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Abstract 

We derive in the SCFT and low energy effective action frameworks the 

necessary and sufficient conditions for supersymmetric cycles in exceptional 

holonomy manifolds and Calabi-Yau 4-folds. We show that the Cayley cycles 

in Spin(7) holonomy eight-manifolds and the associative and coassociative 

cycles in G2 holonomy seven-manifolds preserve half of the space-time su­

persymmetry. We find that while the holomorphic and special Lagrangian 

cycles in Calabi-Yau 4-folds preserve half of the space-time supersymmetry, 

the Cayley submanifolds are novel as they preserve only one quarter of it. We 

present some simple examples. Finally, we discuss the implications of these 

supersymmetric cycles on mirror symmetry in higher dimensions. 



1 Introduction 

A supersymmetric cycle is characterized by the property that the worldvolume theory 

of a bra:ne wrapping around it is supersymmetric. The conditions for supersymmetric 

cycles in Calabi-Yau 3-folds have been analyzed using the low energy effective actions for 

branes [1, 2], where two types of conditions have been found. The first type corresponds 

to even-dimensional cycles being complex (holomorphic) submanifolds, i.e., having ~kP p. 

as their volume form, where k denotes the Kahler form. The second type corresponds to 

middle-dimensional cycles being special Lagrangian, i.e., Lagrangian submanifolds having 

Re(D.) as their volume form where D. corresponds to the nowhere vanishing holomorphic 

( n, 0) form on the Calabi-Yau n-fold. The special Lagrangian and complex cycles in 

Calabi-Yau 3-folds and 4-folds have been shown in [3] to arise from the large volume limit 

of N = 2 SCFT boundary conditions of A and B types respectively. Both types break 

half of the space-time supersymmetry. 

Our aim is to study supersymmetric cycles of exceptional type that are not complex 

or special Lagrangian submanifolds, which exist in Spin(7), SU( 4) and G2 holonomy 

manifolds. For that it will be useful to introduce the concept of calibration [4] which is 

the appropriate framework to study supersymmetric cycles. A calibration is a closed Jr 

form c.p on a Riemannian manifold of dimension n, such that its restriction to each tangent 

Jrplane of M is less or equal to the volume of the plai).e. Submanifolds for which there 

is equality are said to be calibrated by c.p. A calibrated submanifold has the least volume 

in its homology class. In fact, this property of a calibration provides a natural geometric 

interpretation of the Bogomolnyi bound for D-branes wrapped about such submanifolds, 

with the calibrated submanifolds corresponding to the BPS states which saturate the 

bound. Complex and special Lagrangian submanifolds are calibrated by ~kP and Re(D.) 
p. 

respectively. In addition to these calibrations there exist exceptional ones [4]. The Cayley 

calibration is a self-dual 4-form on eight-dimensional manifolds with holonomy contained 

in Spin(7). The associative calibration is a 3-form on seven dimensional manifolds with 

holonomy contained in G2 , and the coassociative calibration is its Hodge dual. 

In this paper we will analyze the supersymmetric cycles associated with these ex­

ceptional calibrations using the SCFT framework and the low energy effective action 

approach. In section 2 we will consider the Cayley calibration in Spin(7). In section 3 

we consider SU ( 4) holonomy eight-manifolds and the associative and coassociative cali­

brations in G2 holonomy seven-dimensional manifolds are discussed in section 4. We will 

construct the SCFT boundary conditions which in the large volume limit are associated 

with these cycles. We will find that the Cayley 4-cycle in SU(4) holonomy Calabi-Yau 
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4-fold is novel as it preserves only one quarter of space-time supersymmetry, while all 

the others preserve as usual half of the supersymmetry. Using the supersymmetry trans­

formations of the low energy effective action for branes compacti:fied on the Calabi-Yau 

4-fold we derive the necessary and sufficient conditions for supersymmetric cycle~. As ex­

pected, these conditions will coincide with the large volume limit of the SCFT boundary 

conditions. We present some simple examples of supersymmetric cycles in Calabi-Yau 

4-folds. In section 5 we discuss the implications of these supersymmetric cycles on mirror 

symmetry in higher dimensions. 

2 Spin(7) holonomy 

Let M be an eight-manifold. A Spin(7) structure on M is given by a closed self-dual 

Spin(7) invariant 4:-form <P. This defines a metric g with holonomy group Hol(g) C 

Spin(7). Such a metric is Ricci-flat. Compact Spin(7) holonomy manifolds have been 

constructed in [5] by resolving the singularities of T 8 /f orbifolds. Here T 8 is equipped 

with a flat Spin(7) structure and r is a finite group of isometries of T 8 preserving that 

structure. On a Spin(7) holonomy manifold there,exists one covariantly constant spinor, 

which will provide us, upon compactification, with one space-time supersymmetry. 

The 4-form <P can be used as a calibration called the Cayley calibration. The calibra­

tion in general is related to the covariantly. constant spinor via squaring [6] which basically 

means that the calibration form can be constructed from an appropriate product of two 

spmors. 

The extended symmetry algebra of sigma models on Spin(7) manifolds has been found 

in [7]. In addition to the stress momentum tensor T and its superpartner G, it contains 

two operators X and M with spins 2 and ~ respectively. The presence of the spin 2 

operator X may be understood along the following lines: Recall that corresponding to 

the covariantly constant spinor there exists a dimension t Majorana-Weyl spectral flow 

operator WL mapping the Neveu-Schwarz (NS) sector to the Ramond sector. It implies 

the existence of a dimension 2 operator X, which is the energy-momentum tensor for the 

c = t Majorana-Weyl fermion (Ising model), mapping the NS toNS sectors. In the large 

volume limit of the manifold M, X takes the form [7] 

(2.1) 

with a si,milar formula for XR. The 'lj;'s in (2.1) are the left handed fermions in the sigma­

model. This X and its superpartner M together with T and G make a closed algebra, 

and we will refer to it as the Ising superconformal algebra (ISCA). 
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Let us impose now the boundary conditions. In order to preserve the N = 1 SCA we 

reqmre 

(2.2) 

Also, we have to preserve a linear combination of the left and right spectral flow operators. 

The ISCA algebra implies that 

(2.3) 

Thus, there is only one type of boundary condition in this case. 

The conditions (2.2) are solved in the large volume limit by 

(2.4) 

where 

(2.5) 

Here X~-L and '1/Jil- denote coordinates and vielbein one-forms on the manifold. The eigen­

vectors of R with eigen-values ( -1) give the Dirichlet boundary condition and thus corre­

spond to the directions normal to the D-brane. As noted above, in the large volume limit 

X takes the form (2.1). Using (2.4),(2.5) and (2.1) we see that the condition (2.3) reads 

(2.6) 

Remembering that ci> is self-dual we see that the geometrical content of (2.6) is that <P 

is the volume form of the supersymmetric cycle. Thus it is a Cayley submanifold as 

expected. 

Since the boundary condition corresponding to the Cayley submanifold preserves a 

linear combination of the spectral flow operators we see that the (2, 0) space-time super­

symmetry of type liB compactified on Spin(7) holonomy manifold is broken by a D-brane 

wrapping on a Cayley submanifold to (1, 0). 

3 SU ( 4) holonomy 

3.1 SCFT framework 

A Calabi-Yau 4-fold with SU(4) holonomy posses two covariantly constant spinors of 

the same chirality. Thus, there exist two corresponding spectral flow operators W L and W£ 

of dimension t- Combined with WR and W:R we have four spectral flow operators which 
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means that type liB string compactified on a Calabi-Yau 4-fold to 1 + 1 dimensions has 

( 4, 0) space-time supersymmetry. 

As we noted, supersymmetric cycles of special Lagrangian and holomorphic types are 

associated with A and B types of boundary conditions respectively [3]. These boundary 

conditions preserve two linear combinations of the spectral flow operators {w L, W£, W R, W:R} 
which implies that wrapping D-branes on these cycles breaks half of the space-time su­

persymmetry. Thus, the (4, 0) space-time supersymmetry is broken down to (2, 0). 

One can also define for Calabi-Yau 4-folds an S1 family of Cayley ·calibrations by 

(3.1) 

Since P vanishes on special Lagrangian submanifolds, and Re( ei8!1) vanishes on complex 

submanifolds, the calibration (3.1) includes the special Lagrangian and complex calibra­

tions as special cases. However a general Cayley submanifold is neither special Lagrangian 

nor complex. Note also that it cannot be simultaneously special Lagrangian and complex, 

since the Kahler form vanishes on Lagrangian submanifolds. Indeed we expect a special 

Lagrangian cycle and a complex 4-cycle to intersect transversely (at points) in the 4-fold. 

In this section we study the Cayley type supersymmetric cycle. We will show that 

the boundary condition associated with the Cayley submanifold preserves only one linear 

combination of the four spectral flow operators and thus only a quarter of the space-time 

su persymmetry. 

In view of the previous section, we know that we have to preserve the spin 2 operator 

X corresponding to the energy momentum tensor of the preserved spectral flow operator. 

In order to formulate the boundary condition we embed the ISCA algebra in the N = 2 

SCA as 

(3.2) 

with M as the superpartner of X. In the large volume limit X takes the form 

(3.3) 

where We Used the large VOlume limit expressions JL = gJ.Lv'l/Jf'l/J£ and n = nJ.Lvpu'l/Jf'l/J£'1/Jf'l/J£. 
Equation (3.3) is expected since as noted in (2.1 ), X consists of two parts: The energy 

momentum tensor for the fermions and the Cayley calibration form, and the latter is 

given in (3.1). Note that in fact (3.2) defines an S 1 family of embeddings as suggested by 

(3.1 ). 
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Let us also verify that X is indeed the energy-momentum tensor for the Ising model. 
' . 

One way to see that is to bosonize the U(1) current J = i8z</> and use n = ei<f>_ Thus, 

- 1 2 
XL= 2(8z</>) +cos(¢+ 0). (3.4) 

Combining the two spectral flow operators as ei(Hii) = w 1 +i'l12 we see that XL = w 1 az w 1' 

namely XL is the energy-momentum tensor for the Majorana-Weyl spinor W1 with c = !*· 
The boundary condition that corresponds to a Cayley submanifold which is neither 

special Lagrangian nor complex is that of (2.2) and (2.3). Thus, as we discussed, we are 

only preserving the energy-momentum tensor for one linear combination of spectral flow 

operators and break the rest of the N = 2 SCA. This leaves us with one quarter of the 

supersymmetry. The 5 1 family of Cayley calibrations corresponds to the choice of the 

preserved linear combination of the spectral flow operators. 

Until now the only known way for b-branes to break more than half of the space­

time supersymmetry was to use a configuration of intersecting branes [9]. The Cayley 

submanifold provides the first and the only example of a supersymmetric cycle on which 

a single wrapped D-brane breaks three quarters of the space-time supersymmetry. 

3.2 Low energy effective action framework, I 

In this and the following subsections we will use the low effective action framework in 

order to derive the conditions for supersymmetric cycles in Calabi-Yau 4-folds. This will 

make the space-time interpretation of the previous results manifest. To derive the condi­

tions for having a supersymmetric 4-cycle, we consider the 3-brane of the ten-dimensional 

type liB theory which wraps a 4-cycle of the Calabi-Yau 4-fold. The 3-brane solution of 

the type liB theory was discovered in [10] and its static gauge field content is described 

by an abelian D = 4, N = 4 vector multiplet [11]. However, the covariant 3-brane action 

with the local K symmetry has not been constructed so far, so that it is hard to make a 

rigorous analysis along the lines of [1]. 

Alternatively, one may take the point of view that the low energy effective action for 

the Euclidean D3-brane is the "twisted" N = 4 Yang-Mills theory [12] and count the 

number of unbroken supersymmetries by studying how the twisting is realized on the 

Cayley submanifold. According to [2], the twisting structure can be understood from the 

behavior of the normal bundle of the submanifold. For special Lagrangian submanifolds, 

*That the energy-momentum tensor of the Ising model is given by (3.4) was shown in [8]. 
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the SU(4) global symmetry of N = 4 decomposes as (2, 1) EB (1,2) under the Lorentz 

group SU(2) x SU(2), which leads to 2 unbroken supersymmetries*. 

For a Cayley submanifold in a manifold with Spin(7)-holonomy, the normal bundle 

can be written in the form [13] §_ ® :F, where :F is a certain rank two vector bundle on 

the Cayley submanifold. As pointed out in [2], if the vector bundle :F is trivial then the 

twisting is the one for which the global SU(4) symmetry decomposes as (1,2) EB (1, 1) EB 

( 1, 1) under the Lorentz group; this leaves 1 unbroken supersymmetry. It remains to verify 

that in our situation-a Cayley submanifold of a manifold with SU(4) holonomy which 

is neither a complex nor a special Lagrangian submanifold-the bundle :F is trivial. 

The structure of the normal bundle of a Cayley submanifold in the Spin(7) holonomy 

case is analyzed in some detail by McLean [13]. The half-spin representations of Spin(8) 

are eight-dimensional; if we fix a spinor u in one of the representation spaces, its stabilizer 

is isomorphic to Spin(7). Projecting that copy of Spin(7) to the vector representation of 

Spin(8) produces the holonomy representation Spin(7) --+ S0(8). If the actual holonomy 

is SU( 4) "' Spin(6), there will be an embedding of Spin(6) in Spin(7), determined by a 

second spinor u' of which Spin(6) is the stabilizer (within Spin(7)). 

Given a Cayley 4-plane ~' there are quaternionic structures on the 4-planes ~ and ~.L 

such that the stabilizer Ge of~ in Spin(7) can be written as 

Ge = (Sp(1)L x Sp(1)z x Sp(1)~a9 )/{±(1, 1, 1)}, (3.5) 

where Sp(1)L and Sp(1)R are the two natural subgroups of 50(0 given by the left and 

right actions of the unit quaternions, Sp(1)± and Sp(1)~ are the corresponding subgroups 

of SO(~.L), and Sp(1)~ag is the diagonal subgroup of Sp(1)R x Sp(1)~. 

In terms of the embedding Spin(7) C Spin(8), the group Sp(1)L x Sp(1)± is the 

stabilizer of a 4-plane TJ of spinors orthogonal to a, and Sp(1)~ag is the intersection 

of the stabilizer of TJ.L with Spin(7). If we choose an embedding Spin(6) C Spin(7) 

corresponding to a spinor u', then there are three possibilities for the intersection of 

Spin(6) with Ge: 

1. u' E TJ.L, in which case Spin(6)nGe = Sp(1 )L x Sp(1 )I x U(1) with U(1) C Sp( 1 )~ag, 
and 

2. u' E TJ, in which case Spin(6) n Ge = SU(2) x Sp(1)~ag with SU(2) C Sp(1)L x 

Sp(1 )t conjugate to the diagonal embedding 

*The case of complex submanifolds is a bit different, and does not fall into the classification given 

in [12] since the normal bundle is not trivial before twisting. Nevertheless, in this case too there are 2 

covariantly constant spinors. 
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3. u' generic, in which case Spin(6)nG~ = SU(2) x U(1) with SU(2) C Sp(1 )L x Sp(1 )t 

conjugate to the diagonal embedding and U(1) C Sp(1)~a9 • 

In case 1, the orbit of e under Spin(6) = SU( 4) takes the form Spin(6)/(Spin(6) n G~) ~ 
SU(4)/S(U(2) X U(2)), from which it is clear that e is a complex subspace of IR8 =ct. 
In case 2, the orbit of e takes the form Spin(6)/(Spin(6) n Gd ~ SU( 4)/ SO( 4) which 

implies that e is a special Lagrangian 4-plane. Finally, in case 3 the orbit of e takes the 

form Spin(6)/(Spin(6) n Gt,) ~ SU(4)/(SU(2) x U(1)) and has dimension 11 (different 

from the previous cases), so e must be a Cayley 4-plane which is neither a complex nor 

special Lagrangian subspace. 

To make contact with the SCFT approach in section 3.1, we can count the number of 

supersymmetries preserved, or equivalently, the number of supersymmetries broken. Each 

of the latter would generate a goldstino, i.e. a fermion zero modes in in the low energy 

effective super Yang-Mills action. In the present cases, they correspond to covariantly 

constant spinors. Generically, there are no more covariantly constant spinors. Thus the 

number of unbroken spacetime supersymmetries is equal to that of covariantly constant 

spinors in the fermion bundles of the low energy action. Using the intersection of Spin(6) 
with G~ given above, we find them to be 2, 2, and 3 for complex, special lagrangian, and 

Cayley submanifolds respectively. Since the total number of spacetime supersymmetries 

in SU ( 4) compactification of type II string theory is 4, this reproduces the counting given 

in section 3.2. 

Following [13], when the holonomy is Spin(7), the vector bundle Fin the normal bun­

dles to a Cayley submanifold is the rank two bundle naturally associated to the principal 

bundle Sp(1)t. (In McLean's p, q, r notation, p E Sp(1)L, q E Sp(1)~ag andrE Sp(1)t.) 
Nonetheless, one can show, along the same line of reasoning employed above, that it is 

supersymmetric even when F is nontrivial. 

3.3 Low energy effective action framework, II 

Although a covariant 3-brane action with the local ~>:-symmetry is not yet known, it is 

not difficult to guess what its symmetry structure should be if there is one. By making a 

reasonable assumption on the symmetry structure of the would-be covariant action, one 

may formally extend the analysis of [1] to the present case, and give another derivation 

of the results of the previous subsection. The conditions satisfied by a supersymmetric 

4-cycle are expressed in terms of a holomorphic ( 4, 0)-form: 

(3.6) 
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and the Kahler form 

(3.7) 

Here a, b are holomorphic and anti-holomorphic indices and Xi are coordinates on the 

Calabi-Yau. 

As discussed in subsection 3.1, an eight-manifold with SU(4) holonomy has two co­

variantly constant eight-dimensional Majorana-Weyl spinors t:1 and t:2 , with the same 

chirality. Changing the chirality of both spinors would correspond to reversing the ori­

entation. We can combine these real spinors into a complex spinor E+ = h + it:2 , whose 

normalization can be chosen as 4t:+ = 1. The Kahler form is expressed in terms of this 

spmor as: 

(3.8) 

In general, /m 1 ••• mn is the completely antisymmetrized product of n eight-dimensional 

gamma matrices containing a factor 1/n!. From (3.8) it can be easily seen that /a acts as 

an annihilation operator 

(3.9) 

where L = ( E+ )*. The holomorphic 4-form relates E+ and c: 

(3.10) 

Using standard properties of gamma matrices, it can be shown that the following 

formulas hold 

-3ika[blcd]E+ 

3k[ackbd) E+ . (3.11) 

Similar equations involving the spinor L can be obtained after complex conjugation. 

Although the covariant action for the 3-brane is yet to be constructed, it should be 

natural to assume, by extending the analysis in [1], that the 3-brane would preserve the 

supersymmetries generated by ten-dimensional spinors E if they solve* 

(3.12) 

In the covariant formulation, this would be a condition for the local K-transformation to 

compensate for the global supersymmetry generated by L Here M, N = 1, ... , 10 are 

*By comparing with the analysis of section 3.2 using the N = 4 Yang-Mills theory, we note that, in 

the case of a special Lagrangian submanifold, we have to take into account both projection operators P+ 
and P_. 
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ten-dimensional indices, p, V = 1, ... , 4 are the worldbrane indices t, fM are the ten­

dimensional gamma matrices and XM is the bosonic part of the 3-brane configuration. 

In the above formula we have introduced the projection operator P_ which is hermitian 

and satisfies P~ = P _. 

Let us introduce the eight-dimensional spinor: 

(3.13) 

The spinor E can then be written in the form t:: = At:o, where .X is a two-dimensional 

Majorana spinor. The simplest way to find solutions of the equation P_ Eo = 0, is to derive 

a Bogomolnyi bound (which will be closely related to the calibration condition, as we have 

remarked· earlier). This bound is saturated if and only if the 4-cycle is supersymmetric. 

This implies that the 3-brane has minimized its volume. The bound can be derived from 

the inequality 

(3.14) 

In the above formula P_ is constructed from eight-dimensional gamma matrices and h is 

the induced metric on the 3-brane. After a straightforward computation we obtain the 

result: 

(3.15) 

Comparing to the Cayley calibration (3.1) we see that the manifolds which saturate this 

bound correspond to the 5 1 family of Cayley submanifolds, that we previously found. As 

we already pointed out, Lagrangian submanifolds and complex submanifolds are special 

cases of Cayley geometries. The complex submanifolds found herein coincide precisely 

with the expression found in [1] for the supersymmetric 3-brane wrapping a 4-cycle of a 

Calabi-Yau 3-fold. 

3.4 Examples 

The simplest examples of supersymmetric 4-cycles can be found in flat space*. Here: 

n 
k (3.16) 

tThis notation is different than the one used in the previous sections where the distinction between 

worldbrane indices and Calabi-Yau indices was encoded in the eigen-vectors of the R matrix. 

*Here we will solve (3.15) pointwise. 
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An example of a Lagrangian submanifold is the surface described by Xi X' for 

i = 1, ... , 4. In that case equation (3.15) is saturated because the pullback of n satisfies 

(3.17) 

while the pullback of k vanishes. 

A more complicated example, that is not in, flat space, can be found as a 4-cycle in 

the sextic hypersurface 

(3.18) 
i=l 

in C P 5
. This 4-cycle is the four-dimensional submanifold on which all the Xi's are real 

[14, 1]. 

An example of a complex submanifold is given by the surface described by X 3 = X 4 = 
0. Here the pullback of n vanishes and the pullback of k 1\ k is 

(3.19) 

so that (3.15) is saturated. 

An example of a Cayley geometry, for which both the pullback of the holomorphic 

4-form and the pullback of k 1\ k are non-vanishing is described by X 2 = v'2eic,o(X 1 + X 1) 

and X 4 = v'2eic,o(X3 + X 3 ), for every value of the angle r.p. More generally, every Cayley 

plane that is neither special Lagrangian nor holomorphic will give an example of this type. 

4 G2 holonomy 

4.1 SCFT framework 

Let M be an seven-manifold. A G2 structure on M is given by a closed G2 invariant 

3-form <P. This defines a metric g with holonomy group Hol(g) C G2 . Such a metric is 

Ricci-flat. Compact G2 holonomy manifolds have been constructed in [15, 16] in analogy 

with the Spin(7) holonomy case by resolving the singularities of T 7 /f orbifolds. Here T 7 

is equipped with a flat G2 structure and r is a finite group of isometries of T 7 preserving 

that structure. On a G2 holonomy manifold there exists one covariantly constant spinor. 

The 3-form <P and its Hodge dual 4-form *<P define the associative and coassociative 

calibrations respectively. 

The extended symmetry algebra of sigma models on G2 manifolds has been constructed 

in [7]. In addition to the stress tensor T and its superpartner G, it contains the super­

partners (K, <P) with spins (2, ~)and (X, M) with spins (2, ~). In the large volume limit, 
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<P corresponds to the associative calibration 3-form and X is the sum of the coassocia­

tive calibration 4-form *<P and the stress tensors for seven Majorana-Weyl fermions. In 

analogy with the Spin(7) holonomy case where we viewed X as the stress tensor corre­

sponding to the dimension ~ spectral flow operator, here we can view X as the stress 

tensor corresponding to the dimension /6 spectral flow operator which is the spin field of 

the c = 
1
7
0 

tri-critical Ising model. 

In addition to the N = 1 boundary condition (2.2), the G2 algebra implies the bound­

ary conditions 

In the large volume limit we have 

<PL = <Piik1/Ji1/J{1/JZ, . 

KL = ±KR' 

ML =±MR. 

X -1 .t.i a .1.i +* n. .t.i .1.i .t.k .,,I 
L = 29ij'f/L Z'f/L '¥ijkl'f/L'f/L'f/L'f/L . 

Thus the boundary conditions ( 4.1) take the form 

*m .. Ri Ri RkRl -* n. 
'¥~Jkl m n o p- '¥mnop ' 

( 4.1) 

(4.2) 

( 4.3) 

which geometrically mean that for the 3-cycle <P is the volume form while for a 4-cycle *<P 

is the volume form. These are the associative and coassociative calibrated submanifolds. 

Since the boundary conditions ( 4.1) impose one linear constraint on the stress tensor 

operator corresponding to the spectral flow we see that a brane wrapping on an associative 
( 

or coassociative cycle preserves half of the space time supersymmetry. Thus, the (2, 0) 

space-time supersymmetry of a type liB string compactified on a G2 holonomy seven­

manifold is broken to (1, 0) by the brane. 

4.2 Low energy effective action framework 

Supersymmetric 3-cycles are defined as configurations for which we can find a seven­

dimensional spinor that satisfies 

( 4.4) 

This expression is evaluated using the 3-form <P, which appears in the expression 

(4.5) 
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From here we see that the only configuration that preserves supersymmetry satisfies that 

the pullback of the 3-form is proportional to the volume element: 

(4.6) 

These are precisely the associative calibrations previously discussed. On a manifold with 

G2 holonomy we can also have 4-cycles in which *<I> pulls back to the volume element. 

These cycles satisfy 

P - 1 
( 1 J.LVPO'a xma xna XPa x··qr ) -_f:- 2 1 - 4! f: J.L v P . 0' mnpq f:- 0 ' (4.7) 

which is solved by the configuration 

(4.8) 

Thus *<I> corresponds to the coassociative calibration. Both configurations break half of 

the supersymmetry. 

5 Mirror symmetry 

In the case of the 4-fold with SU(4) holonomy, we may consider the effect of mirror 

symmetry which exchanges G"t=2 and GN-= 2 for the right mover. As was shown in [3], 

mirror symmetry exchanges the A and B types of boundary conditions. Geometrically, 

mirror symmetry is realized on pairs of Calabi-Yau manifolds which define the same 

theory (but with opposite geometric identifications of G't,r=2 ). Thus, if X and Y are a 

pair of mirror manifolds, the special Lagrangian submanifolds of X are mapped to the 

complex sub manifolds of Y, and the complex submanifolds of X are mapped to the special 

Lagrangian submanifolds of Y. 

Mirror symmetry for 4-folds has several new features which distinguish it from the 

three-dimensional case [17]. Mirror symmetry is expected to map H 4 (X) = EBv HP·4-P(X) 
to EBP flP·P(Y) and EBv flP·P(X) to H 4 (Y) = EBv flP· 4-P(Y); one of the new features is that 

H 2
•
2

( X) appears in both of these spaces. (These spaces were referred to as the "horizontal" 

and "vertical" cohomology in [17].) 

The special Lagrangian submanifolds of X define classes in H 4 (X) which lie in the so­

called primitive cohomology, that is, they are classes which are orthogonal to the Kahler 

class. Since the classes of special Lagrangian submanifolds are also classes in integer 

cohomology, the natural space to consider for these manifolds is H 4 (X)prim n H4 (X, Z). 

It is not clear how much of this space will actually be represented by special Lagrangian 

submanifolds. 
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On the other hand, the complex submanifolds of X define classes which have Hodge 

type (p, p) and are also integer cohomology classes; the natural space to consider for them 

is ffiP HP,P(X) n Heven(X, Z). The celebrated "Hodge conjecture" in mathematics asserts 

that if we pass to Q-coefficients instead of Z-coefficients, then all classes in this space 

are represented by complex submanifolds; it is not known if this conjecture holds for 

Calabi-Yau 4-folds. 

We are thus faced with the situation of having an unknown subspace of H4 (X)prim n 
H 4 (X, Z) represented by special Lagrangian submanifolds, and an unknown subspace 

of ffiP HP,P(X) n Heven(X, Z) represented by complex submanifolds. In fact, it is quite 

possible that the appropriate pieces ofthese subspaces fall short of filling out all of H 2,2 (X) 

(even though both will contribute subspaces of H 2,2(X) ). Cayley submanifolds provide 

another potential source of cohomology classes which could help to fill out H 2 ,2 (X): it 

may be that some of the classes which cannot be represented by either special Lagrangian 

or complex submanifolds will instead be represented by Cayley submanifolds. 

Such a possibility meshes well with mirror symmetry: we observe that the mirror of a 

Cayley submanifold will be another Cayley submanifold. (This is because any D-brane on 

X-which defines some type of boundary condition for open strings-should map to a D­

brane on Y.) If the first Cayley submanifold is neither special Lagrangian nor a complex 

submanifold, then since it preserves only 1/4 of the supersymmetry, its mirror will have 

the same property. It would be interesting to find explicit examples of this phenomenon. 

Finally, we would like to mention ari implication for mirror symmetry in higher dimen­

sions that becomes evident by considering the spectrum of BPS soliton states. Recently 

Strominger, Yau and Zaslow [18] showed that every Calabi-Yau 3-fold that has a mirror 

admits a supersymmetric T 3-fibration. The basic assumption of this argument is quantum 

mirror symmetry [20, 21, 1, 22], where the isomorphism between the type IIA theory com­

pactified on a 3-fold X and the liB theory compactified on the mirror Y of X is extended 

to the non-perturbative BPS states in D = 4. Since these BPS states are constructed as 

D-branes, the quantum mirror symmetry is actually a consequence of the classical mirror 

symmetry of the bulk CFT [3]. It is then natural to wonder if the previous argument 

can be extended to higher dimensional Calabi-Yau manifolds. Some precise mathemati­

cal aspects of this generalization have been recently considered in [19]. We consider the 

type IIA theory compactified on a large Calabi-Yau n-fold X and its mirror Y. Quantum 

mirror symmetry implies that both theories are isomorphic. On the X side there are 'BPS 

states' in D = (10- 2n) * which arise from the ten-dimensional 0-brane. These states 

*Rigorously, the notion of a BPS state that. carries electro-magnetic charge in D ::::; 2 is not well defined 
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arise from a supersymmetric n-brane wrapping a n-cycle in Y. This n-cycle corresponds 

to a special Lagrangian submanifold. This is because the 0-brane corresponds to B-type 

boundary conditions and by mirror symmetry these are transformed to the A-type bound­

ary conditions that correspond to the special Lagrangian submanifold [3]. Extending the 

arguments of [18] to n-folds, we arrive at the conclusion that the n-cycles corresponding to 

special Lagrangian submanifolds are toroidal. This leads us to the conclusion that every 

Calabi-Yau n-fold that has a mirror admits a supersymmetric Tn-fibration. This suggests 

that the mirror symmetry for then-fold is equivalent to aT-duality on the Tn-fibers. 
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