LuP04 were obtained using the OPPO laser with 

C540A dye for the 7Fo - 502 transitions and C503 dye for the 7F0 -
50 0 transition. A 4-94 

and a 3-68 colour filter were used to allow transmission of the fluorescence from these 

TP A transitions but effectively blocking the infrared scattered light from the excitation. 

In each TP A polarized scan, steps of .01 nm were used, with 10 pulse integrations and 

the photon counter's gate delay and width set at 100 J.LS and 5 ms, respectively. For 

Cm3+'in LuP04, the TPA spectra of the 8S712 -
60 712 transitions at 17800 cm·1 and the 

8S712 -
6P512 transitions were obtained using the OPPO laser with a C540 dye, and the 

TPA spectra of the 8S712 -
60 712 transitions at 27900 cm·1 were obtained using a Spectra 

Physics POL-3 dye laser with LOS750 dye as the excitation source. A 2-73 color filter 

and a 602-10 nm line filter were used to select the transmission of the 6D712-
8S712 

fluorescence. Steps of .004 nm were used in each polarized scan, with· 20 pulse 
-, 
' : 

integration. The gate delay and the width of the photon counter in the Cm3+:LuP04 

experiments were set at 1 J.lS and 2 ms, respectively, according to the lifetime of the 

excited state of Cm3+, which is approximately 500 J.LS. 

All the experiments, unless otherwise stated, were conducted at a temperature of 

4.2 K in an Oxford Instruments model CF1204 optical cryostat. The actual sample 

temperature may be 1 or 2 K higher due to the absorption of laser energy. Resistive coils 
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and an Oxford Instruments model ITCV 4 temperature controller were sometimes used 

to raise the sample temperature. 
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Fig. 3.3: Experimental set up in TPA intensity measurements 
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Chapter4 

Polarization Dependence of Phonon Scattering and 

Electronic Raman Scattering Intensities in PrV04, 

NdV04, ErV04, and TmV04 

4.1 Raman Spectroscopy of PrV04 

4.1.1 Pr3
+- Selection Rules 

The open shell configuration of Pr3+ is 4f2. The point group symmetry of Pr3+ in 

PrV04 is D2d. Since Pr3+ has an even number of active electrons, its electronic states are 

labeled by the irreducible representations r1. r2. r3, r4, and rs ofD2d· 

The ground multiplet of Pr3+ is 3~. The decomposition of the ground multiplet 

into irreducible representations is given by 2r1+ r2+ r3+ r4+ 2rs. The ground crystal 

field state has the symmetry rJ. The selection rules and Raman activity for the Raman 

transitions originating in the ground state are described in table 4.1. Fluorescence 

measurements and Raman spectra of the ground multiplet of Pr3+ in PrV04 have been 

reported by Bleaney et al. [ 1 ], and the corresponding wavefunctions have been given by 

Andronenko et al. [2]. 
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Table 4.1: Selection rules and Raman activity of ERS transitions originating in the 

ground state of Pr3+ in PrV04. 

Transition Scattering tensor symmetry Raman activity a.q 1 

r3- r1 r3 2 2 a2 ,a.2 

r3-r2 r4 2 2 a2 ,a.2 

r3-r3 r1 0{)2 

r3-r4 r2 0{)1 

r3-rsx rsx 
2 I 

a1 ,a1 

r3-rsy rsy 2 2 a..1 ,a.1 

4.1.2 Pr3
+- Polarization Dependence Functions 

Taking into account the necessary transformation given in (3.1), the polarization 

dependence curves corresponding to the Raman activity listed in table 4.1 are given in 

table 4.2. 

We now determine the values of the non-zero matrix elements of a~J for Pr3+ in 

PrV04. The wavefunctions were obtained from a crystal-field fit [3] with the crystal 

field parameters given by Andronenko et al [2). The wavefunctions for the ground 

multiplet of Pr3
+ in PrV04 are listed in table 4.3. Table 4.4 lists the nonzero values of 

~~. which were calculated using the second-order theory of Axe, and the polarization 

dependence functions for the corresponding transitions. Table 4.5 displays the predicted 

values of transition intensities taken in ZZ, XY, XZ, and ZY polarized scans relative to 

the zy polarized intensity of the r3- rs transition at 85 cm"1. The predicted values are 

expressed in terms of 't = F 1/F 2· 
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Table 4.2: Polarization dependence functions for ERS transitions originating in the 

ground state of Pr3+ in PrV04. 

Transition Polarization dependence curves 

r3-rl (1/4)Cal +a../}2 sin281 sin282 

r3-r2 0 

r3-r3 (2/3) (a-c/>2 cos281 cos282 

r3-r4 (112)(ao 1)
2 sin281 sin282 

r3-r5x (1/8)[(ai 2i +(ai 1)2
] [sin2(92-9I)+ sin2(92+9J)] 

+ ai 2a 1
1sin(92-9I) sin(82+91) 

r3-rsy (1/8)[(a.})2 +(a.1
1)2] [sin2(92-9I)+ sin2(92+9J)] 

- a}a.J 1sin(92-9I) sin(82+8I) 

Table 4.3: Wavefunctions for the ground multiplet of Pr3+ in PrV04. 

Calculated Energy (cm'1)(*) Wavefunction La(J,Jz) 25
+

1L1 (Jz) 

and Symmetry 
J.J, 

o cr3) .707 3~ (2) + .707 3~ (-2) 

35 cr1> .53 3~ (4) +.53 3~ (-4) + .67 3~ (0) 

85 crsx) .92 3~ (-1) + .37 3~ (3) 

crsy) .92 3JL (1) + .707 3JL (~3) 

111 cr2) .707 3JL (4)- .707 3JL (-4) 

195 cr4) .707 3JL (2)- .707 3~ (-2) 

343 cr1) .474 3JL (4) + .474 3JL (-4)- .75 3JL (0) 

409 (rsx) -.92 3JL (3) + .37. 3JL (-1) 

crsy) -.92 31L (-3) + .37 3JL (1) 

(*)From the crystal field fit. 
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Table 4.4. Polarization dependencies of ERS transition intensities in the 3}4 ground 

multiplet of Pr3+ in PrV04. 

Transitions Non-zero flqt Polarization Dependencies la21l2 

(cm-1) 

0-35 al= a.l=.II8F2 .014 Fl sin281 sin282 

0-84 a12=.0313F2, al1=-.346Fl 2.45xl04 Fl [(sin283 +sin284)( I+ 123.2 

r) -44.4 't sin83 sin84] (*) 

0-171 a22= a.22=.05F2 0 

0-195 ao1= .261F) .017 F/ sin281 sin282 

0-343 a22= a.22=-.062F2 .017 F/ sin281 sin282 

0-409 al 2=.145F2, a) 1=.122F) 5.25x10.3Fl [(sin283 +sin284)(1+.706 r) 
+3.36 t sin83 sin84] (*) 

r 
I I 

A particular ERS transition of interest is the first r 3 - r 5 transition at 85 cm·1. 

From table 4.2, the Raman scattering intensity corresponding to this transition can be 

written 

la,~e, cr3 ~ r5 )12 
= 

~ {[a~ sin(8 2 +81 )+a: sin(8 2 -81 )]
2 +[a: sin(82 +81 )+a~ sin(8 2 -81 )]

2
} 

+ ~ {[a.:1 sin(8 2 +81 )-a~1 sin(82 -81)]
2 +[-<X~1 sin(82 +81)+a:1 sin(8 2 -8 1)]

2
}, 

(4.1) 

where flqt 's denote the matrix elements of the flq<t) tensors, <r51 flq(t)lr3>. 
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Noting the fact that the squared amplitude must be the same for ERS transitions 

coming from a singlet to each state of the doubly degenerate level, equation (4.1) 

becomes 

la .. 2 .. 1 (f3 -+ rs )12 = 

1 

2 
{[a~ sin(92 +91 )+a: sin(92 -91 )]

2 +[a: sin(92 +91 )+a~ sin(9 2 -91 )f }. (4.2) 

. a~ a2
1 F2 -.09 

If we defme a= - 1 = --T = -.09- = --, 
al a_l F.. 't 

(4.3) 

the squared amplitude of the scattering tensor for the transition becomes: 

lae2el (f3 -+ rs )12 = 

(a: )
2 

{ [sin 2(9
2 
+91 )+ sin 2(9 2 -9 1 )](a

2 + 1)+4a sin(9 2 +91 )sin(9 2 -91)}. (4.4) 
2 

Let 

We now keep 91 fixed at values incremented by 22.5° and determine the 

scattered intensity with respect to 92 • For each value of 91: 
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(4.6) 

Table 4.5: Predicted values of relative linestrengths of ERS transitions in the 3IL 

ground multiplet of Pr3
+ in PrV04. 

ERS transitions zz XY xz ZY 

(cm-1
) polarized polarized polarized polarized 

35 0 28 0 0 

(1 + 1 Ut )2 

85 0 0 e-ll.Jt J 1 

1+1Ut 

171 0 0 0 0 

195 0 34"t 2 0 0 

(1 + 1l.l"t )2 

343 0 8 0 0 

(1+1l.l"t)2 

409 0 0 c+Mt J c-MtJ 2 
1 + 1l.l"t 

2 
1 + 11.l"t 

( 
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4.1.3 PrV04- Experimental Raman Spectra 

Table 4.6 displays all phonon modes observed for the PrV04 crystal at room 

temperature and at 4.2 K. These phonon modes were assigned based on their 

polarization dependent behavior described in equations (3.2). Figures 4-1 and 4-2 show 

the unpolarized spectra for the phonon and ERS transitions in PrV04 between 30 and 

450 cm·1
, which were taken at 293 and 4.2 K, respectively, using the 514 nm excitation 

line. The capital Arabic symbols represent the phonon modes, and the capital Greek 

symbols represent the ERS transitions. Only two electronic levels at 84 cm·1 and 344 

cm·1 were observed, both of which were assigned to the symmetry representation r 5, as 

their intensities were strongest in :XZ and ZY scans, where :XZ and ZY correspond to 

the polarization states (81=0, 92=90) and (91=90, 92=0), respectively [4]. The 

assignment for the first doublet transition is in good agreement with reported 

fluorescence data [1], in which the first doublet level was assigned at 84 cm·1
• Our 

assignment for the second ERS transition, however, disagrees with the predicted 

assignment given by Andronenko et al. [2]. In their published paper, a single transition 

should have appeared at approximately 343 cm·1, and a second doublet transition should 

have been observed at 409 cm·1
• Our theoretical assignments using a crystal field 

calculation [3] showed that the first and second doublet transitions would be located at 

70 cm·1 and 373 cm·1
, respectively. The difference in energy levels between theory and 

observation should not be overemphasized, as we note that the predicted energy levels 

come from a crystal-field fit which included only two empirical energy levels. The 

remaining three ERS transitions of the ground multiplet predicted by this crystal field 
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calculation are either absent or too weak to be clearly identified as ERS. No other 

electronic lines were found in either polarized or unpolarized scans using the 488 nm, 

496 nm, and 501 nm excitation lines. 

Table 4.6. Frequencies (cm-1
) and symmetries of the Raman-active phonons in PrV04 at 

297 K and 4.2 K. -

E3 Tem.(K) El B1g
1 E2 B1g

2 
B2gl 

I E4 Blg3 B1g
4 Es 2 

g g g A1g g g A1g 

297 113 122 150 233 261 a 381 a 470 792 805 869 

4.2 I 16 II5 152 231 260 a 377 a 469 797 807 872 

a: not observed 

For calibration purpose, polarization dependence spectra have been recorded for 

the phonon mode at 807. cm-1
, due to the similarity in character between this phonon 

mode and the ERS transition at 84 cm·1 and the comparatively large oscillator strength 

of the phonon mode. -ERS polarization dependence spectra were obtained for the first 

doublet transition at 84 cm-1
, whose intensity is strong enough for reliable polarization 

measurements. The phonon lines in Fig. 4-2 are located away from the electronic line at 

84 cm-1 and do not seem to show an electron-phonon coupling effect. Figures 4-3 and 

4-4 show the ZZ, XY, XZ, and ZY polarized spectra for the phonon mode at 807 cm-1 

and for' the ERS transition at 84 cm-1
, respectively. The uncertainty for the recorded 

spectral positions of the phonon and ERS transitions is less than 0.5 cm-1
, and the 

maximum relative error on the intensity measurements is about I 0 percent. 

The ERS intensities were calibrated and fitted using the calibration procedure 

described in chapter three. Fig. 4-5 shows the intensities of the phonon mode Eg at 807 
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cm·1 and its corresponding predicted curves described in equations (3.3), with the 

constant factor obtained from a least square fit (see section 3.3.2 for more detail on the 

fitting procedure). Fig. 4-6 displays the calibrated polarization dependencies for the 

ERS transition at 84 cm·1 and the corresponding fitted curves from equations (4.6). In 

equations (4.6), the fitted value of a= a/la1
1 appearing in the polarization dependence 

functions was obtained from the least square fit of the ERS data to the corresponding 

functions in equations (4.6). The observed and predicted data in fig. 4-5 and 4.6 were 

scaled in such a way that the maximum values of the predicted data are always 100. 

The observed data for the polarization dependent ERS and phonon spectra agree 

extremely well with prediction. This agreement seems to stem from the fact that the 

polarization dependence form of the scattering tensor described in expression (3.4) has 

been obtained purely from group theoretical consideration (see chapter 2). The Judd

Ofelt-Axe approximation was not introduced until the evaluation of the ratio a 1
2
/ a 1

1 in 

terms of 't = FdF2, which appears later in equation (4.4). Thus when applying equation 

(3.4) for the particular rare earth material, one should substitute the values of Oqt.s in 

terms of F1 only after the fit has been performed, especially when there exists more than 

two nonvanishing 0q"s in equation (3.4). 

Two fitted values of a 1
2
/ a 1

1 for the doublet transition at 84 cm·1 were extracted 

from the least square fit analysis using a total of 45 data points. These fitted values are 

the quadratic solutions of equation (4.4) and were found to be -0.0865 and -11.57. The 

corresponding values of 't are 1.04 and 0.0078, respectively. Taking into account only 

the d-configuration and assuming Edt(Pr3+) = 50,000 cm·1 and nco= 20000 cm·1
, the 
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calculated values for a = a}/ a1
1 and 't are -0.175 and .52, respectively (see equations 

(3.11) and (4.3)). The fact that one of the fitted values of 't (and a) only differs by a 

factor of 2 with prediction from the second-order perturbation theory of Axe 

demonstrates the dominance of the d-configuration in accounting for the two-photon 

intensities in PrV04. 

Table 4. 7 compares the observed and predicted relative linestrengths for the case 

't = 1.03. From tables 4.5 and 4.7 it is clear that a value 't ::::: 1 explains rather well the 

inherently weak observed linestrengths and hence the absence of most of the ERS 

transitions originating in the ground state. For example, equating (1- .84t) in table 4.5 to 

zero for the absence of the transition at 344 cm· 1 in the ZY polarization gives a value of 

't ::::: 1.2. 

Table 4.7: Comparison between predicted and observed relative linestrengths of ERS 

transitions in the 3~ ground multiplet of Pr3
+ in PrV04 for the case 't = 1.03. 

ERS Z:Z -polarized XY -polarized XZ-polarized ZY -polarized 

transitions 

(cm-1
) 

' 

Thry. Exp. Cal. Obs. Cal. Obs. Cal. Obs. Cal. Obs. 

* 

35 - 0 - .18 - 0 - 0 -

85 84 0 - 0 - .7 .71 1 1 

171 - 0 - 0 - 0 - 0 -
195 - 0 - .23 - 0 - 0 -
343 - 0 - .05 - 0 - 0 -

409 344 0 - 0 - .47 .25 .002 -
(-) Not observed 
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(*) From the crystal field fit 

From the analysis above we conclude that the value of 't is most likely near 

unity. The other value of 't coming from the fit is very ~lose to zero and does not fit the 

observed intensities and is thus considered non-physical. This result is in contradiction 

with the finding of Becker et al [5,6], who reported that 't = FdF2 :::::-Q.03 for most ERS 

transitions in the ground multiplet of TmP04. From the deduced small value for 't, 

Becker et al suggested the possibly important role of the excited g-configuration in 

making contribution to two-photon intensities [7]. As we can see from equation (3.13), 

if only the d-orbital configuration is taken into account, and using the values of R and 

Ed given by the Hartree-Fock calculation of the free-ions, the ratio F/F2 is 

approximately 0.25 for Tm3
+, which is an order of magnjtude larger than their observed 

values. Becker et al. asserted that a value of magnitude -0.03 for this ratio can only be 

obtained when the sec~nd term of the numerator in equation (3.13) is comparable to the 

first term, which indicates the g-orbital configuration might play an important role in 

two-photon processes. Our analysis for PrV04 has shown on the contrary that only the 

contribution from the d-orbital configuration is sufficient to account for most transition 

intensities in the ground multiplet and the prediction is especially excellent for the 

polarization dependent behavior of the ERS transition at 84 cm-1 in PrV04. 

It remains to consider other possible contributions to the ERS intensities. These 

contributions include third- and fourth-order effects such as spin-orbit, crystal-field, 

ligand polarization, and electron correlation. Using the spin-orbit constants for Pr3
+ 

given in table 3.1, we have computed the third-order spin-orbit contribution for the ERS 
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transitions in the ground multiplet. These contributions tum out to be at most a 

magnitude order smaller than the second-order contributions and therefore would not 

affect the ~suit obtained above. For Pr3
+ the considerably large second-order term 

associated with c2J-411U(2)1131-4> for the 31-4 ground multiplet compared with the third-

order term associated with c21-411U(2}W01 )01131-4> and the relatively small spin-orbit 

constant both contribute to the small contribution of the third-order spin-orbit effect 

relative to the second order contribution. Table 4.8 summarizes the third-order spin-

orbit contributions relative to the second-order contributions for the doublets at 84 cm·1 

Table 4.8: Relative magnitude of third-order spin-orbit to second-order contributions for 

ERS transitions in PrV04. 

Transition (a~ )3rd (a: )3rd 

(:;r (:;r (:;r 't2nd 't fined 

(cm-1) (a~ )2nd (a: )2nd 

84 -.036 -.072 -.175 -.181 -.089 .52 1.04 

344 -.036 -.072 2.32 2.4 1 .52 1.2 

Although we were not able to compute all third- and fourth-order contributions 

corresponding to other effects, we do not expect significant changes in our analysis 

given thus far. First, the polarization behavior will look exactly the same when higher 

order terms are added into the second order term. This is because the polarization 

dependence for these transitions only depend on one variable, namely a=a1
2/ a1

1, which 

is related to 't = F1/F2. Adding higher order terms only changes the computed values of a 

and 't, but the general expression of the polarization functions will be the same. 
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Secondly, as pointed above, unless the second-order term is negligibly small, which is 

not the case for Pr3
+, in general the contributions to the ERS intensities would decrease 

rapidly beyond the second order, therefore the values of a and t should not be very 

different from the second order values when higher-order terms have been added. This 

is not the case for Gd3+, whose leading contribution to two-photon intensities is zero in 

the second order. In this case, adding the third or higher order contributions would 

drastically change the result, as nicely demonstrated by Downer et al. [8,9]. 

In summary we conclude that the second-order theory of Axe is sufficient to 

explain the observed intensities in all transitions originating in the ground state of the 

3IL ground multiplet of Pr3
+ in PrV04. The polarization dependence formalism given in 

chapter 2 predicts extremely well the polarization dependent behavior of the observed 

phonon and ERS intensities. The phonon polarized intensities of a phonon mode can be 

used to calibrate the ERS intensities whose polarization dependent behavior is similar to 

that of the phonon line. The fitted value of the F/F2 ratio for one transition (84 cm-1
) for 

Pr3
+ is found to be approximately unity, which is half of the predicted value using the 

second-order theory and taking into account only the d-orbital configuration. 
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Fig. 4-1: Room temperature, unpolarized phonon spectra of PrV04, using 

the 514 run excitation line. 
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Fig. 4-2: Low temperature, unpolarized ERS spectrum of PrV04, using the 

514 nm excitation line. 
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Fig. 4-3: Polarized phonon scattering spectra of PrV04 at 4.2 K, using the 

514 nm excitation line. 
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Fig. 4-4: Polarized ERS spectra of PrV04 at 4.2 K, using the 514 run 

excitation line. 
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Fig. 4-5: Polarization dependence spectra of the phonon mode Eg at 807 

cm-1 in PrV04 at 4.2 K. Solid lines represent the fitted curves using 

equations 3.3; crosses represent the experimental data. 
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4.2 Raman Spectroscopy of NdV04 

4.2.1 Nd3+- Selection Rules 

Nd3
+ has the open shell configuration 4f3

• The point group symmetry of Nd3
+ in 

NdV04 is D2d· Since Nd3
+ has an odd number of active electrons, the electronic states of 

the ion are labeled by the irreducible representations r 6 and r 1 of D2d. All the electronic 

levels of Nd3
+ are thus doubly degenerate Kramers' states. The crystal field energy 

levels and wavefunctions of Nd3
+ in YV04 have been fully established by Tanner and 

Edelstein [10]. 

The ground multiplet of Nd3
+ is 41912• The decomposition of the ground multiplet 

into irreducible representations is given by 3f7+ 2f6. The ground crystal field state has 

the symmetry r 7• The selection rules and Raman activity for the Raman transitions 

originating in the ground state ofNd3
+ are described in table 4.9. 
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Table 4.9: Selection rules and Raman activity of ERS transitions originating in the 

ground state of Nd3
+ in NdV04. 

Transition Scatteringtensorsynunetry Raman activity Clq1 

r1- r1 r1+r2 <XQI ,<XQ2 

rl- rl (*) r1+r2 <XQI ,<XQ2 

rl-r7 rsx(**) 2 I a1 ,a1 

r1-rl rsy 2 2 
a..) ,a.] 

r1- r6 r3+r4 2 2 a2 ,a.2 
K K r1 - r6 r3+r4 2 2 a2 ,a.2 

rl- r6 rsx 2 I a1 ,a1 

r1- rl rsy 
2 2 

a..I ,a.J 

(*)r and rK represent the members of a Kramers doublet. 

(**)rsx and rsy represent the states of a rs doublet. 

4.2.2 Nd3
+- Polarization Dependence Fun{;:tions 

From table 4.9 we can construct the polarization behavior for ERS transitions in 

NdV04. Table 4.10 lists the two curves corresponding to r7- r1· and r1 - r6 

transitions. 

In order to determine the values of the non-zero matrix elements of a~> for Nd3
+ 

in NdV04, we use the wavefunctions given by Tanner and Edelstein [10]. These 

wavefunctions were obtained from a crystal field fit using the observed energy levels of 

Nd3+ diluted in YV04:Nd3
+. The wavefunctions for the 41912 ground multiplet of Nd3

+ in 

YV04:Nd3
+ are listed in table 4.11. The polarization dependencies of ERS transition 

intensities in the 41912 ground multiplet of Nd3
+ are given in table 4.12, and the 
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intensities relative to the Z:Z polarized intensity of the first transition at 115 cm·1 are 

given in Table 4.13. 

Table 4.10: Polarization dependence functions for ERS transitions originating in the 

ground state of Nd3
+ in NdV04. 

Transition Polarization dependence curves 

r1- r1 (ao1i sin28t sin282 + (4/3) (ao2/ cos28t cos282 

+ (1/4)[(o:1
2)2 +(o:1

1
)
2] [sin2(82-8t)+ sin2(82+8t)] 

+ O:t20:t 1sin(82-8t) sin(82+8t) 

(1/2)(o:l +a..l)2 sin28t sin282 

r1- r6 +(114)[(o:/)2 +(o:1 
1
)
2] [sin2(82-8t)+ sin2(82+8t)] 

+ o:/o:t 1sin(82-8t) sin(82+8t) 

Table 4.11: Wavefunctions for the ground multiplet ofNd3
+ in NdVO~. 

Calculated Energy (cm-1
) Wavefunction 

and Symmetry I,a(J' J z) 2S+ILJ (J z) 
J.J, 

o < r7) .773 419/2 (112)- .606 419/2 (-7/2) 

108 (r7) -.768 419/2 (-7/2)- .603 419/2 (112) 

175 (r6) .825 419/2 (3/2) -.525 419/2 ( -5/2) 

219 (r7) -.981 41912 (9/2) +.166 2H29;2 (9/2) 

437 (r6) -.83 419/2 ( -5/2) - .524 41912 (3/2) 

167 



Table 4.12. Polarization dependencies of ERS transition intensities in the 41912 ground 

multiplet o_f Nd3
+ in NdV04 .. 

Transitions Non-zero~' Polarization Dependencies la21l2 

(cm-1) 

0-108 2 . I 
tl() = .0395F2, tl() = -.259FI .002 Fl [cos281 cos282 +33 rsin281 sin282 

a12=0, ClJ
1=.229f 1 +6.55 r(sin293 + sin294)] 

0-175 a1 2=-.004F2, ClJ
1=.432FI 3x1o-s Fl [sin281 sin282 -58 't sin83 sin84 

a2 2=-.053F2, a-2 2=.045F2 +(sin293 +sin294)(.13+1566 r)] (*) 

0-219 a 1
2=.041F2. a1 1=.175FI 7.2x10-3 F/ ['t sin83 sin94 

+(sin293 +sin294)(.059+1.06 r)] 

0-437 a 1
2=-.046F2. a1 1=-.003FI 9.5x10-4 Fl [sin291 sin282 +.15 't sin83 

al=-.015F2, a}=-.029F2 sin84 

+(sin293 +sin294)(.56+.009 r)] 

Table 4.13: Predicted values of relative linestrengths of ERS transitions in the 4l912 

ground multiplet of Nd3
+ in NdV04. 

ERS transitions zz XY xz ZY 

(cm-1) polarized polarized polarized polarized 

108 1 33r 3sr 3sr 

175 0 0.015 47('t - .009)2 47('t + .009)2 

219 0 0 7.6('t + .23)2 7.6('t- .23) 2 

437 0 .475 .008('t + 8.3)2 .008('t- 8.3)2 
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4.2.3 NdV04 · Experimental Raman Spectra 

The observed phonon modes in NdV04 are listed in table 4.14. All the phonon 

modes except the B2g 
1 mode were clearly identified by their polarization dependent 

behavior. According to equations (3.2), a phonon mode of B2g character can not be 

observed for the crystal orientation specified in our ERS setup. At room temperature, 

however, a weak line was observed at 375 cm·1 for the XY scan, and no feature appears 

between 375 cm·1 and 385 cm·1 for the XZ and ZY scans. At 4.2 K the observed 

linewidth of the A1g 1 mode at 380 cm·1 is unusually large in an unpolarized scan, which 

suggests the observation of two superimposing phonon modes with approximately 2 

cm·1 apart. These observations prompted us to assign the Raman line at 375 cm·1 to 

B2g 
1
, whose intensity may arise from the leakage through imperpect crystal orientation. 

The Eg 4 mode has never been observed. Polarized spectra of ERS and phonon transition 

intensities in NdV04 were recorded at room temperature and at 4.2 K using the 488 nm 

excitation line. The crystal field energy levels for the 419,2, 
2K1 312, and 2G912 multiplets of 

Nd3
+ in YV04 are shown in figure 4-7. Fig 4-8 shows the unpolarized spectrum for the 

Raman transitions between 90 cm·1 and 490 cm·1 in NdV04, which was taken at 4.2 K 

using the laser excitation at 476 nm. The line appearing at 358 cm·1 in fig 4-8 is absent 

in unpolarized spectra using other laser excitation lines and therefore assigned as an 

extraneous peak. 

Three ERS transitions were observed and labeled by their energies in fig 4-8. 

These lines were assigned according to their predicted polarization dependent behavior 

given in tables 4.10 and 4.12. The intensity of the first transition at 101 cm·1 is strongest 
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when e) = 82 = 90° and weakest, but not zero, when e) = e2 = 0°, which is consistent 

with the first r1- r1 transition predicted to be at 115 cm·1
• The intensity of the second 

transition at 169 cm"1 is zero when e) = e2 = 0°, relatively weak when e) = e2 = 90°, 

and strongest when e1 = 90 and e2 = 0° or when e1 = 0 and e2 = 90°. The intensity of the 

third transition at 178 cm"1 is zero when el = e2 = 0° or when e) = e2 = 90°' and 

strongest when e) = 90 and e2 = 0° or when e) = 0 and e2 = 90°. We thus assign the 

second and the third transitions to the second and third r7- r6 transitions predicted to 

be at 182 cm·1 and 226 cm·1
, respectively. Figures 4-9,4-10, and 4-11 show the 'ZZ, XY, 

XZ, and ZY polarized spectra for the A1g
2 phonon mode at 875 cm·1

, the ERS transition 

at 101 cm·1
, and theE/ phonon mode at 151cm-1 and two ERS transitions at 169 cm-1 

and 178 cm-1
, respectively. 

Table 4.14. Frequencies (cm-1
) and symrr:ietries of the Raman-active phonons in NdV04 

at 297 and 4.2 K. 

E• g B•s• E2 g E3 g B 2 lg B2s• A18
1 E4 g B 3 lg Bls4 Es 

g Als2 

297 K 113 123 148 237 260 375 381 a 472 795 808 871 

4.2K 111 121 151 242 259 378 380 a 473 797 810 873 

a: not observed 

Polarization dependence spectra have been recorded for the A 1g
2 mode at 875 

cm·1 and for the observed electronic transitions at 101, 169, and 178 cm-1
• Calibration 

was not performed for these ERS intensities because the polarization curves associated 

with the phonon modes are considerably different from those associated with the ERS 

transitions. Figures 4-12,4-13,4-14 and 4-15 display the experimental polarization 
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dependencies of the A1/ mode and the ERS transitions at 101, 169, and 178 cm"1, 

respectively. These experimental curves are plotted in the same graph as the predicted 

curves given in equations 3.2 and table 4.10. 

The best fitted data using a least square fit program come from the ERS 

transition at 101 cm·1. Since a1
2=0 for this transition, we only obtain the fitted values 

for a1
1/ a,}, a 1

1/ ai, and a.(:/ Ia(}. Using the relations of CJ..qt in terms of 't given in table 

4.12, two values of 't can be extracted from the fitted values of a 1
1
/ ao2 and ao1Jao2

• 

These values of 't were in tum compared with the predicted values, which were obtained 

from the ab-initio second-order theory of Axe which takes into account only the d

configuration. The fitted value of l'tl is found to be approximately 0.48, comparing with 

the predicted value of 't = 0.43 assuming Edr = 60,000 cm·1 and hro =: 20,000 cm"1 (see 

equation 3.13). The fitted value for a1
1/ao1 was also compared with the calculated value 

given in table 4.12. These values differ by less than 10 per cent. Table 4.15 summarizes 

the comparison discussed thus far for the transition at 101 cm·1
• The maximum relative 

error on the intensity measurements for this transition is about 20 percent. 

The other two ERS transitions have weaker intensities, and their spectral 

positions are close to one another and to a strong E/ phonon mode at 151 cm·1
, which 

make it very difficult for accurate intensity measurements. As a result the fits for these 

transitions are poor and the fitted values for 't are not consistent, which are discounted 

as unreliable results. 
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Table 4.15: Comparison of ~e fitted and calculated values for the relative magnitudes 

· of CJ.q"s for the ERS transition in NdV04 at 101 cm·1
• 

Transition cx2 (:;J (:lJ· (:U.· I 

(101 cm"1
) 

Fitted Values 0 .733 10.2, ±.488 7.4, ±.471 

Calculated Values 0 .784 8.0, .43 6.2, .43 

We can now use the fitted value of 't from the transition at 101 cm·1 to predict 

the intensities of other transitions in the 41912 ground multiplet. Table 4.16 compares the 

predicted and observed relative intensities for different transitions for the case 't = 0.48. 

As we can see, the agreement between theory and experiment is excellent for all 

transitions in the 41912 ground multiplet of NdV04. Similar to the case of PrV04, this 

agreement provides another vindication for the second-order theory of Axe. Since the 

number of nonvanishing CJ.q''s associated with a transition between two Kramers' states 

is generally greater than that associated with a transition between two non-Kramers' 

states, ERS intensities corresponding to transitions between Kramers' states such as that 

·ofNd3+ provides a stronger test for Axe's theory than those corresponding to transitions 

between non-Kramers' states. Excellent agreement found between theory and 

experiment in the case of NdV04 has thus been important for the verification of the 

second order theory. 
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Table 4.16. Comparison between predicted and observed relative ERS transition 

intensities in the 4!912 ground multiplet of Nd3
+ in NdV04 for the case 't = 0.48 

ERS transitions ZZ -polarized XY -polarized XZ-polarized ZY-polarized 

(cm-1) 

Thry.· Exp. Cal. Obs. Cal. Obs. Cal. Obs. Cal. Obs. 

107 101 1 1 7.6 7.5 3.0 2.5 3.0 2.6 

175 169 0 0 .015 0 10 7.5 11.2 7.9 

219 178 0 0 0 0 3.8 4.5 1.9 2.2 

427 - 0 - .48 - .6 - .5 -

(-) Not observed 

(*)From the crystal field fit 

Table 4.17 shows the relative magnitude of the third-order spin-orbit 

contribution relative to the second-order. As in the case of PrV04, tile third-order spin-

orbit contribution was found to be relatively small compared to the second-order 

contribution, and the caculated values for 0q 1 would only change slightly when the third

order term was included (compare, for example, tables 4.15 and 4.17). Since Nd3
+ is a 

Kramers doublet, it is expected that all r7- r7 transitions should at least have different 

polarization dependence curves when higher order terms are taken into account, because 

of the presence of the ao0 term. For Nd3
+ in NdV04, however, due to the negligibly 

small J-rnixing in the states of the ground multiplet, ao0 vanishes (chapter 2), and the 

polarization dependence curves will look the same when higher order terms are 

included. This small J-rnixing in the states of the ground multiplet, which is also found 

in PrV04, ErV04, and TmV04, is probably due to the small magnitude of the even rank 
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tensors of the crystal field present in vanadate crystals, which are responsible for the 4f 

configuration mixing into the 4f crystal field states. The relative magnitude of third-

order spin-orbit to second-order contributions are given by 

and 

for all transitions in the 41912 ground multiplet of Nd+3 in NdV04 (chapter 2). 

Table 4.17: Relative magnitudes of (~1) for the ERS transition in NdV04 at 101 cm·1
• 

Calculated values ( ~ 1)
101 is the sum of the third-order spin-orbit and second-order 

contributions. 

Transition 

(~J ((a:) J (<nil J 
101 cm-1 (a:) (a~) (a~) 

Fitted .733 7.4 10.2 

Calculated (total) .78 6.28 8.05 
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4.3 Raman Spectroscopy of ErV04 

4.3.1 Er3+- Selection Rules 

Er3+ has eleven 4f electrons, three short of a full shell, which makes Er3+ 

formally equivalent to Nd3+. The point group symmetry of Er3+ in ErV04 is D2d. The 

doubly degenerate Kramers states of Er3+ are thus labeled by the irreducible 

representations r6 and r1 of D2d· The optical absorption spectrum and crystal field fit of 

Er3+in dilluted YV04 (the ratio of Er3+ to Y3+ is between 1:100 to 1: 100) have been 

fully reported first by Kuse [11] and the crystal field fit was subsequently modified by 

Kaminski et al [12]. 

The ground multiplet of Er3+ is 411512. The decomposition of the ground multiplet 

into irreducible representations is given by 4r7+ 4r6. The ground crystal field state has 

the symmetry r7. The selection rules and Raman activity for the Raman transitions 

originating in the ground state ofEr3+ are described in table 4.9. 

4.3.2 Er3
+- Polarization Dependence Functions 

The general polarization behavior for ERS transitions of Er3+ in ErV04 is 

similar to that of Nd3+ in NdV04, which is shown in table 4.10. Using the 

wavefunctions given by Kaminskii et al [12], we can determine determine the values of 

the non-zero matrix elements of a~> for Er3+ in ErV04. The wavefunctions for the 4115,2 

ground multiplet of Er3+ in YV04:Er3+ are listed in table 4.18. The polarization 
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dependencies of ERS transi~ion intensities in the 411512 ground multiplet of Er3
+ are given 

in table 4.19, and the relative polarized intensities are given in table 4.20 . 

. Table 4.18: Wavefunctions for the ground multiplet ofEr3
+ 

Calculated Energy (cm"1
) and Wavefunction 

Symmetry 
La(J,J.) 2S+IL,(J.) 
J.J, 

o cr1> -.793 4
115/2 (-7/2)-. 415 4

115/2 (9/2) +.327 4
115/2 (112) +. 25 4

115/2 (-15/2) 

44 cr1> -.833 4
115/2 (9/2) +. 374 4115/2 (-7/2) -.35 4

115/2 (-15/2) +. 117 4
115/2 (1/2) 

48 (r6) -.798 4
115/2 (-5/2)-. 503 4

115/2 (3/2) -.242 4
115/2 (11/2) +. 145 4

115/2 (-13/2) 

75 cr1> .886 4
115/2 (-15/2) +.366 4115/2 (-7/2) -.217 4

115/2 (9/2) 

147 cr6) .866 4115/2 (11/2)-. 386 4115/2 (-5/2) +.234 4115/2 (3/2) +. 132 4
115/2 (-13/2) 

255 cr6) -.787 4
115/2 (-13/2) +. 506 4115/2 (3/2) +.295 4

115/2 (11/2) +.087 4
115/2 (-5/2) 

288 cr6) .637 4
115/2 (3/2) +. 559 4115/2 (-13/2) +.42 4

115/2 (-5/2) +. 274 4
115/2 (-11/2) 

319 cr1> -.793 4
115/2 (-7/2)-. 4154

115/2 (9/2) +.327 4
115/2 (1/2) +. 254

115/2 (-15/2) 
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Table 4.19: Polarization dependencies of ERS transition intensities in the 411512 ground 

multiplet of Er3+ in YV04 .. 

Transitions Non-zero 0q 1 Polarization Dependencies la21 12 (*) 

(cm-1) 

0-43 a<l= .0043F2, fi{J
1= -.286f1 2.5x10-5Fl [cos281cos282 

a12=.0386F2, <XI 1=-.235FI + 33oorsin28Jsin282- 364't sin283sin284 

+(567 ~ + 15)(sin283 + sin284)] 

0-49 a22=-.048F2, cx..2 2=.0407F2 2.6xl0"5 Fl [sin281sin282 +385't 

a 1
2=.024F2, <XI 1=.417FI sin83sin84 

+(1600 ~+5.5 )(sin283 +sin284)] 

0-75 fi{J
2=-.0287F2, Cl.{jl= .214FI. o-3 2 28 28 l.lx1 F2 [cos 1cos 2 

ai 2=.0204F2, <X1 1=-.0086FI + .42~sin281sin282- .158't sin283sin284 

+(.0 16 ~ +.096)(sin283 + sin284)] 

0-147 al=.064F2, cx..l=-.03F2 2.8x10-4 Fl [sin281sin282 -4't sin83sin84 

<XI 2=.0405F2, <XI 1=-.028FI +(.7 ~+1.5 )(sin283 +sin284)] 

0-255 al=-.01F2, cx..l=-.00 17F2 6.8x10·5 Fl [sin281sin282 +6.6't sin83sin84 

<XI 2=-.0lF2, <XI 1=-.045fl +(7.3 ~+.37 )(sin283 +sin284)] 

0-288 al=-.031F2, cx..22=-.006F2 6.6x 10-4 Fl [sin281sin282 +.36't sin83sin84 

a 1
2=-.004F2, <XJ 1=-.061fl +(1.4 ~+.0058 )(sin283 +sin284)] 

0-319 fi{J
2=.012F2, fi{J

1=-.038FI 1.89x10-4 Fl [cos281cos282 

a 1
2=-.005F2, <XI 1=-.021FI + 7.2~sin281sin282 +.56't sin283sin284 

+(.56~ +.033)(sin283 + sin284)] 
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Table 4.20: Predicted values of relative linestrengths of ERS transitions in the' 411512 

ground multiplet ofEr3
+ in YV04. 

ERS transitions zz XY xz ZY 

(cm-1) polarized polarized polarized polarized 

43 .95 31oor (5.5-32 t)2 (5.5+32 't)2 

48 0 1 (3.3+56.6 -ri (3.3-56.6 t)2 

75 42 11.1r (2.9-1.17 t)2 (2.9+ 1.17 t)2 

147 0 10.8 (5.7-3.9 't)2 (2.9+3.9 't)2 

252 0 2.6 (1.4+6.2 tl (1.4-6.2 t)2 

288 0 25.4 (.5+8.4 't)2 (.5-8.4 t)2 

319 7.3 53r (.7+2.8 't)2 (.7-2.8 't)2 

4.3.3 ErV04 - Experimental Raman Spectra 

The observed phonon modes in ErV04 are listed in table 4.21. Fig 4-16 shows 

the room temperature, unpolarized phonon spectrum of ErV04 between 90 and 550 

cm·1
• As in the case of NdV04, the line at 380 cm·1 in fig 4-16 has unusually large 

linewidth (approximately 20 cm-1
) and may be the superposition of a A1g

1 phonon mode 

and a very weak B2g 
1 mode appearing as an intensity leakage through imperfect 

orientation. The crystal field energy levels for the 411512, 
4F712, and 4F512 multiplets of 

Er3
+ in YV04 are shown in figure 4-17. The unpolarized spectrum for the Raman 

transitions between 30 cm·1 and 300 cm"1 in ErV04 is shown in fig 4-18, which was 

taken at 4.2 K using· the laser excitation at 498 nm. The 488 nm excitation line is in 

resonance with the 4F712 multiplet (see figure 4-17) and therefore was not used in .non

resonant intensity measurements. Two ERS transitions were found at 43 and 252 cm·1
• 
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Their respective polarized spectra at 4K using the 476 run excitation line are shown in 

figures 4-19 and 4-20. The line apearing at 275 cm-1 in fig. 4-18 is absent in spectra 

using 476 run excitation line and was assigned as an extraneous peak. The line at 43 

cm-1 in figures 4-18 and 4-19 only appeared in :XZ, XY, and ZY Raman spectra at low 

temperature and~was assigned to an r7- r7 electronic transition, which was predicted at 

44 cm-1
• The assignment for the ERS line at 252 cm-1 was more ambiguous. The 

intensity of the line at 252 cm-1
, which is approximately the same position for the Eg3 

phonon mode observed at room temperature, was enhanced when the temperature drops 

below 77K, and weak intensities were observed in the XY scans, which should not have 

been observed for the Eg1 phonon mode. The same degree of enhancement at low 

temperature was also found in the case of the B1g
1 mode at 157 cm-1 (e.g. compare fig 4-

16 and 4.18). For the line at 157 cm-1
, however, intensity is strongest in the XY scan, 

and zero intensity was found in the ZZ, XZ, or ZY, which indicates the absence of 

polarization leakage. Comparing with the expected polarization dependence curve for 

the ERS transition at 252 cm-1, we conclude there possibly exists an r7- r6 electronic 

transition superposed on an Eg phonon mode at 252 cm-1
• Fig 4-21 displays the 

temperature evolution spectrum for this Raman peak at 4, 20, 77, 140, 210, and 297 K, 

using the 488 nm excitation line. The polarized spectra for this transition at 4K using 

the 476 nm excitation line is shown in fig 4-21. 

The intensities for the ERS transition superposed on the B1g
2 phonon mode at 

252 cm-1 could not be accurately determined and therefore were not used for 

polarization dependence analysis. Fig 4-22 shows the experimental polarization 
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dependencies of the ERS transition at 43 cm·1
• Calibration using the phonon 

polarization dependence curves was not performed for the ERS intensities. The 

experimental curves are plotted in the same graph as the predicted curves given in table 

4.10. 

Table 4.21: Frequencies (cm-1
) and symmetries of the Raman-active phonons in ErV04 

at 297 and 4.2 K. 

297 105 117 156 251 261 a 380 a 489 820 838 894 

4.2 109 118 157 252 260 a 383 a 480 723 840 898 

a: not observed 

Table 4.22 compares the experimentally fitted values of the relative rtq"s for the 

transition at 43 cm·1 and the predicted values with rtq"s given in table 4.19, which were 

predicted from Axe,'s second order theory, assuming Edr = 100,000 cm·1 and 1iro = 

20,000 cm·1
• The best fitted value of 't is found to be approximately 1.0. In comparing 

the fit for this transition and the transitions at 101 cm·1 in the case of NdV04 and 84 em· 

1 in the case of PrV04, we note that the transition at 43 cm·1 is close to the laser 

excitation, and the peak intensity is weakest among the three, which resulted in more 

1Uncertainty in the fit for the transition at 43 cm·1 in ErV04. The maximum relative error 

on the intensity measurements for this transition is about 25 percent. 

Table 4.23 compares the predicted and observed relative intensities for different 

transitions in ErV04 for the case 't = 1.0. The predicted relative intensities among 

transitions seem to account for the abscence of most transitions in ErV04 except the 
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ERS transition predicted to be located at 48 crn·1
, which was predicted to be at least as 

strong as the transition at 43 crn·1
• Whether or not this transition might be located below 

40 cm·1 is unclear, since the strong background scattering intensity from the laser 

excitation in the energy range below 40 cm·1 make it impossible to detect the existence 

of ERS transitions located below 40 cm·1
• Also the polarization dependencies of the 

peak 'at 43 cm·1 matched better with the predicted transition at 44 cm·1 than that at 48 

cm·1
, which eliminates the possibility for identifying the latter with the observed peak at 

43 cm·1
• 

Table 4.22: Comparison of the fitted and calculated values for the relative magnitudes 

of CJ.q1
' s for the ERS transition in ErV04 at 43 cm·1

• 

Transition Fitted Values Calculated Values Calculated Values 

(43 cm-1
) (second-order) (second-order) 

(~U·, 
2618, ±0.771 277,0.25 4424, 1.0 

a2a1 -96.1, .261 -123,0.25 -491, 1.0 1 I 
(a~ )2 , t 

a2a1 -0.0489, 2.25 -0.44, 0.25 -0.11, 1.0 I I 
(a~)2' t 

(a~ )2 +(a~ )2 2124, ±0.828 267.3, 0.25 3068, 1.0 

(a~ )2 ' 't 

(a~ )2 +(a: )2 0.811, ±0.364 0.97, 0.25 0.69, 1.0 

(a~)2 ' 't 

(a;)2 +(a:)2 16.6, 2.7 or 0.01 2.2, 0.25 6.3, 1.0 
a1a2 ' 't 

I 1 
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We now consider the possible ERS contribution from the third-order spin-orbit 

interaction. Taking into account only the d-configuration, the third-order spin-orbit 

contribution was found to be approximately a magnitude order smaller than the second-

order contribution, and would not significantly affect the second order results. Because 

the states of the ground multiplet in ErV04 are highly pure in J, the third-order ao0's 

vanish for all states of the ground multiplet. The negligibly small J,L,S mixing is also 

responsible for the relatively small third order contribution in ErV04. Comparison 

between the relative magnitudes of (~1)'s calculated from both second and third order 

contributions and the corresponding fitted values for the ERS transition in ErV04 at 43 

cm-1 are listed in table 4.24. The relative magnitude of third-order spin-orbit to second-

order contributions in ErV04 are given by 

for all transitions in the 4I1s12 ground multiplet ofEr+3 in ErV04. 
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Table 4.23: Comparison between predicted and observed relative ERS transition 

intensities in the 4I1s12 ground multiplet of Er+ in ErV04 for the case 't = I.O. 

ERS transitions ZZ -polarized XY -polarized 

(cm-1
) 

Thry.* Exp. Cal. Obs. Cal. Obs. 

44 43 I 0 3IOO 2080 

48 - 0 - I -
75 - 42 - I8 -
I47 - 0 - 11 -
255 252 0 0 3 u 

288 - 0 - 25 -
319 - 7 - 0.5 -

(-) Not observed 

(u) Unknown, due to superposed phonon intensities 

(*)From the crystal field fit 
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XZ-polarized ZY -polarized 

Cal. Obs. Cal. Obs. 

700 700 1406 I052 

3588 - 2841 -
3 - I5 -

3 - I7 -

129 u 23 u 

79 - 62 -

12 - 4 -



Table 4.24: Relative magnitudes of (a~/) for the ERS transition in ErV04 at 43 cm·1
• 

Calculated values (~t)tot is the sum of the third-order spin-orbit and second-order 

contributions, with only the d-configuration taken into account. 

Transition Fitted Values Calculated Values 

43 cm·1 (second and third order) 

(:U 
2618 328 

a2al 
J J 

-96.1 -146 

(a~/ 

a2al 
J I -0.0489 -0.37 

(a~)2 

(a~i+(a~)2 2124 290 

(a~ )2 

(a~/+(a:)2 0.811 0.9 

(a~)2 

(a~ )2 +(a~ )2 16.6 2.0 
ala2 

J J 
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Fig. 4-20: Polarized ERS spectra of the 252 cm-1 transition of Er3
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ErV04 at 4.2 K, with excitation at 476 nm. 
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crosses represent the experimental data. 
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4.4 Raman Spectroscopy ofTmV04 

4.4.1 Tm3+- Selection Rules 

Tm3
+ has twelve 4f electrons and two 4f holes, which is equivalent to Pr3

+ which 

has two 4f electrons. The point group symmetry of Tm3
+ in TmV04 is D2d, and the 

crystal field states of Tm3
+ are labeled by the irreducible representations r~. r 2, r 3, r 4, 

and rs of Dzd· The absorption and fluorescence spectra and crystal field fit of Tm3
+ in 

dilluted YV04 (the ratio of Tm3
+ to Y3

+ is between 1: I 00 to I :5) have been reported 

first by Knoll [I3]. An improved crystal field fit was later obtained by Wortman, 

Leavitt, and Morrison [I4]. 

The ground multiplet of Tm3
+ is 3~. The decomposition of the ground multiplet 

into irreducible representations is given by 3r5+r4+ 4r3+2r1. The ground crystal field 

state has the symmetry r 5. The selection rules and Raman activity for the Raman 

transitions originating in the ground state of Tm3
+ are described in table 4.25. 

Table 4.25: Selection rules and Raman activity of ERS transitions originating in the 

ground state ofTm3
+ in TmV04. 

Transition Scattering tensor symmetry Ram~ activity C1.q t 

rs- rl rs 2 I 2 I a1 ,a1 (a.J ,a.J ) 

rs-r2 rs 2 I ( 2 I <IJ ,a) a.J ,a.) ) 

rs-r3 rs 2 I ( 2 I a1 ,a1 a.1 ,a.1 ) 

rs-r4 rs 2 I 2 1 <II ,a] (a.I ,a.J ) 

rs-rs r1+r2+r3+r4 1 2 2 2 <Xo , <Xo , a2 ,a.2 
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4.4.2 Tm3
•- Polarization Dependence Functions 

The general polarization behavior for ERS transitions of Tm3
+ in TmV04 are 

given in table 4.26. Table 4.27 shows the wavefunctions for the ground multiplet of 

Tm3
+ in TmV04 obtained from a crystal-field fit with the crystal field parameters given 

by Wortman et al. [14]. The nonzero~~ and the polarization dependence functions for 

the ERS transitions in the .ground multiplet are shown in table 4.28. The relative 

polarized intensities of ERS transitions in the ground multiplet of Tm V04 are given in 

table 4.29. 

Table 4.26: Polarization dependence functions for ERS transitions originating in the 

ground state ofTm3
+ in TmV04. 

Transition Polarization dependence curves 

rs-rs (<X<J1
)
2 sin281 sin28z+(4/3) (ar})2 cos281 cos282 

+(112)(cxl +a.})2 sin281 sin29z 

rs-rl (114)[(cx1
2)2 +(cx1

1
)
2] [sin2(92-9J)+ sin2(9z+9J)] 

rs-r2 + cx1
2cx1

1sin(9z-9J) sin(9z+9J), 

rs-r3 or (1/4)[(cx})2 +(cx.1
1
)
2] [sin2(92-9J)+ sin2(9z+9J)] 

rs-r4 - cx}a.J 1sin(9z-9J) sin(9z+9J) 
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I Table 4.27: Wavefunctions for the ground multiplet ofTm3
+ in TmV04• 

Calculated Energy (cm-1)(*) Wavefunction 
\ ' 

and Symmetry La(J' J z) 2S+lLJ (Jz) -
J,J: 

0 crs) -.888 3H6 (5) + .408 3H6 (l)- .19 3H6 (-3) 

30 cr1> -.643 3~ (0) + .537 3~ (4) +.537 3H6 (-4) 

115 cr3) .617 3~ (2)- .617 3~ (-2)- .3385 3~ (6) + .3385 3H6 (-6) 

146 crs) .6716 3H6 (-3) -.603 3H6 (1)- .42 3H6 (5) 

150 cr1) .704 3H6 (-4)- .704 3~ (4) 

186 cr3) -.683 3H6 (6) -.683 3H6 (-6) +.17 3H6 (-2) +.17 3H6 (2) 

221 cr4) .617 3H6 (-6)- .617 3H6 (6)- .3385 3H6 (2) + .3385 3H6 (-2) 

306 cr3) .76 3H6 (0) + .4546 3H6 (4) + .4546 3H6 C-1) 

341 crs) .71 3H6 (-3) +.68 3H6 (I)+ .1605 3H6 (5) 

367 cr3) -.6828 3H6 (2)- .6828 3~ (-2)- .17 3H6 (6)- .17 3H6 (-6) 

(*)From the crystal field fit. 
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Table 4.28. Polarization dependencies of ERS transition intensities in the 3H6 ground I 
multiplet of Tm3

+ in Tm V04. 

Transitions Non-zero Clq1 Polarization Dependencies la2d2 (*) 

(cm-1) 

0-30 a 1
2=-.0812F2, Cit 1=-.29Ft 1.65x10"3 F/ [(sin283 +sin284)(1 +12.67 

r) + 14.2't sin83 sin84] 

0-115 a/=-.0576F2, Cit 1=.214Ft 8.3 xl04 F22 [(sin283 +sin284)(1+13.9 r) 

-14.8't sin83 sin84] 

0-146 al= .107, a}=-.0667F2 .0103 Fl [cos281cos282 

a.o2=-.088F2, a.o1=-.182Ft +sin28tsin282 (3.2 r+.078) 

0-150 Cit 2=.1426F2, Cit 1=.1436Ft .005 F/ [(sin283 +sin284)(1 +1.1 r) 

+ 4't sin83 sin84] 

0-186 
., I 

a~-=-.115F2, Cit =.151Ft .0033 F/ [(sin283 +sin284)(1 +1.7 r) 

- 5.24't sin83 sin84] 
.... _ 

0-221 a 1
2=-.091F2, Cit 1= .041Ft .0021 Fl [(sin283 +sin284)(1 +.2 r) 

-1.8't sin83 sin84] 

0-306 Cit 2=-.053 F2. ai 1=-.023FI .0007 Fl [(sin283 +sin284)(1 +.184 r) 
, 

+ 1.7't sin83 sin84] 

0-341 al=.0241, a}=-.028 F2 .0025 Fl [cos28tcos282 

a.o2=.05F2, a.o1=.003 F1 +sin2elsin282 (3.6 r+5.15) xl0"3 

0-367 a/=.015F2. a 1 
1=-:.03FI 5.9x10·5 F/ [(sin283 +sin284)(1+3.8 r) 

- 7.7't sin83 sin84] 

1-
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Table 4.29: Predicted values of relative linestrengths of ERS transitions in the 3H6 

ground multiplet ofTm3
+ in TmV04. 

ERS transitions zz XY xz ZY 

(cm-1) polarized polarized polarized polarized 

30 0 0 .3( 1 + 3.56 t)2 .3(1-3.56 t)2 

115 0 0 .16(1-3.7 t)2 .16(1-3.7 t)2 

146 2 2(.078+3.2 r) 0 0 

150 0 0 (1 + 1.05 t)2 (1-1.05 t)2 

186 0 0 .65(1-1.3 ti .65( 1 + 1.3 t)2 

221 0 0 .41 ( 1-.45t)2 .41 (1 +.45t)2 

306 0 0 .24(1 + .43t)2 .24(1-.43t)2 

341 .488 1.8xi0-3(1.4+r) 0 0 

367 0 0 0 0 

4.4.3 Tm V04 - Experimental Raman Spectra 

Table 4.30 displays the observed phonon modes in Tm V04 at room temperature 

and at 4.2 K. Phonon modes in TmV04 have been previously studied by Harley et al 

[15], whose reported phonon energies at 77 K are listed in the second row of table 4.30. 

Most of our assignments agree with Harley et al, except the phonon modes at 252, 260, 

and 265 cm·1
• We have assigned E/, B1/, and B2/ to the phonon modes at 252, 260, 

and 265 cm·1
, according to their polarization behavior described in equations (3.2). The 

phonon intensities at 252 and 260 cm·1 were found to be strongest in the XZ (or ZY) 

and XY scans, respectively, when the beam is parallel with the crystallographic X axis 

of the crystal. When the crystallographic X axis is rotated at 45 degree with respect to 
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the incident beam, a phonon mode appears at 265 cm·1 with intensities strongest in the 

XY scans. Harley et al, however, reported a Eg3 mode at 260 cm·1
, a B1/ mode at 269 

cm·1
, and a B2g 

1 mode at 262 cm·1
• The discrepancies may be the result of the ignorance 

of a 45 degree transformation of the scattering tensors in the work of Harley et al. Fig 4-

23 and 4.24 show the unpolarized phonon and Raman spectra, respectively, of TmV04, 

with excitation lines at 514 nm and 488 nm. The phonon spectra were taken at room 

temperature and the Raman (Doth phonon and ERS) spectra were taken at 4K. Fig 4-25 

shows the low temperature Raman -spectra·of TmV04 between240 and 280 cm·1
, with 

the excitation lines at 497 and 488 nm, and with the crystal's crystallographic XY plane 

being rotated at 45 degree about the Z axis. 

Table 4.30. Frequencies (cm-1
) and symmetries of the Raman-acti~e phonons in TmV04 

at 297, 77, and 4.2 K. _ 

B 2 Tem.(K) El B1g
1 E2 E3 B2g

1 
Algi E4 B18

3 
B1g

4 Es 2 
g g g lg g g A18 

297" 106 117 157 253. 261 265 381 a 490 826 841 897 

771 102 119 157 260 269 262 385 a 493 823 843 899 

4.2. 100 119 159 253 260 265 386 a 491 823 844 900 

a: not observed 

(*) This work 

(t) Reference [ 15] 

the crystal field splitting for the 3H6 ground multiplet and 1G4 multiplet of Tm3
+ 

in TmV04 are shown in fig 4-26. Four electronic lines were observed at 119, 150, 183, 

and 881 cm·1
, two of which were identified as ERS transitions orginating in the 3H6 
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ground multiplet of Tm3
+ in TmV04 . The lines at 119 cm·1 and 150 cm·1

, which were 

predicted to be at 115 and 150 cm"1' were assigned to the rs- r3 and rs-rl transitions, 

respectively. The ERS transition at 119 cm·1
, with linewidth approximately 2 cm·l, is 

superposed on a weak B1g
1 phonon line, which resulted in non-zero intensities in XY, 

XZ, ZY scans. The polarized spectra of this transition at 4K is shown in fig 4-27. The 

ERS transition at 150 cm·1 has a larger linewidth of approximately 5 cm·1 and has 

nonzero intensities in XZ and ZY scans. Its polarized spectra at 4K is shown in fig 4-28. 

The electronic line at 183 cm·1 has strongest intensities in XY scans and zero intensities 

in ZZ, XZ, and ZY scans. Note that there is no phonon B 1g mode at this frequency, and 

the r 5-f1 transition predicted by the crystal field fit at 189 cm·1 would have zero 

intensities in XY scans! we conclude this observed ERS transition at 183 cm·1 might be 

due to an unknown impurity other than Tm3
+. The same conclusion· is applied to the 

electronic line at 881 cm·1
, whose intensities are strongest in XZ and ZY scans. These 

two electronic lines, however, did not fit to any known ERS transitions of RE3
+ in rare 

earth vanadates or phosphates reported to date. We therefore could not confirm the 

impurity origin of the lines at 183 and 881 cm·1
• 

Polarization dependence measurements were performed for the E/ phonon line 

at 155 cm·1 and the ERS line at 150 cm·1
• The phonon polarization dependence data 

were used to calibrate the ERS data at 150 cm·1
• The respective observed and predicted 

polarization dependence curves of these Raman lines at 155 and 150 cm·1 are shown in 

figures 4-29 and 4-30. The phonon predicted curves are described in equation 3.3. The 

r 5-r1 transition at 150 cm"1 has the predicted curves described in equation 4.2, with 
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I a.~ F2 .993 
a(l50cm· )=-1 =.993-=-, 

a.l F; 't 
(4.7) 

Due to the slight overlap between the E/ mode at 155 cm·1 and the ERS 

transition at 150 cm·1
, the intensity measurements of both of these Raman lines were 

very difficult. To obtain consistent fitted intensities, we kept the linewidths of the ERS 

transition fixed at 4.8 cm·1 and the phonon transition fixed at 10.0 cm·1
, with both being 

Gaussians fitted. The maximum error in these intensity fits were about 30 percent. The 

values of a extracted from the polarization dependence fit were 13.9 and .072, and the 

corresponding fitted values oft were .0715 and 14.18. 

Observed relative ERS intensities in the ground multiplets of TmV04 can be 
\ 

compared with prediction. Table 4.31 compares the observed and predicted intensities 

of ERS transitions in the ground multiplet of TmV04 relative to the ZY-polarized 

intensity of the transition at 150 cm·1 for the case "t = .072. Only approximately three 
I 
' ' 

fourths of the transition intensities were accurately accounted for. 

Finally we determine the third-order spin-orbit contribution for the transitions in 

the ground 3H6 multiplet of Tm3
+ in Tm V04. The relative magnitude of third-order 

spin-orbit to second-order contributions for the transition at 150 cm·1 given in table 4.32 

is less 0.1. As expected, inclusion of the third order spin-orbit interaction in the total 

ERS intensity only results in marginal agreement with the intensity obtained from the 

fit. The magnitude of (at) in TmV04 calculated from the third-order spin-orbit 

contribution relative to that calculated from the second-order theory are given by 
/ 
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I 

and 

<3H611 (a) i'dii3H6 > 

<3H611 (al )2ndii3H6 > 0.03 

for all transitions in the 3H6 ground multiplet ofTm+3 in TmV04. 

Table 4.31: Comparison between predicted and observed relative linestrengths of ERS 

transitions in the 3H6 ground multiplet of Tm3
+ in Tm V04 for the case 't =; .072. 

ERS transitions 

(cm-1) 

Thry: Exp. 

30 -

115 119 

146 -

150 150 

186 -

221 -

306 -

341 -

367 -

(-)Not observed 

(u) Unknown 

ZZ -polarized 

Cal. Obs. 

0 -
0 -

2 -
0 .25 

0 -

0 -

0 -
.5 -
0 -

(*) From the crystal field fit 

XY -polarized 

Cal. Obs. 

0 -
0 u 

.18 -

0 -
0 -
0 -

0 -
.002 -

0 -

209 

XZ-polarized . zy -polarized 

Cal. Obs. Cal. Obs. 

- -

I .09 ! .08 .25 .3 

0 - 0 -

1.15 1.1 .85 .85 

.5 - .78 -

.38 - .44 -

.25 - .23 -

.008 - .011 -
0 - 0 -



Table 4.32: Comparison of the relative magnitudes of (~1) obtained from calculation 

using the second-order theory, third-order spin-orbit, and from the fit for the transition 

at 150 cm-1 in Tm V04. 

Transition Second Total Fitted 

(150 cm-1) ( ,, 4 3.8 14 al 
a:; 

\ 

" 
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Fig. 4-23: Unpolarized phonon spectra ofTmV04 at 293 K, with the laser 

excitation at 514 nm and 488 nm. 

211 



160000 

- 120000 
:::> 
< - 80000 
>. .:=: 
en 
c: 
Q) 40000 -c: -

0 

"""':' 40000 
:::> 
<( ->. -·u; 20000 
c: 
Q) -c: 

0 

r, 
r 

3 E 2 
1 g 

e,g 

0 200 

0 200 

514 nm 
~5 ~g2 

s,g2 

~3 

A,g, 
B,g4 

B,g3 
(e) 

400 600 800 1000 
" 

488 nm 

(e) 

400 600 800 1000 
Energy (cm-1) 
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whose origins and symmetries are unknown. 

212 

\ 



Fig. 4-25: Unpolarized Raman spectra ofTmV04 at 4.2 K, with laser 

excitation at 497 nm and 488 nm. The crystal XY plane was rotated at 45 

degree about the Z-axis. 
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Fig.~ 4-29: Polarization dependent phonon spectra of the Eg2 at 155 cm-1 of 

Tm V04 at 4.2 K. Solid lines represent the fitted curves using equations 
I ' 

3.3; crosses represent the experimental data. 
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Fig. 4-30: Polarization dependent ERS_spectra of the 150 cm-1 transition of 
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+ in TmV04 at 4.2 K. Solid lines represent the fitted curves using 

equations 4.2; crosses represent the experimental data. 
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4.5 Summary 

We have reported polarization dependent ERS measurements for the ground 

multiplets of Pr3
+, Nd3

+, Er3
+, and Tm3

+ in vanadate crystals. The agreement between 

relative intensities obtained from prediction by the second-order theory and from 

observation was excellent in the case of PrV04 and NdV04 and only marginal in the 

case of ErV04 and TmV04. The third-order spin-orbit contributions were found to be 

approximately a magnitude order less than the second-order contributions in all cases 

and therefore did not affect the general results obtained from the second-order 

calculations. The best fitted value of 't for PrV04, NdV04, ErV04, and TmV04 were 

1.0, 0.48, 1.0, and 0.07, respectively. These values of 't were in· contrast with the 

considerably small fitted values for 'tin Er3+: YP04 and Tm3+: YP04 reported by Becker 

et al [6,7]. The near unity values of 't in the case of Pr3
+, Nd3

+, and Er3
+ in vanadate 

crystals have confirmed the validity of the Axe's theory taking into account only the d

configuration in accounting for the ERS intensities. 

In all four cases the use of the polarization dependence technique has proved to 

be important in determining the symmetries and origins of the ERS spectral lines. The 

polarization dependence theory developed in chapter two has been extremely accurate in 

predicting the intensities of one of the ERS transitions in PrV04, whose linestrengh is 

sufficiently strong for accurate intensity measurements. The factor of two difference 

between the observed value of 't and the value of 't predicted by theory was probably due 

to the lack of accurate wavefunctions of the ground multiplet of PrV04, as we observed 
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that the only crystal field fits reported to date came from only a few lines of the ground 

multiplet and that there has been no reported spectroscopic work on higher multiplets of 

PrV04. As for NdV04, the highly accurate and complete crystal field fit reported by 

Tanner and Edelstein [ 1 0] has probably been responsible for excellent agreement 

between theory and experiment on the value of 't. Poorer agreements in the case of 

ErV04 and TmV04 were partially due to difficulties in intensity measurements, which 

arised from either interference of neighboring Raman lines or the Rayleigh excitation 

line. 

We conclude that Axe's theory was sufficient to account for a majority of ERS 

intensities in our experimental studies on rare-earth doped vanadate crystals. Further 

work should be done on host materials doped with rare earth ions of different site 

symmetries than D2d. Polarization dependence should always be done whenever 

possible, as the technique has shown to be superior than the currently used polarization 

technique in ERS experiments, in which only ZZ, XZ, ZY, and XY scans were 

performed. If the wavefunctions of the transitions considered are known, relative 

intensities can be obtained using the procedures mentioned in chapter two and three. 

When only the symmetries of the transitions were known, general polarization 

dependence functions can be obtained from table 2.1. The experimental procedure 

described in chapter three should be used as a guideline in polarized Raman scattering 

experiments. In our Raman set up we have tried to eliminate all the interfering factors 

that might possibly alter the intensities of the incident and scattered light. For example, 

by putting the polarization scrambler in front of the Dove prism to depolarize the 
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scattered light, we have avoided the polarization dependent response of both the Dove 

prism and the spectrometer. Previous polarized Raman scattering experiments reported 

have overlooked the device-polarization dependent effects and might have been the 
J 

source of disagreement between theory and observation. 
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ChapterS 

Polarization Dependence of Two-Photon Absorption 

Transition Intensities in Eu3+:LuP04 and Cm3+:LuP04• 

; 

The main motivation for studying the polarization dependent behavior of TP A 

transitions in Eu3+:LuP04 and Cm3+:LuP04 is to investigate the role of OiJ 0 contributing 

to the TP A intensities. TP A was observed to the 50 0 and 50 2 levels of Eu3+ and to the 

60712levels at 16800 cm-1
, 

6P512 levels, and the 60112 levels at 27900 cm-1 of Cm3+. The 

second-order contributions to the TP A intensities were found to be relatively small for 

these levels in Eu3+ and Cm3+. As a result, the corresponding non-zero 0/.)
0 terms 

calculated in the third-order are expected to give at least a comparable if not dominant 

contribution compared to the second order terms. Polarization dependent behavior of 

the transitions for which OiJ 0 is nonzero is also expected to drastically change by 

inclusion of the third-order interaction. 

5.1 Introduction 

Traditionally, polarization dependent TP A spectra have been analyzed using 

Bader and Gold's formulae derived from group theoretical methods in the frame work 

of the second order perturbation theory [1]. The main disadvantage of Bader and Gold's 

polarization dependence functions, however, is the presence of a number of 

phenomenological parameters, which often weakens the predictive capability of the 
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theory. Other polarization dependence formalisms have been developed by Makhanek et 

al [2,3] and by Kibler, Gacon, and coworkers [4-7]. Makhanek et al's theory has been 

developed within the second-order theory framework and could not be extended to 

include higher order interactions. Kibler et al theory, apparently due to its complexity, 

has been applied to only a few rare earth systems. Applying Judd-Ofelt-Axe's 

approximation [8-10], the Kibler-Gacon's second order results can be expressed in 

terms of only one parameter, which can be further estimated when proper 

approximations are made. Their third order analysis [6], however, is based exclusively 

on a few phenomenological constants, similar to those given in the Bader and Gold 

theory. 

Recently Gacon et al reported experimental results in which Bader and Gold's 

theory has failed to predict the polarization dependence behavior of the reported TP A 

transitions. Gacon et al found that several of the TPA transitions in Eu(OHh and 

Eu3+:LuP04 have a constant background which is non zero for all polarization angles 8 

between the three-fold c axis and the beam polarization direction [11,12]. By fitting the 

experimental curves with the polarization dependence functions coming from a 

phenomenological model with a constant being added, agreement with theory was 

restored. The origin of the constant, which appeared to be an arbitrary complex number 

in the expression of the scattering amplitude, has never been explained in their papers. 

Prompted by Gacon et al' s observation we have investigated several TP A 

transitions in Eu3+:LuP04 and Cm3+:LuP04. The observed data were interestingly 

similar to what have been observed by Gacon et al. For those transitions for which 
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second-order contributions are significantly small, a constant background was observed. 

In addition the Cm3
+ data have shown curious isotropic polarization·dependent behavior 

in nearly all of the observed transitions. Both the origin of the constant background 

observed in Eu3+ and Cm3+ and the lack of anisotropy observed in Cm3+ will be 

explained in this chapter as the theory of the two-photon scattering amplitude developed 

in the time-dependent perturbation framework is reexamined. The few transitions which 

display neither the nonzero background nor isotropy have their polarization dependent 

behavior and relative intensities which can be explained by the second-order theory of 

Axe. It is interesting to note that the lowest among the TP A transitions to the 5D2 

multiplet of Eu3•:LuP04 was predicted to have zero intensity when the crystal plane is 

oriented at 0° or 90° with respect to the incident excitation beam but have nonzero 

intensity when the crystal is rotated at other angles with respect to the beam direction 

about the z-axis. This was observed exactly as predicted. When the crystal was rotated 

at 45° with respect to the incident beam, a strong line appeared with energy, polarization 

behavior and relative transition intensities with other transitions agreeing with 

prediction. The transition disappeared when the crystal plane was perpendicular with the 

incident beam. 

5.2 TPA Spectroscopy of Eu3+ in LuP04 

5.2.1 Eu3
+- Selection Rules 

The open shell configuration of Eu3
+ is 4f. The host lattice LuP04 has the 

tetragonal zircon-type structure with space group D4h19
• The site symmetry of Eu3

+ in 

226 



LuP04 is D2d. The electronic states of Eu3
+ are labeled by the irreducible representations 

The ground state of Eu3
+ is 7F0, which has the symmetry r 1• The selection rules 

and Raman activity for the TPA transitions originating in the ground state are described 

in table 5.1. Emission and absorption spectra of Eu3
+ in YP04 have been reported by 

Brecher et al. [13]. The crystal field wavefunctions for Eu3
+ in LuP04 are provided by 

Piehler and Kim [ 14]. 

Table 5.1: Selection rules and Raman activity of TPA transitions originating from the 

ground state of Eu3
+ in LuP04 

Transition TP A scattering tensor symmetry Raman activity O.q
1 

r1-r1 r1 CJ.o 0 ,CJ.o 2 

r1-r2 r2 none 

r1-r3 r3 
2 2 CJ.2 ,0..2 

rl-r4 r4 2 2 CJ.2 ,a...2 

rl-r5x rsx a./ 
r~-rsy rsy a.../ 

5.2.2 Polarization Dependence Functions 

The polarization dependence functions corresponding to the_ TPA 7Fo-5DJ 

transitions are listed in table 5.2. 

The wavefunctions for the states of the 7Fo and 5DJ multiplets of Eu3
+ in LuP04 

are listed in table 5.3. These wavefunctions were obtained from a crystal field fit using 

the crystal field parameters provided by' Piehler et al [14]. The nonzero values of~~ 
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calculated in the second-order and the corresponding polarization dependence functions 

for the 7F0-
5DJ transitions are listed in table 5.4. Taking into account only the d-

configuration and using Ed=lOO,OOO cm·1
, 'd=1330 cm·1 

, the second- and spin-orbit 

third-order contributions for the 7F0-
5DJ transitions are shown in table 5.5. The 

predicted values of TPA transition intensities are provided in tables 5.6 and 5.7 for the 

case e = 0°, 45°, 90° when cp = 45° and cp :t 45°, respectively. 

Table 5.2: Polarization dependence curves for the TPA 7F0 -
5DJ transitions of Eu3

+ in 

Transition Polarization dependence functions 

r1-r1 1 0 3cos 
2 a -1 2 ]2 [- J3 O.o + ( J6 )a.o 

r1-r2 0 

r1-r3 (1/4)(cxl +a})2 sin49 cos22cp 

rl-r4 (1/4)(cx22 -a.l)2 sin49 sin22cp 

rl-r5x (l/4)(cxJ2i sin229 

I 
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Table 5.3: Wavefunctions for the 7F0 and 5D1 multiplets of Eu3
+ in LuP04. 

Multiplet Calculated Symmetry Wavefunction La(} ,Jz) 25
+

1L1 (Jz) ~ 

J.J, 

Energy (cm"1
) 

'Fo 0 r1 ·.963 7F0 (0) +.188 s01 0 (0)-.167 s03o (0) 

+ .039 7F2 (0) ·.006 s01 2 (0)+.005 s032 (0) 

soo 17181 r1 .244 7Fo (0) +.55 sOlo (0) ·.672 s03o (0) 

sol 18940 rs .216 7FI (1) +.576 501 I (1) ·.71 5031 (1) 

18959 r2 .216 7F1 (0) +.577 s01 1 (0) -.71 s031 (0) 

so2 21403 r3 .119 7F2 (-2) +.422 s01 2 (·2) ·.518 s032 (·2) 

+ .119 7F2 (2) +.422 5Dl2 (2) ·.518 5032 (2) 

21423 rs .168 7F2 (1) +.597 sOl2 (1) -.734 s032 (1) 

21440 r1 ·.168 7F2 (0) ·.597 s01 2 (0) +.734-s032 (0) 

21450 r4 -.119 7F2 (·2) -.422 s01 2 (·2) +.518 s032 (-2) 

+ .119 7F2 (2) +.422 s01 2 (2) -.518 s032 (2) 

Table 5.4. Polarization dependencies of TPA intensities for the 7F0 -
5D1 transitions of 

Eu3
+ in LuP04 (second order contributions). 

Transitions (cm·1f Non-zero a.q t Polarization Dependencies la21 12 

7
Fo· 5Do 0-17181 a(l= -.0016 F2 4.3x10·7 Fl (3cos29·1i 

7Fo· 5D1 0-18940 none 0 

0-18959 none 0 

7
Fo·

5
D2 0-21403 al= a./=.0188 F2 3.5x10-4 Fl sin49 cos22<p 

0-21423 a 1
2=-.0266 F2 3.53x10-4 Fl sin229 

0-21440 ao2=-.0266 F2 1.18x 10-4 F2 
2 (3cos29-1 )2 

0-21450 al= - a.l=.O 188 F2 3.5x10-4 F/ sin49 sin22<p 

(*)Energies calculated from the crystal field fit. 
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Table 5:5. Polarization dependencies of TPA intensities for the 7F0-
5D1 transitions of 

Eu3
+ in LuP04 (second and third order contributions). 

Transitions (cm·1f Non-zero~~ X w·7 Polarization Dependencies la2ixi0-14 

7Fo-~Do 0-17181 a,}= -.11, C1.()
0= 6.0 2.0x10"2 (24.4+cos28i 

7Fo- 5DJ 0-18940 none 0 

0-18959 none 0 

7Fo- 5D2 0-21403 al= a.i= 1.3 1.8 sin48 cos22<p 

0-21423 Cl)
2=-1.9 1.81 sin228 

0-21440 C1.()2= -1.9, a.oo= .2 .44 (3.5cos28-1)2 

0-21450 2 2 3 (l2 =- (l_2 =1. 1.8 sin48 sin22<p 

(*)Energies calculated from the crystal field fit. 

Table 5.6: Predicted values of relative TPA intensities for the 7F0-
5D1 transitions of 

Eu3
+ in LuP04 for the case <p=45° 

TPA transitions 8=0° 8=45° 8 = 90° 

(cm-1)* Second Total Second Total Second Total 

order (2nd+3nd) order (2nd+3nd) order (2nd+3nd) 

7
Fo- 5Do 

0-17181 w-2 7.2 0 6.9 w-3 6.6 

7
Fo- 5D1 

0-18940 0 0 0 0 0 0 

0-18959 0 0 0 0 0 0 

7
Fo- 5D2 

0-21403 0 0 0 0 0 0 

0-21423 0 0 1.0 1.0 0 0 

0-21440 1.3 1.5 .08 .14 .33 .24 

0-21450 0 0 .25 .25 1.0 1 

(*) Energies calculated from the crystal field fit. 
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Table 5.7: Predicted values of relative TPA intensities for the 7F0-
5D1 transitions of 

Eu3
+ in LuP04 for the case n = cos22<p ::t 0° (n =1 when <p = 0°) 

TP A transitions e=0° e=45° e=90° 

(cm·1t Second Total Second Total Second Total 

order (2"d+3"d) order (2"d+3"d) order (2"d+3"d) 

7Fo- :!Do 

0-17181 w-2 7.2 0 6.9 w-3 6.6 

'Fo- 'P1 

0-18940 0 0 0 0 0 0 

0-18959. 0 0 0 0 0 0 

7Fo- 'D2 

0-21403 0 0 n/4 n/4 n n 

0-21423 0 0 1.0 1.0 0 0 

0-21440 0 1.5 0 .14 0 .24 

0-21450 0 0 (1-n)/4 (1-n)/4 1-n 1-n 

(*)Energies calculated from the crystal field fit. 

5.2.3 Eu3
+ in LuP04 - Experimental TPA Sp'ectra 

The set up for TP A experiments was described in chapter three. For the case <p = 

45° , the wavevector of the incident photon, ki, is perpendicular to the crystallographic 

XY plane of the crystal, and its polarization vector, ei, varies in the ZX plane (see figure 

3.1 for the definition of X,Y, and Z directions with respect to the c axis of the crystal). 

When the crystal's largest surface is perpendicular to the incident wavevector (<p = 45°), 

TPA was observed to the 50 0 level at 17186 cm·1
, which was assigned to the r1. and to 

the 5D2 levels at 21412,21422, and 21458 cm·1
, which were assigned to the r 5, r1 and 

r 4, respectively. The TPA transition to the lowest level of the 50 2 multiplet which was 
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absent in the TPA spectra for the case <p = 45° was observed as predicted at 21371 cm·1 

when the crystal is rotated about the c axis at 45° from the original position described 

above. We thus assigned this level to the r3 symmetry. Taking into account the indices 

of refraction of the phosphate crystals [15], this latter configuration is equivalent with a 

' 

rotation about the c axis with a rotation angle :: 22° ( <p = 23°). The polarized spectra of 

the TPA transition to 50 1 for the case <p = 45° and 23° are shown in figures 5.1 and 5.2. 

Figure 5.3 shows the experimental polarization dependence curves for the TPA 

transitions to the 50 0 and 50 1 multiplets, which were plotted in the same graph as the 

predicted curves whose polarization functions calculated in the second and third order 

were listed in table 5.5. The values of the experimental intensities were not calibrated 

with respect to the curves of the laser dyes being used. 
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Fig. 5.1: Polarized spectra of the TPA transitions to the 5D2 multiplet at 4.2 
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Fig 5.2: ·Polarized spectra of the TPA transitions to the 50 2 multiplet at 4.2 
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Fig. 5-3: Experimental (crosses) and predicted (solid line) polarization 

7F0 - 50 2(1) (21371 cm-1
), (c) 7Fo- 502(2) (2l412 cm-1

), (d) 7F0 -
502(3) 

(21422 cm-1
), and (e) 7F0 -

502(4) (21458 cm-1
). 

235 



For the TPA transitions to the f3, f5 and f 4 levels of the 50 2 multiplet, which 

correspond to the 7F0 -
50 2( 1 ,2,4) transitions, respectively, the experimental 

polarization dependence curves agreed well with prediction from second order theory. 

This relatively good agreement between theory and experiment deserves further 

' 
attention. As explained in chapter two, the polarization dependencies listed in table 5.2, 

which were derived from a Raman scattering mechanism, could also be derived using 

the Bader and Gold theory [1]. As discussed in chapter two, the two methods are 

equivalent. In the case of the Bader and Gold theory, their polarization dependence 

formulae were derived using the group theoretical method. The derivation leading to the 

formulae given in table 5.2 was obtained using the properties of the second-rank 

irreducible scattering tensors and group theory. The relative intensities among various 

transitions, which were not given in Bader and Gold theory, were obtained using the 

second-order Axe theory. For these transitions second-order contribution should be 

sufficient, since the third-order spin-orbit contribution was found to be at least two 

magnitude order smaller than the second-order contribution. Tables 5.8 and 5.9 compare 

the theoretical and experimental values for the relative intensities corresponding to 

these levels for the case cp = 45° and cp = 23° and 35°, respectively. Agreement with 

theoretical values was marginal for the observed relative intensities. A factor of three 

difference between theory and observation was found for the for the case cp = 45°, and 

an order magnitude difference between theory and observation was found for the rl- r4 

transition for the case cp = 23°. For the f 1 - f5 transition, the difference between theory 

and observation can be traced back to the ratio [cxJ 2(rs)/cxl(r3 or r4)f This ratio in 
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turn depends on the coefficients of the initial and final eigenfunctions. With more 

accurate fits for the crystal wavefunctions of Eu3
+ in LuP04, a smaller gap between 

theory and observation may be obtained for this transition. For the r 1- r 4 transition, the 

gap between prediction and observation comes mainly from the factor cos2 cp. A fit to 

the observed intensities with cos2 cp being treated as a fitting parameter shows much 

better agreement would be found if cp = 35° (table 5.9). 

Serious discrepancies between theory and observation were found for the TP A 

transitions to the r1 levels of the 5D0 and 5D2 multiplets. For these transitions second

order contributions were found to be relatively small, being comparable to or smaller 

than the third-order spin-orbit contributions. For the r 1 transition of the 5D0 multiplet, 

the predicted intensities incorporating the second- and third-order spin-orbit 

contribution vanish twice when e changes from 0 to 180 degree. The observed 

intensities, however, are nonzero for all values of e. For the r1 transition of the 5D2 

multiplet, both the predicted and experimental intensities are nonzero for all values of e. 

The theoretical curvature nevertheless was significantly different from the observed. It 

is obvious that even inclusion of the comparatively large third-order spin-orbit effect 

was not sufficient to account for both the relative intensities and the observed nonzero 

background in the TPA polarization dependencies. Good agreement with observation, 

however, was restored if the expression of the matrix elements of the scattering tensors 

described in chapter two contained both real and complex values. Figure 5.4 shows the 

fitted curves for these transitions using the revised formula (A+Bcos2e)2
, where A is 

complex , and B is real. The imaginary part of A turned out to account for the 
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approximately constant background observed, since 

(Re(A)+Im(A)+Bcos29)2=(Re(A)+Bcos29)2 +[lm(A)f, where [lm(A)f is the non-zero 

background. 

Table 5.8: Comparison of predicted and observed values of relative TPA intensities for 

the 7Fo - 502( 1 ,2,4) transitions of Eu3
+ in LuP04 for the case cp::45°. 

TP A transitions 9=0° 9=45° 9=90° 

(cm'1)* Cal. Obs. Cal. Obs. Cal. Obs. 

(2"d+3"d) (2"d+3"d) (2"d+3"d) 

7Fo- =>o2 0-21371 0 0 0 0 0 0 

. 0-21412 0 0 1.0 .3 0 0 

0-21458 0 0 .25 .28 1.0 1.0 

(*)Observed energies 

Table 5.9: Comparison <?f predicted and observed values of relative TPA intensities for 

the 7F0-
50 2( 1 ,2,4) transitions of Eu3

+ in LuP04 for the case q> = 23° and 35°. 

TP A transitions 9=0° 9=45° 9=90° 

(cm·1)* · Cal. Obs. Cal. Obs. Cal. Obs. 

(2"d+3"d) (2"d+3"d) (2"d+3"d) 

7Fo- 502 ,(j) = 23° 

0-21371 0 0 .21 .4 .86 1.5 

0-21412 0 0 1.0 .22 0 0 

0-21458 0 0 .035 .23 .14 .75 

7Fo- 502 ,(j) = 35° 

0-21371 0 0 .17 .18 .67 .67 

0-21412 0 0 1.0 .1 0 0 

0-21458 0 0 .08 .1 .33 .33 

(*) Observed energies 
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The complex number A appearing in the TP A transition intensity expression has 

first been noticed by Gacon et al [6,11,12]. In their report a non-zero background was 

observed in the polarization dependence curves for TP A transitions to the r I level of the 

5Do multiplet of Sm3
+ in BaCIF [6] and of Eu3+ in LuP04 [11] and Eu(OH)J [12] and to 

the rs level of the 5D2 multiplet of Eu3
+ in Eu(OH)J [12]. Using a phenomenologi~al 

model, they expressed the TPA transition intensities which contained a complex 

parameter responsible for the non-zero constant background. The origin of the non-zero 

background, however, was not explained in their model, whose expression is equivalent 

to (Re(A)+Bcos29)2 +[lm(A)f, our fitted formula mentioned earlier. We will now offer 

a qualitative explanation for the existence of this non-zero background. 

Let lm(A) now denote the total imaginary contribution to the two-photon 

transition amplitude. We note that the two photon transition amplitude given in chapter 

two was obtained in the electric dipole approximation scheme. Expansion beyond the 

electric dipole approximation was discussed in chapter one. If we include the electric 

quadrupole in expression (1.48), the TPA amplitude expression will contain both the 

real and non-zero imaginary values. A similar case is found where only circular 

polarization is used, since the magnetic dipole term would differ the electric dipole term 

by a pure imaginary constant. We will illustrate the last two points by denoting by (E1) 

the electric dipole term in the matrix element Mab appearing in the second-order 

expression (1.45), i(E2) the electric quadrupole term, and i(M1) the magnetic dipole 

term for the case of circular polarization, where (E1), (E2), and (M1) are real. Including 

(El), (E2), and (Ml), the numerator in (1.45) will contain the terms (El)(El), 
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(Ml)(Ml), (E2)(E2), i(El)(E2), and i(El)(Ml). Only the last two terms (El)(E2) and 

(El)(Ml) would contribute to the lm(A) term discussed above. 

Another source contributing to lm(A) is the i(k 1 + k 2 )- < z1 Dl f > term in the 

flfSt-order two-photon transition amplitude expression given in (1.42). When the ground 

states i and f are mixed with states of configurations with parity opposite to that of the 

ground configuration, this term gives non-zero contribution to lm(A). Finally, under · 

resonant excitation, the factor irj appearing in the denominator of (1.45) may also 

contribute to lm(A). 

We now compare the magnitudes of the terms contributing to lm(A). For two-

photon transitions with non-resonant excitation, the term associated with rj would be 

negligible. As explained in chapter one, the i(k 1 + k 2 )· < z1 Dl f > term is smaller than 

the second-order electric-dipole term by a factor of 1 o-s and can also be neglected. We 

are left with the terms (El)(Ml) and (E1)(E2). There are several pathways through two-

photon transitions via (El)(M1) and (El)(E2). Consider, for example, the expressions 

I< 4flml5d >< 5diD14f >, I< 4JIDI5d >< 5dlml4f >, 
Sd fz( (J) df - (J)) Sd fz( (J) df - (J)) 

""'< 4jlml4f >< 4jiDI4j > ""'< 4JID14j >< 4jlml4f > "-" _..::.___-=------=---=---, and "-" • 
4f li( (J) ff - (J)) 4f li( (J) ff - (J)) 

(5.1) 

Comparing each term of (5.1) with the second order electric dipole expression 

I< 4JIDI5d >< 5diDI4f > 
Sd fz( (J) df - (J)) 

(5.2) 
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it is easy to see that the first two terms of (5.1) are negligible, since <4flml5d> is smaller 

than <4flmf4f> by a factor of 10·3, which in tum is smaller than <4flDI5d> by a factor of 

10"2
• The last two terms of (5.1) are much larger than the first two. The denominators 

of the last two terms of ( 5.1) can be of the order of a few hundred wavenumbers, which 

is smaller than the denominator of (5.2) by a factor of 10·3, and their numerators are 

smaller than the numerator of (5.2) by a factor of w-5
• Their magnitude could be 

approximately two order of magnitudes smaller than the second-order electric dipole 

term. When the denominators of these terms are sufficiently small, their total magnitude 

could be comparable to the second-order electric dipole term, if the latter is sufficiently 

small. 

Having established the (E2)(El) and (M2)(Ml) terms as the dominant 

contributions to lm(A) we can rewrite the scattering amplitude for TPA from the same 

source (see, for example, equations (2.2) and (1.48)) as follows: 

(5.3) 

where the first, second, and last terms correspond to the (E1)(E1), (E2)(El), and 

(Ml)(E1) contributions, respectively. The polarization dependent TPA expression for 

the scattering amplitude is given by (see equation 2.24) 

CX 21 =f ! /..~ex~!) +cx(E2)+cx(Ml), (5.4) 
t=O q=-1 
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where the second and third terms in (5.4) represent the polarization dependence form of 

the second and third terms in (5.3). In our TPA experiments on Eu3+:LuP04, the 

dominant contribution to lm(A) comes from the. second term of (5.3). When the 

magnitude of this term is small compared to the (El)(El) term in (5.3), the former can 

be approximately independent of the polarization angles 9 and cp. The matrix element of 

the TPA scattering amplitude between states of the 4f configuration becomes (compare, 

for example, with 3 .26) 

(5.5) 

where A is a real constant corresponding to the matrix element of the n(E2) term in 

(5.4). For a r 1 - r 1 transition the squared TPA amplitude is written 

(5.6) 

or 

(5.7) 

where B,C, and A are real constants, with Band C corresponding to the matrix elements 

of the first and second terms on the right hand side of (5.6). As previously mentioned, 

the iA term in (5.7) might be responsible for the nonzero background observed in the r1 

-r 1 TPA transitions ofEu3+ in LuP04. 

5.2.4 Conclusion 
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We have shown that when the second-order electronic-dipole contribution is 

sufficiently small, the relative contributions from the imagninary terms to the electronic 

dipole term may become significant. Among these imaginary terms, (E2)(El) and 

(Ml)(El) have shown to be the dominant terms for the case of linear and circular 

polarizations, respectively. It should be noted that each of these imaginary terms have 

their own polarization dependencies which may not be the same as those given in table 

2.1. When their relative magnitudes. to the (El)(El) term are small, their total 

contribution may be approximated by a constant Im(A) added to the regular polarization 

dependence expressions for the (El)(El) term. Explicit evaluation of Im(A) for the case 

of Eu3
+ in ·LuP04, however, was not performed, due to the difficulty in determining the 

values of the matrix elements <4flDI4f> for Eu3
+ with the 4f states being mixed with the 

5d states via the odd-rank tensor of the crystal field Hamiltonian. 

There are not many reports in the literature on the (MlEl) and (E2El) terms 

contributing to TP A linestrengths in crystals doped with rare-earth ions. The studies of 

the contributions of the (MIE1) term to TPA linestrengths of rare-earth doped crystals 

to our best knowledge have been limited to the area known as two-photon circular 

dichroism [16-20]. One-photon circular dichroism [21,22] has been known for years, 

but observation of two-photon circular dichroic linestrengths of rare-earth compounds 

were reported only recently [20, 23]. The (E2El) term may be responsible for the phase

shifted quadrupole second-harmonic contribution recently observed in Si(OOl) metal

oxide-semiconductor structures [24, 25]. Through our analysis above we have 

demonstrated for the first time that the (E2El) term may be the main factor contributing 
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to the nonzero background observed in the polarization dependent TP A spectra of Eu3
+ 

in LuP04. 

5.3 TPA Spectroscopy of Cm3
+ in LuP04 

In this section we will present the polarization dependent TP A intensity 

measurements of Cm3
+ in LuP04. Compared with Eu3

+, Cm3
+ is a more ideal ion for 

studying the role of ~"s for several reasons. Firstly, due to the more spatial extension 

of the 5f wavefunctions into its crystalline environment compared to its 4f counterparts, 

the magnitude of the spin-orbit effect is larger for Cm3
+ than for rare-earth ions. The 

third-order spin-orbit contribution is therefore expected to be more significant for Cm3
+ 

than for rare-earth ions. Secondly, the second-order TP A contribution in Cm3
+ is 

relatively small due to the vanishing value of the leading term <f7 8SIIU(2)11f7 25
+

1L1> in 

the expression of the TPA transition intensities originating from the ground 8S712 

multiplet. In fact this was the main reason why crystals doped with Gd3
+ has displayed 

anomalous TPA linestrengths not accounted by the second-order theory [26-29]. By 

inclusion of the relatively comparable third-order spin-orbit and crystal-field 

contributions, agreement was restored between calculation and observation. Until now 

attention has been paid only to integrated TPA linestrength calculations on Gd3
+, since 

the extremely small splitting of the 8S712 ground multiplet of Gd3
+ (only a fraction of a 

wavenumber) made accurate intensity measurements for TPA Stark-to-Stark level 

transitions o~nating from the ground manifold of Gd3
+ virtually impossible to obtain. 

The larger crystal field interaction of the 5f wavefunctions allowed access to 
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observation of the ground state splittings for Cm3
+ and hence measurements of Stark-to

Stark TPA linestrengths, which are essential for studying the role of aqt. In light of the 

discussion on the contributions from the imaginary terms in the TPA expressions in the 

previous .section, TP A measurements on Cm3
+ in LuP04 would provide important 

information for understanding the emerging role of these imaginary terms. 

5.3.1 Cm3
+- Selection Rules 

The trivalent Cm3
+ ion has an open shell configuration 5f7• The lanthanide 

analogue of Cm3
+, Gd3

+, has a 4f electronic structure. Because of the greater spatial 

extension of the 5f wavefunctions, the interaction of the 5f electrons of Cm3
+ with the 

environment is greater than that for Gd3
+. The free-ion spin-orbit coupling parameter for 

the 5f configuration of Cm3
+. is about twice the value for the 4f configuration of Gd3

+ or 

Eu3
+. The point group symmetry of Cm3

+ in LuP04 is D2d. The electronic states of Cm3
+ 

are labeled by the irreducible representations r 6 and r 7 of D2d· 

Due to the large intermediate coupling effects, the ground state of Cm3
+ is not 

pure 8S712 state, but it is admixed with other states with the same value of J, but with 

different values of Land S. The ground state of Cm3
+ in LuP04 is r 7. The selection 

rules and Raman activity for the TP A transitions originating in the ground state are 

described in table 5.10. EPR, emission and absorption measurements of Cm3
+ in LuP04 

have been reported by several research groups [30-32]. The crystal field wavefunctions 

for Cm3
+ in LuP04 are provided by Sytsma et al [32). 
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Table 5.10: Selection rules and Raman activity of TP A transitions orginating from the 

ground state of Cm3
+ in LuP04 

Transition Scattering tensor symmetry Raman activity Cl.q 1 

r,- r, r1+r2 a(/ ' a.(/ 
r,K- rl<*) r1+r2 CJ.i:Jo, CJ.i:J2 

r,K- r, rsx(**) 0.}2 

r,-r,K rsy a} 

r,- r6 r3+r4 2 2 
0.2 ' 0..2 

K. K 
r, - r6 r3+r4 2 2 0.2 , a.2 

r,K- r6 rsx 0.)2 

r,- rl rsy a} 

(*)rand rK represent the members of a Kramers doublet. 

5.3.2 Polarization Dependence Functions 

Polarization dependence functions for TPA transitions of Cm3
+ in LuP04 are 

shown in table 5.11. The angles e and cp were defined in chapter two where the 

expression for TP A intensities was given. The C1.i:J 
0 term is non-zero when third-order 

spin-orbit interaction is taken into account. Because of the non-zero value of the C1.i:J 
0 

term calculated in the third order, the polarization dependence curves for r,- r, 

transitions would look different when third-order spin-orbit effect is included. For TPA 

transitions between K.ramers doublet states, the polarization dependent TPA 

linestrengths would generally depend on two or more non-zero Clq1
• Table 5.12 lists the 

crystal-field wavefunctions of Cm3
+ in LuP04 for crystal-field levels of the 8S712 ground 

multiplet, 60 712 multiplet at 16800 cm·1, 6Pst2 multiplet, and 6D712 multiplet at 27900 
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cm·1
• For each Kramers level only one state of the Kramers doublet is listed; the other 

Kramers conjugate state can be obtained using expressions (D6) and (D7) of chapter 

two. To avoid a potential ambiguity in the labeling of the multiplets, ~712 will be used 

to denote the multiplet at 16800 cm·1
, while 60 712' (distinguished by a prime) will be 

used for the multiplet at 27900 cm·1
• The nomenclature 25+1L1(n) will be used to indicate 

the nih highest energy level in the multiplet 25
+

1L1• Using the crystal-field wavefunctions 

given in table 5.12, the polarization dependent TPA intensities can be expressed in 

terms of only one variable. The crystal field wavefunctions were obtained from a fit 

with 60 levels [32]. Due to the large intermediate coupling effect, a single eigenstate of 

Cm3
+ would be composed of a large number of 2S+Il; states, where J is the same but L 

and S may be different. Only 2S+Il; states with sufficiently large coefficients (one 

percent or above) were used in the calculations. Adding smaller terms only changed the 

values of the corresponding CJ.q1 by less than one percent. The non-zero values of Cl.q
1 

calculated up to thlrd order for various transitions in Cm3+:LuP04 are shown in table 

5.13. Their respective polarization dependencies are shown in table 5.14. Only 

transitions for which experimental data were obtained were listed in tables 5.13 and 

5.14. We have assumed only thee dependence, with <p taken to be 45°. For different 

configurations corresponding to different values of <p, table 5.11 can be used. 
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Table 5.11: Polarization dependence curves for TPA transitions originating m the 

ground state of Cm3+ in LuP04. 

Transition Polarization dependence curves 

r1- r1 · 2[ I 0 3cos
2
9-l)a2f sin

2
29 2 ) 2 

- ~a.o+( J6 o + 2 (a.l 

sin 2 29 sin 4 e . . 
(a2)2+--le-2"~>a2+e2'"'a2 12 

r1- r6 2 I 2 2 -2 

Table 5.12: Wavefunctions for various multiplets of Cm3
+ in LuP04. 

Calculated Symmetry Wavefunction La(J,Jz) 25
+

1L1 (Jz) 
J,J, 

Energy (cm' 1
) 

ss712 

0.0 r7 -.844 8S712(7/2) -.403 6p712(7/2)+.088 'n712(7/2) 

- .27 8S712 (-112) -. 136P712 (-112)+.028 60712 (-1/2) 

3.0 r6 .808 8S712 (5/2) +.386 6P712(5/2) -.084 'n712 (5/2) 

+ .363 8S712 (-3/2) +.1736p712 (-3/2) -.038 ~712 (-3/2) 

14.6 r1 -.27 85712(7/2) -.13 6P7d7/2)+.028 'n?/2(7/2) 

- .844 8S712 (-112) -.403 6p712 (-112)+.088 'n712 (-1/2) 

15.4 r6 .363 8S712 (5/2) +.173 6p712 (5/2) -.038 'n712 (5/2) 

+.808 8S712 (-3/2) +.386 6p712(-312) -.084 'n712 (-3/2) 

60712 

16526 r7 .233 85712(7/2) -.25 6p7!2(7/2)+.27 'n7!2(7/2) 

+.225 8S712 (-1/2) -.246p712 (-112)+.26 'n712 ( -1/2) 

16565 r6 .307 8S712 (5/2) -.33 6p712(5/2)+.354 60712 (5/2) 

+.104 8S712 (-3/2) -.113 6P712 (-3/2)+.12 'n712 (-3/2) 

16992 r1 .225 85712 (7/2) -.24 6p712 (7/2)+.26 'n712 (712) 

-.233 85712 ( -1/2) +.25 6p712( -1/2)-.27 'n712 ( -112) 

6P512 

19841 r6 .46 6ps!2(5/2) -.4 ~512 (5/2)+.16 ~512 (5/2)+.16 406512 (5/2) 

+.45 6P512 (-312)-.39 605!2(-3/2) +.16 ~s12 (-3/2) +.15 4065!2(-312) 
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~712. 

27869 r6 -.05 6p712(5/2) -.06 ~712 (5/2) +.05 ~712 (5/2) 

-.04 6G712 (5/2) -.04 406,12 (5/2) -.03 401 712 (5/2) 

+ .36 6p7n(-3/2)+.46 ~112 (-3/2) -.39 ~112 (-3/2) 

+.3 6G712 (-3/2) +.28 406,12 (-3/2) +.21 401712 (-3/2) 

27913 r, .19 6p712(7/2) +.24 ~712(7/2)- .2 ~712(7/2) 

+.155 6G712 (7/2) +.148 406712 (712) +.11 401712 (7/2) 

-.3 6p712(-I/2) -.39 ~712 (-1/2) +.32 ~712 ( -1/2) 

-.25 6G712 (-112) -.24 406712 (-1/2) -.18 401 712 (-1/2) 

27971 r6 -.36 6p712(5/2) -.46 ~112 (5/2) +.38 ~112 (512) 

-.3 6
G712 (5/2) -.29 406712 (5/2) -.21 401712 (5/2) 

-.056 6p712(-3/2) -.07 60712 (-3/2) +.058 ~112 (-3/2) 

-.046 6
G112 ( -3/2) -.044 406112 ( -3/2) -.03 401,12 ( -3/2) 

28023 r7 -.3 6p712(7/2) -.38 60712 (7/2) +.313 ~712 (7/2) 

-.25 6G712 (7/2) -.235 406712 (7/2) -.18 401712 (7/2) 

-.2.6P712(-1/2) -.254 ~712 (-1/2) +.21 ~712(-1/2) 

-.17 6G712 ( -1/2) -.16 406712 (- 1/2) -.12 401 712 (-1/2) 
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Table 5.13. Non-zero contributions of 0q (t)= <ilaq <t)lf> for the 8
S112 ..... 

6D712, 6
Ps12 

Transitions 

(cm-1) 

-s-S112- 001,2 

0- 16526 

0 - 16565 

0 - 16992 

3- 16526 

0-19841 

3- 19841 

0-27869 

0-27913 

3-27869 

3- 27913 

Second order aq' x 10·7 Second and third order Clq1 
X 10"7 

CXQ
2=1.36 

ai= -.226, o...l=-.989, a/= a.l= -.32, o...l=-1.4, a.1
2= 2.86 

2.01 CXQ2=3.0, CXQ0= 3.9 

CXQ
2= 2.086 

a.l= .655, o...l=1.666, a.I 2= 1.22 

a.l= .243,o...l=-1.27, 0.!
2= -.96 

CXQ2= 1.534, a./= -.568 

a.l= .559, 0..2
2=.968, 0.!

2= -.526 

CXQ
2=1.38 

CXQ
2=.393, 0.!

2= 1.59 

a.l= .637, a.}=.99, a.l 2= 1.21 
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a.l= .298, o...l=-1.55, 0.!
2= -1.18 

CXQ2= 1.88, a.I2= -.097 

a.l= .71, a.}=l.23, 0.!
2= -.67 

CXQ2=1.76, CXQ0= -1.54 

CXQ2=.5, CXQ0= 2.03, 0.1
2= 2.03 

a.l= .812, a..l=L264, a.1 2= 1.54 



Table 5.14: Polarization dependencies of TPA intensities for the 8S712-6D712, 
6P512 

Transitions Second order Second and third order 

(cm-1) la21fx1014 la2ixl014 

8S712- <>n112 

0- 16526 .616 ( 3cos29 -1)2 11.1 (2.26 - cos29)2 

0 - 16565 .29 sin49 +2.02 sin 229 .58 sin49 +4.1 sin 229 

0 - 16992 1.45 ( 3cos29 -1 )2 24 (1 - 1.06cos29)2 

3- 16526 .511sin49 +.743sin 229 sin49 +1.5sin 229 

lSS712- t>ps12 

0-19841 1.14 sin 49 + .46 sin 229 1.7 sin49 +.7 sin 229 

3- 19841 . 784(3cos29 -1 )2 + .161 sin 229 1.18(3cos29 -1)2 + .24 sin 229 

lSS712- t>D712' 

0-27869 .0838 sin49 +.138 sin 229 .135 sin49 +.224 sin 229 

0-27913 .6348 ( 3cos29 -1)2 9.24 (cos29 +.08)2 

3-27869 .05( 3cos29 -1 )2 + 1.26 sin 229 2(.61cos29 -1.38)2 + 2.06 sin 229 

3- 27913 .0623 sin49 +. 732 sin 229 .1 sin49 +1.2 sin 229 · 

5.3.3 Cm3
+ in LuP04 • Experimental TPA Spectra 

5.3.3.1 88712 - '1>112 Transitions 

TPA was observed to three of the four levels of the 60 712 multiplet (figure 5.5). 

Two transitions are observed to the 60 712(1) level, which are separated by 3.5 cm·1. This 

is a ground-state splitting and identifies these transitions unambigously as originating 

from the two lowest 8S712 levels. The fitted linewidths are 3.5 cm·1, broader than the 2.3 

cm"1 linewidth measured for single-photon absorption. Their polarization behavior is 
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unusual, with both transitions appearing surprisingly isotropic (figure 5.6). At higher 

temperatures a third transition was seen, originating from the third ground-state level. 

However~ it was two weak to yield good line fits. 

Two transitions were observed to the 6D712(2) level, separated by 7.9 cm·1
, 

originating from the first and third ground-state levels. Only one broad line, with a 

linewidth of 20.2 cm·1
, was observed to the 60 712(3) level. The originating level can not 

be determined definitively as no ground-state splittings are resolved. However, the 

strong polarization anisotropy suggests that this comprises absorption from mainly one 

level. As the intensity of this line decreases immediately when the sample is heated, this 

transition probably originates from the lowest ground-state level. 

In addition to the electronic transitions, there are numerous minor excitation 

features in the spectra, which have reproducible structure. These were also observed in 

single-photon absorption (figure 5.7), and appear to be phonon bands coupling to the 

main electronic lines. Their displacements are in approximate agreement with phonon 

energies measured by Raman spectroscopy [33]. In the two-photon case, the features in 

the region 8400 to 8460 cm·1 appear strongest for a-polarization excitation. This would 

suggest that they are coupled to the 8S712(1) - 6D712(2) transition, which appears strongly 

for a-polarization excitation. Selection rules forbid phonon-assisted transitions in two

photon spectroscopy, which would explain the absence of the features above 17000 cm·1 

seen in the single-photon spectra. However, the appearance of any phonon bands in 

two-photon spectra is unusual. 
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Fig. 5-5: Pi and sigma polarized spectra of the TP A transitions to the ~112 

multiplet. 
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Fig. 5-7: Single-photon and two-photon absorption transitions to the four 

levels of the 60 712 multiplet. 
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5.3.3.2 88,12 • 'p512 Transitions 

TPA was observed to two of the three levels of the 6P512 multiplet (figure 5.8). 

Three distinct transitions can be discerned to the 6P512(1) level. Two of these originate 

from the two lowest levels of _the ground state and are identified by their common 

splitting of 3.1 cm·1
• Their polarization behavior is plotted in Figure 5.9. The third 

transition could originate from either or both of the third and fourth ground-state levels, 

with a fitted displacement of 8.8 cm·1
• The line to the 6P5!2(3) level could not be 

resolved into its ground-state components, and its shape and intensity does not change 

appreciably with temperature. 

Phonon bands are also observed in these two-photon excitation spectra. With the 

exception of the feature 20 cm·1 higher than the 8S712(1) - 6P5!2(1) transition, these are 

weaker than for single-photon excitation. 
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Fig. 5-8: Pi and sigma polarized spectra of the TPA transitions to the 6Ps12 

multiplet. \ 
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5.3.3.3 8S712 • 'D,Il• Transitions 

TPA was observed to all four crystal-field levels of the ~712' multiplet (Figure 

5.10). Two of the transitions to the 60 712 '(1) level could be identified as originating 

from the two lowest levels of the ground state. There was an additional transition with a 

displacement of 9.1 cm-1
• These three transitions had fitted linewidths of 4.8 cm·1

• 

Similarly, both the transitions between the two lowest ground-state levels and the 

60 712 '(2) level were identified. A third transition, with a displacement of 8.6 cm·1
, was 

also observed. The polarization behavior of these transitions is plotted in Figure 5.11. 

A broad line was observed to each of the 60 712'(3) and 60 712 '(4) levels. Neither 

of these could be resolved sufficiently to identify components originating from the 

different ground-state levels. Both of these exhibit rather isotropic polarization 

behavior. To test whether these transitions are really due to TP A, the excitation power 

dependence was measured for the lines to the 60 712'(3) and 60 712'(4) levels. In both 

cases the fluorescence intensity fitted well to a quadratic function, confirming their two

photon nature. 
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5.3.4 Discussion 

Except for the 8S712(1) - 6o712(3), 8S7!2(2) - 6p5!2(1), and 8S712(1) - 60 712 '(2) 

transitions, all of the TP A intensities of the transitions observed (figures 5-6, 5-9, and 5-

11) are very different from the prediction of the theory (table 5.14) which includes the 

second and third-order spin-orbit effect. Varying the values of <p as shown in table 5.11 

did not result in better fits. Most transitions are highly isotropic. The observed isotropic 

polarization behavior of the TP A transitions can be explained by noting that the second-

order contributions in these transitions are relatively small, comparable to the third-

order spin-orbit contributions. The quadrupolar (E2)(El) term discussed in the previous 

section which is of approximately the same order of magnitude as the third-order 

contributions may now be comparable with the sum of the (E1)(E1) term and other 

third-order terms. This quadrupolar term, which is 90° out of phase with the (El)(El) 

term, would give rise to the non-zero background, or isotropic behavior of the observed 

TP A transitions. In transitions with small background shifts, the small contribution from 

the (E2)(El) term may be regarded as a constant, independent of the polarization angles 

e or <p. In transitions where the (E2)(El) term is more appreciable, its dependence on e 

and <p must be taken into account. The TPA amplitude for transitions between states of 

the 4f configurations can be written 

1 (0) 3cos2 e -1 (2) 
(4ji(XTPA14f)=(4jl[- ..fj(XO +( .J6 )aO 

e-iq> e;q, 

-(2sin29)a:2> + (2sin 29)a~~>]14f)+ iA 

(5.8) 

for r7- r7 transitions, and 
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(5.9) 

for r1 - r6 transitions. Figure 5.12 shows the fit for six of the ten transitions observed 

with 

for r7- r7 transitions, (5.10) 

and A'+ B'sin4 a+ C'sin229 for r7 -r6 transitions, (5.11) 

where A, B, C, D, A', B', and C' are positive fitting parameters. 

The fits for the transitions shown in figure 5.12 are quite good. The other four 

transitions did not result in good fits using (5.10) and (5.11) and are not shown in fig.·5-

12. The poor fits for these transitions are probably due to their large background which 

may slightly depend on the polarization angles. Explicit evaluation of their polarization 

dependence, however, is not available, due to the difficulty in determining the values of 

the term 

<4flDI4f> = <4flDI5d><5diV ood14f> I (Esd - E4r) (5.12) 

which in tum depend on the values of Bq<k>, with k odd [8,9]. Considering the 

experimental uncertainties such as the ambiguous measurement of the <p angle of the 

Cm sample and the difficulty in measuring the intensities of overlapping transitions, the 

excellent agreement between observation and prediction using (5.8) and (5.9) is 

surprising. 
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5~4Summary 

TP A have been .observed to the crystal field levels of the 50 0 and 50 2 multiplets 

of Eu3+ in LuP04 and of the 6o112. 6ps12. and 60112' multiplets of Cm3+ in LuP04. For 

transitions whose second-order contributions are sufficiently large, the polarization 

dependent behavior can be explained from the framework of the second-order theory. 

For transitions whose second-order contributions are comparable or smaller than third 

order contributions, one must add the contribution from the Ck;)
0 term. We have also 

shown that several imaginary terms of which the (E2)(El) term is dominant, which have 

been ignored in TP A theoretical treatments up to the present, might account for the non

zero background observed in two transitions of Eu3+:LuP04 and in most transitions of 

Cm3+ in LuP04. Thus in addition to the contribution from the C1.iJ 
0 term in TPA 

transitions of Eu3+ and Cm3+, one must add the contributions from the (E2)(El) term in 

order to account for the observed isotropic polarization behavior. When more empirical 

data for the values of Bq (k) (k odd) for LuP04 doped with Eu3+ and Cm3+ are available, 

explicit polarization dependencies can be obtained for the imaginary terms in (5.1). 

The {E2)(El) term has been shown to be the most important contributions to the 

lm(A) term discussed in section 5.2. The role of other terms should also be explored by 

studying systems for which these terms are dominant. For example, the contribution 

arising from the irj term in (1.45) may become more significant for excitation at 

resonance. Resonant ERS [33-35] and TP A [36,37] experiments have been studied on 

LuP04 hosts doped with rare-earth ions. In these studies only conventional TP A 

techniques were used. Polarization dependence techniques developed from chapter two 
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to five in this thesis can be used as a new powerful tool to interpret the two-photon 

intensities coming from the resonant ERS and TPA transitions. 
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