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Abstract 

A scale space for images painted on surfaces is introduced. Based on the geodesic 
curvature flow of the iso-gray level contours of an image painted on the given surface, 
the image is evolved and forms the natural geometric scale space. Its geometrical 
properties are discussed as well as the intrinsic nature of the proposed flow. I.e. the 
flow is invariant to the bending of the surface. 

1 Introduction 

In this note we introduce and study a geometric scale space for images painted on a given 
surface. We show that a natural scale for images painted on surfaces can be constructed by 
considering the iso-gray levels of the image as curves on the surface, and finding the proper 
geometric heat flow in the metric induced by the immersion. Specifically, we study the 
properties of the geodesic curvature scale space ( "'9 scale space) for images that are painted 
on a given surface. 

Recently, surface curves flow by their geodesic curvature was studied in [8], numerically 
implemented for curves with and without fixed end points in [11, 2], and used for refinement 
of initial curves into geodesics (shortest paths on surfaces) in [1 0]. In [8] Grayson studies 
the evolution of smooth curves immersed in Riemannian surfaces according to their geodesic 
curvature flow ( "'9 flow). The "'9 flow is often called curve shortening flow since the flow lines 
in the space of closed curves are tangent to the gradient of the length functional. It is the 
fastest way to shrink curves using only local (geometrical) information. The curvature flow 
is also referred to as the Heat Flow on Isometric ImmeTsion since it is the heat equation as 
long as the heat operator is computed in the metric induced by the immersion. 

Grayson showed that as curves evolve according to the geodesic curvature flow, the em
bedding property is preserved, and the evolving curve exists for all times and either becomes 
a geodesic or shrinks into a point. We will limit our discussion to smooth Riemannian sur
faces which are convex at infinity (the convex hull of every compact subset is compact). 

*This work is supported in part by the Applied Mathematics Subprogram of the Office of Energy Research 
under DE-AC03-76SF00098, and ONR grant under N00014-96-l-0381. 

1 



Moreover, we shall deal only with surfaces which are given as a parameterized function in a 
bounded domain. Given these conditions, one can apply Grayson's Theorem 0.1 in [8] that 
states that the Kg flow shrinks closed curves to points while embedding is preserved. Open 
curves' behavior depends on the boundary conditions, and could either disappear at a point 
in finite time or converge to a geodesic in the coo norm, i.e. the geodesic curvature converges 
to zero. By open curves we refer to curves that connect two points on the boundary of our 
finite domain (two points on the image boundaries). 

We use the equations developed for curves in [11], generalize them, and formulate the 
natural scale space for images painted on surfaces. This generalization is based on the 
observation that any gray level image can be expressed as a set of curves that correspond to 
its iso-gray level curves. Thus, evolving each of these curves according to the Kg flow leads 
to the evolution of the whole image, and the construction of the Kg scale space. 

Since the Kg flow is intrinsic, so is the image flow. Given a surface and an image that is 
painted on that surface, the Kg flow will be invariant to bending (isometric mapping) of the 
surface. A simple example is an image painted on a plane. In this planar case, the Kg flow 
is equivalent to the planar curvature flow. It was proven in [6, 7] to shrink any planar curve 
into a convex one and then into a circular point, while embedding is preserved. Assuming 
that the plane with the image painted on it is bent into a cylinder, applying the Kg flow on 
the new image obtained by taking a picture of the cylinder, guarantees that the sequence 
of evolved images on the surface can be mapped into the sequence of the evolved images 
on the plane. This mapping is the same one that mapped the initial planar image onto the 
cylinder. The result is a flow which is invariant to the bending of the surface. 

2 Relation to Existing Scale Spaces 

Exploring the whole theory and history of scale space and its various applications in image 
processing and computer vision is beyond the scope of this paper. We refer to [14], for a 
recent collection of papers dealing mith linear and non linear scale spaces. 

Originally, the classical heat equation It = !::.I (where !::.I = Ixx + !yy) was considered 
to be a good candidate for the description of scale. Its linear properties lead to efficient . 
implementations that could be realized in the Fourier domain with low computational effort. 
The observation that the complexity of the image topology can increase when applying the 
heat equation (local maximum points can be formed) as well as the need for invariant flows 
under different transformation groups, lead to the consideration of other, non linear, scale 
spaces [1, 15]. Most of these non linear flows have a simple and natural mathematical relation 
to the evolution of the gray level sets of the image. The obvious reason is the requirement for 
preserving the embedding of the gray level sets along the evolution, as well as the smoothing 
of the level sets with the scale parameter, so that the topology of the image is simplified 
along the scale. This links Gage, Hamilton and Grayson result of the curvature flow of planar 
curves to Gabors' historical image enhancement algorithm [5, 12]. We shall use this natural 
link between level sets and the image evolution, and the nice properties of the geodesic 
curvature flow of curves on surfaces, to construct the natural flow for images on surfaces. 

In. [4] the second differential operator of Beltrami is considered as a possible operator 
for the general heat equation under a given metric g, namely It = !::.gi. It boils down to 
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the classical heat equation for the 2D case, i.e. when setting the metric to the identity 
9ij = Dij. The relation between the !:l.g flow and the Kg flow, is analog to the relation 
between the classical heat equation: It = !:l.I, and the 2D geometrical heat equation: It = 
(/xxi;-2Ixiyixy+Iyy!';)j(I;+I;), i.e. the planar curvature (K) flow. This is a natural analogy 
since considering a plane as the underlying surface, !:l.g becomes the Laplacian operator !:l., 
and Kg becomes the planar curvature K. Although the geometric heat equation ( K flow) 
was explored and used for several applications, to the best of our knowledge, the geodesic 
curvature flow as a scale space has not yet been explored nor any other bending invariant 
flows. 

3 The Geodesic Curvature ~9 
Let the surfaceS= (x,y,z(x,y)) be defined as a parameterized function. Next, consider 
the surface curve C( s) = ( x( s), y( s ), z( x( s ), y( s))) where s is the arclength parameter of the 
curve: ICs I = 1. The geodesic curvature vector KgN is defined as: 

where Css (the curvature vector) is the second derivative of the curve according to s, and N 
is the normal to the surface, see Fig. 1. 

A geodesic curve is a curve along which the geodesic curvature is equal to zero. Thus, any 
small perturbation of a geodesic curve increases its length. Geodesics are locally the shortest 
paths on a given surface, and in case there exists a straight line on a surfaces it is obviously 
a geodesic curve. Evolving a curve on the surface by its geodesic curvature vector field is 
the fastest way to shrink the curves' length and thereby evolve it into a geodesic. Another 
important geometrical property is the invariance of the geodesic curvature to bending of the 
surface. We will use these two properties, as well as the nice characteristics of this flow that 
were shown by Grayson [8], to construct the Kg scale space. 

Figure 1: The geometry of the geodesic curvature vector, KgN. 
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4 From Curve to Image Evolution on a Surface 

Our input is an image I(x,y) that is painted on the given surfaceS= (x,y,z(x,y)), see 
Fig. 2. Using the fact the embedding is preserved under geodesic curvature flow of curves on 
surfaces, we may consider the image as an implicit representation of its iso-gray levels. This 
is just a mental exercise that will help us derive the geodesic curvature evolution of the image 
I( x, y) as a function of its first and second derivatives, as well as the surface derivatives. Let 
t be the scale variable. Then the main result of this paper is the following intrinsic evolution 
for I(x, y) given as initial condition to: 

where Kg is the geodesic curvature scale space function. 

Figure 2: The image I(x,y) is painted on the parameterized surfaceS= (x,y,z(x,y)). I.e. 
the surface point (x,y,z(x,y)) has the gray level I(x,y). 

The Kg scale space has the following properties: 

1. Intrinsic: Invariant to bending of the surface. 

2. Embedding: The embedding property of the level sets of the evolving gray level image 
is preserved. 

3. Existence: The level sets exist for all the evolution time, and disappear at a point in 
most cases, or converge into a geodesic connecting the boundaries in special cases. 

4. Causality: The geodesic curvature of the level sets is a decreasing function. This is an 
important property, since combined with the embedding property, it means that the 
topology of the image is simplified along the evolution. 

5. Shortening flow: The scale space is a shortening flow of the level sets of the image 
painted on the surface. 
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5 ~g Scale Space Derivation 

As a first step we follow [11] and analyze the single curve case of evolution under the "'a 
flow. Then, based on the fact that embedding is preserved, we generalize and consider the 
whole image. Let C(s) = (x(s), y(s)) be an iso-gray level planar curve parameterized by its 
arclength s of the image I ( x, y). I. e. I ( x, y) is constant along C ( s): / 

I(C(s)) =Canst, 

or equivalently ai(C(s))jas = 0. 
The iso-gray level curve C( s) is the projection onto the (image) coordinate plane of the 

3D surface curve C(s) = (x(s), y(s), z(x(s), y(s))). I.e. C(s) = 1r o C(s), where 1r is the 
projection operation (a, b)= 1r o (a, b, c). See Fig. 3. 

Figure 3: The geometry of the geodesic curvature vector projection. 

Let us first show a simple connection between an image and its level sets evolution. 

Lemma 1 LetC(s) = (x(s),y(s)) be the level curve of I(x,y). Assume that the planar curve 
C is evolving in the coordinate plane according to the smooth velocity field V: 

Ct = v. 
Then the image follow the evolution 

It=(V,\71), 

where VI= (Ix,ly)· 

Proof. The flow Ct = V was shown in [3] to be geometrically equivalent to the normal 
direction evolution Ct = (V, N)N, where JV is the unit normal of the planar curve. By the 
chain rule we have 

a I 
at 

ai ax ai ay 
--+-
ax at ay at 

(VI, Ct) 

(vi, (V,N)N). 

5 



Recalling that C is a level set of I ( x, y), we can express the normal N as N = \7 I /I \7 I I· 
Using this relation 

~~ - (\7 I, (V, N)N) 

( 
VI \!I) 

\!I, (V, I\! II) I\! II 
1 

(V, \7 I) . l\7 Jl2 . (\7 I, \7 I) 

(V,VI). 

Let us now derive the geodesic curvature scale space equation 

Lemma 2 The geodesic curvature scale space for the image I ( x, y) painted on the parame
terized surfaceS= (x, y, z(x, y)) is given by the evolution equation 

of I?Jyy- 2Ixfyfxy + I;Ixx + (z;~:r::td (zxxf;- 2IxfyZxy + Zyyt;) 

ot I;(l + z;) + 1;(1 + z~)- 2zxzyfxfy 
(1) 

Proof. We start from the evolution of the 3D level sets of I(x, y) on the surface S = 
(x,y,z(x,y)) that is given by the geodesic curvature flow 

ac A 

8t = KgN· 

Where K,9N is the 3D geodesic curvature vector defined by 

KgN K,N- (KN, N)N 

Css- (Css, N)N. 
' 

Here, KN = Css is the 3D curvature vector of the 3D surface curve C ( s), where s is the 
arclength parameterization of C. N is the surface normal: 

N _ ( -Zx, -zy, 1) 
- )1 + z~ + z;. 

The projection of this 3D evolution onto the 2D coordinate plane is given by 

ac A _ _ 

at = (1r o K9 N,N)N. 

The relation between the arclength s of the 3D curve C and the arclength s of its 2D 
projection C is obtained from the arclength definition: 

s = j IC.sls, 
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that yields 
1 OS 
g = os - ICsl 

J,.--x-~ -+-y-~-+-z-~ 

y'(l + z;)x~ + (1 + z;)y~ + 2zxzyXsYs, 

where for the last step we applied the chain rule Zs = ZxXs + ZyYs· 
For further derivation we also need the following relations, that are obtained by the chain 

rule: 

Zss 

7r 0 Cs 

Css 

(1r 0 Css,if) 

where K, = (C88 , if) is the curvature of the planar curve C: The projection of its second 
derivative, which is a vector in the normal direction, onto its normal. 

Using the above relations, the projection of the geodesic curvature vector onto the coor
dinate plane can be computed 

7r 0 (Css- (Css, N)N) 
-XssZx- YssZy + Zss ( -Zx, -zy) 

7r 0 c ss - -7-========= 
. 11 + z 2 + z 2 . 11 + z 2 + z 2 v X y v X y 

C 
-XssZx - YssZy + Zss ( ) 

7r 0 ss + 2 2 Zx, Zy 
1 + Zx + Zy 

C 
ZxxX~ + ZyyY; + 2zxyXsYs ( ) 

7r 0 ss + 2 2 Zx, Zy . 
1 + Zx + Zy 

We can project the above velocity filed onto the planar normal if = ( -y8, x 8) eliminating 
the tangential component which does not contribute to the geometric evolution [3]: 

Introducing the normal and the curvature as functions of the image in which the curve 
is embedded as a level set 

if \11 
( -ys, xs) = I"V II 

div c~~~)' 
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and using Lemma 1, we conclude with the desired result 

a] 12] 2] J ] + ]2] + (z:rlx+zyly) ( ]2 2J ] + J2) 
X yy - X y xy y XX 1+zi+z~ Zxx y - X yZxy Zyy x 

at I;(l + z;) + 1;(1 + z;) - 2zxzylxly 

We note that the relation between curves evolving as level sets of a higher dimensional 
function was explored and used in [13, 16] to construct state of the art numerical algorithms 
for curve evolution. Based on the Osher Sethian numerical algorithm, the natural connection 
between shape boundaries and their images (a gray level image of a shape is considered as 
an implicit representation of the boundary of the shape) was used for the computation of 
offset curves in Computer Aided Design in [9]. The same motivation lead us to the proposed 
framework for which the numerical implementation enjoys the same flavor of stability and 
accuracy. 

6 Results and Numerical Implementation Considera
tions 

Vve have implemented the PDE given in Equation (1) by using central difference approxima
tion for the spatial derivatives and a forward difference approximation for the time derivative: 

]"!'. 
t,J 

It "" "" 

fx "" "" 

fxx "" "" 

fxy ~ 

I( if:.x, j f:.y, nf:.t) 

rt1 - r. 
t,J t,J 

f:.t 
IJ+1,i - 1[:_1,j 

2f:.x 
IJ+1,i - 21rj + 1[:_1,j 

(f:.x)2 

1J+1,j+I + li-1,j-1 - J;:_1,i+1 - 1J+1,j-1 
(2t:.x )2 

of I, and the same central difference approximation for the surface spatial derivatives ( zx, ... ) . 

We have chosen mirror boundary conditions along the boundaries both for the image I and 
the surface z. 

In the first example we textured mapped the images of Lenna and an image of a hand 
onto a cylinder. Figure 4 present the invariance of the K9 flow to this simple banding of the 
original image plane. 

Figure 5 presents the evolution of Lenna image projected on three different surfaces 
(sin(x)sin(y), sin(2x)sin(2y), and a sphere). Each surface obviously results in a different 
flow, however the simplification of the image topology in scale towards geodesics on the 
surface is a joint property for all cases. 
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Figure 4: The evolution (left to right) of two images: The original planar flow and its 
corresponding Kg flow of the planar image mapped onto a cylinder. The original image x
axis is scaled to the cylinder diameter size. The results show the invariance to bending of 
the original image plane onto a cylinder. 
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Figure 5: The evolution (left to right) of Lenna image, this time projected onto three surfaces 
(at the top). The surfaces are also presented to the left of the evolution sequence: Gray level 
corresponds to the hight. 
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7 Summary 

Using the relation between iso-gray level curves and the gray level image from which they 
are extracted, we derived an intrinsic evolution for images on surfaces. The flow is invariant 
to bending of the surface. Based on a shortening flow that was recently studied in curve 
evolution theory, the proposed "'9 flow preserves the embedding of the gray levels along 
the evolution. The gray levels converge in finite time to points or to geodesics: Their ~>,9 
converges to zero in the coo norm. The result is a simple scale space with nice geometric 
properties, of which the two important ones are the simplification of the topology of the 
image in scale, and the invariance of the flow to bending of the surface on which the image 
is painted. 
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