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Abstract 

We study the renormalization-scheme (RS) dependence of Pade Approximants (PA's), and· 
compare them with the Principle of Minimal Sensitivity (PMS) and the Effective Charge 
(ECH) approaches. Although the formulae provided by the PA, PMS and ECH predictions 
for higher-order terms in a QCD perturbation expansion differ in general, their predictions 
can be very close numerically for a wide range of renormalization schemes. Using the 
Bjorken sum rule as a test case, we find that Pade Summation (PS) reduces drastically 
the RS dependence of the Bjorken effective charge. We use these results to estimate the 
theoretical error due to the choice of RS in the extraction of a 5 from the Bjorken sum rule, 
and use the available data at Q2 = 3 GeV2 to estimate a 5 (Mz) = 0.117~g:ggi ± 0.002, 
where the first error is experimental, and the second is theore~ical. 
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1 Introduction 

Pade approximants (PA 's) have proven to be useful in many physics applications, 
including condensed-matter problems and quantum field theory [1]. PA's may be 
used either to predict the next term in some perturbative series, called a Pade Ap
proximant prediction (PAP), or to estimate the sum of the entire series, called Pade 
Summation (PS). The underlying reasons for the successes of these different ap-

. plications have not always been apparent. Admittedly, rational functions are very 
flexible, and hence a priori well suited to approximate other unknown functions, but 
some of the PA successes seem almost 'magical'. Obtaining a deeper understanding 
of these successes is not only desirable in itself, but may give us deeper understanding 
also of the underlying physics. Among the areas in which PA's have had remarkable 
successes has been perturbative QCD [2,3] where PA's applied to low-order pertur
bative series have been shown to 'postdict' accurately known higher-order terms, 
and also used to make estimates of even higher-order unknown terms that agree 
with independent predictions based on the Principle of Minimal Sensitivity (PMS) 
[4] and Effective Charge (ECH) [5] techniques. Of particular interest to us has been 
the perturbative QCD series for the Bjorken sum rule for three quark flavors [6-8] 
which has served us previously [3] as a test caset. For this series, the [0 / 1] PAP 
for the third-order coefficient in the MS prescription is 12.8, to be compared with 
the PMS estimate of 20.0, the ECH estimate of 19.2, and the exact value [8] of 
20.21 . This lowest-order PAP is pointing in the right direction, which is the best 
one could hope at this level. Going to the next order, the [1/1] and [0/2] PAP's 
for the fourth-order Bjorken sum rule coefficient are 114 and 99 respectively, whilst 
the PMS/ECH prediction is 130 [10]. These values are quite similar, and we have 
provided [3] a prescription for systematic improvement of these PAP's which brings 
them even closer to the PMS /ECH prediction. Should the previous agreement of 
PAP's with the PMS/ECH and exact calculations here and elsewhere, and the agree
ment of these new predictions, be regarded as fortuitous, or is there some deeper 
reason why PAP's and PS's should be believed also in the QCD context? 

In recent papers [2,3], we have tried to cast some light on these 'magical' suc
cesses. In particular, we have proven that certain conditions on the ratios of consecu
tive terms in a series are mathematically sufficient to guarantee rapid convergence of 
successive PAP's, and we have observed that these conditions are satisfied by asymp
totic series dominated by one or a finite number of renormalon poles. This is believed 
to be the case for many QCD perturbation series, such as that for the Bjorken sum 
rule [9], which we have used as a testing ground and showcase. We have also shown 
that PA's yield a renormalization-scale dependence which is much less than that of 
the corresponding perturbative series, even when the latter is supplemented by an 
ECH estimate of the next, uncalculated term. Since the full QCD expression for , 
any physical quantity such as the Bjorken sum rule must be renormalization-scale 

fNote that in this paper we use PA's for the effective charge, rather than for the Bjorken sum 
rule itself, motivated in part by the large-Nf analysis of [9]. 
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independent, this is valuable circumstantial evidence that the PA 's are indeed con
verging towards the correct physical result. However, the strength of this evidence 
is significantly reduced by the fact that the scale dependence has been studied only 
within one specific renormalization scheme, namely MS, making it difficult to assess 
the numerical accuracy of the PA prediction. 

The purpose of this paper is to understand better the renormalization-scheme 
dependence of PA's in perturbative QCD, again taking the Bjorken sum rule as our 
test case. On the way to this goal, we also examine more closely the relations between 
PAP's and the PMS and ECH techniques for estimating higher-order perturbative 
coefficients in QCD, and examine the extent to which PS's should and do agree 
with PMS and ECH estimates of the 'sums' of perturbative series in QCD. We 
also examine the extent to which the Cancelation Index ( CI) criterion of Ref. [11) 
provides a reliable guide to the comparative accuracies of partial calculations in 
different renormalization schemes. 

The PMS and ECH formulae used to predict the next term in any QCD pertur
bative series do not in general coincide, and we show below that the PA prediction 
(PAP) for the next term is in general different again. However, in a wide range of 
RS 's their predictions can be quite close numerically, as we discuss later. 

Using the Bjorken sum rule as an example, we exhibit a map of its two-parameter 
renormalization-scheme dependence at the next-to-next-to-leading order (NNLO) 
level, situating on this map the PMS and ECH scheme choices. We then exhibit 
the corresponding map for the [0/2) PA, which we find to be much less sensitive to 
the choice of renormalization scheme. We also demonstrate that the CI criterion 
of Ref. [11] selects efficiently the region of renormalization-scheme space where the 
scheme-dependence is minimized. In addition, we compare the PMS/ECH and [0/2) 
PA predictions for the fourth-order term in the Bjorken sum rule series, finding 
remarkable agreement. 

Finally, as an application of this analysis, we revisit the extraction [3] of a 5 from 
experimental data on the Bjorken sum rule at Q2 = 3 Ge V2

. Our analysis enables 
us to assign a systematic error to the choice of renormalization scheme, which is 
small compared with the current experimental error. The present ~ata yield 

(1) 

which could in the future become a highly competitive determination of as(Mz), 
if the present experimental error could be halved. The systematic error associated 
with the choice of renormalization scale would still not be dominant at this level. 
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2 Comparing PMS, ECH and Pade Predictions 
to NNLO 

We start by recalling the essential physical ideas of the PMS [4) and ECH [5) ap
proaches. The PMS method is based on choosing the RS that minimises the RS 
dependence in a given order of perturbation theory, whereas, in the ECH method, 
one chooses a natural RS to describe the observable, namely one in which all the 
non-leading corrections are exactly zero. To see how these work and differ in prac
tice, we look at the application of PMS and ECH to the perturbative series for a 
generic QCD observable, calculated at NLO and NNLO in someRS. At the NLO 
level, the choice of RS involves just the choice of renormaliza.tion scale J.l, whereas a 
second parameter enters at the NNLO level, as we discuss in more detail later. For 
conven~ence, instead of J.l, we use T, defined by 

b _ 33- 2Nf 
- 6 . (2) 

At NLO any observable 6 can be written as: 

6 = a(r)[1 + r1 (r)a(r)] (3) 

where a( T) = a:5 ( T) I 1r satisfies the renormalization-group equation at NLO: 

aa 1 aa 2 - = -J.L- = -a [1 + ca] , ar b aj.l 
153- 19NJ 

c=----'--
2(33- 2N1). 

(4) 

which has the solution: 

T=-+cln 1 ( ca ) 
a 1 + ca 

(5) 

In the PMS method [4) one chooses an 'optimal RS' which minimises the RS de
pendence at a given order. The corresponding parameters are denoted by: r,a, r1 . 

In order to find the PMS RS, one differentiates (3) wit~ respect to T, substituting 
8al8r from (4), yielding 

(6) 

Clearly, at NLO the 0( a2) RS dependence of any observable must vanish, and 
therefore arl I ar = 1. Thus one identifies the RG invariant Pl: 

(7) 

which enables us to calculate r 1 ( T) in any RS from an initial r1 that was calculated 
in perturbation theory in some initial RS. Equating a6 I ar in ( 6) to zero, one finds 
that in the PMS RS: 

c r------
1- 2(1 + ca) (8) 
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and therefore, using (7), (5), and (8) one can write an equation for a: 

c 1 1 (ca) 
Pt = 2(1 + ca) + Zi + c n 1 + ca (9) 

This equation cannot be solved analytically, but it can directly be solved numerically. 
Finally, one uses (8) to write the observable in the PMS RS: 

0 _ 2+ca 
PMS = a2(1 + ca) (10) 

Substituting a as a power series in the original a, we obtain a ratio of two polynomials 
in a, that is - a structure similar to Pade-Summation! With the resemblance comes 
the difference: The PMS result depends/not only on the lower order coefficients of 
the observable we are dealing with, but also on the coefficients of the fJ function 
(this is also the case in the BLM method). 

In the ECH method [5], the preferred RS is the one is which the perturbative 
expansion (like eq (3) ) reduces to a leading term, that is: 

OEcH =a*. (11) 

We can find this RS by substituting r 1 = 0 in (7). Using (5) we can write the 
following equation for a*: 

1 ( ca* ) Pt =- + cln 
a* 1 + ca* 

(12) 

As in the PMS case, this equation can only be solved numerically. In this case, we 
do not find any resemblance to the Pade structure. 

At NNLO a_ a 5 (r)/7r satisfies the RG equation: 

aa 1 8a 2 [ 2] - (:J( a) ar = J;lla/1 =-a 1 +ca+c2a = -b-

which has the formal solution: 

T = I_+ c ln ( ca ) + c2 fa dx 
a 1+ca lo (1+cx)(1+cx+c2x2 ) 

(13) 

(14) 

The two independent parameters specifying the RS may be chosen to be a and c2 or 
T and c2 . For our present purposes, it is more convenient to use T and c2 • A generic 
QCD observable at the NNLO may then be written in the form: 

(15) 

where a = a( r, c2 ). To derive the second-order PMS formulae, we first differentiate 
the observable (15) with respect to both T and c2 : 

a6 aa ( 2) 2 8rl . 3 8r2 
ar = ar 1 + 2r1 a + 3r2a + a ar + a ar 

4 
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(17) 

Using next the NNLO renormalization-group equation (13), we can find oafoc2 as a 
function of a, c and- c2 and substitute oaf OT and oaf oc2 for the appropriate power 
series in a in equations (16) and (17). Demanding that oO / OT and oO / oc2 be of 
order O(a4

), we find two renor'malization-group-invariant quantities: 

(18) 

which appears already in a NLO analysis, and 

(19) 

Using these two invariants, we can calculate r 1 ( T, c2 ) and r 2 ( T, c2 ) in any RS, as a 
function of the values of r 1 and r 2 calculated in perturbation theory in any initial 
RS. We will use (18) and (19) extensively later in this work. 

The two equations that determine the PMS RS can now be found by equating 
(16) and (17) to zero. These equations cannot be solved analytically, but one may 
solve them graphically to locate the PMS RS, by plotting the NNLO observable as a 
function of the RS parameters a and c2 , and identifying a local extremum or saddle 
point, which corresponds to both (16) and (17) being zero. 

The ECH RS is specified at third order by the conditions r1 = r 2 = 0, which we 
must substitute into equations (18) and (19). The results are: 

TECH= Pl (20) 

and, 
(21) 

Substituting the above in (14), we obtain an equation for a*, which is just the 
observable calculated in the ECH scheme, OEcH =a*: 

1 ( ca* ) 1a• dx P1 = - + cln + P2 
a* 1 + ca* o (1 + cx)(1 +ex+ p2x2 ) 

(22) 

As in the PMS case, this ECH equation cannot be solved analytically. 

Since there are no closed analytical formulae for the third-order PMS and ECH 
results, we cannot compare them directly to the PS method. We do note, however, 
that the PMS and ECH expressions contain in general singularities in the coupling 
plane, as do Pade approximants. Still, the PMS singularities are not necessarily 
discrete poles, and thus the PMS and ECH singularity structure may differ from 
that of the PS. Here we do not address this interesting issue further, focusing instead 
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on comparing Pade with PMS/ECH. The comparison is done by looking both at 
their predictions of for the next term in the perturbative series, and at their results 
for the overall 'summation' of the series. 

As a warm-up exercise, we consider the comparison at NLO, where we start 
with (3) and predict r 2 by the different methods. To this order, the [0/1] PAP is 
equivalent to the assumption that the series is a geometrical one, so that: 

r PAP _ r2 
2 - 1 (23) 

On the other hand, it follows from the above higher-order analysis that the PMS 
prediction is [4]: 

(24) 

whilst the ECH result is [5]: 
(25) 

We observe that, if r 1 is much larger than c, then the three methods will give 
similar results. However, c does not depend on the RS, while r 1 does. This means 
that there are schemes in which the PAP, PMS and ECH would be close, and others 
(which may be just as legitimate) in which they would not agree. It is however clear 
from equations (24) and (25) that the schemes in which there is a good agreement 
between the PMS and ECH predictions are exactly those schemes in which the PAP 
prediction (23) agrees with both of them. 

In order to study this comparison between Pade and PMS further, we go to third 
order, where a generic observable may be written as in (15). The PAP predictions 
for the 4-th coefficient (r3 ) are: 

(26) 

(27) 

whilst the PMS and ECH predictions coincide exactly [10]: 

(28) 

We see from the above that there is no simple relation between the formulae for the 
PAP and the PMS /ECH predictions. 

At NLO, eqs. (23), (24), (25), they differ only by terms that depend on a higher
order coefficient in the QCD f3 function. However, there are further differences at 
NNLO, eqs. (26), (27), (28). There are, nevertheless, a couple of extreme cases in 
which the predictions of the different methods for r 2 and for r 3 approach each other. 
One such case is provided by RS's in which all the non-leading corrections are small, 
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or even zero as in the ECH RS. The prediction for the next term is then small in 
all approaches, as intuitively expected. The other extreme is when the non-leading 
corrections are much larger than the corresponding coefficients of the j3 function 
(ri » ci)§. In this case the NLO prediction is r~st ,....., rf in any method, and the 
NNLO prediction is r~st ,....., rr in any method, provided that the r2 coefficient is indeed 
close to the NLO prediction, i.e., r 2 ,....., rf. It cannot be guaranteed, however, that 
either of these conditions holds for a generic observable in a generic RS. Therefore, 
the formulae for the next term derived in the different methods do not generally 
coincide. Still, a good numerical agreement between the predictions is possible in a 
generic RS, and this is indeed the case in the example we discuss later. 

The principal conclusions of this analysis are: 

a) There is no general agreement, nor simple relation between the PMS or the ECH 
methods and the Pade method. One major reason for this is that; in contrast 
to the PA 's, the PMS and ECH predictions depend on the coefficients of the j3 
function, and not only on the coefficients of the observable under consideration. 

b) PA's differ from conventional perturbation series by having distinctive singu
larities in the coupling plane. While some singularities may be expected in 
QCD, they are not necessarily of the Pade form. Singularities in the coupling 
plane appear also in the PMS and ECH formulations, e.g., the second-order 
PMS result is just a rational polynomial. Higher-order PMS and ECH results 
cannot be calculated analytically, but singularities in the coupling plane are 
expected there as well. However, there is at present no indication that the 
singularity structure will resemble that of the PA. 

c) Since the PA method is totally independent of the PMS and ECH methods, 
we believe that good numerical agreement between their predictions should be 
considered as strong evidence that both sets of predictions are correct. 

As a test case for the application of the PMS, ECH and PA approaches, we study 
in the following sections the Bjorken Sum Rule for three quark flavours. Our con
clusions can later be checked using other QCD observables. 

3 Renormalization-Scheme Dependence in the 
Bjorken Sum Rule 

We now proceed to a detailed discussion of renormalization-scheme (RS) dependence 
in one of the cases where an exact NNLO perturbative calculation in available, 

§An example of this class seems to be provided by the Bjorken sum rule in MS with f-l = Q. 
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namely the effective charge in the Bjorken sum rule [6-8]: 

a:Bi =a+ 3.58a2 + 20.22a3 + · · · (29) 

in the MS scheme with J.L = Q and 3 flavours assumed. It is a simple matter to 
convert (29) to an arbitrary renormalization scheme, using the two RG invariants 
of eq. (18) and (19). 

We note at the outset of our analysis that the PMS and ECH prescriptions are 
both based explicitly on the renormalization group, and aim directly at the choice 
of an optimal RS. The BLM approach [12] is also based on the renormalization 
group, and can be regarded as a way of choosing systematically renormalization 
scales appropriate for each order in perturbation theory. As we discuss in [13], the 
BLM approach is close to PMS and ECH, both in its nature and its results11. On the 
other hand, Pade approximants are formulated independently of the renormalization 
group in any RS, and we have demonstrated explicitly in the previous section that 
they are not related to PMS and ECH in any obvious way. Hence, there is no a 
priori reason to expect the Pade method to reduce the RS dependence. In fact it 
does, as we shall see later, and we believe that this observation bolsters the utility 
of Pade approximants in QCD applicationsll. 

We first compute the Bjorken effective charge aBj as a function of the two NNLO 
parameters a and c2 discussed in the previous section. Experimental measurements 
of the Bjorken sum rule are currently made in a range of Q2 where one believes 3 
quark flavours to be active, as assumed in (29). In principle, as J.l is varied, one may 
cross the charm threshold, and so one should modify and match formulae ( 13) and 
(29) of effective theories at the N1 = 4 threshold. Since this issue is only a technical 
complication, we choose to avoid it for the purposes of this discussion by calculating 
the Bjorken effective charge at Q2 = 20 GeV2

, corresponding to a= 0.07 in the MS 
prescription with J.l = Q, and fixing N1 = 3, whatever the value of J.l· This analysis 
is sufficient to establish a "proof of concept", and we return later to a discussion of 
the more experimentally relevant case of lower Q2• Fig. 1 displays contours of the 
Bjorken effective charge aBi' differing in height by ~aBj = 0.002, where we note the 
following features: 

a) There is a :fiat region around a= 0.1, where the RS dependence is very weak. 

b) The value of the Bjorken effective charge in the MS RS (a= 0.07, c2 = 4.471, 
denoted by a circle) is 

(30) 

11There are some intriguing connections between the mathematical foundations of the BLM and 
Pade approaches. These are currently under investigation [13]. 

II We demonstrated previously that the Pade method greatly diminishes the renormalization 
scale dependence of the Bjorken sum rule. 
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We note that the MS RS does not lie in the fiat region mentioned above. 
Therefore the RS dependence, particularly the renormalization scale depen
dence, is relatively high in the MS RS. 

c) Within the fiat region mentioned in a), there is a saddle point at a= 0.1005, 
c2 = 8.7, which corresponds to the PMS RS **. The value of the Bjorken 
effective charge in the PMS RS is 

aBi(PMS) = 0.10033 (31) 

which deviates by about 6% from the MS result. This deviation is an example 
of the RS dependence in this case. 

d) Another point which lies in the fiat region mentioned in a) is the ECH RS at 
a= 0.10038, c2 = 5.476. The value of the Bjorken effective charge in the ECH 
method is therefore 

aBi(ECH) = 0.10038 

which is very close to the PMS result of (31 ). 

(32) 

e) When using a RS with a very low coupling-constant (a .:S 0.0( for example) or 
a-very high coupling-constant (a ;;c 0.16, for example) we obtain a value of aBi 
which is totally inconsistent with the MS, PMS and ECH results, and which 
is also strongly dependent on the specific choice of the parameters a and c2 . 

This strong deviation from the results of the ECH and PMS RS's is related 
to the existence of large non-leading corrections in the perturbative expansion 
for the Bjorken Sum Rule in these RS's. Therefore, we look for a consistent 
way of excluding these RS's, or- even better- a consistent way of using them 
and still getting reasonable results. We will now show that both aims are 
achievable, the first by the use of the Cancellation Index criterion advocated 
in Ref. [11], which is discussed in the following section, and the second by the 
use of PS, as shown in section 5. 

4 The Cancellation Index Criterion 

In view of the NNLO RS dependence on a and c2 displayed in Fig. 1, it is desirable 
to find a criterion which selects a region in the (a, c2 ) plane that contains "well
behaved" RS's for which higher-order corrections are not expected to be large. One 
can then examine the performance of techniques for improving the perturbative 

**The exact location of this saddle point was found using a similar plot with much higher 
resolution, which is not presented here. 
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series (such as the Pade method) in a compact domain of the (a, c2 ) plane. Looking 
at the RS dependence over this domain may then provide a legitimate estimate of 
the observable ( aBi in our test case) and of the RS uncertainty in this estimate. 

Here we use the criterion proposed in Ref. [11], namely that a "well-behaved" 
RS is one for which the degree of cancellation between the different terms in the 
second NNLO renormalization-group invariant p2 = r2 + c2 - ri- cr1 (19) is small. 
The degree of cancellation is measured by the Cancellation Index: 

C = lr2l + lc2l + :i + clrtl 
r 2 + c2 - r 1 - cr1 

(33) 

and contours of C for the Bjorken effective charge aBj are also plotted in Fig. 1. 
We exhibit the contours C = 2, 3, 4, 5: contours of higher values of C become closer 
together as C increase. 

We observe that these contours of C are indeed centered around the fiat region 
of small RS dependence to which we drew attention previously. Indeed, the ECH 
RS is the only one for which C = 1. The PMS RS also has a low value C = 2.18, 
whereas C ;<; 7 for the MS RS, as was already mentioned in [11]. 

In order to study the RS dependence we restrict our attention to the domain 
defined by C ~ C0 . C0 should be chosen such that the PMS RS, where the local RS 
dependence vanishes is well within the selected domain, but yet, not too large, so 
that all the RS included in the domain would be trustable, having a small enough 
local RS dependence. For the purposes of the subsequent discussion, we shall choose 
C0 = 4 which answers the above requirements. While other reasonable values of Co 
and other criteria for choosing restricted domains in the RS parameter space may 
be used just as well, our principle conclusions would remain the same. 

Within the C ~ 4 domain, we find 

0.087 ~ aBj < 0.109 (34) 

which is our best estimate of the likely RS ambiguity in aBi' in the absence of the 
improvement that the Pade method provides in the next section. 

5 Pade Summation of the Bjorken Series 

We now apply the Pade method to the perturbative QCD series for the Bjorken 
effective charge (29), and explore its effect on the RS dependence. As already 
mentioned in the Introduction, one may use Pade approximants either to predict 
the next term in the series (PAP) or to sum the entire series (PS), in the sense [3] 
of calculating the Cauchy principal value of an asymptotic series with one or more 
infrared renormalons, as is believed to be the case for the Bjorken series. 
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A priori, one may evaluate either the [0/2] PS. or the [1/1] PS of the Bjorken 
series. In this section we evaluate both PS's of the Bjorken series in the (a, c2 ) plane 
introduced earlier, and compare their RS dependences with that of the naive series 
shown .in Fig. 1. 

Fig. 2 displays contours of aBj evaluated using the [0/2] PS, with the same steps 
.6.aBj = 0.002 as in Fig. 1. We see immediately that the contours in Fig. 2 are much 
sparser than those in Fig. 1, and hence that the [0/2] PS depends much less on the 
RS than does the naive partial sum. To put this comparison on a quantitive basis, 
we evaluate the RS dependence of aBj( [0/2] PS) in the C :S 4 domain of the (a, c2 ) 

plane: . 

0.0986 :S aBi( [0/2] PS) :S 0.1011 (35) 

We see that the RS dependence of the [0/2] PS is an order of magnitude less than 
that of the naive partial sum (29). 

This is not true, however, for the [1/1] PS shown in Fig. 3, whose RS-dependence 
is much larger to that of the naive partial sum: 

-0.14 ;S aBi( [1/1] PS) ;S 0.14 (36) 

The extremes of this large range are due to specific RS's for which the [1/1] PS is 
particularly deviant. Most RS's fall within a much narrower range. However, this 
analysis points up the fact that the [1/1] PSis much less well-behaved than the [0/2] 

. PS (35). 

A persistent problem in the application of Pade methods is how to choose the 
one which is the most accurate. Various empirical an.d analytic results give some 
indications, but there is no unambiguous general prescription for the choice. In 
the case of the Bjorken series at the NNLO level, the amount of RS dependence 
provides a clear physical criterion, which selects unambiguously the [0/2] PS. The 
reduced RS dependence (35) of the aBj( [0/2] PS) hints that this determination of 
a:Bj may be correct within its errors. One might worry that the PS for different RS 
are converging to the wrong common result. However, encouragement is provided 
by the comparison between the PMS, ECH and PS results (31), (32) and (35), where 
we see that they are all consistent. 

Since the PMS /ECH and the PS methods are a priori unrelated - PMS and 
ECH are based on the renormalization group and attempt to minimize higher-order 
terms, whereas PS uses no renormalization-group ingredients and tries to resum 
rapidly-growing higher-order terms- we regard the remarkable agreement between 
these different techniques as strong evidence in favour of both methods. Further 
support for this conjecture comes in the next section, where we compare PAP's with 
PMS jECH predictions for the next term in £he Bjorken series. 
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6 PAP and PMS/ECH Predictions for the Next 
Term in the Bjorken Series 

If the agreement between PS and PMS/ECH is significant, and not just a coinci
dence, we can formulate several expectations concerning the coefficient of the fourth
order term predicted by the different methods: 

a) The fourth-order partial sum with the fourth-order coefficient given by the [0/2] 
PAP should be consistent with the PS result of (35) (and thus also with the 
PMS and ECH result of (31) and (32) ). It should also have a RS dependence 
which is smaller than the original third order partial sum, but larger than the 
full PS result. 

b) The same should hold for the fourth-order partial sum when the PMS /ECH 
prediction for the next term is used for the fourth-order coefficient. 

c) There should be a numerical agreement between the predictions of the [0/2] 
PAP and the PMS/ECH for the fourth-order term in every RS. 

We now examine the [0/2] PAP and the PMS/ECH predictions for the fourth
order coefficient in the Bjorken series, and verify that these expectations are indeed 
realized. Figures 4 and 5 display in the (a, c2) plane the fourth-order partial sum of 
the perturbative QCD series for the Bjorken effective charge 

a:Bj(4th- order)= a [1 + r1(a, c2)a + r2(a, c2)a2 + r3st(a, c2)a3
] (37) 

where, in Fig. 4, we have used the [0/2] PAP: r3st = r1°12]PAP, and in Fig. 5 the 
common PMS/ECH prediction: r3st = rfMS = r:cH. We have included the C = 4 
contour in both figures. 

Comparing Figs. 4 and 5 with 1 and 2, we see the following. 

1. We see from Fig. 4 that the fourth-order effective charge (37), evaluated with 
the [0 /2] PAP coefficient within the C < 4 region, is 

0.098 :::; a:B/[0/2] PAP) :::; 0.110 (38) 

This is consistent with the full PS result (35) and the PMS and ECH results 
(31) and (32). The RS dependence of this result is much smaller than that 
of the third-order partial sum (34), but much larger than that of the full PS 
(35), in agreement with expectation (a) above. 
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2. We see from Fig. 5 that the fourth-order effective charge, evaluated with the 
PMS /ECH prediction for the coefficient within the C < 4 region, is 

0.095 ~ a"B/PMS/ECH) ~ 0.102 (39) 

Again, this result is consistent with the full PS result (35) and the PMS and 
ECH results (31) and (32). The RS dependence of this result is also much 
smaller than that of the third-order partial sum (34), but considerably larger 
than that of the full PS (35), in agreement with expectation (b) above. 

The last point is the direct numerical comparison of the fourth-order terms predicted 
by the (0 /2] Pade approximant and the PMS /ECH methods. Figure 6 displays 
r3st (a, c2 )a3 as calculated by the different methods, where we see excellent agreement 
between the [0/2] PAP and the PMS/ECH predictions for r 3 in every RStt. 

7 Application to the Extraction of a 8 (Mz) 

To illustrate the approach described above, we now use the Bjorken sum rule [6-
8] to extract a value of as( Mz) [15] ,(3] from the available polarized deep inelastic 
scattering data at Q2 = 3 GeV2 (16]-(20]. We do not attempt to re-evaluate the 
values these experiments quote for the integrals fi'n, nor their quoted errors due, 
for example, to the extrapolations to XBj = 0, 1 or the modeling of the possible 
Q2-dependence in gf'n(XBj, Q2 ). Data are also available at higher values of Q2 (21], 
but modeling the evolution to Q2 = 3 Ge V2 would introduce an additional sys
tematic error which we prefer to avoid. For our illustrative purpose, it is sufficient 
to use the 3 Ge V2 data alone. The Q2 = 3 Ge V2 data set we use is as follows: 

rn 
1 - -0.033 ± 0.006 (stat.) ± 0.009(sys.) (17] 

rn 
1 -0.032 ± 0.013 (stat.) ± 0.017(sys.) [20] 

n - 0.127 ± 0.004 (stat.) ± 0.009(sys.) (18] (40) 
rd 

1 0.042 ± 0.004 (stat.) ± 0.009(sys.) (19] 

which may be combined to yield the following combined result for the Bjorken sum 
rule 

ff(3GeV2~- r~(3GeV2 ) = 0.160 ± 0.014 (41) 

ttwe have also developed [14] a procedure for improving PAP's by taking into account the 
expected asymptotic behavior of the perturbative coefficients, which may be applied in particular 
to the [1/1] PAP. 
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to be compared with the theoretical calculations of both perturbative and nonper
turbative (higher-twist) effects. We estimate the latter using [22): 

o(fP _ fn) = -0.02 ± 0.01 
1 1 Q2 (42) 

As the basis for our extraction of a 5 , we use the ECH RS, in which the [0/2) PS 
coincides with the partial sum. We then translate the result to the MS RS with 
J.l = Q, so it can be easily compared with other calculations. This provides the 
following estimate of a 5 in the MS RS at Q2 = 3 GeV2: 

a= as(3GeV2) = 0.102~g:g~~ 
7r 

(43) 

where in the central value we have included the shift due to the higher-twist estimate 
( 42). The error quoted in ( 43) is purely experimental, being obtained directly from 
our evaluation ( 41). This must be combined with theoretical error in the higher
twist estimate (42), Oa(HT) = ±0.003, and the theoretical error estimated from the 
minimum and maximum values of the [0/2) Pade in the C ::; 4 region, which yields 
Oa(RS) = ±0.004. Thus we find -

= as(3GeV
2
) _ O 102+0.010 +O.oos 

a - - · -0.017 -o.oos 
7r 

(44) 

where the first set of errors is experimental and the second theoretical. Finally, 
evolving (44) to Mz, we obtain, 

a (M ) _ 0 117+o.oo4 +0.002 
s z - . -0.007 -0.002 ( 45) 

where the extrapolation error is negligible, as discussed in [3). The dominant 
source of the theoretical error is ba(RS), with a somewhat smaller contribution 
from Oa ( HT). It is interesting to compare the central value in ( 45) with what one 
would obtain as the naive result in the MS RS: a 5 (A1z) = 0.123 , which is outside 
the theoretical error range quoted in ( 45). 

8 Conclusions 

We have explored in this paper the relationship between Pade Approximants and the 
PMS and ECH techniques for estimating higher-order coefficients in perturbative 
QCD. The similarities between numerical results ~t the NNLO level may not be 
coincidences in certain choices of RS, as we have discussed above. 

Pade summation (PS) has the remarkable property of reducing drastically the 
RS dependence of the perturbative series for the Bjorken sum rule with three quark 
flavors, if one chooses the appropriate [0 /2) Pade. This observation favors the hy
pothesis that PS indeed leads us rapidly to the correct 'sum' of the perturbative 
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QCD series. We have noted also that the Pade Approximant Prediction (PAP) for 
the next term in the series is quite successful, although it does not reduce the RS 
dependence as much as the [0/2] PS. 

We believe that these results support the suggestion that Pade Approximants 
may be useful in applications to perturbative QCD, just as they have proved to 
be useful in applications to condensed-matter problems and elsewhere in quantum 
field theory. As an illustration how the PS technique may be useful in QCD, we 
have applied it to the perturbative series for the Bjorken sum rule, and used it to 
reduce the theoretical error associated with the choice of Renormalization Scheme 
(RS). Present data at Q2 = 3 GeV2 yield the evaluation ( 45), in which the theoretical 
error (given second) is considerably smaller than the experimental error (given first). 
This result indicates that the PS technique may enable a highly competitive value 
of a 5 (Mz) to be extracted from future polarized lepton scattering data. 
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Figure 1: A contour plot in the plane of RS parameters a, c2 of the Bjorken Sum Rule 
effective charge aBj calculated up to NNLO, i.e., the third-order partial sum. The 
separations between the contours are .6.aBj = 0.002. The values of a, c2 in the MS, 
PMS and ECH RS are indicated. In addition, we plot contours of the Cancellation 
Index: C = 2, 3, 4, 5. 
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Figure 2: A contour plot of the RS dependence of the Bjorken Sum Rule effective 
charge aBj calculated using [0/2] Pade Summation. The aBj and C contours are 
spaced as in Fig. 1. The larger separations ,between the aBj contours reflect the 
reduced RS dependence compared with the third-order partial sum shown in Fig. 1. 
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Figure 3: The RS dependence of the Bjorken Sum Rule effective charge aBj cal
culated using [1/1] Pade Summation. We see in this three-dimensional plot peaks 
corresponding to RS's for which the [1/1] PS is particularly erratic, signalling its 
unreliability. 
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Figure 4: A contour plot of the RS dependence of the Bjorken Sum Rule effective 
charge aBj calculated using a fourth-order partial sum evaluated with the [0/2] PAP 
fourth-order coefficient. The aBj contours are spaced as in Fig. 1, and we also show 
the C = 4 contour. 
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Figure 5: A contour plot of the RS dependence of the Bjorken Sum Rule effective 
charge aBj calculated using a fourth-order partial sum evaluated with the PMS/ECH 
fourth-order coefficient. The aBj contours are spaced as in Fig. 1, and we also show 
the C = 4 contour. 
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Figure 6: The fourth term of the Bjorken Sum Rule series r3sta3 as predicted by the 
[0 /2] PAP (gray line) and the PMS /ECH (black line). The separation between each 
pair of adjacent contours is 0.1. 
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