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Abstract 

In this paper we study the large N limit of the Standard Model Higgs sector with 
N >.., N g2 and N g'2 constant and N being the number of would-be Goldstone bosons. 
Despite the simplicity of this method at leading order, its results satisfy simultaneously 
important requirements such as unitarity and the low-energy theorems in contrast 
with other more conventional approaches. Moreover, it is fully compatible with the 
Equivalence Theorem and it yields a consistent description of the Higgs boson mass 
and width. Finally we have also included a phenomenological discussion concerning 
the applications of this method to the LHC. 
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1 Introduction 

As it is well known, the most popular theoretical description of the Symmetry Breaking 
Sector (SBS) of the Standard Model (SM), is given by the Minimal Standard Model (MSM) 
which is nothing but an SU(2)L x U(1)y gauged linear sigma model. Indeed, the hid­
den sector displays an SU(2)L x SU(2)R global symmetry which is spontaneously broken 
down to SU(2)L+R· This mechanism is responsible for the the spontaneous breaking of the 
gauge symmetries of the complete model. In this scheme we have three would-be Goldstone 
bosons, which will give masses to the w+, w- and Z 0 through the Higgs mechanism. They 
parametrize the space spanned by the three broken generators, i.e. the coset 

SU(2)L X SU(2)R 0( 4) 
-~-'--~---'-~ ,...., --

SU(2)L+R - 0(3) 
(1) 

There is however a particle which survives the Higgs mechanism, which is known as the 
Higgs boson. This particle is the only missing piece of the MSM and for this reason it is 
very important to be able to predict its behaviour in order to confirm or reject the MSM 
experimentally. 

At tree level the dynamics of the Higgs sector is controlled by its self-coupling ..\. In fact, 
its mass is related with this constant by the simple equation M 2 = 2.Av2

, where v ~ 250 GeV 
is the vacuum expectation value. Notice that this equation suggests that a heavy Higgs will 
give rise to a strongly interacting Higgs sector (see [2] for review). However, it should be 
kept in mind that for large ,\ the above equation does not hold any more, since perturbation 
theory is not reliable. As a matter of fact, the tree level amplitudes break unitarity for Higgs 
masses around 1 Te V [3]. 

Therefore, it seems clear that a more complex dynamics should emerge for large coupling. 
At the same time, there are strong hints supporting the triviality of the minimal Higgs sector 
(see [4] for a review), which means that it should be considered as some kind of effective 
theory which can be applied only for energies well below some cutoff A. In such case, the 
Higgs mass becomes a decreasing function of this cutoff in such a way that, at some point 
around 1 TeV, one has M ~ A. This fact is usually interpreted as an upper bound for the 
Higgs mass, since it should not be larger than the cutoff A of the effective theory. 

From the practical point of view the natural place to probe this dynamics is gauge boson 
scattering. As it is well known, the longitudinal components of the w+, w- and Z 0 gauge 
bosons are related with the three would-be Goldstone bosons. The precise relation is given 
by the Equivalence Theorem (ET) [5, 3], which states that at high energies the S-matrix 
elements of longitudinal gauge bosons are the same as those of their corresponding GB. This 
theorem is very useful since it is far easier to work with the would-be Goldstone bosons than 
with gauge bosons. The ET has been widely used in many studies concerning the discovery of 
the Higgs boson at the future Large Hadron Collider (LHC) (see [6] and references therein). 
With its help and at lowest order in the g and g' SU(2)L x U(1 )y gauge couplings, it is 
possible to reduce the study of longitudinally polarized gauge boson dynamics to the non­
gauged 0( 4)/0(3) linear sigma model. 
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Nevertheless, the tree level, or even the one-loop approximation [7], does not provide a 
complete description of the expected behaviour of the physical Higgs [8]. This is due ~o the 
fact that, in the strong interacting regime, i.e. for large .\, the standard perturbation theory 
does not work. In particular it is not able to reproduce properly the position and the width 
of a heavy Higgs. For this reason some non-perturbative techniques have been studied in 
the literature like the Nl D method (see [3] and [9]) or the Pade approximants [10]. 

An alternative approach to those listed above is the so called large N limit [11]. The 
main idea is to extend the 0(4)10(3) symmetry breaking pattern of the linear sigma model 
to O(N + 1)IO(N). Once this is done, the amplitudes are obtained to lowest order in the 
11 N parameter [12]. The relevant point is that in this simple manner it is possible to study 
some properties of the Higgs dynamics, which are expected theoretically, but that cannot 
be reproduced with more conventional techniques. In particular, the would-be Goldstone 
boson elastic scattering amplitudes are unitary (up to 0( 1 I N 2

) corrections) and satisfy the 
Weinberg low-energy theorems coming from the O(N) symmetry [13]. Moreover, the Higgs 
propagator has a pole in the second Riemann sheet that has to be understood as the physical 
Higgs. The position of this pole is a function of the renormalized Higgs mass M but its real 
part is never bigger than some value around 1.5 TeV, even in the M -+ oo limit. The fact 
that there is a saturation value for the Higgs mass is consistent with the assumed triviality 
of the 0(4)10(3) model and has also been found in other non-perturbative approaches like 
the above mentioned N I D method or the Pade approximants. 

In this work we have applied the large N techniques to an O(N + 1)IO(N) linear sigma 
model which has been gauged with the SU(2)L x U(1)y symmetry of the SM. The aim of 
this generalization is twofold. First it will be possible to compute the elastic gauge boson 
scattering amplitudes without using the ET. This is very important since then we can apply 
our results at low energies too. Nevertheless we show how the ET works remarkably well· 

·in the large N approach, which is also a nice check of our computations at high energies. 
Second, by gauging the linear sigma model, we are able to to include systematically the g 
and g' corrections keeping at the same time the very good properties of the standard large 
N limit. We will show that this approach is very easy to implement and for this reason it is 
appropriate to describe the Higgs phenomenology at the LHC. 

The plan of the paper goes as follows. In section two we introduce the SU(2)L x U(1)y 
gauged O(N + 1)10(N) linear sigma model. In section three we study the main properties 
of the physical Higgs boson in this approximation. In the fourth we check our method with 
the equivalence theorem and how it is satisfied in the large N limit. In the fifth we show our 
numerical results, which are relevant for the LHC phenomenology. Finally in section six we 
give the main conclusions of our work. 

2 The large N limit of the Higgs sector 

We start from the SU(2)L x U(1)y gauged version of the linear sigma model SU(2)L x 
SU(2)RISU(2)L+R ~ 0(4)10(3) generalized to the coset O(N + 1)IO(N). The classical 
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lagrangian is then given by 

(2) 

with cpT = (7r\7r2, ... ,1rN,CT) and cp2 = cpTcp_ As usual, .CyM is the standard SU(2)L x U(l)y 
Yang-Mills term and the covariant derivatives are defined as 

(3) 

where the SU(2)L and the U(l)y generators are Tf' = -(i/2)1v!f and TY = -(i/2)MY with 

0 0 0 0 0 + 
0 0 0 0 0 0 

Mf= 0 + 0 0 ' 
ML-2 - 0 0 

+ 0 0 0 0 + 0 

0 + 0 0 0 + 0 
0 0 0 0 0 

Mf= 0 0 0 + ' 
My= 0 0 0 

0 0 0 0 0 + 
where all the non written entries vanish. The potential is given by 

V(cp2) = _ 112cp2 + ~(cp2)2, 

0 

0 

0 

0 
0 

0 

(4) 

whose tree level minimum is reached whenever cp2 = v2 = N F 2 = 2112/ ..X. As a consequence 
once we choose a vacuum to quantize the theory, the original O(N + 1) symmetry will be 
broken down to O(N). With the standard choice cp~ac = (0, 0, ... , 0, v) and defining the Higgs 
field as H = CT - v, we can write 

(5) 

where the tree level Higgs mass is given by M'JJ = 2..Xv2
• 

In order to obtain a well defined perturbation theory, one has to add a gauge fixing and 
a Faddeev-Popov term to the lagrangian in Eq.2. As far as we are dealing with a gauge 
theory which is spontaneously broken, it is specially useful to choose an Rf. gauge, where 
now 1r

1
, 1r

2 and 1r
3 can be directly identified with the would-be Goldstone bosons. With the 

complete lagrangian at hand it is possible to derive the Feynman rules following the usual 
procedures. For convenience, we will be working all the time in the Landau gauge, which 
simplifies the calculations si·nce the ghosts do not couple directly to the 1ra fields and their 
propagator does not have a mass term. 
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c) H • H H + H -o- H 

+ .H._ --0)- _jf+ .H._ --a:D-_jf + ... 

Figure 1: Diagrams contributing to: a) The tree level Goldstone boson scattering amplitude. 

b) The leading order in the 1/ N expansion for the same process. c) The Higgs propagator at 

leading order in the 1/ N expansion. 

3 The Higgs mass and width 

In order to study the main properties of the Higgs resonance in the large N limit of the 
model defined above, we will start by setting g = g' = 0, i.e. we will turn off the gauge 
interactions. Thus the only fields we have to consider are the N Goldstone bosons 1ra and 
the Higgs H. Thanks to the remaining O(N) symmetry as well as to crossing symmetry, the 
scattering amplitude for the process 1ra1rb ---7 1rc1rd can be written as 

(6) 

The tree level contributions to the A function (Ao) are obtained from the diagrams in 
Fig. La 

( 
M2 ) s 1 

Ao(s)=-2>. 1+ s-7..t'k = NF21-s/M'k (7) 

and therefore they only depend on s. In the large N limit, the relevant diagrams are those 
shown in Fig.l.b, which are known as bubble diagrams. Each of the loops contributes with 
the same factor and the sum of all those diagrams can be seen as a geometric series which 
amounts to 

s 1 
A(s) = NF21- s/M'k + sl(s)j2F2 (8) 

where the divergent one-loop integral I(s) can be calculated using dimensional regularization. 
The result is 

-1 ( -s) I ( s) = ( 4rr )2 N! + 2 - log -;- , (9) 
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where as usual 
2 -

N( = - + log 47r - /E, 
E 

(10) 

and Jl is an arbitrary renormalization scale. Thus, in the large N limit the A function only 
depends on s. The 1/E divergencies appearing in I(s) can be absorbed in the renormalized 
Higgs mass MA, which can be defined as 

1 1 N( + 2 
MA, = M'ft + 2(47r)2F2 

(11) 

so that we find 
s 1 

A(s) = NF2 s s l -s 
1 - MJ; + 2{47r)2F2 og JZ2 

(12) 

In this approach the Higgs mass is the only parameter that needs renormalization and 
in particular there is no wave function renormalization. Thus the above amplitude is an 
observable and JL independent quantity. This fact can be used to find the dependence of the 
renormalized Higgs mass MR on the renormalization scale Jl which turns out to be 

(13) 

The renormalized coupling AR can be defined in order to keep the tree level relation M'A_ = 
2>..RN F 2 and then its running can be easily obtained from the above evolution equation. In 
practice it is useful to introduce the mass parameter M 2 defined by the equation 

(14) 

and then 

(15) 

so that 
>..(M) 

>..R(JL) = 1-~l L (16) 
(411")2 og M2 

From this formula we can obtain the position A of the Landau pole in this approximation 
which is given by 

(17) 

Therefore, for g = g' = 0 the mass parameter is the only free parameter of the model and 
all the observables can be obtained in terms of it. However, this mass should not be confused 
with the physical Higgs mass. The physical mass is the mass of the resonance appearing in 
the scattering channel with the same quantum numbers as the Higgs particle. 

In the real world, where N = 3, the coset space is 0(4)/0(3) = SU(2)L xSU(2)R/ SU(2)L+R 
and thus the interactions are SU(2)L+R symmetric (weak isospin group). Hence there are 
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three Goldstone bosons and the scattering channels can be labelled by the third component 
of the isospin which can take the values I = 0, 1, 2. For an arbitrary N it is still possible to 
define the appropriate generalization of the above mentioned channels which are then given 
by [14] 

To(s, t, u) 
T1 (s, t, u) 

T2 (s, t, u) 

N A( s, t, u) + A(t, s, u) +A( u, t, s) 
A(t,s,u)- A(u,t,s) 

A( t, s, u) + A( u, t, s) (18) 

Let us now recall that in Eq.8 we had found that A(s,t,u) ~ A(s)"' 0(1/N) and therefore 

To= NA(s) + 0(1/N) (19) 

is the only non zero isospin channel in the large N limit. Fortunately, that is precisely the 
channel where the Higgs would ~ppear. Customarily the amplitudes are also projected in 
definite total angular momentum states, leading to partial waves t IJ. It is also obvious that 
in this case only the t 00 survives since T0 only depends on s. Indeed 

s s s -s 1 
( )

-1 

too(s) = 327rF2 1-M2+ 2(47r)2F2log M2 + 0 (N) (20) 

r 

This partial wave has some properties which make the large N limit a sensible approximation 
to Higgs physics. First, at low energies we find 

s 
too( s) ~ 327r F2 (21) 

in agreement with the Weinberg low-energy theorems. Second, this partial wave has the 
correct unitarity cut along the positive real axis of the s variable. Indeed, it can be easily 
checked that for physical s values, which are located right on the unitary cut where log( -s) = 
logs - i1r, we have 

Im too =I too 12 +0(1/N) 

which is the elastic unitarity condition. 

(22) 

Finally, we want to remark that it is possible to find numerically that the partial wave in 
Eq.20 has a pole in the second Riemann sheet. This pole can be understood as the physical 
Higgs resonance. In Fig.2 it is shown the position of this pole in the complex plane for 
different M values. 

For low M values the physical Higgs resonance is narrow and the standard Breit-Wigner 
description of the resonance can be safely applied. Then the physical mass is just given by 
M whereas the width is 

(23) 

which is the tree level result. However, :when M increases, the Higgs resonance becomes 
broader and broader. The pole migrates down in the complex plane and the Breit-Wigner 
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M=0.5TeV M=l TeV M=lOTeV 

Figure 2: Evolution of the position of the !tool pole in the E = ..jS complex 

plane. We display the lower half of the second Riemann sheet as a function of the 

M parameter. Notice how the distance to the real axis grows with M, whereas the 

real part of the position remains bounded. The scale is the same for the three figures. 

description cannot be used any more. However, the real part of the pole position remains 
bounded even for very large M as can be seen in Fig.4. This feature is usually called 
"saturation" and it has also been observed in other non-perturbative approaches to the 
Higgs dynamics. In particular this behaviour was obtained using the N / D method in [3] 
and [9], using the Pade approxirnants in [10] and using the large N limit in [12]. 

1 

0.8 

0.6 

0.4 

0.2 

0 0 

M=0.5 TeV M=1 TeV 

500 1000 

GeV 

M=10TeV 

1500 2000 

Figure 3: itool 2 versus ..jS for different values ofthe Higgs mass parameter M as defined 

in Eq.l4. Even for values as large as M = lOTeV, the position of the resonance is not higher 

than 1.5TeV. 
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4 Gauge boson scattering and the Equivalence Theo­
rem 

We have already stated that our aim in this work is to study the large N limit of the 
Higgs sector including the electroweak gauge bosons. More precisely we are considering the 
N ~ oo limit but keeping N g2 and N g'2 constant. We will see that such an approach to 
the gauged Higgs sector turns out to be very useful since it provides a sensible description . 
of gauge boson interactions that still allows easy calculations. 

In the following we will concentrate in the elastic scattering process VV ~ VV where 
V = w±, Z 0 . In order to obtain the leading contributi~n in the approximation defined 
above, the first observation is that the diagrams at tree level are O(g2

) (or O(g'2
)). Due to 

the particular way in which the large N limit has been defined, those graphs are 0(1/N) 
too. To find the complete set of diagrams contributing to the large N leading order, we have 
to include into the tree diagrams any possible internal loop without increasing their g2 , g'2 

or 1/N power dimensions. It is fairly simple to see that that cannot be accomplished with 
gauge boson loops. Concerning the scalars, the relevant observation is that gauge bosons 
are only coupled to the three first 1ra, whereas the Higgs interacts with all them. Thus, the 
only 1r loops appearing in the large N limit are those coupled to the Higgs field. 

The main effect of those 1r loops is to contribute to the Higgs propagator as it is shown 
in Fig.l.c. Note that, as far as we are working in the Landau gauge, where all the 1r fields 
are massless, many other possible 1r loop diagrams vanish, since they are proportional to 
J d4-eq/ q2 which is zero when using dimensional regularization. 

It is not very difficult to calculate the diagrams in Fig.l.c. Using the reiiormalization 
prescription of the previous section for the renormalized Higgs mass, we find the Higgs 
propagator 

(24) 

where MR( -q2
) is defined in Eq.15. It is obvious that this D( q2

) has exactly the same pole in 
the second Riemann sheet than the t 00 partial wave amplitude in Eq.20, which corresponds 
to the physical Higgs resonance. At the same time, for small M, we find Mn( -q2

) ~ M and 
thus we recover the standard perturbative (tree level) behavior of the Higgs resonance whose 
width would then be given by Eq.23. Therefore the above propagator describes properly 
the Higgs resonances both in the perturbative (light Higgs) and the non-perturbative regime 
(heavy Higgs). 

The most relevant consequence of the previous discussion is that the VV ~ VV leading 
diagrams are just those at tree level, but using the above Higgs propagator instead of that 
calculated at tree level. For example, the contributions to w+w- ~ Z 0 Z 0 can be found 
in Fig.4.a. Thus in this limit the calculations are not much more difficult than at tree 
level. However, the unitarity properties of the large N amplitudes are greatly improved and 
the Higgs mass and width is properly described in a way which is compatible with other 
non-perturbative approaches. 
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a) 

b) 

Figure 4: a) Diagrams contributing to the w+w- -+ Z 0 Z 0 process at leading order in the 
1/ N expansion. b) Tree level diagrams contributing to the 7r+ 1r- -+ 1r01r0 amplitude containing 
an internal gauge boson line. 

An important test for tne consistency of the approximation is provided by the Equivalence 
Theorem (ET). This theorem states that the S-matrix elements of longitudinal electroweak 
gauge boson are the same as those of their associated would-be Goldstone bosons, up to 
O(m/ E) corrections, where m = mw, mz and E is the typical C.M. energy of the process. 
Thus, on the one hand, at high energies the scattering of longitudinal gauge bosons provides 
information about the Higgs sector of the SM. On the other hand, the ET can be used to 
calculate the longitudinal gahge boson scattering at high energies in terms of scalars, which 
are much easier to handle. In fact most of the calculations performed for the LH C until now 
have used this theorem. 

In the approach followed here we are including explicitly the gauge degrees of freedom 
and therefore we do not need to use the ET at all. As a consequence, our approach will 
be more reliable at lower energies than if we had used the ET, which is neglecting O(m/E) 
terms. Nevertheless, the theorem can be useful as a tool to check our results. For example, 
it relates at high energies the w+w- -+ Z0 Z0 and the 1r+1r- -+ 1r01r0 S-matrix elements. 
At this moment a few comments are in order. First the S-matrix elements in both sides 
of the theorem can be expanded in terms of 1/ N and thus it should apply order by order 
in 1/N. In this work we are considering theN-+ oo with >..N, g2N and g'2N constant. 
In particular that means that for the 7r+7r- -+ 1r

0
1r

0 process one has to include, at leading 
order, the diagrams in Fig.4.b in addition to those in Fig.l. This is because in the previous 
section our model had not been gauged yet, but once it is gauged the new diagrams which 
are O(g2

) are also 0(1/N) and they should not be for:gotten. these new diagrams are O(g2
) 

whereas those considered in the previous sections are simply 0(1/ N). 
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Thus the leading order for this amplitude reads 

s 1 

s- M'A(-s) 4(1 _ x2)- 4rr;;~ + 7f 
-4 R - (1- x2) + 2l(3 + x2)- 2 R - w (5 + x 2) [ 

M 2 
( s) M 2 

( s) m 2 

v2 v2 £2 

+12mtvmtv -4Mk(-s)mfv] (25) 
v2 £2 v2 £4 

where s = 4£2 , E is the 1r energy, 8 is the scattering angle and MR( -s) can be obtained 
from Eq.15. Note that, as far as -s is negative, MR( -s) produces the imaginary part and 
the cut for the above amplitude required for unitarity. 

· After a lengthy but straightforward calculation using the Feynman rules coming from the 
lagrangian in Eq.2 (plus the standard gauge fixing and Faddeev-Popov terms) and projecting 
out the longitudinal components, we arrive to the following result for the WtW£ ---+ ZLZL 
scattering amplitude: 

s 1 

s- Mk(-s)4(1-x2)- 4rr;;~(l-2x2 ) + rr;;r(l-4x2) 

[
-4 Mk( -s) (1 - x2) + 2g2(3 + x2) + 2 M'A( -s) mtv (1 - 7x2) 

v2 v2 £2 
m2 m2 M2( s) m4 M2( s) m4 

+4~~( -14 + 5x2) + 8 R - ~(1 + x 2) + 8 R - w (3 + x 2) 
v2 £2 v2 £4 v2 £4 

-4 Mk( -s) m~ (1 + 2x2)- mtv m~ (1 - 4x2)] (26) 
v2 £6 v2 £6 

As expected, it can be easily checked that these two amplitudes satisfy the ET. One 
potential problem that could appear when using the ET comes from the different renormal­
ization of the gauge boson and 1r wave functions [15]. Fortunately, at leading order our 1/N 
expansion does not need wave function renormalization and the ET can be safely applied. 

In order to illustrate the above discussion and to check our computational methods 
we have displayed in Fig.5 the scattering cross section of Wt W£ ---+ ZfZ£ versus that of 
7r+7r- ---+ 1r01r

0
• The former is represented by a continuous line whereas the latter has been 

drawn discontinuously. Notice that to all means and purposes they overlap at high energies 
(E > 1.2 TeV). 

From Fig.5 we can observe that either with or without the ET, the large N approximation 
is able to reproduce a well shaped Higgs resonant behaviour and very good high energy 
properties. The small numerical differences up to almost 1.2 Te V are simply due to the fact 
that the ET is neglecting the O(m/ E) contributions. Thus we can summarize these two last 
sections by saying that the large N meets in a very simple way all the known theoretical 
constraints to the SM Higgs sector, like the low-energy theorems, unitarity, the saturation 
property and the ET. 
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(TeV) . 

. Figure 5: Comparison of the total w+ w- ...... Z 0 Z 0 cross-section at different -JS, for 

I cos 0 I< 0.8, calculated with our large N approach, either with (dashed line) or without the 

ET (continuous line). 

5 Numerical results for the LHC 

The main practical application of the approach described above is of course the description of 
the LHC phenomenology. For this reason it will be used in this section to obtain predictions 
in terms of the renormalized Higgs mass under the hypothesis that the MSM provides the 
right model for the electroweak symmetry breaking. In particular we will concentrate on 
Z 0 Z 0 pair production, since this final state is the most sensible to the Higgs resonance 
properties and at the same time gives rise to a very clear experimental signature. 

We consider both final gauge bosons decaying into the cleanest leptonic channels: Z 0 ~ 
e+ e-, J.L+ J.L-. Indeed, we have obtained the number of these events as the total number of 
Z 0 Z 0 pairs times the branching ratio 0.0044. We have computed the total Z 0 Z 0 number 
of events at the LHC with the help of the Monte-Carlo VEGAS code [16). In order to 
relate the subprocesses cross sections to the pp initial state, we have used the effective W 
approximation [17) (which is based on the Weizsaker-Williams approximation [18]) and the 
MRSD [19) proton structure functions, which are in good agreement with recent experimental 
results at HERA. 

The different subprocesses contributing to Z0 zo production that we have evaluated are 

zozo ~ zozo 
w+w- ~ zozo 

qq ~ zozo 
gg ~ zozo 

12 
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M = 100 GeV M = 500 GeV M = 1 TeV 

zozo ~ zozo 0.09 2.58 8.95 
w+w ~ zozo 21.23 23.39 46.32 

qq ~ zozo 53.83 
gg ~ zozo 13.42 

zozo + w+w- ~ zozo 21.33 25.97 55.27 

All~ Z 0 Z 0 88.57 93.21 122.52 

Table 1: Total number of Z 0 Z 0 events at LHC decaying to the cleanest leptonic decays (e, J.l), 
in the large N limit of the SM. We have set the following kinematical cuts on the final Z 0 

bosons: ~max = 5 TeV, p~n = 300 GeV, yr;ax = 2. To illustrate the effect of changing the 

renormalized Higgs mass M. in Eq.l5, we have chosen three typical values. The contributions 

from different initial subprocesses are shown explicitly, although those events coming from other 

gauge boson pairs are listed together. The top quark mass has been fixed to mt = 180 GeV. 

All these channels have been calculated using the MSM Feynman rules within the large N 
limit, which modifies the Higgs boson mass and width according to our previous discussion. 
Consequently we have used the Higgs propagator given in Eq.24, so that M remains as a 

, free parameter. We have evaluated most of the cross sections shown in Eq.27 at tree level, 
although gluon-gluon fusion is calculated to one-loop [20], since it occurs via quark loops. 
As a consequence this cross section is quite sensitive to the top quark mass, that has been 
set to mt = 180 GeV. 

In order to compute the total number of events of the subprocesses in Eq.27 we have set 
the following expected values for the LHC parameters: the pp center of mass energy, y'S = 14 
TeV and an integrated luminosity L = 3 X 105pb-1

. In addition, we choose the following 
kinematical cuts on the maximum Z 0 Z0 invariant mass ( rsax = 5 Te V), the minimum 
transverse momentum (~n = 300 Ge V) and the maximum rapidity Yzax = 2. Finally, in 
order to test the dependence on the renormalized mass parameter, we have chosen different 
input values forM: 100, 500 and 1000 GeV as defined in Eq.14, which cover a wide variety 
of regimes, from weak to strongly interacting. The results are displayed in Table 1. 

6 Conclusions 

We have studied the main properties of the Standard Model Higgs sector in the large N 
limit, i.e. for a large number of would-be Goldstone bosons, including the SU(2)L x Uy(1) 
interactions, keeping N A, N g2 and N g'2 constant. By using this approximation we have 
confirmed the expected behaviour from other non-perturbative approaches, both in the weak 
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and the strong interaction regime. In particular the Higgs mass saturation property. In 
addition we have been able to give a proper description of the Higgs resonance as a pole 
in the second Riemann sheet of the I = J = 0 channel, thus having a well defined width. 
The corresponding partial wave has very good unitarity properties and it is compatible with 
the low-energy theorems. Furthermore, the explicit introduction of gauge fields as well as 
the simplicity to implement this approach allow us, in contrast to most of the previous 
approaches, to obtain the w+, w- and Z scattering amplitudes by means of very simple 
calculations, even without the help of the Equivalence Theorem, which nevertheless has been 
used to check our results. As an illustration we have applied the large N approximation to 
estimate the number of Z 0 Z 0 events with the cleanest signature at the LHC, including all 
relevant backgrounds. The results can be found in the table. As it can be seen there, the 
sensibility of the number of events to the Higgs mass parameter is not very large. However, 
it could by considerably increased with jet tagging, which could help to separate the more 
interesting pure fusion events from the background. 

We have therefore shown how the large N, despite its simplicity (only the propagator has 
to be changed), yields a consistent description ofthe Higgs sector non-perturbative problems, 
thus improving previous approaches used to obtain predictions for the LHC. 
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