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Consolidation of Common Parameters from Multiple Fits in 

Dynamic PET Data Analysis * 

Abstract 

R.H. Huesman and P.G. Coxson 

Center for Functional Imaging 

E. 0. Lawrence Berkeley National Laboratory 

University of California 

June 28, 1996 

In dynamic PET data analysis, regions of interest are analyzed by fitting a parametric model to 

the time-activity curve acquired after a radio-labeled tracer has been introduced into the patient's 

bloodstream. This procedure can be carried out for multiple regions of interest and/ or multiple 

injections of the same or a different radiopharmaceutical. The approach presented here takes advan­

tage of prior knowledge that some of the parameters of those multiple fits are the same. Reduction 

of the total number of parameters to be estimated results in smaller statistical uncertainty f~r all 

parameter estimates, especially those common to multiple fits. 

Introduction 

In dynamic positron emission tomography (PET) data analysis, regions of interest (ROis) are 

analyzed by fitting a compartmental model to the time-activity curve acquired after a radio-labeled 

tracer has been introduced into the patient's blood[!]. The model we use for this purpose is: 

y(t,p) = fvu(t- to)+ (1- fv) /_too h({k},t- r)u(r- to)dr, (1) 

•This work was supported in part by the National Heart, Lung and Blood Institute of the U.S. Department of 

Health and Human Services under Grants HL47675 and HL25840, and in part by the Director, Office of Energy 

Research, Office of Health and Environmental Research, Medical Applications and Biophysical Research Division of 

the U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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where y( t, p) is the time activity curve for the region of interest, u( t) is the time activity curve for. 

the blood, fv is the fraction of the region of interest which consists of blood, { k} are the model 

parameters representing the transfer rate of tracer from one compartment to another, t0 is the time 

offset between tissue and blood measurements, h( { k}, t) is the impulse response function for the 

compartmental model, and p is the vector of parameters to .be fit, p = (f v, to, { k} f. 
This fitting procedure can be carried out for multiple ROis and/or multiple injections. The 

present work takes advantage of a priori knowledge that some of the parameters of these multiple 

fits are the same. For example, the time-delay to between arrival of blood at the blood sampling 

site and arrival at an ROI can be expected to be nearly equal for different ROis in the brain[2]. 

Also, the fractional blood volume fv of an ROI can be expected to remain constant for certain 

multiple injection studies. Reduction of the total number of parameters to be estimated results 

in smaller statistical uncertainty for all parameter estimates, especially those common to multiple 

fits. 

Ideally one would perform a grand fit for all of the time-activity curves which have any common 

. parameters by minimizing the combined weighted sum of squared residuals. This is equivalent to 

maximum likelihood estimation, since the elements of the time-activity curve· are samples taken 

from normally distributed random variables. In this way the common parameters are naturally 

constrained to have the same value in the models for different time-activity curves. We are often 

in the situation where the results of the separate fits are available, and we would like to be able 

to predict the results of the grand fit from the results of the separate fits. Here we investigate a 

method to approximate the results of the grand fit which is referred to here as the Grand Taylor 

Fit (GTF). It is based on Taylor polynomial approximations to the individual criteria which have 

been optimized in the separate fits. This approach results in simple formulas, amenable to hand 

calculation, for the estimation of parameters and their covariances. In particular, the common 

parameters are estimated as a weighted average of the results from the separate fits, and other 

parameter estimates are adjusted based on their correlations with the common parameters. 

Studies involving a common blood fraction Uv) illustrate the power and simplicity of this 

approach, and an example with common arrival times (to) shows some of the difficulties. 
l 

Formulation of the Grand Taylor Fit 

Dynamic PET measurement data consists of accumulated emission counts Yi representing the 

integral of y(t,p) over the time interval (tj_ 1 , tj). Measurements yj from the ith data set are 

assumed to be normally distributed about the integral of y(t,pi) with variances u 2(y}). These 

variances are estimated by straightforward application ofthe ROI evaluation procedure given in [3]. 
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Under these conditions, the criterion to be minimized to fit the parameter vector p to the ith data 

set is the weighted sum of squared residuals of the form: 

(2) 

The maximum likelihood estimator of the parameter vector p for the ith data set is denoted by fi. 

The criterion can be approximated by the first two terms of a Taylor expansion of the criterion 

about its minimum: 

(3) 

where Sio is the minimum value of the criterion, pi is the value of the parameter vector at the 

minimum, and q,i is our estimate of the covariance matrix of the single fit parameter estimate fi. 

(q,i)-1 is obtained by calculating numerical second derivatives of Si at the minimum. In order to 

facilitate incorporation of the a priori knowledge that some of the parameters represent the same 

quantity in all the fits, we separate the parameter vector, pi, into two components: p~ which is 

different for each i and Pb which is common to all fits: 

v' = ( ::) (4) 

The criterion for the grand fit is the sum of the N individual criteria, 

(5) 

The solution to the grand fit, pfji and pf, are found by setting the derivatives of Be with respect 

top~ and Pb equal to zero. Using the Taylor expansions in equation (3) to approximate the indi­

vidual criteria, we obtain explicit formulas for GTF approximations pG to the grand fit parameter 

estimates pG: 

(6) 

(7) 

where we have used the following decomposition of q,i: 

(8) 

Derivation of equations (6) and (7) is given in the appendix. They give us a prescription to 

estimate the outcome of the grand fit using only the results of the individual fits. Also derived in 
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the appendix are the following expressions for the diagonal blocks of ~, the covariance matrix o~ 

the solution to the grand fit, as expressed in terms of the single fit covariance matrices: 

( 

N )-1 
~(pf,pf) = ~)~ib)-1 . 

k=1 
(9) 

""'( AGi AGi) n..i ~i [(""i )-1 (""i )-1~( AG AG)(""i )-1] ~i 
'.i:" Pa ,Pa = '.i:"aa- ab '.i:"bb - '.i:"bb Pb ,pb '.i:"bb ba ' (10) 

Equation (6) shows that the new estimate of the common parameter vector is the weighted 

average of the results of the individual fits. Equation (9) shows that the variance of the new 

estimates of the common parameters is expected to be reduced by at most a factor of N, the 

number of fits. The maximum reduction is achieved when all of the q,ib are equal. The values of 

the remaining parameters are then changed to reflect their correlation with the common parameter, 

as illustrated by equation (7). Equation (10) shows that the variance of these parameters is also 

reduced. Both the parameter values and the variances determined from the Taylor approximations 

are biased estimates of the grand fit parameters and variances. The bias is zero if all of the individual 

Taylor series are second order. In our first example, the biases are small and in the second they 

are relatively large. 

Example 1: Multiple Injections With a Common Region 

For each of several 82 Rb injections in a single anesthetized dog, a sequence of PET measurements 

of the 82Rb activity in a region of the myocardium and, simultaneously (to = 0), the activity in the 

blood pool in the left ventricular cavity were taken over a period of 4-6 minutes[4, 5, 6, 7, 8]. These 

data were used to determine parameters k21 (uptake), k12 (washout), and fv (vascular fraction) for 

the myocardial region, to fit the model 

y(t,p) = fvu(t) + (1- fv) ~~00 k21 e-k12 (t-T) u(r}dr. (11) 

Different injections were used to examine the change in k21 and k12 under a variety of physiologic 

conditions. We assume for the purpose of this analysis that the vascular fraction is unaffected by 

these conditions and should be the same in all fits. Table 1 shows the parameters estimated in five 

independent studies. 

Plots in Figure 1 illustrate how the individual criterion values and the grand criterion value are 

affected by the choice of fv· Each circle in the five plots on the left in Figure 1 is the minimum 

criterion value for that injection, conditioned on the value of fv· The solid line is the quadratic 

function which has the same minimum and curvature at the minimum as the criterion curve. In 

the upper right panel of Figure 1, the grand criterion is shown with open circles, each representing 
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the sum of the minimum criterion values for the five injections. The best fv is defined to be the 

vascular fraction which minimizes this curve, ff! = 0.166. Our estimate of the best common fv 

is if! = 0.166, which minimizes the sum of the five quadratic functions - the solid line in that 

panel. Note that in this case it is indistinguishable from ff! and the quadratic curve provides a 

good approximation to the grand criterion. 

Table 2 contains two sets of estimates: 1) the grand fit parameters estimates, and 2) the GTF 

approximations as calculated from equations (6) and (7) above: 

(12) 

(13) 

(14) 

The grand fit estimate of k21 and its approximation for first injection are shown graphically in the 

lower right panel of Figure 1. Each circle represents the best fit of k21 with fv given by the abscissa, 

if all parameters except fv are fit. Therefore the ordinate of the circle at fv = ff! is the grand 

fit estimate. The Taylor approximation to the grand fit estimate is given by the ordinate of the 

straight line at f v = if!. The straight line is tangent to the locus of circles at f v = !;; . 

Example 2: Multiple Regions with a Common Time Delay 

For a single injection of 18FDG in a human subject, a time series of PET measurements were taken 

in several regions of a single slice of the subject's brain[9, 10, 11]. The purpose of the study was 

to examine differences in glucose metabolism in different regions of the brain. Glucose metabolism 

is modeled using the blood activity curve and three kinetic rate parameters: k21 , k12 , and k32 . As 

in the rubidium example, tissue and blood data were combined to obtain estimates of the kinetic 

parameters. In this case our model is given by 

(15) 

The blood data were collected at a remote location, since there was no measurable pool of blood 

in the transverse section of the brain in which th.e tissue regions were analyzed. Consequently, the 

time delay between the site of blood measurement (usually an artery in the arm) and the brain 

slice of interest must be estimated. This additional parameter, t 0 , is assumed to be the same for 

all regions of the brain. Table 3 shows the parameters estimated in six independent studies. 
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Plots in Figure 2 illustrate how the individual criteria are affected by the choice of to. Each circle_ 

in the six regional plots in Figure 2 is the minimum criterion value for that region, conditioned on 

the value of t0 . The solid line is the quadratic function which has the same minimum and curvature 

at the minimum as the criterion curve. The grand criterion is shown in the tall plot with open 

circles, each representing the sum of the minimum criterion values for the six regions. The best 

t0 is defined to be the time delay which minimizes this curve, t~ = -12.8. Our estimate of t~ 

is i~ = -13.1, which minimizes the sum of the six quadratic functions - the solid line in the 

graph. In this example, i~ is noticeably different from t~. The quadratic curves are relatively poor 

representations of the separate fits, so it is not surprising that the grand Taylor fits based on these 

quadratic functions produce biased estimates. 

Table 4 gives the results of the grand fit with the parameter t0 fit in common and lists the 

parameters obtained by the approximation method. In this example, the approximations to the 

grand fit are noticeably biased. 

Conclusion 

We have derived simple formulas based on Taylor approximations to multiple separate criteria for 

approximating parameters which would minimize the grand criterion, under an assumption that 

some parameters are common. The utility of this approach has been demonstrated in an example 

for which the Taylor approximation is appropriate. A second example demonstrated the difficulties 

of this approach for a case in which the common parameter (time delay) enters the optimization 

problem in a complicated way. 

The approach developed in this paper was first presented at the 1990 IEEE Nuclear Science 

Symposium [12]. 
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Appendix 

We rewrite equation 3, the Taylor expansion of the criterion for the ith fit about its minimum as: 

(16) 

where Sio is the minimum value of the criterion, pi is the value of the parameter vector at the 

minimum, and Mi is the symmetric matrix whose inverse, q?i, is the covariance matrix of the single 

fit parameter estimate pi. In o,rder to facilitate incorporation of the a priori knowledge that some 

of the parameters represent the same quantity in all the fits, we separate the parameter vector, pi, 

into two components: p~ which is different for each i and Pb which is common to all fits: 

so that equation (16) can be rewritten as 

S S ( i Ai )TMi ( i Ai) 2( Ai )TMi ( i Ai) ( Ai )TMi ( Ai) 
i = io + Pa - Pa aa Pa - Pa + Pb - Pb ba Pa - Pa + Pb - Pb bb Pb - Pb 

where Mi, has the decomposition: 

The criterion for the grand fit is then written as the sum of the N individual criteria. 

N 

sG = Lsi 
i=l 

N N 
'"'s '"'( i Ai )TMi ( i Ai) = ~ io + L..J Pa - Pa aa Pa - Pa 
i=l i=l 

N N 

+2 L(Pb- p~f Mta(P~- p~) + L(Pb- p~f Mtb(Pb- p~) 
i=l i=l 

(17) 

(18) 

(19) 

(20) 

(21) 

The solution to the grand fit, p';i and pf, are found by setting the derivatives of SG with 

respect top~ and Pb equal to zero: 

2Mi ( AGi Ai ) 2Mi ( AG Ai) 0 aa Pa - Pa + ab Pb - Pb = (22) 

(23) 
i=l i=l 

These are simplified using relations easily derived from expansion of the identity Miq?i =I: 

M i Mi (Mi )-IMi (""i )-I bb - ba aa ab = '±"bb (24) 
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(25). 

where ~i, has the decomposition: 

(26) 

Then equations (22) and (23) reduce to: 

N - 1 N 

pf = (~<~~b)-1) ~(~~b)-1p~ (27) 

p~i = p~ + ~~b(~~b)-1 (Pf- p~) (28) 

' Equations (27) and (28) give us a prescription to predict the outcome of the grand fit using only 

the results of the individual fits. 

We now write SG in terms of pG, the solution to the grand fit as: 

N 

SG = SGo + L(P~- P~if M~a(P~- P~i) 
i=1 

(29) 

(30) 

where, 
N N 

S LS LCG ~i)T(~i )-1(~G ~i) Go = io + Pb - Pb bb Pb - Pb (31) 
i=1 i=1 

p~ MJa 0 0 0 M!& 

p~ 0 M;a 0 0 M;b 

P! 0 0 M~a 0 M:b 
p= M= (32) 

p~ 0 0 0 M! Mtt 
M1 M2 3 N N i Pb ba ba Mba Mba Li=1 Mbb 

The covariance matrix of the solution to the grand fit is give by~= M-1 . The separate blocks of 

~ can be expressed in terms of the single fit covariance matrices: 

( 

N )-1 
""( ~Gi ~Gj) _ [""i ""i (""i )-1;F.i ] $:.. ""i (""i )-1 ~(""k )-1 (""j )-1""j 
'±" Pa ,pa - '±"aa- '±"ab '±"bb '±"ba UtJ + '±"ab '±"bb ~ '±"&b '±"bb '±"ba (33) 

(34) 

(35) 
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Table 1: Separate Fits for the Five Injections of Example 1 

Study k21 ± o-(k21) k12 ± o-(k12) fv ± o-(fv) P(fv, k2I) PUv, k12) 
1 0.855 ± 0.063 0.110 ± 0.046 0.204 ± 0.039 -0.01 -0.42 
2 0.546 ± 0.038 0.012 ± 0.035 0.173 ± 0.032 -0.07 -0.40 
3 0.459 ± 0.039 0.037 ± 0.044 0.163 ± 0.031 -0.18 -0.40 
4 0.672 ± 0.046 0.032 ± 0.036 0.134 ± 0.034 -0.01 -0.37 
5 0.670 ± 0.044 0.016 ± 0.034 0.163 ± 0.038 0.03 -0.41 

Table 2: Grand Fit and its Approximation for the Five Injections of Example 1 

Grand Fit Grand Taylor Fit 
Study fv k21 k12 fv k21 k12 

1 0.166 0.857 0.130 0.166 0.855 0.129 
2 0.546 0.015 0.546 0.015 
3 0.458 0.035 0.458 0.035 
4 0.673 0.019 0.672 0.019 
5 0.670 0.015 0.670 0.015 
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Figure 1: Plots of the Criteria for the Five Injections of Example 1 
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Table 3: Separate Fits for the Six Regions of Example 2 

Region k21 ± u(k2d k12 ± u( k12) k32 ± u( k32) fv ± u(fv) to± u(to) 
1 0.126 ± 0.013 0.177 ± 0.042 0.084 ± 0.011 0.056 ± 0.013 -7.0 ± 1.5 
2 0.112 ± 0.016 0.152 ± 0.056 0.094 ± 0.018 0.043 ± 0.015 -13.4 ± 1.3 
3 0.131 ± 0.011 0.163 ± 0.031 0.073 ± 0.008 0.048 ± 0.014 -13.0 ± 1.1 
4 0.114 ± 0.015 0.148 ± 0.048 0.085 ± 0.015 0.058 ±,0.015 -11.4 ± 1.1 
5 0.225 ± 0.044 0.443 ± 0.143 0.098 ± 0.013 -0.029 ± 0.007 -16.5 ± 0.9 
6 0.150 ± 0.017 0.183 ± 0.044 0.072 ± 0.010 0.037 ± 0.019 -13.7 ± 1.8 

Region p(to, k21) p(to, k12) p(to, k32) p(to, fv) 
1 -0.17 -0.16 -0.03 0.41 
2 -0.30 -0.26 -0.08 0.69 
3 -0.30 -0.26 0.01 0.71 
4 -0.19 -0.17 -0.04 0.43 
5 0.28 0.26 0.12 -0.46 
6 -0.35 -0.31 0.01 0.83 

Table 4: Grand Fit and its Approximation for the Six Regions of Example 2 

Grand Fit Grand Taylor Fit 
Region to k21 k12 k32 fv to k21 k12 k32 fv 

1 -12.8 0.146 0.231 0.085 0.016 -13.1 0.135 0.204 0.085 0.034 
2 0.110 0.146 0.093 0.047 0.110 0.149 0.094 0.045 
3 0.130 0.162 0.073 0.049 0.131 0.164 0.073 0.046 
4 0.119 0.163 0.086 0.046 0.118 0.160 0.086 0.049 
5 0.232 0.468 0.101 -0.023 0.268 0.573 0.103 -0.041 
6 0.147 0.177 0.072 0.044 0.148 0.179 0.072 0.042 
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