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Abstract 

We study the boundary states of D-branes wrapped around supersym

metric cycles in a general Calabi-Yau manifold. In particular, we show how 

the geometric data on the cycles are encoded in the boundary states. As an 

application, we analyze how the mirror symmetry transforms D-branes, and 

we verify that it is consistent with the conjectured periodicity and the mon

odromy ofthe Ramond-Ramond field configuration on a Calabi-Yau manifold. 

This also enables us to study open string worldsheet instanton corrections and 
·.~-. 

relate them to closed string instanton counting. The cases when the mirror 

symmetry is realized as T-duality are also discussed. 

*Permanent address: Department of Particle Physics, Weizmann Institute of Science, 76100 Rehovot 

Israel. 



1 Introduction 

D-branes in type II string theories have been identified as Ramond-Ramond charged 

BPS states [1]. In the presence of a D-brane, the boundary conditions for open strings 

are modified in such a way that Dirichlet boundary conditions are allowed in addition to 

the Neumann boundary conditions. The study of D-branes and its applications has been 

mainly restricted to the cases where the D-brane worldvolume is flat. In [2], a study of 

D-branes wrapped on curved spaces has been carried out in thelong wavelength limit. 

In this paper we will present a framework at the SGFT level for the study of D-branes 

on Calabi-Yau spaces. Perturbative string computations in the presence of a D-brane 

can be formulated by using a boundary state .. which describes how closed strings are 

emitted or absorbed on the D-brane worldvolume. In the case of the fully Neumann 

boundary condition near the flat background, the boundary state was constructed in [3]. 

Our main object of study is the boundary state for a D-brane wrapping on a non-trivial 

supersymmetric cycle in a Calabi-Yau space. In particular, we examine how the geometric 

data on the cycle are encoded in the boundary state. 

The analysis of the boundary state will enable us to find the way mirror symmetry 

transforms D-brane configurations. It has been observed that, for a Calabi-Yau 3-fold M, 

the mirror symmetry not only maps the even cohomology of M to the odd cohomology 

of its mirror M, but it does so while respecting the integral structure of the cohomologies 

[4]. Based on this, it was conjectured by Aspinwall and Morrison [5] that the Ramond

Ramond field on a Calabi-Yau space must have a certain periodicity reflecting this integral 

structure. This way, the mirror map can be extended to the Ramond-Ramond field 

configurations. We will verify that this conjecture is consistent with the mirror map 

between D-brane configurations. 

The precise understanding of the mirror symmetry between D-branes enables us to 

study open string worldsheet instanton effects. We will find that the chiral primary part of 

the boundary states for 0, 2 and 3-cycles in a Calabi-Yau 3-fold does not receive instanton 

corrections while the instanton corrections for 4 and 6-cycles can be expressed in term of 

the closed string worldsheet instantons on the same manifold. 

The paper is organized as follows: In section 2 we classify boundary conditions for 

N = 2 SCFT which preserves half of the spacetime supersymmetry and the N = 1 

worldsheet supersymmetry. We then examine how these boundary conditions are realized 

by D-branes wrapping on cycles in a Calabi-Yau manifold. One may regard this as a 

microscopic version of the analysis by K. Becker, M. Becker and Strominger [6], where 
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they studied the condition on the supersymmetric cycles using the low-energy effective 

actions for p-branes. In section 3 we will study the algebraic and geometrical structures of 

the boundary states of D-branes wrapped on supersymmetric cycles in Calabi-Yau spaces. 

We will distinguish between the middle-dimensional and even-dimensional cycles, and find 

the dependence of the boundary states on the choice of the cycles as well as the complex 

and Kahler moduli of the Calabi-Yau space. Section 4 will be devoted to the analysis of the 

mirror transformation of D-brane configurations. In section 5 we will present examples 

where the mirror symmetry is realized as T-duality on tori and Calabi-Yau orbifolds. 

Section 6 will be devoted to a discussion. In the appendix we discuss the construction 

of boundary states for Gepner models. We present an example that exhibits the relation 

between the boundary conditions for the rp.odel and the supersymmetric cycles. 

2 Supersymmetric cycles in Calabi-Yau manifolds 

In this section we will classify the boundary conditions for N = 2 SCFT which pre

serves half of the spacetime supersymmetry and the N = 1 worldsheet supersymmetry. 

We will then examine how these boundary conditions are realized by D-branes wrapping 

on cycles in a Calabi-Yau manifold. Here we will consider the case when the sigma-model 

for the Calabi-Yau manifold has one set of N = 2 superconformal algebra for the left

movers and one set for the right movers. It is straightforward to extend this analysis to 

the case where we have more than one set of N = 2 algebras, such as T 2
d with d 2: 2. 

2.1 Boundary conditions for N = 2 SCFT 

The supersymmetric sigma-model for a Calabi-Yau manifolds has N = 2 superconfor

mal algebra (SCA). Throughout this paper, we set the signs ofthe left and the right U(1) 

currents to be 

JL = 9i-;'l/Ji'l/JL 

which determines the convention for a± as 

at 
a~ 

9;-;'l/Ji8X3, aL, = 9;]'l/;f8Xi , 

9;-;'1/J}/JXi, aR_ = 9iJ'l/JkBXi . 

(2.1) 

(2.2) 

In addition, in order to preserve half of the spacetime supersymmetry, we should take into 

account the spectral flow operator ei<h defined by 

(2.3) 
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Here n is the holomorphic d-form on the Calabi-Yau d-fold and JL = i(J<f>L. Note that, in 

this convention, the N = 1 supercurrent is generated by 

G = Gt + G£. (2.4) 

In order to represent a BPS saturated state in spacetime, the boundary must preserve 

half of the spacetime supersymmetry. Thus we require the boundary state to be invariant 

under a linear combination of the left and right N = 2 algebra extended by the spectral 

flow operators. Consistency restricts the linear combination to correspond to the auto

morphism group of the algebra. The automorphism is 0(2) for N = 2 SCA and Z2 for 

N = 1. Since the supercurrent G is gauged, its form should be preserved. Thus we are 

left with a z2 X ZTwise choice: 

A-type boundary condition:* 

(2.5) 

B-type boundary condition: 

(2.6) 

The phase factor eiB will be determined later. In the A-type boundary condition, it can 

be absorbed in the definition of n. This is why we did not put the phase factor in (2.5). 

Clearly both A-type and B-type boundary conditions preserve the N = 1 SCA 

(2.7) 

where T denotes the stress tensor. It should be noted that the mirror symmetry exchanges 

the A-type and the B-type boundary conditions. 

2.2 N = 4 SCFT 

In the case of string compactification on K3, the spectral flow operators have the 

conformal weight 1. Combined with the U(1) current J, they form the affine SU(2) 
algebra and N = 2 SCA is extended to N = 4. For later convenience, let us write the 

holomorphic 2-form and the Kahler form as 

(2.8) 

*In this section we write boundary conditions in the notation appropriate for the open string channel. 
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The SU(2) currents are then 

J 1 = k~v'l/;t?/J£ (I= 1, 2, 3) , (2.9) 

where the indices f.l, v refer to real coordinates on K3. 

In addition to G±, we have two more supercurrents, which together with the original 

two form a 1 of 50(4), the automorphism group of N = 4 SCA. The automorphism 

consists of the internal and the external parts, SU(2)c x SU(2)J, where SU(2)c is generated 

by the SU(2) currents Ja and SU(2)1 is the external automorphism of the N=4 SCA [7]. 

We can then organize the four supercurrents as (2.,2.) of SU(2)c x SU(2)J as 

c+
c-+ 

gt;?/Ji&x1, c++ = nij?/Ji&xj, 

gi3¢f&xi, c-- = f!,-0¢£&Xj . 

In this notation, the N = 1 supercurrent G is 

c = c+- + c-+, 

(2.10) 

(2.11) 

which is a singlet under the diagonal action of SU(2)c x SU(2)J· Since G is fixed, a 

general boundary condition which preserves both the N=4 and N=1 should only involve 

the diagonal subgroup of SU(2)c x SU(2)J, i.e. S0(3) in the full automorphism SO( 4). 

By decomposing the four supercurrents into ;2 and l of 50(3), the most general boundary 

condition is written as 

(2.12) 

where U E 50(3). 

2.3 Geometric realization - general case 

We would like to find out how the above classification of supersymmetric boundary 

conditions corresponds to that of D-branes in a Calabi-Yau manifold M. In this section, 

we seek this identification in the large volume limit of M, where we can treat the sigma

model semi-classically. 

We begin by noting that (2. 7) is solved by 

(2.13) 

for some matrix R provided it satisfies 

(2.14) 
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The eigen-vector of R with eigen-value ( -1) gives the Dirichlet boundary condition for 

X, and thus should correspond to directions normal to the D-brane. If the matrix R is 

symmetric, the orthogonal directions are also eigenvectors of R with eigen-values ( + 1 ), 

and thus they obey the Neumann boundary condition corresponding to the tangential 

directions to the D-brane. In general, however, R does not have to be symmetric, and 

this gives rise to a mixed Neumann-Dirichlet condition. As we will see, this corresponds 

to the case when the U(1) gauge field on the D-brane worldvolume has non-zero field 

strength. 

In the neighborhood of a p-cycle 1 on the Calabi-Yau d-fold, we can choose local 

coordinates such that xA (A = 1, ... , p) are coordinates on the cycle and ya (a = 1, ... , 2d

p) are for the directions normal to I· Clearly (2d- p). is equal to the number of ( -1) 

eigen-values of R. 

Suppose the D-brane wrapping on 1 gives the B-type boundary condition. It follows 

from (2.6) that R should satisfy 

(") Rll-1 Rll-d 
~Gil-1···11-d V1 • • • Vd 

The first of these equations implies 

(2.15) 

(2.16) 

namely the Kahler form k must be block diagonal on 1 in the tangential and the normal 

directions to I· Since k is nondegenerate, kAB and kab must also be nondegenerate. This 

means the dimensions p of the cycle must be even. Because k is block diagonal, we can 

use it to define almost complex structure on the cycle. In fact it is integrable and defines 

· a complex structure on the cycle. Thus 1 is a holomorphic submanifold of M. In the 

complex coordinates, the nonvanishing components of the top form n has p/2 holomorphic 

indices tangential to 1 and d- p/2 holomorphic indices normal to it. This determines the 

phase ei() in (2.15) in terms of the background gauge field on I· In particular when the 

gauge field is flat, we find ei() = ( -1 )d-p/2. 

On the other hand, if the cycle corresponds to the A-type boundary condition, (2.5) 

implies 

kJ-LvRil-PRvcr 

r~ Rll-1 Rll-d 
~Gil-1···11-d V1 . • • Vd 

-kpq' 

nv1·•·Vd • (2.17) 

If the background gauge field on 1 is flat, R squares to the identity matrix. In this case, 

the first of the above equations implies 

kab = 0, kAB = 0 · (2.18) 
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Since k is nondegenerate, this is possible only if p = d. Thus a cycle without a gauge field 

must be middle-dimensional. In this case, all the components of the holomorphic d-form 

f2 are related to f2A 1 ... Ad as 

(2.19) 

for m = 1, ... ,d. Since n 1\ n is proportional to the volume form of the d-fold, it follows 

that the pull-back of n onto the cycle is proportional to its volume form. We note that 

the same geometric condition for supersymmetric cycles also arises from the low-energy 

effective worldvolume action of the supermembrane [6] in the case of p = 3. It is easy to 

generalize this to the case with background gauge field. One can see that (2.17) implies 

p = d, d + 2, ... , 2d. The reason for this will become clear in the later sections. 

2.4 Geometric realization- K3 case 

In the case of K3, (2.12) states that k1 (I= 1, 2, 3) behave as 

ki.R11 Rv - U1 k1 
J.LV p 0' - J PO' • (2.20) 

on the cycle I· By going through some linear algebra, we find that the conjugacy class of 

the rotation U is completely determined by the gauge field. For example, in the absence 

of the gauge field, the matrix U is equal to 1 for 0-cycle and 4-cycle while it is in the 

conjugacy class of 1r-rotation for 2-cycle. To understand this more geometrically, we 

diagonalize U as 

( 

cos() 

U = Mt sin~ 
-sin() 0 ) 

cos~ ~ M. 

By introducing a new basis by M E 50(3) rotation 

F-M1 e - J ' 

(2.20) is expressed as 

k~vRJ.LPRvo
J,;± R11 R11 

J.LV p 0' 

(2.21) 

(2.22) 

(2.23) 

Comparing this with the analysis of the B-type boundary condition in the previous sub

section, we see that the cycle 1 is a holomorphic submanifold of K3 with respect to the 

complex structure such that 'fc3 is a Kahler form and 'k+ is a holomorphic 2-form. Namely 

the 50(3) rotation by U reflects the 50(3)-wise choice of complex structure for a given 

metric on K3. This result also agrees with the analysis in [6], [2r 
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2.5 Summary 

We now summarize our classification of boundary conditions. For each complex di

mension d of the Calabi-Yau manifold, we designate allowed values of p (real dimensions of 

the cycle) and their possible boundary conditions by type A, B or the one parameterized 

by 50(3). 

d 1 2 3 4 

p 0 1 2 0 2 4 0 2 3 4 6 0 2 4 6 8 

Condition B A B B 50(3) B B B A B B B B AjB B B 

This table is for the case with flat gauge field on/· It is straightforward to generalize this 

to the case with non-zero gauge field strength. 

One may notice that p = 3 and 5 for d = 4 are not included in the table*, even 

though there are Calabi-Yau 4-folds with non-trivial H3 . From the above analysis it is 

clear that, provided the sigma-model for the 4-fold has only one set of N = 2 SCA, 

one cannot construct a boundary condition at the SCFT level corresponding to a 3-cycle 

which preserves half of the spacetime supersymmetry. One arrives at the same conclusion 

by extending the analysis of [6] to the case when the membrane wraps around a 3-cycle 

in a 4-fold. On a generic 4-fold with 5U(4) holonomy, there are two covariantly constant 

spinors <:1 and <:2 of the same chirality. One then finds that no linear combination of E1 and 

<:2 can generate spacetime supersymmetry which preserves the membrane configuration. 

This does not mean that there is no Calabi-Yau 4-fold with a supersymmetric 3-cycle. 

To the contrary, one can construct orbifold examples which have such cycles. In these 

examples, however, the N = 2 SCA is extended and thus the above classification is not 

applicable. Thus, an existence of a supersymmetric 3-cycle should imply an extension 

of the worldsheet N = 2 SCA. In general, a 4-fold can have a holonomy group 5pin(7), 
5U( 4), 5p(2) or 5U(2) x 5U(2) [8]. The last two cases correspond, for instance, to the 

manifolds T 4 x I<3 and I<3 x I<3 respectively, and the associated worldsheet algebras are 

extensions of the N = 2 SCA. The generalization of the above classification of boundary 

conditions to these cases is straightforward. The analysis for the 5pin(7) holonomy case 

will be reported elsewhere [9). 

*We would like to thank C. Vafa for drawing our attention to this. 
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3 Boundary states for D-branes 

In this section, we examine the properties of the boundary states for D-branes wrap

ping on the supersymmetric cycles discussed in the previous section. We will show how 

the geometric data of the cycles are encoded in the boundary states. 

3.1 Supersymmetric boundary states 

Given the Virasoro algebra or its extension, there is a definite procedure for con

structing a conformally invariant boundary state, where the left and right generators of 

the algebra are linearly related, starting from each highest weight state of the algebra. 

Denote by lj, n), lj, n) orthonormal basis of the representations j of the holomorphic and 

antiholomorphic algebras respectively. It has been shown by Ishibashi [10] that 

lj)) = L ij, n) ® Ulj, n) , (3.1) 
n 

is such a state, where U is an anti-unitary matrix which preserves the highest weight 

state lj). A boundary state is in general a linear combination of lj)). 

Type II strings compactified on Calabi-Yau spaces posses the worldsheet N = 2 SCA 

in both the left and right sectors. As we saw in the previous section, a D-brane wrapping 

on a supersymmetric cycle preserves a linear combination of the left and right N = 2 

algebras. We would like to study the correspondence, D-branes +-+ boundary states, for 

D-branes wrapped on supersymmetric cycles in Calabi-Yau spaces. In particular, given 

a D-brane, we would like to find the highest weight states that appear in its boundary 

state and their multiplicity, and conversely for a given boundary state we would like to 

find the D-brane configuration. 

Recall from the analysis of section 2 that, for the closed strings, there are two types 

of supersymmetric boundary conditions: For middle-dimensional cycles, we have 

Gt = ±iGR, GL, = ±iGi'=i, (3.2) 

and for even-dimensional cycles 

(3.3) 

Here we are using the notation appropriate for the closed string channel*. They are called 

the A-type and the B-type boundary conditions. For the K3 case, the boundary conditions 

* J R ---+ -J R and G~ ---+ iG~ compared to the notation in section 2. 
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are parameterized by S0(3) corresponding to the S0(3)-wise choice of complex structures 

for a given metric on K3. The boundary states realizing the A and B-type conditions 

should then satisfy 

(Gt =t= iGR)IB) = 0, (G£ =t= iGJi)IB) = 0, (JL- JR)IB) = 0, (3.4) 

or 

(Gt =t= iGJi)IB) = 0, (G£ =t= iGR)IB) = 0, (JL + JR)IB) = 0 , (3.5) 

depending on whether the boundary conditions are A-type orB-type. Let us examine the 

properties of these boundary states. 

3.2 A-type boundary condition 

Let us consider first the A-type boundary condition corresponding to middle- dimen

sional cycles. The boundary state can be expanded in terms of the Ishibashi states as 

(3.6) 
a 

where the sum is over the highest weight states of the N = 2 algebra which appear in 

the Hilbert space of the sigma-model for the Calabi-Yau space M. They may be chiral 

primary states or non-chirals. According to our convention (2.2), complex moduli of M 

are associated to ( c, c) and (a, a) primary states and Kahler moduli are included in and 

(c,a) and (a,c). 

The requirement that (JL- JR) = 0 at the boundary implies qL = qR for the U(l) 

charges and thus a selection rule for the conformal fields that can contribute to the 

boundary state. In particular, this means that the coefficients in front of the ( c, a) and 

(a, c) primaries are zero. In the following we will find an explicit form for the coefficients 

ca for the ( c, c) and (a, a) chiral primary states. 

For the sigma-model, the ( c, c) primaries with charge ( q, q) correspond to elements of 

the middle cohomology Hq,d-q(M) where d = dimcM. It is straightforward to show that 

the coefficient ca corresponding to the ( c, c) primary state is given by 

(3. 7) 

where (Otopl is the topological vacuum of the A-model, 'flab is the topological metric, and 

</Jb is the ( c, a) primary field associated to wb E Hq,d-q(M). By the A-model, we mean the 

one with the topological twist such that Gt and GR become one-forms on the worldsheet*. 

*Thus the topological vacuum (Otop I has charges ( -d/2, +d/2). Since the ( c, a) primary field </>b carries 

charges (q, q - d), the total charges of (Otop !<l>b is ( q - d/2, q- d/2) satisfying the selection rule. 
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Since </>b is physical in the A-model, and one may regard Ca = TJabCb as a topological string 

amplitude on a disk with a puncture at z. 

The coefficient Ca may in principle depends on the Kahler moduli (ti, [i) (i = 1, ... , h1•
1

) 

as well as the complex moduli of M. To compute at of ca, we insert G! G[i/Pi onto the 

disk, where 'Pi is an (a, c) primary field with ( qL, qR) = ( -1, 1). Since both G! and GR_ are 

one-forms in the B-model, we can employ the standard contour deformation argument in 

the topological field theory. Taking into account the boundary condition G! = ±iGR_, one 

finds that the result of this insertion is zero. Thus Ca is holomorphic in ti and therefore 

the instanton approximation to Ca is exact. 

Furthermore one can also show that Ca is independent of ti. One way to show this is 

to do the instanton expansion explicitly and verify that the instanton correction vanishes 

due to the fermion zero modes. 

Another way to show this is to insert G£ Gt?_c.pi where 'Pi is a ( c, a) primary field with 

(qL, qR) = ( -1, 1). In this case, both G£ and Gt?_ are two-forms on the disk and we cannot 

immediately deform their contours. On the disk with one puncture at z, there is a global 

holomorphic ( -1) form ~(w) = (w- z)(w- z). By multiplying~' we can convert G£ 
into one-form and we can use the contour deformation argument. Since ~( w) vanishes at 

w = z, where <l>a is located, we can move the contour to the Dirichlet boundary where we 

can convert ~G£ into [Gt?_ since~ is real-valued on the boundary (We chose the boundary 

to be Im w = 0. ). We can them move [Gt?_ back and the contour slips out of the disk. 

Thus we have shown that ati of ca also vanishes. This reasoning is similar to the one 

which shows that the topological metric of the A-model does not receive the instanton 

correction. 

Since Ca is independent of the Kahler moduli, we can take the large volume limit in 

(3. 7) to show 

(3.8) 

where 1 is the supersymmetric cycle in question. Thus the chiral primary part of the 

boundary state is determined entirely by the homology class of the cycle I· 

This in particular means that the chiral primary part 

h) = L caja)Ramond-Ramond ' 
.Pa:(c,c) 

(3.9) 

of the boundary state is a fiat section of the so-called improved connection [11], [12), [13) 

for the bundle of Ramond vacua over the moduli space of N = 2 superconformal field 

theories (for a review, see also section 2 of [14]). Since it plays an important role in the case 
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of the B-type boundary condition in the following, let us demonstrate this fact explicitly 

here. Let us organize the basis of Hd(M) as w0 E Hd,o, Wa E Hd-1 ,1 (a = 1, ... , hd-1 ,1), 

etc. Then we find 
D~ 
-D = Ca' etc, yet 

(3.10) 

where ya are the complex moduli of M and D is the covariant derivative on the vacuum 

line bundle £ over the moduli space of the N = 2 theories. These equations can be 

summarized as 

(3.11) 

where 

(3.12) 

and Ca is the multiplication by the Yukawa coupling. 

This in particular means that Ca for Wa E Hd-1,1 etc, is obtained by acting with Da 
on c0 . Thus the chiral primary part of the coefficients in (3.6) is completely determined 

by computing the period 

co(!)= 1 n' (3.13) 

of the holomorphic ( d, 0 )-form. To be precise, this is the case when the complex dimension 

of the Calabi-Yau manifold is less than 4. When d 2: 4, there is some subtlety since there 

may be an element wa of Hd-q,q with q 2: 2 which is not generated by differentiating Hd,o 

with respect to the complex moduli. If that is a case, we have to evaluate (3.8) for such wa 

separately. Understanding how this procedure works for d 2: 4 would help clarify issues 

on the mirror symmetry in higher dimensions [15]. 

3.3 B-type boundary condition 

For an even-dimensional cycle i, the boundary states satisfy the B-type condition 

(JL + JR)IB) = 0. Thus the coefficients ca for the expansion 

(3.14) 
a 

vanish for the ( c, c) and (a, a) primary states. On the other hand, the coefficients for the 

( c, a) primaries are obtained by 

(3.15) 

where (Dtopl is the topological vacuum of the B-model, ijab is the topological metric and 

~a ( z, z) is the ( c, c) primary field associated to Wa in the vertical series of the cohomologies 
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Hverticaz(M) = (:JJ~=0 Hq,q(M). The B-model is defined in such a way that Gt and Git 

behave as one-forms*. 

By repeating the contour deformation argument as in the case of the A-type boundary 

condition, one finds that ca is independent of the complex moduli y, but may depend on 

the Kahler moduli ( t, l). We now present two arguments to show that the ( c, a) primary 

part of the boundary state 

I..:Y) = L caia)Ramond-Ramond ' 
¢a:(c,a) 

(3.16) 

IS "flat" with respect to the improved connection over the Kahler moduli space. This 

determines the ( t' l) dependence of ca. 

A simple way to show this is to use the mirror symmetry. Since the mirror symmetry 

transforms the A-type boundary condition into the B-type, the flatness property of the 

state If) over the complex moduli space for the middle-dimensional cycle 1 should imply 

the flatness of I..:Y) over the Kahler moduli space for the even-dimensional cycle ..:Y provided 

1 and ..:Y are related to each other by the mirror transform. 

In the next section, we will use the flatness of I..:Y) to study the mirror symmetry 

between the D-branes. For the sake of completeness, we therefore give another argument 

for the flatness which stands independently of the mirror symmetry. To take a derivative 

of Ca with respect to the Kahler moduli ti, we insert G[,Gft'Pi on the disk, where </>i is a 

( c, a) primary field corresponding to an element of H 1•1 . Unlike the case of the complex 

moduli derivative, however, this does not yet give us Dica since G[,Gft'Pi is divergent at the 

Dirichlet boundary. The covariant derivative Di must be defined in such a way that the 

contribution from the boundary is removed. Since Git is a one-form in the B-model, we 

can deform its contour on the disk. By taking into account the boundary condition (3.5), 

one finds that G[,Gft'Pi becomes O'Pi· The integral of Ocpi over the disk with the puncture 

reduces to two surface integrals, one around the puncture at z and another around the 

Dirichlet boundary. The former can be evaluated using the Yukawa coupling since it is 

related to the OPE of H 1•1 and Hq,q. The latter is canceled by the covariantization. This 

shows 

(3.17) 

and similarly 

(3.18) 

*Thus the topological vacuum {Otopl has charges ( -d/2, -d/2) while Wa carries (d- q, q). Combined, 

they satisfy qL = -qR as required. 
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The flatness of li) implies that the coefficient Co corresponding to the top cohomology 

Hd,d is holomorphic with respect to the Kahler moduli. It also implies that the rest of 

Ca is obtained by taking derivatives of Co with respect to t. Since Co is holomorphic in t, 
the instanton approximation is exact, i.e. c0 can be expressed as a sum over holomorphic 

maps from the disk to M such that the boundary of the disc is mapped to the cycle i. 
When i is 2q-dimensional, the contribution from the constant map can be evaluated by 

taking the large volume limit as 

(3.19) 

where k = Li tiki and we choose ki to be the basis of H 1
•
1 (M; Z). 

The instanton corrections to Co are obtained by replacing the classical intersections in 

(3.19) by quantum ones in an appropriate sense. This in particular implies that c0 for 

0 or 2-cycle does not receive an instanton correction since the image of the holomorphic 

map of the disc does not intersect with the homology dual to k; in these cycles. In the 

next section, we will find that this in fact is consistent with the mirror symmetry. 

The expressions ( 3.19) in particular means that the large volume limit of c0 IS a 

homogeneous polynomial of t and the dimensions of the cycle i is characterized by the 

degree of the polynomial. One may be worried that this statement is not invariant under 

the integral shift of the theta parameters of the sigma-model, ti --+ ti +m i ( m i E Z). In fact 

this shift should mix cycles of different dimensions. Consider a cycle i E Hvertical(M; Z) 
and decompose it as 

(3.20) 

where iq E Hq,q(M; Z). The equation (3.19) can then be rewritten as 

Co(i) = 

(3.21) 

where i; E Hd-q,d-g(M; Z) is the Poincare dual of iq· One then finds that the shift 

k--+ k + w with wE H2(M; Z) mixes ')'q's as 

i; --+ L q+n Cn Wn 1\ i;+n . (3.22) 
n 

As we will see in the next section, this mixing is in accord with the mirror symmetry. 
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4 Mirror symmetry 

The mirror symmetry transforms type IIA string on a Calabi-Yau 3-fold Minto type 

liB string on the mirror M. Since type IIA string has even-dimensional D-branes while 

type IIB has odd-dimensional ones, we expect that the mirror symmetry to transform 

middle ( = 3) dimensional cycles on Minto even-dimensional cycle on M. From the point 

of view of SCFT, the mirror symmetry transforms the A-type boundary condition (3.4) 

for the 3-cycle to the B-type boundary condition (3.5) for the even-dimensional cycle. In 

this section, we will examine how this transformation between the supersymmetric cycles 

takes place. 

The mirror symmetry is an isomorphism between the Hilbert spaces of the sigma

models on M and M [16]. Thus if the cycles 1 and i are related to each other by the 

mirror symmetry, the corresponding boundary states !B) and IE) should be identified by 

the isomorphism*. 

4.1 Mirror map between cycles 

Suppose the boundary state !B) for a 3-dimensional cycle 1 in M is mapped to the 

boundary state IE) for an even-dimensional cycle i in M under the mirror transformation. 

Since the chiral primary part of the boundary states are characterized by c0 and c0 given 

in the previous section, they should be related to each other under the mirror map. For 

the 3-cycle 1, c0 is given by 

eo(r) =in. ( 4.1) 

Since we know the large volume limit of c0 as in (3.19), we should compare it with Co in 

the corresponding limit, which is called the large complex structure limit [17] of M. 

In this limit, H 0
•
3(M) aligns with the lattice of H3 (M; Z) [12], [4]. Thus we have a 

filtration of H 3(M; Z) in a form of 

( 4.2) 

called the monodromy weight filtration [19]. Accordingly we can choose a symplectic basis 

{ai,,B1}I=o, ... ,h2,1 for H3(M;Z), 

a! n aJ = 0, ,81 n ,81 = 0, a! n ,81 = of ' (4.3) 

*To be precise, the boundary state JB) does not belong to the Hilbert space since it is not normalizable. 

This problem can be easily avoided by considering qLoqL 0 JB) for JqJ < 1, for example. 
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such that a0 is the unique cycle dual to H 0
•
3 and { a 0 , ••. , ah2,1} spans the dual of H 0•3 ffi 

H 1
•
2

. The cycle a 0 may also be characterized by the fact that it is invariant under the 

monodromy of H3 (M; Z) at the large complex structure limit [21], [23]. Note, on the other 

hand, ai with i = 1, ... , h2•1 may be shifted by a 0 under the monodromy transformation. 

With this choice of the basis for H3 , the flat coordinates of the complex moduli space 

are given by 

( 4.4) 

where 

( 4.5) 

In the large complex structure limit s -+ oo the Schmid orbit theorem [20] yields 

1 0 .. k -X d"kStS] s + ... 3! t] 

1 0 . k 
--X d"kS1s + · · · 2! tJ 

(4.6) 

where dijk is the large complex structure limit of the Yukawa coupling. 

In order to construct the mirror map, we choose the standard gauge of the special 

geometry, 

co( ao) = 1 n = 1 . 
ao 

(4.7) 

In this gauge, the flat coordinates are 

(4.8) 

By the mirror map, we may also use it as the flat coordinates for the Kahler moduli 

space of M. In the large complex structure limit, this mirror symmetry maps the Yukawa 

coupling dijk in ( 4.6) to 

(4.9) 

By comparing large volume limit (3.19) of c0 for even-dimensional cycles in M with 

the large complex structure limit (4.6)- (4.9) of c0 for {a1,,81}, we can immediately see 

how the mirror symmetry transforms a D-brane wrapping on a 3-cycle in M to a D-brane 

wrapping on an even-dimensional cycle in M. In particular, the 3-cycle a0 dual to H 0
•
3 

in M is a mirror image of a 0-cycle in M, and the 3-cycles ai ( i = 1, ... , h 1•
2

) correspond 

to 2-cycles in M. Thus the mysterious correspondence between the integral structures of 

H3 (M) and Hvertical(M) pointed out in [4] is now understood as the mirror symmetry 

between the D-brane configurations. 
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While this paper is being typed, we received a preprint [22] by Strominger, Yau and 

Zaslow where it is argued that the mirror of a 0-cycle in M should be a toroidal 3-cycle 

in M. Our analysis here shows a mirror of the 0-cycle should be the 3-cycle a 0 dual to 

H 0
•
3 in the large complex structure limit of M. In the case of the quintic defined by, 

( 4.10) 

such a 3-cycle is in fact known to be T 3 [18]. In the large complex structure limit 'ljJ -+ oo, 

the holomorphic 3-form becomes 

n = 5'lj; xsdxl (\ dx2 (\ dx3 -+ - dxl dx2dx3 
0pjOX4 X1X 2 X3 

1 (4.11) 

and the 3-cycle dual to n is T 3 surrounding X} = X2 = X3 = 0. It would be very interesting 

to see whether this feature of H 0
•
3 is true for a general M with a mirror partner. 

So far we have only looked at the large volume limit of M and the corresponding large 

complex structure limit of M. Fortunately, since the state li') and li') are flat sections 

over the moduli spaces, their correspondence can be traced to interiors on the moduli 

spaces following the mirror map. We will demonstrate' this through examples in section 

5. If we go around a non-trivial cycle over the moduli space, we have to deal with the 

monodromy problem, which we will discuss below. 

4.2 Open string instantons 

For the A-type boundary condition, the classical formula 

co(!)= 1 n (4.12) 

is exact. On the other hand, the formula (3.19) for c0(i') for the B-type boundary condition 

is corrected by open string worldsheet instantons, i.e. holomorphic maps from a disk to 

M such that the boundary of the disk is mapped to the cycle ')'. The mirror symmetry 

suggests that such open string instanton effects are expressed in terms of the closed string 

instantons on M. 

The mirror symmetry gives another proof for the fact that the formula (3.19) for co 
does not receive the instanton correction when the cycle ')' is 0 or 2-dimensional. This 

is because th~ corresponding formulae (4.7) and (4.8) for a 1 (I= O, ... ,h2
•
1

) are, by 

definition, exact. 

On the other hand, Co for 4 or 6-cycle does receive instanton corrections. In the mirror 

picture, the exact formulae for eo(!) for {31 (I= 0, ... , h2
•
1

) can be written in terms of the 
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prepotential F for M as 

o i a 
c0 (f3 ) = 2F- s-a .F, st 

. a 
co(f3t) =-a .F, st ( 4.13) 

where we are working in the X 0 = 1 gauge appropriate for the mirror symmetry. In M, 

the prepotential is related to the sum over closed string instantons as* 

( 4.14) 

where N(n) is the number of rational curves on M of the type n = {n 1 , ... , nh1 ,1(M)}. By 

integrating this, we find 

-r _ _ I_d·. i j k _""" ~ N(n) 21rimn;si 
.r - 31 tJks s s + a ~ ~ (2 . )3 e 

· n m=l 1rzm 
( 4.15) 

where a is a constant, presumably related to the four-loop term in the /3-function of the 

sigma-model [18]. Substituting this into ( 4.13), we can extract the open string instanton 

corrections to Co and express them in terms of of the number of the closed string instantons 

N(n). 

This suggests a relation between the moduli spaces of open and closed string instantons 

and the corresponding intersection theories. One way to find such a relation may be to 

regard a closed string instanton intersecting a supersymmetric cycle as a pair of open 

string instantons glued on the cycle. 

4.3 Integral structure and monodromy 

It has been observed that in the large radius limit, the mirror symmetry maps the 

integer valued homology H3 (M; Z) to ffiqH2q(M; Z) in such a way that the monodromy 

is preserved [4], [21]. Based on this, it was conjectured by Aspinwall and Morrison [5, 23] 

that the Ramond-Ramond fields on the Calabi-Yau 3-fold should have periodicity under 

the discrete shift reflecting these integral structures. This would guarantee that the mirror 

symmetry can be extended to the Ramond-Ramond fields configurations. This periodicity 

should be a consequence of the coupling of the Ramond-Ramond field to the worldvolume 

of the D-brane. In fact the mirror map between the D-branes we found in the above is 

consistent with this picture. 

*We are using the same coordinates si for both the complex moduli of M and the Kahler moduli of 

M related to each other by the mirror symmetry. 
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By requiring that the monodromy be preserved, Morrison also pointed out [23) that 

the shift of the NS-NS B-field by H2(M; Z) should cause a certain rearrangement of the 

integral structure of the Ramond-Ramond fields of even ranks. This is also consistent 

with the mixing of the even dimensional cycles we found in (3.22). 

Although the mixing of the cycles is required by the mirror symmetry, one can also 

explain it without invoking the mirror. For the sigma-model without a boundary, the shift 

of B-field by H 2 (M; Z) is a discrete symmetry. However, in the presence of a boundary, 

the coupling of the B-field to the string world-sheet is accompanied by the coupling of 

a U ( 1) gauge field A to the boundary [24]. Since the gauge invariant field strength is 

F = F- B where F = dA, the shift B-+ B + w with w E H 2(M; Z) is compensated by 

F -+ F + w. This effectively mixes cycles of different dimensions as in (3.22). Below we 

will demonstrate this explicitly through examples. 

5 Examples 

In this section we will present several examples to illustrate the general results of the 

previous sections. We will show explicitly how starting with a D-brane wrapped on a 

middle-dimensional supersymmetric cycle, depending on the D-brane configuration and 

T-duality or mirror transformation, we can obtain different dimensionalities for the dual 

configuration with gauge fields background. 

5.1 T-duality on tori 

Let us start with a general discussion of the duality map for tori and orbifolds. As we 

discussed in section 2, the condition for N = 1 SCA yields 

(5.1) 

where R is an orthogonal matrix. The requirement for having a geometrical interpretation 

of a D-brane without gauge fields background is more restrictive and implies that R has 

to be a symmetric matrix and squares to the identity matrix. In this case, its eigen-values 

are ( + 1) or ( -1) corresponding to the tangential and normal vectors to the D-brane 

respectively. To preserve the N = 2 SCA, R should further obey 

(5.2) 

where ± refers to the A and B-type boundary conditions and thus to middle and even

dimensional cycles. 
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T-duality transformation is realized by 

(5.3) 

where T is the symmetric ~atrix implementing the duality transformation and T 2 = 1. 

In order for this to induce the mirror transformation, the sign of J R should be reversed 

while JL remain invariant. This means 

(5.4) 

Thus, starting with a D-brane configuration and performing T-duality transformation we 

will end up with a configuration satisfying the boundary condition 

(5.5) 

where R = RT is an orthogonal matrix. If the matrix R is symmetric and thus squares · 

t<? the identity matrix, the boundary condition has geometrical realization as a D-brane 

without the U(1) gauge field. This occurs if and only if 

[R,T] =0, (5.6) 

namely T-duality transformation commutes with the original D-brane configuration. 

When (5.6) is not satisfied, we get a mixing between the Neumann and Dirichlet 

boundary conditions of the type induced by a background gauge field. Since R = RT is 
orthogonal, by a coordinate transformation, we can alway bring it into the standard form, 

R = ( -1(2d-~x(2d-p) 0 ) 
1-F ' c+F )pxp 

(5.7) 

where for some p and an anti-symmetric matrix F. This implies the Dirichlet boundary 

condition for the first (2d- p) directions, while the boundary condition for the second p 

directions is 
f)XIl- = (1- F)ll- fJXv . 

l+F v 

Therefore the matrix R describes a p-cycle with a background gauge field F. 

(5.8) 

Whether F is zero or not, the mirror symmetry exchanges odd and even-dimensional 

cycles when d = dimcM is odd. In this case, the condition (5.4) for T-duality to be 

the mirror symmetry implies detT = -1. On the other hand, detR = -1 for an odd 

dimensional cycle since the rotation matrix ( i+~) has determinant ( + 1). Thus R = RT 

for its mirror obeys det.R = detR · detT = +1, i.e. the mirror_ of the odd dimensional 
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cycle is even-dimensional. If R and T commute, F = 0 in the original cycle implies F = 0 

for its mirror. 

Let us construct now a simple example to illustrate the above. Consider the torus 

T 2 with real coordinates (x, y), and a D-brane configuration d~fined by the Pauli matrix 

R = 0"1 . The Neumann boundary condition is imposed on the 1-cycle defined by the 

vector (1, 1), while the Dirichlet boundary condition is imposed on the vector orthogonal 

to it. Then the mirror transformation is generated by T-duality transformation along 

the x coordinate, i.e. T = -0"3 • Clearly this T does not commute with R. In fact 

R = -i0"2 = F, and this has no ( -1) eigen-value, namely there are no Dirichlet boundary 

conditions. The configuration we got is that of a 2-cycle with background gauge field F. 

It is instructive to consider this example from a different viewpoint. In the limit of the 

large complex structure, T ---+ ioo, the cohomology H0
•
1 generated by dz = dx + fdy gets 

aligned with the lattice H 1(T 2
; Z) generated by dx and dy. In this limit, the cycle (1, 0) 

becomes dual to H0
•
1 and the mirror map transforms it to a 0-cycle, as expected. On the 

other hand, either (0, 1) or (1, 1) can be combined with (1, 0) to make the symplectic basis 

of H 1 (T 2
; Z). Since (0, 1) is mirror to a 2-cycle without a gauge field, one may regard 

(1, 1) = (0, 1) + (1, 0) as mirror to the 2-cycle with a 0-cycle on it. Though the filtration 

H 0
•
1 C H 1 (T 2

; Z) makes sense only in the large complex structure limit, the mirror map 

between the cycles holds even for finite value of T. The reason for this can be traced back 

to the fact that the chiral primary part of the boundary state h) is a fiat section over the 

moduli space of complex structure, as we explained in section 4. 

This picture is correct as far as the homology goes, but a sum of the straight lines, 

(0,0)---+ (1,0) and (1,0)---+ (1,1), is not actuallysupersymmetricsincethecombinedcycle 

is not minimal. The diagonal line ( 0, 0) ---+ ( 1, 1) is shorter and thus costs less energy. 

In the mirror picture, this means that the 2-cycle with the U(1) gauge field should be 

regarded as a ground state of the 0-cycle on the 2-cycles. 

This simple example illustrates the mixing of cycles (3.22). The D-brane worldvolume 

action has terms of the form [25) 

S = { Co:F + C2 , (5.9) 
J2-cycle 

where Co and C2 are the Ramond-Ramond fields and :F = F - B. A shift of B by 

H 2 (T2
; Z) then mixes C0 and C2 corresponding to the mixing of cycles. In the mirror 

picture, the shift B ---+ B + 1 becomes the modular transformation T ---+ T + 1. This 

sends the cycle (0, 1) (the 2-cycle in the mirror) to (1, 1) (the 0-cycle on the 2-cycle in 

the mirror). Thus the mixing of the cycle (3.22) is natural from the point of view of the 

coupling of the D-brane to the B field [24) as well as the mirror -symmetry. 
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5.2 Calabi-Yau orbifold 

In this section we discuss an example of a mirror pair of Calabi-Yau orbifolds. In fact 

the phenomena is basically similar to the tori cases, with some technicality related to the 

correct choice of a ground state. As an explicit example we will consider the mirror of the 

Calabi-Yau orbifold (T2
)

3 /(Z2 x Z2 ) which is constructed by the inclusion of a discrete 

torsion [26]. Let us first discuss the orbifold without a discrete torsion. The Calabi-Yau 

orbifold (T2
) 3 /f where f = Z2 X Z2 is defined by Zi --7 ( -1 )e; Zi, i = 1, 2, 3 such that 

ili(-1Y; = 1. Supersymmetric 2 cycles can constructed by projecting a T 2 in (T 2? 
w!th respect to r. Similarly, supersymmetric 4-cycles can be obtained by projecting a 

product of two T 2 's with respect to r. The even-dimensional supersymmetric cycles are 

interesting in this example since the twisted Ramond ground states contribute to H 1 •
1 

and H 2•2 . Thus the latter can show up in their boundary states. 

Consider, for instance, a 2-cycle boundary state where Neumann boundary conditions 

are imposed on the z3 coordinate and Dirichlet boundary conditions on z1 , z2 • Orbifold 

boundary states are simply constructed as a sum of contributions from the untwisted and 

twisted sectors 

!B)orbijold = jB)untwisted + jB)twisted , (5.10) 
twisted sectors 

with an appropriate projection on invariant states. 

untwisted sector: 

The boundary state takes the form 

!B)untwist = exp (- f ~(t ai,_nak,-n + a£~-na~,-n) + c.c) jO) , 
n=l •=1 

(5.11) 

and projection is not required since the boundary state is f-invariant. The fermionic part 

works similarly. 

twisted sectors: 

There exist three twisted sectors corresponding to the three r group elements. Con

sider, for instance, the twisted sector corresponding to the generator a, a(z1 , z2 , z3) = 

( -z1 , -z2 , z3 ), where the f3 and rare defined by a permutation of the signs. This implies 

half integer modding for the first two coordinates and integer modding for the third. The 

other twisted sectors are simply permutations of that. 

Let us consider now the inclusion of a discrete torsion. This simply amounts to a 

change in the projection operators in the twisted sectors. Thus in the sector twisted by 

a it amounts to an inclusion of another minus sign in the transformation of states under 
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z3 -+ -z3 . This has the effect that only twisted Ramond ground states that contribute 

to H 1
•2 and H 2•1 survive the projection. Thus we end up with a Hodge diamond mirror 

to that of the orbifold without discrete torsion. It was argued in [26] that these indeed 

constitute a mirror pair, where the mirror map is T-duality. 

Upon inclusion of a discrete torsion, the interesting supersymmetric cycles are the 

middle dimensional ones. The construction of a boundary state is standard and we can 

follow the duality map. There is, however, a delicate point. The discrete torsion changes 

the projection operator, and for instance in the a twisted sector it takes the form 
1 

P = 4(1 +a- ;3 -1) , (.5.12) 

which naively annihilates the twisted sector boundary state. This is resolved by picking 

the correct ground state. Consider the Ramond sector: Related to z3 we have the fermionic 

zero modes ¢l,0 , 'l/J~.o with the boundary condition 

( 7/Jto + iry'l/J~.o) IO) = 0 , (.5.13) 

with 77 = ±1. 

Of the possible Ramond ground states only ( iry?/Jl,o + 'l/J~,o +c. c) IO) survives the projec

tion and should be picked. This is to be contrasted with the case without discrete torsion 

where the correct twisted sector Ramond ground state is (i'T! + ¢i,0¢~.o + c.c)IO). 

Consider now the D-brane matrix R = diag[o-1 , o-11 o-1]. A mirror symmetry transfor

mation is defined by: 

(.5.14) 

Thus the matrix T takes the form T = diag[o-3 , o-3 , o-3] and does not commute with R. 

Since both R and the mirror symmetry T are equivariant with respect to the Z2 x Z2 

discrete group, the same applies for the Calabi-Yau orbifold (T 2? /(Z2 x Z2 ), and we get 

the mixing phenomena as we discussed before. 

In the orbifold models, we may consider gauge field strength which belongs to the 

twisted sectors, namely localized on a particular fixed point. In this case we should expect 

that the particular twisted sector corresponding to this fixed point will be influenced. 

Thus, we are led to consider different boundary conditions R in (.5.1) for the untwisted 

and twisted sectors. It would be interesting to further explore this structure. 

6 Discussion 

We have shown that boundary states provide a framework at the SCFT level to study 

configurations of D-branes, wrapped on supersymmetric cycles in.Calabi-Yau spaces, with 
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implications on the structure of mirror symmetry between D-branes. There are various 

directions for future research. 

Understanding the role of the non-chiral primary states in the boundary state is an 

important and challenging problem. This is important since the non-chiral part carries 

information on the moduli of supersymmetric cycles. One way to explore this issue is to 

use non-linear recursion relations for the boundary states which can be derived by moving 

vertex operators on the disc to its boundary and study the boundary states associated 

with the disc splitting. 

Boundary states can be used in order to explore the moduli spaces of D-branes wrapped 

on supersymmetric cycles in Calabi-Yau spaces. This will have various applications such 

as D-brane states counting [2, 27], and may provide us with means to probe the structure 

of mirror symmetry as suggested in [22]. Moreover, we expect the boundary states to be 

also helpful in exploring mirror symmetry in higher dimensions. 

The relation that we found ·between open string worldsheet instanton corrections and 

closed string instantons counting, points to a deep structure between the corresponding 

moduli spaces which should be revealed. 

It has been shown in [28] that supersymmetric gauge theories can be realized via 

wrapping D-branes on supersymmetric cycles. The SCFT framework that we presented 

is likely to be useful in exploring this direction. 

23 



Acknowledgements 

We would like to thank K. Becker, T. Eguchi, D. Gepner, B. Greene, S. Katz, 

M. Li, J. Maldacena, D. Morrison, R. Plesser, J. Polchinski, A. Schwimmer, A. 

Strominger and C. Vafa for useful discussions. Y.O. would like to thank LBNL for 

hospitality during the final stages of this work. This work was supported in part by the 

National Science Foundation under grants PHS-9501018 and PHY-951497 and in part by 

the Director, Office of Energy Research, Office of High Energy and Nuclear Physics of 

the U.S. Department of Energy under Contract DE-AC03-76SF00098. Y.O. is partially 

supported by the Israel Science Foundation through the Center for the Physics of Basic 

Interactions. Z.Y. is supported by 'Graduate Research Fellowship of the U.S. Department 

of Education. 

24 



Appendix 

A Boundary states for Gepner models 

A Gepner model [29] can be viewed as an orbifold construction in which we project 

out states that do no satisfy the required conditions and add twisted sectors to the Hilbert 

space. This suggests that the way to construct the boundary state for a Gepner model is to 

take the product of the boundary states for the minimal model parts with the appropriate 

projection and addition of twisted sectors. 

In the following we consider the simplest example: The ( k = 1 )3 Gepner model. This 

corresponds to a sigma-model on T 2 with Z3 symmetry. In this case, each minimal model 

can be constructed by a free boson. Thus we have </;;, i = 1, 2, 3. Let us construct the 

boundary state for a D-brane wrapped on a supersymmetric 1-cycle in T 2
• Imposing the 

A-type boundary conditions implies 

(A.1) 

with constants Ci 
21r 21r 

Ci = fi)ni + (0 or fi)) , 
v3 2v3 

(A.2) 

where ni are integers and the choice of 0 or 2~ corresponds to the sign of the Ramond

Ramond charge (i.e. BPS or anti~BPS). For each choice of c;, the boundary state is 

uniquely constructed by the standard oscillator procedure. 

It is instructive to interpret this from the sigma-model viewpoint. The sigma-model 

for T 2 consists of complex free boson X and a complex free fermion 'ljJ which are related 

to <Pi by 

'1/J exp [fa ( <P1 + <P2 + </;3)] , 

ax= exp[fa(-2</;1+</;2 +</;3)] + (permutationsin1,2,3). (A.3) 

The boundary conditions (A.l),(A.2) correspond in the sigma model to 

'1/JL 

ax 

±e 2;i(n1+n2+n3)'1/JR , 

e 2;i(n1+n2+n3)8X . (A.4) 

The case n1 + n 2 + n3 = 0 mod 3 corresponds to the Neumann boundary condition 

on the {X = real} cycle of T 2
, while n1 + n 2 + n3 = 1 or -2 mod 3 correspond to 
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Neumann boundary conditions on the Z3 related 1-cycles. We see that the different 

choices of boundary conditions for the Gepner model correspond to the different choices 

of supersymmetric 1-cycles. We expect that such relations between the algebraic and the 

geometric structures should exist in general. 

The boundary state takes the form IE) = IB)xiB),p where 

IB)x exp [ -e 
2

;i(n1 +n2 +n3
)(; ~aL,-naR,-n + c.c)]IO), 

IB),p = exp [±ie 2;i(n 1 +n2 +n3 )(~~L,-n~R,-n + c.c)]IO). (A.5) 

Note that from the chiral primary states only the (c,c) ring {1, ~L~R} and its complex 

conjugate (a, a) ring contribute to the boundary state as expected. 
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