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The Role of Phase Space in Complex Fragment Emission from Low to 
Intermediate Energies 

L.G. Moretto, R. Ghetti, K. Jing, L. Phair, K. Tso, G.J. Wozniak 
Nuclear Science Division 

Lawrence Berkeley National Laboratory, Berkeley, CA 94720 

ABSTRACT 
The experimental emission probabilities of complex fragments by low energy com

pound nuclei and their dependence upon energy and Z value are compared to the 
transition state rates. Intermediate-mass-fragment multiplicity distributions for a va
riety of reactions at intermediate energies are shown to be binomial and thus reducible 
at all measured transverse energies. From these distributions a single binary event 
probability can be extracted which has a thermal dependence. A strong thermal sig
nature is also found in the charge distributions. The n-fold charge distributions are 
reducible to the 1-fold charge distributions through a simple scaling dictated by fold 
number and charge conservation. 

1. Transition State Rates and Complex Fragment Decay Widths 

The rates for fission decay, as well as for chemical reactions, are calculated most 
often by means of the transition state method [1]. In this approach, the reaction rate 
is equated to the flux of phase space density across a "suitably" located hyperplane 
normal to the "reaction coordinate". The "suitable" location is typically chosen at 
a saddle point in collective coordinate space, which corresponds to a bottleneck in 
phase space. A smart choice of the transition state location should minimize the 
number of phase space trajectories doubling back across the hyperplane. 

The surprising success of the transition state method has prompted attempts 
to justify its validity in a more fundamental way, and to identify regimes in which 
deviations might be expected [2, 3, 4]. In what follows we shall compare experimental 
decay rates for complex fragment emission with transition state predictions, and 
search for energy E and atomic number Z dependent deviations that can be expected 
to exist. 

The transition state expression for the fission decay width is: 

(I) 



where p(E) is the level density of the compound nucleus, p*(E- Bf- €) is the level 
density at the saddle point, B1 is the fission barrier, € is the kinetic energy over the 
saddle along the fission coordinate and 

_!_ = a [ln p* (X)] I 
Tj . ax E-B, 

(2) 

For the one dimensional case in which the only degree of freedom treated explicitly 
is the reaction coordinate, the decay width takes the form: 

*(E- B) f = nwp f "'nwe-Bt/T 
I p*(E) ,...., ' (3) 

where T is the temperature of the transition state. Now both level densities corre
spond to the same number of degrees of freedom. The quantity nw is the oscillator 
phonon associated with the ground state minimum. 

The emission of complex fragments can be treated in an analogous fashion by 
introducing the ridge line of conditional saddle points [5]. Each mass or charge 
emission can be associated with a conditional barrier. These barriers can be measured 
with techniques similar to those used to determine fission barriers [6]. Recently, nearly 
complete ridge lines have been determined for several nuclei: 75Br [7], 90,94Mo [8], and 
no,112In [ 6]. 

The emission rate of a fragment of a given mass or charge can still be described 
by an expression similar to that of Eq. (3). The quantity B1 becomes the conditional 
barrier Bz; but what is now the meaning of nw? Is there a single value of nw for all 
the channels or has each channel its own characteristic frequency? We shall endeavor 
to answer this question experimentally. 

An additional aspect of the problem has been studied by Kramers in his seminal 
work [2]. Kramers considered the diffusion of the system from the reactants' region to 
the products' region from the point of view of the Fokker-Planck equation. The new 
parameter entering the problem is the viscosity coefficient, which couples the reaction 
coordinate to the heat bath. The stationary current solution found by Kramers leads 
to expressions for the reaction rates similar to that of the transition state theory, 
differing only in the pre-exponential factor, which now includes the viscosity. More 
recent work on the same equation has shown that if the system is forced to start at 
time t=O at the ground state minimum, a transient time TJ exists during which the 
reaction rate goes from zero to its stationary value [3]. Both effects would decrease 
the overall fission rate compared to the transition state prediction. 

These effects have been advocated as an explanation for the large number of 
prescission neutrons observed in the fission of many systems [9, 10, 11, 12, 13], in 
apparent contradiction with the predictions of the transition state method [11, 12]. 
The prescission neutrons can be emitted either before the system reaches the saddle 
point, or during the descent from saddle to scission. Only the former component, 
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however, has any bearing on possible deviations of the fission rate from its transition 
state value, and the separation of the two components is very difficult indeed. 

Furthermore, it has been suggested that the viscosity and the transient time may 
depend on the collectivity of the reaction coordinate [14]. More specifically, the 
reaction coordinate for a very asymmetric decay should have little collectivity, while 
that for a symmetric decay should be very collective. A study of prescission particles 
as a function of the size of the emitted fragment claims to have observed such and 
effect [11, 14, 15). 

We are going to show that the presence or absence of the effects discussed above 
can be directly observable in the excitation functions for the emission of fragments 
with different Z values. Our procedure uses the transition state prediction as a null 
hypotheses, and involves only the replotting of experimental data without using any 
specific model. The cross section for the emission of a fragment of a given Z value 
can be written as: 

(4) 

Where O'o is the compound nucleus formation cross section and f T, f n, f p, f z are 
the total-, neutron-, proton-, and Z-decay widths, respectively. Notice that fT is 
essentially independent of Z if we confine our observations to the excitation energy 
region where the complex fragment emission probability is small. 

We now rewrite Eq. (4) as follows: 

O'z r 27rp(E- E~s) = (E- B - Es ) 
T T P Z r,Z' 

O'o z 
(5) 

where Tz is the temperature at the conditional saddle point and Er, E:,z are the 
ground state and saddle point rotational energies. In this way, the left hand side of 
the equation contains the complex fragment cross section which can be measured, 
and other calculable quantities that do not depend on Z, except Tz which is only 
weakly dependent on Z. The right hand side contains only the level density at the 
conditional saddle calculated at the intrinsic excitation energy over the conditional 
saddle, which is calculable if the barrier height is known. 

By using the standard Fermi gas level density expression, one can rewrite Eq. (5) 
in the following way which takes out the A-dependence of the level density: 

uo T Tz = ..!:_!_ = az (E- Bz- E:), 
In [!!..Z..f 21rp(E-E~·>] 1 R V 

2Fn 2Fn an 
(6) 

where az, an are the saddle and ground state level density parameters. A plot of the 
left hand side of this equation versus the square root of the intrinsic excitation energy 
over the saddle should give a straight line, and the slope of this straight line should 
give the square root of az/an. 

Recently, the excitation functions for a large number of fragment Z values have 
been measured for the following systems: 75Br [7], 90,94Mo [8), and no,n21n [6). The 
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Fig. 1: a) The excitation functions (cross sections vs excitation energy) for complex fragments of 
some typical Z values emitted from the compound nucleus 94Mo produced in the reaction 82Kr+ 12C 
at beam energies ranging from 6.2 to 12.2 MeV fu. b) The azfan values and c) conditional barriers 
B z, both extracted by fitting the excitation functions with a transition state formalism. The solid 
lines in a) correspond to the fit using an energy level parameter an = A/8. 
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Fig. 2: ln R1 /2Fn (see Eq. (6) and text) vs the square root of the intrinsic excitation energy for 
four compound nuclei: 75 Br a), 90Mo'b), 94Mo c), and 110•112In d). All the excitation functions for 
the indicated Z range are included for each compound nucleus. The solid lines are the linear fits to 
the data. The error bars are smaller than the size of symbols. r 

corresponding conditional barriers have been extracted by fitting the excitation func
tions with the transition state formalism. A level density parameter an = A/8 was 
assumed in the fitting. As an example, Fig. 1a shows some of the excitation functions 
for fragments with Z-values from 5 to 25 for the compound nucleus 94Mo. The solid 
lines in Fig. 1a correspond to the best fit to the experimental data. The extracted ra
tios azfan are close to unity for all Z values (see Fig. 1b). The extracted conditional 
barriers increase from 30-45 MeV as the charge of the emitted fragment increases (see 
Fig. 1c). 

Eq. (6) suggests that it should be possible to reduce all the excitation functions for 
the emission of different complex fragments from a given system to a single straight 
line. In Fig. 2 all the excitation functions associated with each of four compound 
nuclei (75Br, 90Mo, 94Mo, and 110•1121n) are plotted according to Eq. (6). There are 
20, 21, 21, and 9 excitation functions for 75Br, 90Mo, 94Mo, and 110•1121n, respectively. 
We see that all the excitation functions for each Z-value fall with remarkable precision 
on the same line that is in fact straight, has a slope near unity and passes closely 
through zero. 

As a final virtuoso touch, we can try to collapse ALL the excitation functions for 
ALL Z values and for all compound nuclei into a single straight line. The resulting 
plot for four different compound nuclei is shown in Fig. 3. It includes a total of 
71 excitation functions spanning a Z range from 3 to 25. The collapse of all the 
experimental excitation functions for all of the different Z-values and all the systems 
onto a single straight line is strong evidence for the validity of the transition state 
formalism and for the absence of Z- and E-dependent deviations. In particular, one is 
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Fig. 3: The same as Fig. 2 with data for all four nuclei in a single plot. The straight line is the 
linear fit to all the data points. 

led to the following conclusions: a) Once one removes the phase space associated with 
the non reactive degrees of freedom at the conditional saddle point, the reduced rates 
are IDENTICAL for fragments of all Z-values. Within the experimental sensitivity, 
the quantity 1iw in Eq. (2) appears to be Z independent. b) For all fragments, there 
is no deviation from the expected linear dependence over the excitation energy range 
from 50-130 MeV explored. This seems to rule out, for all Z-values, transient time 
effects which should become noticeable with increasing excitation energy. c) The 

slope, which corresponds to the Jaz/an, is essentially 1 for all Z values of all systems 
studied. d) The intercept of the straight line, which is associated with the channel · 
frequency w, is essentially zero and shows no obvious dependence on the fragment 
Z-values (i.e., the collectivity). 

We conclude that in this extended data set there is no evidence for transient effects 
either directly or through their expected dependence upon the mass of the emitted 
fragment. Furthermore it appears that the channel frequency is the same for all the 
different Z decay channels. 

2. Reducibility at intermediate energies 

At low excitation energies, complex fragments are emitted with low probability 
by a compound nucleus mechanism [16, 17]. At increasingly larger energies, the prob
ability of complex fragment emission increases dramatically, until several fragments 
are observed within a single event [18, 19, 20]. The nature of this multifragmentation 
process is at the center of much current attention. For example, the timescale of 
fragment emission and the associated issue of sequentiality versus simultaneity are 
the objects of intense theoretical and experimental study. 

6 



Recent experimental work [21, 22] has shown that the excitation functions for 
the production of two, three, four, etc. fragments give a characteristically linear 
Arrhenius plot, suggesting a statistical energy dependence. 

A fundamental issue, connected in part to those mentioned above, is that of re
ducibility: can multifragmentation be reduced to a combination of (nearly) indepen
dent emissions of fragments? More to the point, can the probability for the emission 
of n fragments be reduced to the emission probability of just one fragment? 

Recently, it has been experimentally observed in many reactions that for any value 
of the transverse energy Et, the n-fragment emission probability Pn is reducible to 
the one-fragment emission probability p through a binomial distribution [23, 24] 

(7) 

This empirical evidence indicates th_at multifragmentation can be thought of as a 
special combination of nearly independent fragment emissions. The binomial combi
nation of the elementary probabilities points to a combinatorial structure associated 
with a time-like or space-like one-dimensional sequence. It was also found that the 
log of such one-fragment emission probabilities (log p) plotted vs 1/ y'E; (Arrhenius 
plot) gives a remarkably straight line. This linear dependence is strongly suggestive 
of a thermal nature for p, 

p = e-B/T (8) 

under the assumption that the temperature T ex: v'JF where E* is the excitation 
energy. Examples of the binomial decomposition of the n-fragment emission proba
bilities Pn into a one-fragment emission probability p, and the resulting Arrhenius plot 
for p is given in Fig. 4. The extraordinary quantitative agreement between the calcu
lations and the experimental data confirms the binomiality of the multifragmentation 
process. 

The more directly interpretable physical parameter contained in this analysis is 
the binary barrier B (proportional to the slope of the Arrhenius plot in Fig. 4). One 
may wonder why a single binary barrier suffices, since mass asymmetries with many 
different barriers may be present. Let us consider a barrier distribution as a function 
of mass asymmetry x of the form B = B0 + axn, where Bo is the lowest barrier in the 
range considered. Then, 

p _;_ _I_ = J e-Bo/T e-axn/T dx I'V (T) 1/n e-Bo/T 
nwo a 

(9) 

Thus the simple form of Eq. (8) is retained with a small and renormalizable pre
exponential modification. 

One possible interpretation of the reducibility discussed above is sequential decay 
with constant probability p. Assuming that the (small) fragments, once produced 
do not generate additional fragments or disappear, the binomial distribution follows 
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Fig. 4: For the 129Xe induced reactions at E/A=50 MeV (left figure) and the 36Ar+197Au reactions 
atE/ A=50, 80 and 110 MeV (right figure): (left panel) the reciprocal of the single fragment emission 
probability 1/p as a function of 1/..}"£;; and (right panel) the parameter m (number of the throws 
in the binomial distribution) and the probability P(n) of emitting n intermediate mass fragments 
(IMF, 3 :::; Z :::; 20) as a function of the transverse energy Et. The solid lines through the excitation 
functions correspond to binomial distributions calculated with the given values of m and p. (See 
Eq. (7)) 
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directly. In this framework, it is possible to translate the probability p into the mean 
time separation between fragments. In other words, we can relate the n-fragment 
emission probabilities to the mean time separations between fragments. The validity 
of this interpretation is testable by experiment. 

We have tried to find alternative explanations to the sequential description for 
the binomial distributions with thermal probabilities. An obvious model is a chain 
of m links with probability p that any of the links is broken. The probability that n 
links are broken is given by Eq. (7). This result is, of course, strictly dependent on 
the dimensionality of the model, and its relevance to multifragmentation is unclear. 
Nevertheless, it stresses again the fundamental reducibility of the multifragmentation 
probability to a binary breakup probability p. 

3. Charge Distributions 

These aspects of reducibility and thermal scaling in the integrated fragment emis
sion probabilities lead naturally to the question: Is the charge distribution itself re
ducible and scalable? In particular, what is the charge distribution form that satisfies 
the condition of reducibility and of thermal dependence? 

Let us first consider the aspect of reducibility as it applies to the charge distri
butions. In its broadest form, reducibility demands that the probability p(Z), from 
which an event of n fragments is generated by m trials, is the same at every step 
of extraction. The consequence of this extreme reducibility is straightforward: the 
charge distribution for the one-fold events is the same as that for the n-fold events 
and equal to the singles distributions, i.e.: 

P(l)(Z) = P(n)(Z) = Psingles(Z) = p(Z). (10) 

We now consider the consequences of the thermal dependence of p [23] on the 
charge distributions. If the one-fold = n-fold = singles distributions is thermal, then 

B(Z) 
P(Z) ex e- T (11) 

or T ln P( Z) ex - B( Z). This suggests that, under the usual assumption Et ex E* 
[23], the function 

{i ln P(Z) = D(Z) (12) 

should be independent of Et. 
In the 36 Ar+197 Au reaction, as in other reactions [25, 26], the IMF charge distri

butions are empirically found to be nearly exponential functions of Z 

(13) 

In light of the above considerations, we would expect for On the following simple 
dependence 

1 1 
On ex T ex y'FI; 
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36Ar+ 197Au, E/A=llO MeV 

0.030 0.035 0.040 0.045 0.050 
Et-1/2(Mev-1/2) 

Fig. 5: The exponential fit parameter an (from fits to the charge distributions, see Eq.(13)) is plotted 
as a function of 1/.JE";. The solid lines are a fit to the values of an using Eq. (15). 

for all folds n. Thus a plot of an vs 1/VJ§; should give nearly straight lines. This is 
shown in Fig. 5 for 36Ar+197 Au at E/A=llO MeV. 

The expectation of thermal scaling appears to be met quite satisfactorily. For each 
value of n the exponent an shows the linear dependence on 1/VJ§; anticipated in Eq. 
(14). On the other hand, the extreme reducibility condition demanded by Eq. (10), 
namely that a 1 = a 2 = ... = an = a, is not rigorously met. Rather than collapsing 
on a single straight line, the values of an for the different fragment multiplicities are 
offset one with respect to another by what appears to be a small constant quantity. 

In fact, one can fit all of the data remarkably well, assuming for an the form: 

K' 
an = y'FJ; + nc (15) 

which implies: 
K 

an= T + nc (16) 

or more generally, for the Z distribution: 

Pn(Z) ex: e-B~Z)_ncZ. (17) 

Thus, we expect a more general reducibility expression for the charge distribution of 
any form to be: 

[lnPn(Z) + ncZ] fi; = F(Z) (18) 

for all values of n and Et· This equation indicates that it should be possible to reduce 
the charge distributions associated with any intermediate mass fragment multiplicity 
to the charge distribution of the singles. 
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What is the origin-of the regular offset that separates the curves in Fig. 5? The 
general form of Eq. (17) suggests the presence of an entropy term that does not 
depend explicitly on temperature.. The general expression for the free energy (in 
terms of enthalpy H, temperature T and entropy S) 

11G = 11H(Z)- Ti1S(Z) (19) 

leads to the distribution 
(20) 

Typically, 11S is of topological or combinatorial origin. For instance, a factor of 
this sort would appear in the isomerization of a molecule involving a change of sym
metry. In our specific case 11S may point to an asymptotic combinatorial structure 
of the multifragmentation process in the high temperature limit. As an example, we 
consider the Euler problem of an integer to be written as the sum of smaller integers, 
and calculate the resulting integer distribution. Specifically, let us consider an integer 
Z0 to be broken into n pieces. Let nz be the number of pieces of size Z. It can be 
shown [27] that 

n2 _nz 
nz = -e zo = cn2e-cnZ (21) 

Zo 

This expression has the correct asymptotic structure forT---+ oo required by Eq. (17). 
The significance of this form is transparent: First, the overall scale for the fragment 
size is set by the total charge Z0 . Second, for a specific multiplicity n, the scale is 
reduced by a factor n to the value Zofn. 

4. Phase Coexistence 

While Eq. (21) obviously implies charge conservation, it is not necessary that 
charge conservation be implemented as suggested by it. In fact it is easy to envisage 
a regime where the quantity c should be zero. Sequential thermal emission is a case 
in point. Since any fragment does not know how many other fragments will follow 
its emission, its charge distribution can not reflect the requirement of an unbiased 
partition of the total charge among n fragments. We have in mind a liquid drop 
evaporating fragments of different size and binding energy. "Charge conservation" 
will affect the distribution minimally, unless evaporation consumes the entire system, 
and even then, not in the sense of an unbiased partition. 

On the other hand, in a simultaneous emission controlled by a n~fragment transi
tion state [28, 29], fragments would be strongly aware of each other, and would reflect 
such an awareness through the charge distribution. 

The question then arises whether c = 0 or c > 0, or even better, whether one 
can identify a transition from a regime for which c = 0 to a new regime for which 
c > 0. In order to answer this question, we have studied the charge distributions as a 
function of fragment multiplicity n and transverse energy Et for a number of systems 
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Fig. 6: Top panel: then gated charge distributions Pn(Z) for the reaction 36 Ar+ 197 Au at E / A=llO 
MeV. The charge distributions were constructed from events with Et=650±20 MeV and n=l-5. 
Middle panel: the "reduced" charge distribution [27] for the same data using the indicated value of 
c. (The data here are normalized at Z=3). Bottom panel: the log of the ratio of P2(Z)j Pa(Z). The 
slope corresponds to c for n=2 (see Eq.(22)). The statistical error bars are shown for errors larger 
than the symbol size. 

and excitation energies. Specifically, we will present data for the reaction 36 Ar+197 Au 
at E/A=80 and 110 MeV and the reaction 129Xe+197Au at E/A=50 and 60 MeV. 

A general approach for measuring c, which does not depend on any specific form 
for the charge distribution, is to construct at each Et the ratio 

(22) 

A value of c can be extracted for each n by taking the log of this ratio and finding the 
slope of the resulting graph (see bottom panel of Fig. 6). A weighted average (over all 
IMF multiplicities n) for c can then be constructed at all Et. Alternatively, a x2 can 
be constructed in terms of the differences in F(Z) (see Eq. (18)) between any pairs of 
n values and minimized as a function of c. These procedures yield essentially the same 
results. These results are reported in Fig. 7 for the 129Xe+197 Au and 36 Ar+197 Au 
reactions. 

It is interesting to notice that for all reactions and bombarding energies the quan
tity c starts at or near zero, it increases with increasing Et for small Et values, and 
seems to saturate to a constant value at large Et. 

This behavior can be compared to that of a fluid crossing from the region of 
liquid-vapor coexistence to the region of overheated and unsaturated vapor. In the 
coexistence region, the properties of the saturated vapor cannot depend on the total 
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Fig. 7: Plots of the coefficient c versus Et for the reactions 129Xe+197 Au at E/A=50 and 60 MeV 
(top panel) and 36 Ar+197 Au atE /A=80 and 110 MeV (bottom panel). The error bars are statistical. 

mass of fluid. The presence of the liquid phase guarantees mass conservation at all 
average densities for any given temperature. A change in mean density (volume) 
merely changes the relative amount of the liquid and vapor, without altering the 
properties of the saturated vapor. Hence the vapor properties, and, in particular, the 
cluster size distributions cannot reflect the total mass or even the mean density of 
the system. In our notation, c = 0. 

On the other hand, in the region of unsaturated vapor, there is no liquid to insure 
mass conservation. Thus the vapor itself must take care of this conservation, at least 
grand canonically. In our notation, c > 0. 

This description should not be taken too literally, for a variety of reasons, one of 
which is the finiteness of the system. The c = 0 regime may signify an evaporative-like 
emission from a source which survives as a charge conserving residue~(liquid), while· 
the c > 0 regime may signify the complete vaporization of the source. 

In order to test these ideas for a finite system, percolation calculations [30] were 
performed for systems of Z0=97, 160 and 400 as a function of the percentage of bonds 
broken (Pb) in the simulation. Values of c were extracted (using Eq.(22)) as a function 
of Pb· 

The results are shown in Fig. 8. Guided by the insight gleaned from the approxi
mate solution to Euler's problem (see Eq.(21)) we have scaled the extracted values of 
c by the source size Z0 in order to remove this leading dependence and to evidentiate 
the true finite size effects. For values of Pb smaller than the critical (percolating) 
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Fig. 8: A plot of cZo versus the percentage of broken bonds Pb from a percolation calculation [30] 
for three systems Zo=97 (circles), Zo=l60 (squares) and Za=400 (diamonds). The statistical error 
bars are shown for errors larger than the symbol size. 

value (pbrit::::::: 0.75 for an infinite system), we find c = 0. This is the region in which 
a large (percolating) cluster is present. As Pb goes above its critical value, the value 
of c increases, and eventually saturates in a way very similar to that observed exper
imentally. Due to the finiteness of the system the transition is smooth rather than 
sharp and can be made sharper by increasing the size of the system. 

Before proceeding, let us remind ourselves that charge conservation is not a finite
size effect. For instance, the chemical potential, introduced in statistical mechanics 
to conserve mass, survives the thermodynamical limit and retains its meaning for an 
infinite system, despite the fact that the extensive thermodynamic quantities go to 
infinity. In our case, while it is true that c goes to zero or that 1/ c goes to infinity, it 
is also true that the product cZ0 tends to a finite limit nearly independent of Z0 • 

The significance of the actual experimental value of c in the region where it seems 
to saturate is unclear. In Eq.(21), c takes a direct meaning for the Euler problem: 
c = 1/Z0 • It should be noted that our analysis is not directly comparable to the Euler 
solution (Eq.(21)) since we have restricted ourselves to a limited region (3 :::; Z :::; 20) 
of the total charge distribution for our study of how the source is partitioned into 
different IMF multiplicities. It must also be appreciated that Eq. (21) and the as
sociated dependence of c upon Z0 are characteristic of a one-dimensional percolation 
model. In light of the points mentioned above, it is not unexpected that c appears 
to be proportional, but not equal, to 1/Zo in the three-dimensional percolation cal
culation reported in Fig. 8. An interpretation of c in terms of the source size may 
be possible when more data and a better understanding of the percolation of finite 
systems are available. 
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