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Abstract 

A perturbed hard-sphere-chain (PHSC) equation of state is developed for normal 

fluids and polymers, including mixtures. The new PHSC equation of state for pure fluids 

uses a perturbation term based on the analytic solution by Chang and Sandler to the 

second-order perturbation theory of Barker and Henderson for the square-well fluid of 

variable width. The reference equation of state is the modified Chiew equation of state 

for athermal mixtures of hard-sphere chains as used in the original PHSC equation of 

state. The analytic solution by Chang and Sandler is simplified such that theory is readily 

extended to mixtures by conventional mixing rules. Using an optimum system-

independent reduced well width, the new PHSC equation of state correlates the vapor 

pressures and liquid densities of saturated liquids with good accuracy. Combined with 

one-fluid type mixing rules for the perturbation term, theory is applied to liquid-liquid 

and vapor-liquid equilibria for binary mixtures where all components have the same 

reduced well width. Calculations were also made for a polymer solution where each 

component has a different reduced well width. In solvent/polymer systems, calculated 

liquid-liquid equilibria are sensitive to the reduced well width. The perturbation term, 

however, neglects chain connectivity. 

* to whom correspondence should be addressed 
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1. Introduction 

Because of recent advances in the theory of athermal, chain-like molecules in 

continuous space, much attention has been given to the development of off-lattice 

equations of state for real chain fluids based on perturbation theories. Equations of state 

for chain fluids are capable of correlating the thermodynamic properties of normal fluids 

as well as those of polymers. Using appropriate mixing rules for the perturbation term, 

these equations of state are also applicable to fluid mixtures, including polymer solutions 

and blends. Recent off-lattice equations of state that have been applied to real systems 

include the statistical association fluid theory (SAFT) equation of state by Huang and 

Radosz (1990 and 1991 ), the simplified SAFT equation of state by Fu and Sandler 

(1995), the generalized Flory dimer equation of state by Bokis et al. (1994), and the 

perturbed hard-sphere-chain (PHSC) equation of state by Song et al. (1996) The present 

work concerns an improvement of the PHSC equation of state. 

The PHSC equation of state uses the modified Chiew equation of state (Song et 

al., 1994a) for athermal hard-sphere-chain mixtures as the reference equation of state and 

a van der Waals type perturbation term (Song et al., 1994b). The PHSC equation of state 

requires three parameters to describe pure fluids: the depth of the pair potential, the 

segmental diameter, and the number of effective hard spheres per molecule. The PHSC 

equation of state has been used to correlate and in part to predict vapor-liquid equilibria 

(VLE) for polymer solutions (Gupta and Prausnitz, 1995) and liquid-liquid equilibria 

(LLE) for polymer solutions and blends (Lambert et al., 1995b; Song et al., 1996; Hino et 

al., 1996), including those for copolymer blends (Hino et al., 1995). Extensive 

application of the PHSC equation of state to real systems, however, revealed some 

shortcomings of the model. 

For some normal alkanes (Koak and Heidemann, 1996), the PHSC equation of 

state does not correlate the thermodynamic properties of saturated liquids as well as 

lattice-based models such as the lattice-fluid theory of Sanchez and Lacombe (1976; 
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1978). When applied to LLE for dilute and semidilute polymer solutions, the PHSC 

equation of state overestimates the equation-of-state effect that causes lower critical 

solution temperatures (LCSTs) at elevated temperatures (Hino et al., 1996). In polymer 

solutions, the PHSC equation of state predicts LCSTs at temperatures lower than those 

measured. To correct the overestimated equation-of-state effect, the perturbation term 

requires a semiempirical parameter that decreases the contribution from polymer 

molecules in the perturbation term for polymer solutions (Hino et al., 1996). In addition, 

to fit mixture data, the additivity equation of effective hard-sphere diameters was often 

relaxed between a pair of unlike segments in the reference equation of state (Song et al., 

1996). 

The occasional poor performance of the PHSC equation of state is partly due to 

the use of a simple van der Waals type perturbation term whose density dependence is 

proportional to the number density. As a first step to improve the PHSC equation of 

state, for pure fluids, we replace the van der Waals perturbation term with a theoretical 

perturbation term; we use the analytic solution by Chang and Sandler (1994a, b) to the 

second-order perturbation theory of Barker and Henderson (1967) for the square-well 

fluid of variable width. The solution by Chang and Sandler is completely analytic 

because it uses the real expression for the radial distribution function of hard spheres 

obtained by the same authors (1994a). We simplify the analytic solution by Chang and 

Sandler (1994b) such that the perturbation term is readily extended to mixtures through 

conventional mixing rules. Unfortunately, however, the perturbation term neglects chain 

connectivity. 

No mixing rules are required for the reference term. To extend the perturbation 

term for pure fluids to mixtures, we use a one-fluid type mixing rule. We examine the 

effect of well width on phase equilibria for mixtures; particular attention is given to LLE 

and VLE for binary solvent/polymer systems. In one set of calculations, all reduced well 
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widths are equal; in another set, we allow the reduced well width of one component to be 

different from that of the other. 

2. The PHSC equation of state 

The PHSC equation of state consists of a reference term and a perturbation term 

that represent repulsive and attractive interactions, respectively: 

(_P )=(-P ) +(-p ) 
pkBT pkBT ref pkBT pert 

(1) 

where p is the pressure, p=N!V is the number density (N is the total number of molecules 

and V is the volume), kB is the Boltzmann constant, T is the absolute temperature, and 

subscripts ref and· pert denote the reference equation of state and the perturbation term, 

respectively. 

2.1. Reference equation of state 

The PHSC equation of state (Lambert et al., 1995b; Song et al., 1994b and 1996) 

uses the modified Chiew equation of state (Song et al., 1994a) for athermal hard-sphere-

chain mixtures as the reference equation of state. For mixtures of homonuclear hard-

sphere chains, the reference equation of state is 

m m m 

(_P_) = 1 + p" ""'x.r.r.rb .. f.! .. (d~)-""' x.(r.-1fg .. (d~)-1] 
Pk T f L.,; L.,; ("j I 1 IJV lj lj L.,; I I II II 

B rc i=l j=l i=l 

(2) 

where m is the number of components, X; is the mole fraction, r; is the number of hard 

spheres per molecule, d: is the hard-sphere diameter, and g ;) d:) is the radial distribution 

f~nction at contact prior to bonding; bij=27rdj3 is the parameter that represents repulsive 

interaction on a segmental basis. In the above and following equations, subscript i 
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denotes component i and subscript ij denotes a pau of hard spheres comprising 

components i and j. 

In the new PHSC equation of state, we do not introduce a temperature dependence 

into the hard-sphere diameter; parameter bij is therefore given by 

_ 1 ( 1/3 1/3 )
3 

b··-- b .. +b .. 
I} g11]] 

where 

- 2 3 b .. - -1[(J .. 
II 3 II 

where CI;; is the hard-sphere diameter of component i. 

The radial distribution function at contact is given by (Song et al., 1994a) 

2 

I ~·· +- I} 

2 (1-77)3 

where 77 is the packing fraction of the mixture given by 

and ~ij is a particular form of the reduced density defined by 

(b I 

)

1/3 nl p .. ).. '1(3 

~ij = 4 ~.~' ~ x;r;b;j . 
I) 1=1 

5 

(3) 

(4) 

(5) 

(6) 

(7) 



2 2. Perturbation term 

To improve the PHSC equation of state for pure fluids, we replace the 

oversimplified van der Waals perturbation term in the original theory by a theoretical 

perturbation term for the square-well fluid. Our perturbation term differs from those used 

in the original and simplified SAFT equations of state which also use perturbation 

theories for the square-well fluid. For perturbation terms, the original SAFT equation of 

state (Huang and Radosz, 1990 and 1991) uses the equation of Chen and Kreglewski 

( 1977) based on computer simulations and the simplified SAFT equation of state (Fu and 

Sandler, 1995) uses the theoretical equation of Lee et al. (1985) 

In this work, we use the analytic sol uti on by Chang and Sandler (1994a, b) to the 

second-order perturbation theory of Barker and Henderson (1967) for the square-well 

fluid of variable width. Chang and Sandler derived a completely analytic solution by 

using the real expression for the radial distribution function of hard spheres obtained by 

the same authors (1994a). We simplify the analytic solution by Chang and Sandler 

(1994b) such that the perturbation term is readily extended to mixtures using a 

conventional one-fluid mixing rule. A useful advantage of the theory by Chang and 

Sandler is that the well width can be varied systematically. 

2.2.1. Puref!uids 

Consider a molecular fluid consisting of r segments per molecule at packing 

fraction T]. We assume that the perturbation term for the Helmholtz energy is given by 

_A_ =r _A __ 
{ 

r=l ) 

(NkgT )pert NkgT pert 
(8) 

where A r=l is the Helmholtz energy of N molecules of the simple fluid at packing fraction 

T]. For (A r= 1
!Nk8T )pert. we use the Helmholtz energy for the square-well fluid. 

The square-well potential is defined by 
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~R)=( ~e R<a 

a-5, R < A.a 

R?:. A.a 

(9) 

where u(R) is the pair potential, R is the intermolecular distance, a is the hard-sphere 

diameter, £is the depth of the well, and A. is the reduced well width. 

By combining Eq. (8) with the second-order perturbation theory of Barker and 

Henderson for the square-well fluid (1967; Chang and Sandler, 1994b), the perturbation 

term for the Helmholtz energy is given by 

( 
A ) _ ( A 1 ) ( A2 ) 

NkBT pert- NkBT pert+ NkBT pert 
(10) 

where A 1 and A 2 are the first- and second-order perturbation terms, respectively, for the 

Helmholtz energy; they are given by 

(11) 

(12) 

where If/ is a function of 17 and A. resulting from the integration of the radial distribution 

function for hard spheres in the range a<_.R-5,A.o. To assure that Eq. (11) reduces to the 

perturbation term in the original PHSC equation of state, the numerical coefficients in 

Eqs. (11) and (12) were chosen to be 4 and 2, respectively, instead of 12 and 6 as used by 

Chang and Sandler (1994b ). 

For lf/=1, the right-hand side of Eq. (11) is -1·
2
ap !kBT where a=2na

3 
£13, namely, 

the original perturbation term without the universal function which provides an additional 
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temperature dependence (Song et al., 1996). Therefore, the perturbation term in the 

original PHSC equation of state is identified as the limiting expression of the present 

model. The original PHSC equation of state sets A2=0; it uses only Eq. (11) with a 

density-independent P and an additional temperature dependence. Essentially, the van 

der Waals perturbation term employs the mean-field approximation where the radial 

distribution function is assumed to be independent of density. 

Similar to Eq. (I 0), the perturbation term for the equation of state is given by 

(13) 

where p 1 and p2 are the first- and second-order perturbation terms for the equation of 

state given by 

(14) 

(15) 

By substituting 7J=rprcci!6 into the packing fraction in Eqs. (11) to (15), the 

perturbation terms can also be written as 

(16) 
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(17) 

( 
P1 ) 2 2 3( ) ( d 'f') -- = - -rrr u _g_ p 'f' + T] -

pkBT pert 3 kBT dT] 
(18) 

Chang and Sandler (1994b) gave an analytic expression for lf{TJ,A} in the range 

1 <~2 using the real expression for the radial distribution function of hard spheres 

obtained by the same authors (l994a). In this work, we obtain a simplified expression for 

'f' by fitting the analytic equations by Chang and Sandler to a polynomial function of T] 

for a given value of A; lf' is given by 

(20) 

where c k is a coefficient that depends only on A. Table I gives c k for several values of A 

used in this work. 

2.2 .2. Mixtures 

To extend rigorously the perturbation theory of Barker and Henderson to 

mixtures, we require real expressions for the radial distribution functions for hard-sphere 

mixtures. Such expressions, however, are not available at present. Therefore, we use 
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conventional one-fluid mixing rule to extend the perturbation term for pure fluids to 

mixtures. 

We consider first the case where all components of the mixture have the same 

reduced well width, i.e., where Aij = A. We then introduce one-fluid type mixing rules by 

defining the average quantities of equation-of-state parameters appearing in Eqs. (16) to 

(19) by 

(
23) mm 3 

r CJ £ = L L Xf/l}CJij £ij 
i=l j=l 

(21) 

(22) 

where the ang,ular bracket denotes an average property of the mixture. Equations (21) 

and (22) assume a random mixing of segments and neglect chain connectivity. For 

function '¥in Eqs. (16) to (19), Eq. (20) still holds for mixtures by using the packing 

fraction of the mixture. 

We also consider a mixture where each component has a different reduced well 

width. In that event, possible mixing rules for the first- and second-order perturbation 

terms for the Helmholtz energy are 

(23) 

(~) __ l (I - 77)
4 ~ ~ . . . ·~(_5L)

2

( + () 'Pij) 
N k T , - 3 np ( 2) ~ ~ Xr-'/ / jcr11 k T 'Pij 71 () . 

B pert 1 + 477 + 477 t=l J=l B 7] 

(24) 

Mixing rules similar to Eqs. (23) and (24) also define the first- and second-order 

perturbation terms for the equation ofstate. For a given reduced well width Aij' function 
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by 

10 

P .. (TJ,A...} = ""' c .. k (A...)T]k-1 
I) IJ L,_; lj," I) 

(25) 
k=l 

We use conventional combining rules to· define parameters for interactions 

between a pair of unlike segments 

(J" .. = l ( (J" .. + (J" .. ) 
1) 2 II }} 

(26) 

c; .. = (1- }( .. \ ~ 
11 IJ r '-'ii'-'jj (27) 

where K"ij is an adjustable intersegmental parameter. 

3. Phase-equilibrium calculations 

The Helmholtz energy of the mixture is calculated by (Prausnitz et al., 1986) 

m A o lp d m 
_A_="""' x.-i-+ (-p--lff+""' x.ln(xpk T) 
Nk T ~ INk T pk T p ~ I I B 

B I= 1 B 0 Fl 1=1 

(28) 

where A~ is the Helmholtz energy of N molecules of component i in the reference state. 

The reference state is pure ideal gas at unit pressure and at the temperature of the mixture. 

The Helmholtz energy of the mixture is given by Song eta!. (1994c) and by Lambert et 

al. (1995 a and b). 

We compute temperature-composition diagrams for binary mixtures containing 

two solvents, a polymer and a solvent or two polymers. For a fixed temperature, the 
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coexistence curve is calculated by equating the pressure and, for each component, 

chemical potential f.l; of coexisting phases. The chemical potential of component i is 

defined by 

( oA ) p=-
i - oN; T. v. Ni'' 

(29) 

where N i is the number of molecules of component i. For polymer solutions, theoretical 

coexistence curves are calculated at the vapor pressure of the solution. In that event, the 

vapor phase is assumed to be a pure solvent. Calculations are made at zero pressure for 

polymer blends and for mixtures of normal fluids at low or ambient temperatures. 

We also compute the liquid-liquid critical point of the mixture where the 

coexisting phases become identical. For binary mixtures, the conditions for the critical 

point are 

(30) 

(31) 

where xis the mole fraction of component I or 2 and G =A+ pV is the Gibbs energy of 

the Inixture. Equation (30) alone is the condition for the spinodal curve which defines the 

boundary between metastable and unstable regions in a temperature-composition 

diagram. Equations (30) and (31) are expressed in terms of the partial derivatives 9f the 

pressure and those of the Helmholtz energy per molecule (Prigogine, 1957); these 

derivatives can be obtain analytically. The coexistence curve and the spinodal curve 

merge at the critical point. 
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The new PHSC equation of state is also applied to VLE for binary polymer 

solutions by computing pressure-composition diagrams at constant temperature. VLE for 

binary polymer solutions are calculated by assuming that the vapor phase is pure solvent. 

For a fixed temperature, the pressure of the system and the composition of the liquid 

phase are computed by equating the pressure and the chemi~al potential of solvent in the 

vapor phase to those in the liquid phase. This computational procedure, however, does 

not provide information on the stability of the liquid phase; it does not tell us if the vapor 

is in equilibrium with one or two liquid phases The condition for the spinodal curve is 

particularly useful to examine if the model predicts a single homogeneous liquid phase 

using the binary parameter obtained from VLE data. 

4. Results 

4.1. Pure components 

4.1.1 Normal fluids 

In the present model, we are free to specify the reduced well width represented by 

parameter A. in Eq. (9). Essentially, A. affects the density dependence of the perturbation 

term through function t.p given by Eq. (20). In our first set of calculations, we first obtain 

the optimum A. for methane and use it for all fluids, including polymers. 

We regress equation-of-state parameters for normal fluids by fitting 

simultaneously the saturated vapor pressure (Psat) and liquid density (p 1~~t) of the 

saturated liquid at several equally spaced temperatures. The nonlinear least-squares 

regression defines the objective function as the sum of squares of the relative deviations 

between calculated and experimental values with respect to the experimental values. In 

the objective function, we equally weight the contribution from saturated vapor pressure 

and that from saturated liquid density. 

Using r=l, the optimum reduced well width for methane is .?..=1.455. Table 2 

gives equation-of-state parameters for the new PHSC equation of states for normal fluids 
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with A.=l.455. For each fluid, Table 2 also gives the range of temperature and the number 

of data points used in the regressions. Although data close to the critical point are 

included, the root-mean-square relative deviations for the new PHSC equation of state are 

smaller than those for the original PHSC equation of state (Lambert, 1995a). Lambert 

used data between 0.5<TITc<0.9 where Tc is the vapor-liquid critical temperature of a 

pure fluid. 

Figures 1 a and 1 b show the percentage relative deviation between calculated and 

experimental vapor pressure and saturated liquid density, respectively, for n-hexane 

(Tc=507.7 K). To compare the new with the original model, we redetermine the 

equation-of-state parameters for the original PHSC equation of state (Lambert, 1995a; 

Song et al., 1996) from the same data used to regress the equation-of-state parameters for 

the new PHSC equation of state. The new PHSC equation of state with A.=l.455 

correlates the saturated properties of n-hexane much better than the original PHSC 

equation of state. However, similar to all equations of state of the van der Waals form, 

the new PHSC equation of state performs poorly near the critical point. 

Table 2 also shows, for selected fluids, the equation-of-state parameters for the 

new PHSC equation of state with A= 1.38, 1.32, and 1.3. The quality of correlations of 

saturated properties declines as A. decreases. Therefore, only the data up to about 0.9 

times the critical temperature were used to regress the equation-of-state parameters for 

A.=1.32 and 1.3. In Table 2, we present equation-of-state parameters for A.~1.455 

because, when theory uses the same A for all components, theory with 1\.2:1.455 does not 

give good predictions of LLE for solvent/polymer systems. As shown later, predictions 

of LLE for polymer solutions improve as A decreases. 

The present model is not applicable to associating fluids such as water and acetic 

acid. As shown in Table 2, the correlation of saturated properties of acetic acid is not as 

good as those for non-associating fluids. 
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4.1.2. Polymers 

We use the pure-component pressure-volume-temperature (PVT) data of polymers 

to regress equation-of-state parameters for polymers. The pure-component PVT data of 

poly(vinyl methyl ether) (PVME), however, are not tabulated in the literature. The PVT 

data of PVME were therefore simulated in the range 100 to 200 ·c and 1 to 500 bar by 

the Simha and Somcynsky equation of state (Rodgers, 1993) using parameters given by 

Rodgers (1993). 

Similar to the regression procedure for polymers used with the original PHSC 

equation of state, we use the equation of state in the limit r~oo (Lambert, 1995a; Song et 

a!., 1994b). Table 3 gives the equation-of-state parameters for the new PHSC equation of 

state for common polymers with A= 1.455. For polymers, one of the equation-of-state 

parameters is riM where M is the molecular weight of polymer. Table 3 also gives, for 

selected polymers, equation-of-state parameters for different values of A. Using only 

PVT data, it is not possible to determine an optimum A for polymers. 

4.2. Mixtllres of fluids having the same A 

4.2.1. Mixwres v.1ith A=1.455 
' 

We first compare calculated phase diagrams with experiment for mixtures where 

all components are characterized by A=l.455. In that event, mixing rules for the first-

and second-order perturbation terms for the Helmholtz energy are given by Eqs. (21) and 

(22), respectively. Figures 2a and 2b compare theoretical coexistence curves with 

experiment for the systems methane I tetrafluoromethane (Croll and Scott, 1958) and n-

octane/acetic acid (Sorensen and Arlt, 1979), respectively. In the latter system, specific 

interactions between acetic acid molecules are not considered in mixtures as well as in 

pure fluids. As shown in Table 2, reasonable correlations are obtained for the saturated 

vapor pressure and liquid density of acetic acid without introducing specific interactions. 

In both systems shown in Figure 2, calculated coexistence curves are narrow compared to 
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experiment, probably because the present model assumes random mixing of segments in 

Eqs. (21) and (22). 

Using equation-of-state theories, it is difficult to correlate LLE for polymer 

solutions. Typical miscible polymer solutions exhibit LCSTs at elevated temperatures 

due to the equation-of-state effect. The equation-of-state effect in polymer solutions 
7" 

results from the compressibility disparity between expanded solvents and relatively dense 

polymers. When the equation-of-state parameters for polymers are obtained from 

polymer PVT data, equation-of-state theories often overestimate the equation-of-state 

effect in polymer solutions, predicting LCSTs which are lower than those measured. As 

discussed in detail by Hino et al. (1996), the original PHSC equation of state 

overestimates the equation-of-state effect in polymer solutions. 

Figure 3 compares theoretical coexistence curves for A= 1.455 with experiment for 

the system benzene/polystyrene (Saeki et al., 1973b). In polymer solutions, the new 

PHSC equation of state also predicts LCSTs at temperatures lower than those measured. 

The new model, however, does not overestimate the equation-of-state effect as severely 

as the original model. In the system benzene/polystyrene, the new PHSC equation-of-

state at least predicts miscibilities at low temperatures without using a binary parameter. 

The calculated LCST, however, cannot be matched with experiment by adjusting binary 

parameter K12, because that parameter primarily affects the enthalpic effect, not the 

entropic equation-of-state effect. 
\_ 

As discussed by Hi no et al. ( 1996), it is necessary to introduce a semi empirical 

parameter to correlate LLE for polymer solutions. The overestimation of the equation-of-

state effect in polymer solutions is most likely caused by the overestimated contribution 

from the polymer in the perturbation term. Because segmental interactions (e.g., 

excluded-volume effect) are not sufficiently screened out in dilute and semidilute 

polymer solutions, a pair of polymer molecules in these concentration ranges may not 

interpenetrate as extensively as they do in pure polymer melts where equation-of-state 
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parameters for polymers are obtained. The number of contacts between polymer 

segments may be overestimated in Eqs. (21) and (22) because these equations assume 

uniform distribution of polymer segments at all mixture compositions. 

Consider a binary polymer solution where components 1 and 2 represent the 

solvent and polymer, respectively. Similar to previous studies (Hino et al., 1996; Song et 

al., 1996), we replace r2, the number of segments per polymer molecule, in Eqs. (21) and 

* (22) by r 2 defined by 

(32) 

where parameter?; is a constant smaller than unity. Equation (32) replaces r 2 in Eqs. (21) 

and (22) only. All other equations remain unchanged. Strictly, parameter ?; is a function 

of the mixture composition and, possibly, of the molecular weight of polymer. To 

simplify the problem, however, we assume that parameter t; is independent of these 

variables. As shown in Figure 3, the calculated LCST is readily raised toward the 

experimental result by using parameter ?; alone. However, for the system shown in 

Figure 3, the calculated critical composition is small compared to experiment. 

Figure 4a compares the theoretical coexistence curve for ll=l.455 with experiment 

for the system n-pentane/polyisobutylene (Liddell and Swinton, 1970). Theory and 

experiment show good agreement using only one adjustable parameter ?;. The parameter 

obtained from the LLE data in Figure 4a, however, cannot correlate the VLE data for the 

same system. Figure 4b compares theoretical pressure-composition curves for ll=1.455 

with experiment for the system n-pentane I polyisobutylene at 35 ·c (Prager et al., 1953). 

The solid curve is for A=l.455 with K12=0 and (=0.8347; they are obtained from the LLE 

data shown in Figure 4a. The solid curve overestimates the amount of solvent in the 

liquid phase. 
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To correlate the VLE data shown in Figure 4b, it is necessary to make the 

interaction between solvent and polymer segments more unfavorable by increasing K12. 

The broken curve in Figure 4b was calculated for A=l.455 with K12=0.03 and (=0.8347. 

Using these parameters at 35 ·c, however, theory predicts phase separation as the weight 

fraction of polymer declines. 

An analysis based on the Flory-Huggins theory (Flory, 1953) also shows that for 

the system n-pentane/polyisobutylene, a composition-independent X parameter correlates 

the VLE data shown in Figure 4b but incorrectly predicts phase separation at high 

dilution (Prager et al., 1953). We note some similarities between the Flory-Huggins 

theory and the PHSC equation of state. The athermal entropy of mixing calculated from 

Eq. (28) reduces to that of the incompressible Flory-Huggins lattice model (Flory, 1953) 

when mixing is at constant temperature and constant volume, assuming that the segment 

diameter is the same for all components and that the packing fractions of pure 

components before mixing are the same as those in the mixture (Song et al., 1994 a and 

c). In addition, Eqs. (21) and (22) assume random mixing of segments as used by the 

Flory-Huggins theory. To represent simultaneously the LLE and VLE of the system n

pentane/polyisobutylene, it would be necessary to introduce a composition dependence 

into parameter K 12 and/or parameter (. The need for such empiricism indicates serious 

shortcomings in our present ability to establish a satisfactory theory for polymer solutions 

applicable to the entire composition range using a unique set of binary parameters. 

The new PHSC equation of state is also applicable to polymer blends. Figures 5a 

and 5b compare theoretical coexistence curves with experiment for the systems poly(a-

methylstyrene)/polystyrene and poly(vinyl methyl ether)/polystyrene, respectively. 

Because experimental PVT data are not available for poly(a-methylstyrene), the 

equation-of-state parameters for poly(o-methylstyrene) are used as those for poly(a

methylstyrene). For each system, only parameter K12 is adjusted to match calculated and 

observed critical solution temperatures. The new PHSC equation of state is able to 
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represent upper-critical-solution-temperature (UCST) behavior as well as LCST behavior. 

In the system poly(vinyl methyl ether)/polystyrene, theoretical coexistence curves are 

narrow compared to experiment. As discussed by Sanchez and Balazs (1989), one 

possible explanation for this discrepancy is the presence of weak specific interactions 

between poly(vinyl methyl ether) and polystyrene. 

For the systems shown in Figure 5, the new PHSC equation of state shows an 

improvement over the original model because the new model requires only K12 to 

correlate the dependence of critical solution temperature on the polymer molecular 

weight. To achieve such correlations, the original PHSC equation of state (Song et al., 

1996) required two adjustable parameters; namely, K12 and an additional adjustable 

parameter that relaxes the additivity equation for effective hard-sphere diameters b ij (i~j) 

given by Eq. (3). 

4.2.2. Polyethylene solutions with A=l.32 

Because the van der Waals perturbation term corresponds to the square-well 

potential in the limit /l~oo, we expect that the overestimated equation-of-state effect 

decreases as A declines. Compared to the original PHSC equation of state, with a van der 

Waals-type perturbation term, the magnitude of overestimation of the equation-of-state 

effect decreases slightly in the new PHSC equation of state with A=l.455. 

Indeed, for binary polyethylene solutions in n-alkanes, the calculated LCSTs for 

A= 1.32 agree with those measured without using the semi empirical parameter t; defined 

by Eq. (32). Figures 6a and 6b compare theoretical coexistence curves with experiment 

for the systems n-hexane/polyethylene (high density) and n-octane I polyethylene (high 

density), respectively (Hamada et al., 1973). For each system, intersegmental parameter 

K12 was adjusted slightly to match the calculated LCST with the measured LCST for the 

highest molecular weight of polyethylene. Equation-of-state parameters for A=l.32 are 

given in Tables 2 and 3 for solvents and polyethylene, respectively. While good 
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correlations of polymer PVT data are obtained, calculations with A=l.32 do not correlate 

the saturated properties of solvents as well as those with A=1.455. 

In polymer solutions, the overestimated equation-of-state effect decreases as 

parameter A. declines probably because the density dependence of the perturbation term 

becomes strong as parameter A. decreases. Equation-of-state parameters for polymers are 

regressed from PVT data of pure polymer melts whose densities are larger than those of 

dilute and semidilute polymer solutions. Therefore, in the perturbation term for a binary 

polymer solution, the contribution from the polymer, relative to that from the solvent, 

may decrease as parameter A. declines. The overestimation of the equation-of-state effect 

can be reduced by decreasing the contribution from the polymer to the perturbation term. 

'' 

4.2.3. Polystyrene solutions 'l.•ith A=l.3 

As shown in Figure 7a, calculations with A=1.3 give good correlations of LCSTs 

for the system benzene/polystyrene (Saeki et al., 1973b). Intersegmental parameter K12 

was adjusted slightly to match the calculated LCST with that measured for the highest 

molecular weight of polystyrene. In polystyrene solutions in various solvents, calculated 

coexistence curves are always narrow compared to experiment. 

Figure 7b compares theoretical pressure-composition curves for A=1.3 with 

experiment for the system benzene/polystyrene (Noda et al., 1984) Intersegmental 

parameter K12(= - 0.006) is the same as that used to correlate the LLE data shown in 

Figure 7a. At 60 and 45 °C, theoretical curves are slightly underpredicted. Although not 

shown in Figure 7b, good correlations of the VLE data can be achieved by slightly 

adjusting intersegmental parameter K12 . 

However, calculations with A=l.3 overestimate the equation-of-state effect in the 

system cyclohexane/polystyrene. Using A= 1.3, Figure 8 compares theoretical and 

experimental coexistence curves for the system cyclohexane/polystyrene which exhibits 

both UCST and LCST as shown in Figures 8a and 8b, respectively (Saeki et al., 1973a). 

20 



In this system, theory overestimates the dependence of UCST on the molecular weight of 

polymer. 

Figure 9 compares theoretical pressure-composition curves for the system 

cyclohexane/polystyrene at 34 ·c (Krigbaum and Geymer, 1959). Contrary to the system 

n-pentane/polyisobutylene shown in Figure 4b, there is no single set of parameters 1(12 

and (that correlates the experimental VLE data over the entire composition range. To fit 

the VLE data shown in Figure 9, intersegmental parameter 1(12 needs to become 

progressively unfavorable as the weight fraction of polystyrene rises. This observation 

for the system cyclohexane/polystyrene is consistent with the analysis based on the Flory

Huggins theory (Krigbaum and Geymer, 1959). 

4.3. Mixtures offluids having different A 

Finally, we consider the mixture where each component has a different reduced 

well width. In that event, mixing rules for the first- and second-order perturbation terms 

for the Helmholtz energy are given by Eqs. (23) and (24), respectively. In Eqs. (23) to 

(25), the reduced well width is adjustable for every U pair of segments. 

We consider binary solvent/polymer systems where components 1 and 2 represent 

solvent and polymer, respectively. The mixing rules given by Eqs. (23) and (24) also 

eliminate the overestimated equation-of-state effect in polymer solutions when smaller 

reduced well widths are assigned for polymers. Figure 10 compares theoretical 

coexistence curves with experiment for the system cyclohexane/polystyrene. Theoretical 

curves are calculated with Eqs. (23) to (25) for the mixture where e_ach component has a 

different reduced well width. In Figure 10, A. 11 =1.455, A-22 =1.24, and A-12 =1.33. 

For calculations of LLE in polymer solutions, the new PHSC equation of state no 

longer overestimates the equation-of-state effect when small reduced well widths are 

assigned for the polymer. The reduced well width of the solvent does not affect 

significantly the degree of overestimation of the equation-of-state effect in polymer 
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solutions. When LLE calculations are performed for a binary polymer solution with 

component-dependent reduced well width, the reduced well width for solvent can be set 

to 1.455 for all solvents. However, the reduced well width for polymer and that between 

solvent and polymer are adjustable parameters which may depend on solvent. 

4.4. Use of a more accurate reference equation of state 

The modified Chiew equation of state for non-attracting chains does not represent 

accurately all of the available computer-simulation data for athermal hard-sphere chains 

and their mixtures. For example, the modified Chiew equation of state fails to predict the 

second virial coefficient of athermal hard-sphere chains in the limit r-7oo. This failure 

probably follows because in the chain-connectivity term, i.e., the last term of Eq. (2), the 

modified Chiew equation of state uses the radial distribution function at contact for hard

sphere systems prior to forming hard-sphere chains. 

Recently, Hu et al. (I 996) presented an equation of state for athermal hard-sphere

chain systems which accurately represents available computer-simulation data for hard

sphere-chain systems, including those for the second virial coefficient for hard-sphere 

chains. Hu's equation considers the nearest-neighbor and next-to-nearest-neighbor 

correlations in the chain-connectivity term; these correlations are neglected in the 

modified Chiew equation. 

We have also combined the perturbation term presented in this work with Hu's 

reference equation of state. The resulting equation of state differs from the new PHSC 

equation of state developed in this work only in the chain-connectivity term of the 

reference equation of state. Although Hu's equation for athermal systems is slightly 

better than Chiew's equation, when applied to reai systems, the behavior of the perturbed 

Hu equation of state is very similar to that of the new PHSC equation of state. The 

perturbed Hu equation of state with component-independent A=l.455 also overestimates 

the equation-of-state effect in polymer solutions. Therefore, overestimation of the 
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equation-of-state effect is most likely caused by neglect of chain connectivity in the 

perturbation term. 

5. Conclusions 

The new PHSC equation of state uses the perturbation term for the square-well 

fluid of variable reduced well width represented by parameter A. Parameter A 

systematically varies the density dependence of the perturbation term. Chain 

connectivity, however, is neglected in the perturbation term. The reference equation of 

state is the modified Chiew equation of state for athermal mixtures of hard-sphere chains 

as used in the original PHSC equation of state. 

Without introducing temperature dependences into equation-of-state parameters, 

the new PHSC equation of state with A= 1.455 correlates the saturated thermodynamic 

properties of normal fluids much better than the original PHSC equation of state that uses 

a van-der-Waals-type perturbation term. For polymers, the new PHSC equation of state 

gives good correlations of pure-component PVT data for several values of A. 

In the perturbation term for mixtures: the present model assumes one-fluid mixing 

rules. Mixture calculations were made first for the mixture where all components have 

the same well width. The new PHSC equation of state is applicable to mixtures of 

normal fluids, polymer solutions, and polymer blends. Theory is able to represent UCST 

and LCST behaviors in polymer solutions and blends. For polymer solutions where all 

components have the same A, the new PHSC equation of state with A=1.455 

overestimates the equation-of-state effect and predicts LCSTs at temperatures lower than 
\ 

those measured. Similar to the original PHSC equation of state, the new model with 

A=l.455 requires a semiempirical adjustable parameter to correlate LCSTs in polymer 

solutions. 

For mixtures where all components have the same A, the magnitude of 

overestimation of the equation-of-state effect decreases as parameter A declines. When 
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parameter A is adjusted for a given mixture, the new PHSC equation of state is able to 

correlate LCSTs in polymer solutions without using the semiempirical parameter required 

for the theory with A=l.455. In that event, however, theory does not correlate the 

saturated properties of normal fluids as well as that with A=l.455. 

Calculations were also made for the mixture where each component has a 

different reduced well width. In that event, the overestimated equation-of-state effect is 

also eliminated when the equation-of-state parameters for A=l.455 and those for an 

appropriate smaller A are used for solvent and polymer, respectively. 

Probably because of the neglect of chain connectivity in the perturbation term, it 

is necessary to adjust the reduced well width for polymers to eliminate the overestimated 

equation-of-state effect in polymer solutions. The present model for polymer solutions 

may be improved further by explicitly taking account of chain connectivity in the 

perturbation term using the radial distribution function for hard-sphere chains. 

6. List of sym bois 

A 

b 

m 

N 

Helmholtz energy 

first-order perturbation term for the Helmholtz energy 

second-order perturbation term for the Helmholtz energy . 

equation of state parameter 

coefficient in Eq. (20) 

hard sphere diameter 

Gibbs energy 

radial distribution function of hard spheres at contact 

-23 -1 
Boltzmann constant (1.3806 x 10 J K ) 

-I 
molecular weight of polymer (g mol ) 

number of component 

total number of molecules 
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p pressure 

p 1 first-order perturbation term for the equation of state 

p2 second-order perturbation term for the equation of state 

R intermolecular distance 

r number of hard spheres per molecule 

* r 2 reduced number of hard spheres per polymer defined by Eq. (32) 

T absolute temperature (K) 

Tc vapor-liquid critical temperature of pure fluid (K) 

u(R) pair potential 

V volume 

x mole fraction 

Greek symbols 

E depth of the square well 

·c; adjustable parameter in Eq. (32) 

17 packing fraction 

I( intersegmental parameter 

'I reduced well width of the square well A 

J1 chemical potential 

~ reduced density defined by Eq. (7) 

p number density 

a hard sphere diameter 

'¥ function defined by Eq. (20) 

Subscripts 

component i 

ij a pair of components i and j 
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liq refers to the saturated liquid 

pert perturbation 

ref reference 

Superscripts 

o refers to the reference state of pure component 

r=l refers to the simple fluid 

sat refers to the saturated liquid and vapor 
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TABLE 1. Coefficient ck(A.) for Function 'f' 

A. 

1.24 1.3 1.32 

c, 0.3022084253E+00 0.39900 16466E+00 0.4333244221E+00 

c2 0.5909127869E+00 0.7267314500E+OO 0.7701829549E+OO 

c3 0.590 1659702E+00 0.591 0623606E+00 0.57 56557353E+OO 

c4 0.3931775147E+00 0.2867 504940E+00 0.2387357806E+00 

cs 0.3330695650E-O 1 - 0.8372612452E+00 - 0.1178836507E+O 1 

c6 - 0.3240785675E+00 - 0.3090 I38820E+00 - 0.2977590070E+00 

c7 - 0.5646700630E+00 0.5461269194E+00 0.10I6870911E+Ol 

Cg - 0.7915445254E+00 - 0.3069345676E+O 1 - 0.3789310942E+Ol 

c9 - 0.1422055965E+O I - 0.1070150195E+02 - O.I398985372E+02 

clQ - 0.3119946463E+O 1 0.1 098142848E+02 0.1646871843E+02 

A. 

1.33 l.3R 1.455 

c, 0.4508819050E+00 0.5426960550E+00 0.6934288007E+00 

c2 0. 79129I9849E+00 0.893I3963II E+OO O.I 031329977E+O I 

c3 0.5702738359E+00 0.5051 042499E+00 0.323I430915E+00 

c4 O.I7267I4408E+00 - O.I296608562E+00 - 0.7601028313E+00 

cs - 0.1247787445E+Ol - O.I719837958E+O 1 - O.I898718617E+Ol 

c6 - 0.302423427I E+OO - 0.43064538I9E+00 - 0.1I29836508E+Ol 

c7 0.9375405280E+00 0. 9I37249599E+00 - 0.5829453430E+00 

Cg - 0.4168557590E+Ol - 0.5310857 462E+O 1 - 0.4161049123E+Ol 

c9 - 0.1434968334E+02 - 0.1633017 689E+02 - 0.8040279885E+Ol 

CJQ 0.1816031 097E+02 0.2642645661 E+02 0.2470320458E+02 
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TABLE 2. Equation-of-State Parameters for Normal Fluids 

%rmsa 

deviation 

cr(A) 
sat 

ref b Substance T range ,. Elk8 (K) psat P1iq 

T!Tc 

A-=1.455 

methane 0.48-0.95 LO 3.672 164.9 1.0 2.4 1 (21)C 

ethane 0.49-0.97 1.690 3.449 188.1 1.0 2.6 1 (16) 

propane 0.50-0.96 2.133 3.505 199.6 1.5 2.1 1 ( 15) 

n-butane 0.53-0.98 2.422 3.619 215.1 0.85 2.5 2 (20) 

n-pentane 0.49-0.97 2.825 3.640 220.4 1.1 1.8 1 (16) 

n-hexane 0.48-0.97 3.220 3.661 224.2 1.5 1.7 1 (18) 

n-heptane 0.49-0.97 3.599 3.681 227.4 '1.7 1.6 1 (17) 

n-octane 0.49-0.97 4.044 3.674 227.6 1.6 1.5 1 (18) 

cyclopentane 0.49-0.97 2.461 3.618 256.0 1.3 1.7 1 (18) 

cyclohexane 0.50-0.98 2.619 3.749 268.1 1.5 2.3 1 (23) 

benzene 0.50-0.98 2.559 3.541 276.9 1.4 2.4 3 (28) 

acetone 0.50-0.97 2.961 3.147 238.5 1.0 3.6 1 (17) 

ethyl acetate '0.52- 0.98 3.731 3.176 217.2 1.1 2.9 3 (13) 

tetrafluoromethane 0.48-0.94 2.325 3.030 116.9 0.84 0.96 4 (12) 

carbon dioxide 0.71-0.97 2.705 2.484 145.1 0.81 2.3 5 (17) 

acetic acid 0.49-0.96 3.497 2.767 265.0 3.4 3.2 3 (16) 

A-=1.38 

n-pentane 0.49-0.97 2.068 4.217 301.9 1.8 3.6 1 (16) 

n-hexane 0.48-0.97 2.385 4.226 303.6 2.3 3.6 1 (18) 

n-octane 0.49-0.97 3.036 4.224 304.0 2.4 3.1 1 (18) ' 
: 
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A-=1.32 

n-pentane 0.49-0.90 1.430 4.935 424.0 2.4 3.3 1 (14) 

n-hexane 0.48-0.90 1.685 4.904 418.4 2.9 2.9 1 (15) 

n-octane 0.49-0.91 2.201 4.875 408.7 3.1 3.0 1 (15) 

A.=L3 

n-pentane 0.49-0.90 1.227 5.268 486.0 2.6 3.9 1 (14) 

n-hexane 0.48-0.90 1.462 5.216 474.8 3.2 3.5 1 (15) 

n-octane 0.49-0.91 1.930 5.169 458.7 3.4 3.6 1 ( 16) 

cyclohexane 0.50-0.91 1.098 5.489 610.1 2.9 4.2 1 (19) 

benzene 0.50-0.91 1.068 5.187 633.1 2.8 4.5 3 (24) 

acetone 0.50-0.88 1.288 4.527 524.0 2.0 4.2 1 (14) 

a root-mean-square relative deviations. b Reference: 1, Smith and Srivastava ( 1986); 2, 

Younglove and Ely (1987); 3, Vargaftik (1975); 4, Rubio et al. (1991); 5, Duschek et al. 

(1990). c Numbers in parentheses indicate numbers of data points used in the 

correlations. 
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TABLE 3. Equation-of-State Parameters for Polymers 

%rmsa 

deviation 

Pol~mer riM (mol/~) cr(A) E!k8 (K) P1ig ref b 

. A-=1.445 

polyethylene 1 (high density) 0.03841 3.485 271.1 0.10 1 (67)C 

polyethylene 2 (low density) 0.04771 3.223 249.6 0.10 1 (60) 

polyethylene 3 0.02303 4.217 330.7 0.13 2 (42) 

polyisobutylene 0.02505 4.025 390.4 0.07 2 (55) 

polystyrene 0.02123 4.059 409.9 0.09 3 (69) 

poly(o-methylstyrene) 0.02312 3.958 400.9 0.08 3 (50) 

poly(methyl methacrylate) 0.02659 3.583 366.9 0.04 1 (41) 

poly(vinyl methyl ether) 0.03053 3.571 299.9 0.05 4 (66) 

A= 1.38 

polyethylene 1 (high density) 0.03119 3.809 305.5 0.06 1 (67) 

polyisobutylene 0.02076 4.350 412.8 0.05 2 (55) 

polystyrene 0.01735 4.413 442.1 0.07 3 (69) 

A=l.32 

polyethylene 1 (high density) 0.02455 4.213 342.9 0.03 1 (67) 

polyisobutylene 0.01663 4.766 441.3 0.04 2 (55) 

polystyrene 0.01365 4.869 480.6 0.06 3 (69) 

A-=1.3 

polyethylene 1 (high density) 0.02231 4.384 357.6 0.03 1 (67) 

polyisobutylene 0.01517 4.948 453.0 0.04 2 (55) 

polystyrene 0.01238 5.065 495.8 0.05 3 (69) 
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polyethylene 1 (high density) 

polyisobutylene 

polystyrene 

0.01577 

0.01088 

0.008678 

A.=l.24 

5.055 410.2 

5.657 

5.842 

493.7 

549.1 

0.08 1 (67) 

0.03 2 (55) 

0.07 3 (69) 

a root-mean-square relative deviations. b Reference: 1, Olabisi and Simha (1975); 2, 

Beret and Prausnitz (1975); 3, Quach and Simha (1971); 4, Rodgers (1993). c Numbers 

in parentheses indicate numbers of data points used in the correlations. 
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Figure Captions 

Figure 1. The percentage relative deviations between calculated and experimental 

values for n-hexane (Tc=507 .7 K): (a) saturated vapor pressure (Psa), (b) 

saturated liquid density (p~~1). Equation-of-state parameters for the new 

PHSC equation of state are given in Table 2. For the original PHSC equation 

of state, the equation-of-state parameters for n-hexane are r=3.628, 0"=3.981 · 

A, and c:/kB=228.6 K. The new PHSC equation of state is for A.=1.455. 

Figure 2. Comparison of theoretical coexistence curves with experiment for the systems 

(a) methane/tetrafluoromethane (K12=0.09044) and (b) n-octane/acetic acid 

( K12 =0.007 47). Theoretical curves are for A= 1.455. 

Figure 3. Comparison of theoretical coexistence curves with experiment for the system 

benzene/polystyrene (Mw=200,000). Theoretical curves are for A=l.455. 

Mw=weight-average molecular weight. 

Figure 4Comparison of theory with experiment for the system n-

pentane/polyisobutylene: (a) LLE (M11 =72,000), (b) VLE at 35 OC 

(M11 = 1 000,000). Theoretical curves are for A= 1.455. M11=viscosity-average 

molecular weight. 

Figure 5. Comparison of theoretical coexistence curves with experiment for the systems 

(a) poly(a-methylstyrene)/polystyrene (PMS/PS, K 12=0.00032) and (b) 

poly(vinyl methyl ether) I polystyrene (PVME/P~, K 12=0.00785). Theoretical 

curves are for A= 1.455. 
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Figure 6. Comparison of theoretical coexistence curves with experiment for 

polyethylene (high-density) solutions: (a) n-hexane I polyethylene 

(K12=0.0031), (b) n-octane I polyethylene (K12=0.00363). Theoretical curves 

are for A=1.32. 

Figure 7. Comparison of theory with experiment for the system benzene/polystyrene: 

(a) LLE, (b) VLE (Mw=900,000). Theoretical curves are for A=1.3 with K12= 

- 0.006 for both LLE and VLE calculations. 

Figure 8. Comparison of theoretical coexistence curves with experiment for the system 

cyclohexane/polystyrene: (a) LCST branch, (b) UCST branch. Theoretical 

curves are for A= 1.3. 

Figure 9. Comparison of theoretical pressure-composition curves with experiment for 

the system cyclohexane/polystyrene (M11 =25,900) at 34 ·c. Theoretical 

curves are for A= 1.3. 

Figure 10. Comparison of theoretical coexistence curves with experiment for the system 

cyclohexane/polystyrene: (a) LCST branch, (b) UCST branch. Theoretical 

curves are calculated with Eqs. (23) and (24) for the mixture where each 

component has a different reduced well width: A11=1.455; A22=1.24, and 

}"12 = 1.33. 
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Figure 4 
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