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Abstract 

Topologically nontrivial time-dependent solutions of the classical non

linear <J' model are studied as candidates of the disoriented chiral con

densate (DCC) in 3+1 dimensions. Unlike the analytic solutions so far 

discussed, these solutions cannot be transformed into isospin-uniform ones 

by chiral rotations. H they are produced as DCCs, they can be detected 

by a distinct pattern in the angle-rapidity distribution of the neutral-to

charged pion ratio. 
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1 Introduction 

Analytic solutions of the classical nonlinear u model [1, 2, 3] have been studied 

as candidates of the disoriented chiral condensates (DCCs) [4]. The solutions so 

far obtained are either configurations with spatially uniform isospin distribution 

or those which are chirally equivalent to them. When the isospin-uniform DCCs 

decay, the decay pions will obey the event-by-event pion charge distribution 

of dP/df = 1/2-/l in the neutral pion fraction f. In this paper we study as 

DCC candidates the time-dependent solutions of the nonlinear u-model that are 

topologically nontrivial in the isospin-orbital space. Though the topologically 

nontrivial DCCs obey the same charge distribution dP / df as that of statistically 

random emission, the-angle-rapidity distribution of pions should exhibit a very 

distinct experimental signature. We suggest a quantitative method of analysis 

to search for these DCCs. 

2 Topologically nontrivial solutions 

Let us express the pion field 1r( x) nonlinearly in terms of the scalar phase field 

B( x) and the unit isovector field n( x) as 

1r(x) = J1rn(x )B(x ), (1) 

where f7r = 93 MeV is the pion decay constant. Apart from the source term, 

the Lagrangian is given in terms of :E( x) = exp( in( x) · r B( x)) by 

£ = 1 tr(81L:Eta~L:E) + ~.\f;(n2 - 1), (2) 

in the chiral symmetry limit. After elimination of the Lagrange multiplier .\, 

the Euler-Lagrange equation reads [2] 

(3) 

(4) 

The analytic solutions so far known are either those with n(x) =constant 
(the Anselm class) or those which are rotated to them by chiral transformations. 
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In this paper we explore the class of solutions whose n( x) fields point radially 

in the spacetime of 3 + 1 dimensions: 

r 
n(x) = -. 

r 
(5) 

We have obtained a hint for this postulate from the Skyrme assumption that 

led to the static soliton [5). Unlike Skyrme, we do not need a stabilizing term 

in the Lagrangian since the static stability of solutions is irrelevant to us. The 

spherical symmetry of n( x) suggests we should choose 0( x) also to be spherically 

symmetric as 

O(x) = O(t,r). (6) 

It is important to observe that with our postulate the Euler-Lagrange equation 

(4) for n(x) is automatically satisfied for any O(t,r). The equation for O(x) now 

reads 

(8!- \72 )0(t,r) + 2
2 

sinO(t,r) cosO(t,r) = 0. 
r 

(7) 

This wave equation allows many interesting solutions. All of them are topologi

cally nontrivial since following the Skyrme model we can introduce the topolog

ical charge, 

(8) 

where 

(9) 

with X 11 = :Et 011 :E. The current Q JJ. is locally conserved, (}11-Q J.L = 0, and q is 

invariant under chiral SU(2) x SU(2) rotations. The charge q is nonvanishing 

for our solutions while it is zero for the isospin uniform solutions. It should be 

noted that q is time dependent when we compute it for the pion fields alone since 

the current Q J.L flows from the shell of hadron debris into the DCC. Actually it 

is not even finite since our pion fields are singular as we approach the light cone. 

This should not bother us since the nonlinear o- model after all does not apply 

to the close neighborhood of the light cone where kinetic energy is too large. 

Our purpose of mentioning the topological charge q here is that our solutions 

are chirally inequivalent to the isospin-uniform solutions. When we adopt our 

solutions as DCC candidates, we do not accept the Skyrme model of baryons 

[6) in which the charge q is identified with the baryon number. If we did, our 

DCCs would be loaded with nucleons or antinucleons. 
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Let us solve for B(t, r) by restricting the form of B(t, r). Since B is dimen

sionless and its equation of motion is scale invariant, a simple case of interest is 

that B( t, r) is a function only of the ratio of r and t: 

B(t, r) = B(e), 

The wave equation then turns into 

T' 
(e = -). 

t 

cf2 2 2 . 
deB+ f.B- e(l- e) smB cosB = 0. 

(10) 

(11) 

It can be easily solved numerically. The behavior at e = 0 is determined by the 

singularity at e = 0 in the wave equation ( 11). Barring a singularity at r = 0 

for B( x) since a source does not exists at r = 0 after t = 0, we determine that 

B(e) ex: ease--+ 0. By giving one more boundary condition, dB/de ate= 0, we 

can compute a profile of the scalar phase field B(e). In Fig.1 we have plotted B(e) 
for a few different values of B'(O). On the light cone (e = 1), B(t, r) is singular 

because of 1/(1 -e) in the third term of Eq.(ll), but only in the immediate 

neighborhood of e = 1. The function B( e) is smooth and monotonic practically 

everywhere inside the light cone. 

When B(t, r) is not a function only of e = rjt, analyticity at r = 0 requires 

the behavior O(t, r)--+ rat r--+ 0, not necessarily O(t, r)--+ rjt. We have drawn 

the asymptotic configuration 0( oo, r) in Fig.2. The static equation for B( oo; r) is 

invariant under rescaling of r. As we know from the Skyrme model, this 0( oo, r) 
is not a local minimum of energy with respect to rescaling of r since there is no 

Skyrme term in our Lagrangian. In the dynamical case under considerations, 

solutions of all different scales are acceptable for B( oo, r ). The amount of energy 

fed in by the hadron debris determines the scale of a DCC that is produced. 

From the viewpoint of total energy, the nontrivial n(x) costs very little. The 

spatial variation of n( x) contributes to kinetic energy by J;. J sin2 0( x )drdn < 
411" J;R, where R is the radius of DCC. This additional energy is even smaller than 

the explicit symmetry breaking potential energy ( 411" R3 /3) x J;m; for R > 1/ f1r· 

. Since 0( x) is also slowly varying, the kinetic energy of 0( x) is no more than in 

the case of the isospin-uniform DCC. As far as energy is concerned, therefore, 

the topologically nontrivial solutions are no different from the isospin-uniform 

solutions. 
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3 Isospin property 

It might appear that the topologically nontrivial DCCs have zero isospin because 

of the spherical symmetry. It is not correct. At the quantum level they are 

not eigenstates of I = 0 but superpositions of eigenstates of many different 

isospin values. To see it, we should represent the quantum state of the classical 

configuration by the coherent state [7, 8]: 

ln(r)B(t,r)) = exp( -if1r j tr(B(t,r)n(r)·Ot1r(x)-8tB(t,r)n(r)·7r(x))d3x )10), 

(12) 

where 1r(x) is the isovector quantum pion field. The exponent is invariant under 

the simultaneous isospin-orbital rotations generated by K = I+ L, where L is 

orbital angular momentum. Therefore this state is an eigenstate of K = 0, not 

of I = 0 nor h = 0 [9]. The exponent of Eq.(12) can be expressed in terms of 

the creation operators a1~2; of pions with charge a= ( +, -, 0), energy k(= lkj), 
and orbital angular momentum (l, m) as 

ex j ( a1~{t + a1~bt + aki~1 ) hi Ot(k)kdk - h.c., (13) 

where Ot(k) is the Bessel transform J ..Jk:;Jl+I/2(kr)B(O, r)r dr. Projection onto 

the N1r pion state of Eq.(12) is N1r-th power of Eq.(13) operated on IO). By 

isospin decomposition we see that the state is not purely an isosinglet but has 

a wide distribution in I. It is remarked that the initial state of pp collision has 

K = 0 or 1 in the case of head-on collision with zero impact parameter since 

L = 0 and I = 0 or 1. 

4 Momentum distribution of neutral-to-charged pion 

ratio 

We study the spectrum of the pions decaying from the topologically nontrivial 

DCCs. We focus on the correlation between the isospin and momentum distri

butions since it shows a distinct characteristic. Let us describe the expanding 

hadron debris of the baked Alaska scenario [10] by the isovector source p( x) 
(= D1r(x)). The standard method [11] gives the momentum spectrum of the 
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pions with the Cartesian isospin component i and momentum k as 

(14) 

where p(k) is the four-dimensional Fourier transform with k0 = lkl for massless 

piOns, 

(15) 

and ei is a unit Cartesian isospin vector along the i-th direction. The spherically 

symmetric pion fields, fJ(t,r) and n(x) = r/r, can be produced only by p(x) of 

the same symmetry. Therefore p( x) may be expressed as 

r 
p(x) = -p(r)8(t 2

- r 2
). 

r 
( 16) . 

Then the k dependence of its Fourier transform is determined in the form 

p(k) = l~l,o(lkl). (17) 

Substituting Eq.(17) in Eq.(14), we find that the pion isospin is correlated with 

the momentum direction a.s 

(18) 

Namely, neutral pions are emitted preferentially along the z-axis while charged 

pions are into the xy-plane. Note however that the z-axis _does not necessarily 

coincide with the collision axis. For some DCC, the z-axis happens to be the 

collision axis. Then many other DCCs can exist that are related to this one by 

isospin rotations. They form one isospin family of DCC solutions. When the 

z-axis coincides with the collision axis, we expect to see a pair of parallel1r0-rich 

bands around y1 and y2 in the <P-y plot, where <P is the azimuthal angle of the 

pion momentum k around the collision axis and y is the rapidity variable. The 

region between the two bands is filled dominantly with charged pions. When 

the isospin axis is not parallel to the collision axis, a pair of 1r0-rich domains is 

found at ( </1, y1 ) and ( <P + 1r, y2 ) in the <P-y plot. The two 1r
0 -rich domains are 

separated by a 1r±-rich region (Fig.3). 

The event-by-event distribution dP / df of the neutral pion fraction f = 
N'lfo j(N1r+ + N'lf- + N'lfo) can be obtained from Eq.(18). By integrating over the 
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angles of k, we find th~t the particle multiplicity is equal for all three pion charge 

states. Therefore the distribution dP / df cannot distinguish the topologically 

nontrivial DCC events from random emission events. 

We can make search of the topologically nontrivial DCCs more quantitative. 

We should first select the DCC candidates, for instance, by abundance of soft Pt 

. pions and find their approximate overall rest frames. To enhance the signature, 

we should select only those events with f ~ 1/3. We then determine event 

by event the isospin polar direction z, namely the 1r0-dominant direction in the 

momentum space, by maximizing a suitably defined quantity as follows: By 

choosing a tentative z direction, compute for 1r0 and 7r± 

Co I: ~ 2 (ki . z) ' 
i=7ro 

c± I: (ki x z)2
, (19) 

i=7!"± 
~ ~ 

where ko and k± are the unit vectors along neutral and charged pion momenta, 

respectively, and the summations are taken over all DCC pions from each event 

(N7!"o ~ N1r+ ~ N7!"- ). Then vary the direction of z so as to maximize the product 

(20) 

The quantity C takes the maximum value when z coincides with the isospin polar 

axis. Let this maximum be Cmax· Then compute C for the same z direction by 

interchanging 7r± and 1r
0

• Let us call it Cmin· Then the ratio 

S = Cmax - Cmin 

Cmax + Cmin 
(21) 

is equal to 5/7 for the topologically nontrivial DCCs with sufficiently large N1r· 

As the direction of z is varied, S sweeps between 5/7 and -5/7. In contrast, 

S is independent of the direction of z and equal to zero for the isospin-uniform 

DCCs as well as for random emission. Feasibility of this test depends on how 

large N7!" is. Since the statistical errors are of 0(1/.Jli[;), N7!" :<.25 will do. 
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5 Chiral rotations and disorientation 

The topologically nontrivial solutions of the form 8( ~) behave like "' ~ at ~( = 
r jt) --+ 0. At sufficiently large t, therefore, the phase pion field 0( 0 approaches 

zero, that is, the background vacuum relaxes to the true vacuum at any fixed 

location off the light cone. If the DCC is defined to be the disoriented condensate 

that would approach a wrong vacuum at t --+ oo, one might not want to call 

such a condensate as the DCC [3]. When we make chiral rotations on 8(0, we 

obtain infinitely many more solutions that carry the same topological charge but 

different vector-isospin distributions. By actually performing the axial-isospin 

rotations, we can obtain solutions whose n( x) is not spherical at finite t. As 

t --+ oo, these rotated solutions approach static limits with uniform isospin 

orientations at all finite locations: 

lim n(x)O(x) = noOo, 
t-+oo 

(22) 

where n0 is the axis of an axial-vector isospin rotation (nL = nR = n 0) and 80 is 

its rotation angle (OL = -OR= 80 ) [2, 3]. Namely, the asymptotic disorientation 

stays nonvanishing and turns uniform. 

When 8( t, r) is not a function only of ~ = r jt, we have found 8( t, r) --+ r 

at r--+ 0, instead of--+ rjt. It remains disoriented and nontrivial as n(x) = r/r 

even at t = oo. Chiral rotations transform n(x) = r/r into nonspherical n(x). 

6 Explicit chiral symmetry braking 

In the presence of an explicit chiral symmetry breaking, a DCC cannot really 

reach its asymptotic limit predicted by the chiral symmetric wave equations. It 

starts decaying before its kinetic energy t;iP /2 becomes comparable with the 

potential difference of the symmetry breaking m;J;(l -cos 0). However, the 

postulate of n(x) = r/r is still compatible with the explicit chiral symmetry 

breaking. Furthermore the topological charge q is defined in the same form 

and the local current conservation fY'Q J.L = 0 remains valid. The only change is 

appearance of a scale breaking term proportional to m; in the wave equation of 
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O(t,r): 

DO+ 
2
2 

sinO cosO= m; sinO. 
r 

(23) 

With the explicitly scale dependent term present, we can no longer postulate 

(} = 0( e). Instead 0( x) is a function of two dimensionless variables r / m1r and 

tjm1r· But the wave equation still allows a spherically symmetric O(t, r), and 

the behavior O(t, r) "'"'rat r -t 0 is not affected by the symmetry breaking. As 

long as the form of n(r) is the same, our prediction in the ¢>-y distribution of 

the decaying pions is valid with no modification. 

7 Conclusion 

We have argued that topologically nontrivial DCCs are not only possible but 

also have an equally good or bad change of being produced as the isospin

uniform ones. If they are actually produced, they will show a clear experimental 

signature in the ¢>-y plot of the decay pions. In order to produce them the 

hadron debris must also expand with a spherically symmetric isospin distribu

tion J0 ex r according to geometrical symmetry. No dynamical mechanism is 

known that suppresses such a configuration of hadron debris. In a DCC search 

the topologically nontrivial DCCs should also be searched for by the analysis 

proposed here. 
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Figure captions 

Fig.l: The scalar phase function 8(~) for a few different boundary values of 

8'(0). 8(~) ex~ is required at ~ ~ 0 by the wave equation. 

Fig.2: The asymptotic configuration of 8(t, r) at t = oo in the case that 

0( t, r) is not a function only of~ = r jt. The variable r is expressed in the unit 

of m1r. 

Fig.3: Schematic pictures of the pion charge distribution in th~ </>-y plot for 

a topologically nontrivial DCC whose 13 direction is along the collision axis (3a) 

and off the collision axis (3b ). 
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