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1 

This thesis describes a new method for the numerical solution of partial differential 

equations of the parabolic type on an adaptively refined mesh in two or more spatial dimen

sions. The method is motivated and developed in the context of the level set formulation 

for the curvature dependent propagation of surfaces in three dimensions. In that setting, 

it realizes the multiple advantages of decreased computational effort, localized accuracy 

enhancement, and compatibility with problems containing a range of length scales. 
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Chapter 1 

The Evolution of Surfaces 

This thesis develops a particular numerical technique to model evolving surfaces. 

In this chapter, the concepts of a surface and its evolution are formalized, and some relevant 

theoretical results are relayed. The goal is to lay a framework for the numerical constructions 

presented in later chapters, and the material has been specifically chosen for its applicability 

in that limited context. 

Evolving surfaces appear in an broad variety of problems, ranging across fields 

as diverse as material science and medical imaging [39]. In these problems, the surface is 

often specified as the boundary between two material regions which change in time, and 

the evolution of the interface is dictated by their motion. A prototypical example is given 

by the process of solidification. Imagine a space filled with a single material in its solid and 

liquid states, and let the region occupied by the solid be bounded and simply connected . . 
The evolving surface is then the boundary of this region and its evolution is given by the 

growth of this region as solidification occurs (or its reduction through liquefaction). 

More specifically, given an initial surface r 0 and temperature field u0 , the evolution 

of the system can be modeled as follows. The heat equation holds for u in each region, and 

. as the surface moves with a normal velocity proportional to the jump in the derivative of u 

across it, it acts as a heat source (through the release of latent heat). This is the classical 

Stefan Problem. 

The behavior becomes more complex in the special case where tlie liquid has 

initially been cooled to a temperature below the freezing point. In the absence of any solid, 

it is possible for a liquid to exist in this metastable, undercooled state, but once a solid 

seed of sufficient size is introduced, the system becomes unstable and the solid will quickly 
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grow into the melt in a dendritic fashion as illustrated in Fig-1.1. In this case, application 

of the above model would result in unbounded velocities for the dendritic tips. As a tip 

extended into the melt it would encounter a growing jump in 80 u, and its velocity would 

increase exponentially. To eliminate this instability, a modification to the model is requi~ed. 

The stabilizing effect that needs to be included is that of surface tension which results in 

a decrease in velocity proportional to the local (mean) curvature of the boundary. With 

this modifi.catio~ the development of sharply pointed dendrites is slowed and the resultant 

velocity is bounded. This is the Modified Stefan Problem; see [11, 13, 20, 21, 24, 40] for 

thorough discussions of this problem. 

Figure 1.1: Dendritic Solidification 

The role of surface tension here - and its bearing on stability -'- is representative 

of a much wider class of models in which the evolution of the surface includes a curvature 

dependent term. The incorporation of curvature into the model will be given particularly 

strong emphasis in the analytical and numerical discussions that follow both because of 

its fundamental importance and because of the difficulty in numerically approximating its 

influence. 

1.1 Formulations for Surfaces 

To develop a mathematical model for an evolving hypersurface, a formulation for 

the surface itself must first be laid out. There are several different ways of specifying a 

surface that will prove useful in later discussions; each of these descriptions provides a 

distinct range of information about the surface. 
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From one perspective, the implicit definition used in the previous section could be 

formalized, and r defined as the boundary (8U) of an open set U c IRn. Thus, r would 

"separate" the two regions, U and Rn \ U. An example is shown in Fig-1.2. The defining 

region U need ·not be bounded, nor need it be connected. In fact, the ability to naturally 

represent disconnected regions and the evolution from a connected region to disconnected 

ones (and vice versa) is a strength of this formulation. At the same time, however, writing 

characteristics of the surface (such as the curvature) in terms of the set . U is a cumbersome 

proposition. 

Figure 1.2: Surface as the Boundary of a Set 

Alternatively, r could be given as a parameterization, i.e. as the range of a con

tinuous map from an object (often a manifold) of dimension n- 1 into IRn(See Fig-1.3): 

r = { x = p( s) E IR n : s E Mn-l} . 

With this formulation the advantages and disadvantages of the former are neatly reversed; 

namely, surface characteristics are easily established, but a topological change from one 

region to two is problematic (involving, typically, a change in the parameterization space). 

Figure 1.3: Surface as a Parameterization 

Finally, the formulation that underlies the numerical scheme discussed in this work 
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is the definition the surface as the (zero) level set of of a continuous scalar function on IR n: 

r = {x E Rn: cp(x) = 0} 

cp : IRn --+ IR 

An illustration is given in Fig-1.4. Superficially, this formulation would seem the most 

artificial of the three, but in practice it is both natural and powerful, maintaining the 

separate advantages of both of the foregoing descriptions. It provides a natural setting for 

topological change equal to that of the first formulation- in fact, it can be considered as 

a generalization of that formulation with cp < 0 in U and <p > 0 in IR n \ U. At the same 

Figure 1.4: Surface as a Zero Level Set 

time, it allows characteristics of the surface to be conveniently written in terms of cp, and 

in that way rivals the description of the surface as a parameterization. For example, the 

unit normal to the surface is immediately established (assuming differentiability) by the 

gradient of cp: 
A 'Vcp 
n = I'Vcpl . (1.1) 

From a numerical perspective, this formulation will therefore prove particularly appealing, 

as is underscored by the fact that this view of a surface and the accompanying methodology 

were developed by Osher and Sethian in the numerical context of [31]. 

1.2 Propagation of Surfaces 

Given an initial surface r 0 , the evolution of the surface, rt, is constructed as 

follows. Let ft(x,rt) be the unit normal vector tort at the point x E rt. For these normals 

to exist, a certain degree of smoothness is required of rt; it will be assumed that ro has a 
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well defined normal direction at every point, and the solution will be said to exist only as 

long as r t retains this degree of smoothness, say for 0 ::::; t < tc. Eventually, using the level 

set formulation, it will be possible to generalize the solution so that it can be continued 

past the time at which the normal ceases to exist at some points. But for now, the classical 

notion of propagation under a speed function F{x, t, rt) can be given as: 

rt = {X(x,t): x E ro} {1.2) 

X(x, t) = F(X, t, rt) ii{X, rt) X(x, 0) =X . 

That is to say, r t consists of all points following the trajectories given by the vector field 

F ii and originating from some point of r 0. See Fig-1.5. Note that F has been written as 

depending on space and time (perhaps the temperature there) and also on the surface itself 

(perhaps its curvature). 

Figure 1.5: An Evolving Surface 

For the level set style of formulation, this construction of r t can be carried over 

immediately by extending <p to be a function of time and simply requiring that the zero 

level surface of <p always coincide with r t= 

{x E Rn: <p(x, t) = 0} = rt. 

Then by substituting the definition of r t from Eq-1.2: 

<p(X(x,t),t) = 0 ¢:> X E rt, 

and differentiating with respect to time: 

l.{)t + V<p(X,t) ·X = 0 



<t't + F Vcp(X, t) · ft(X, rt) - 0 

cp(X,rt) 
<t't+FVcp(X,t)·lcp{X,rt)l = 0, 

an evolution equation for <p is obtained: 

<t't + FjVcpj = 0, 

6 

{1.3) 

with the initial condition supplied by a choice of <po that is continuous and that has the 

appropriate zero level set. 

As has already been alluded to, an important class of propagation is that of surfaces 

moving according to their (local) mean curvature, F = F(K). Once again, the curvature 

proves an easy object to compute for the level surfaces of <p, since for any vector field v 

normal to a surface, so the curvature is given by (see [41]): 

, = v · c:~) , 
and, therefore, 

(1.4) 

Finally, for the case of collapse under mean curvature, F = -K, substituting Eq-1.4 into 

Eq-1.3 gives: 

(1.5) 

This equation has been extracted from the classical notion of a propagating surface, 

but the correlation between the two is not entirely straight forward. First, there is the 

curious choice of an arbitrary cp0 , subject only to the constraints that it be continuous and 

have a zero level set corresponding to ro. Then there is the more disturbing fact that the 

evolution equation is only well defined where V <p #- 0. The next section will address some 

of these concerns and outline the theoretical background that will also prove helpful in the 

analysis of certain related numerical issues. 

1.3 Theoretical Background 

The foregoing has all been laid out under the stipulation that the surface remain 

reasonably smooth, i.e. that no corner develops at which the normal (or the other relevant. 
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surface characteristic such as curvature) become undefined. Even for primitive speed func

tions, such corners can arise - and do in the prototypical case of F = 1, with an initial 

surface (curve) given by the graph of cosine: 

ro = {(x,y): y = cos(x)} c IR2 , 

for which corners will develop in finite time [35]. For this particular problem with its con

stant speed function, one way of extending the solution would be to establish the "particle" 

trajectories based solely on the normals to the initial surface: 

rt = {X(x,t): x E ro} 

X(x,t) = n(x,ro), X(x,O) = x, 

but this will lead to the "swallow tail" solution shown in Fig-1.6a, which is unacceptable 

if the surface is meant to represent the boundary between two region with one propagating 

into the other. If, for example, the surface represents a flame front moving into a region of 

unburnt gas and leaving in its wake a region of burnt gas, then the natural entropy condition 

given by Sethian in [34] is that a point of burnt gas remain burnt for all time. The resulting 

entropy satisfying solution corresponds to Huygen's construction in which rt is composed 

of all points of distance t from r 0 (Fig-1.6b). Furthermore, this solution can also be shown 

to be the limit of of the viscous problem F = 1 - cK (under which the curve will remain 

smooth for all time), with the limit taken as c -t 0 [35]. 

(a) Swallow-Tail Solution (b) Entropy Satisfying Solution 

Figure 1.6: Two Solutions for A Propagating Curve 

For more complex speed functions, the issues of existence and uniqueness also 

become more involved. Such is the case for the classical problem of collapse under mean 

curvature. In two dimensions, it is known that any bounded, closed, smooth curve collapses 
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under curvature smoothly to a point [19]. In three dimensions, however, this is no longer 

the case (for surfaces), the classic counter-example [36] being a dumbbell shaped surface 

with a long, thin "bar" that pinches off in the center in finite time as it moves under mean 

curvature. As the pinching occurs, the curvature becomes infinite, corners are formed, and 

the continuance of the classical solution ceases. 

By framing the evolution in the level set modality (Eq-1.5), the problem is gen

eralized in such a way that the solution can be continued in a sensible fashion past such 

critical times. This generalization was analyzed by Evans and Spruck in a series of papers 

[14, 15, 16, 17] to which the interested reader is referred for the details; here, only the 

relevant results are summarized. Most importantly, they were able to construct a weak 

solution to Eq-1.5 and guarantee its existence and uniqueness for all time. Furthermore, 

the motion of the zero level surface of this weak solution was shown to be identical to that 

given by the classical notion of collapse under mean curvature, so long as the latter exists. 

It is therefore reasonable to call Eq-1.5 a generalized evolution by mean curvature. 

Since the motion of the zero level set cannot then depend on the original choice 

of tpo (continuous and with a fixed zero level set), it follows that perturbing tp away from 

its zero level set can have no effect on the evolution of that surface. This fact can be 

restated more generally if it is first noted that there is nothing special about the zero level 

set and that every level set of tp obeys the same evolution equation; that is Eq-1.5 gives 

the evolution of a family of surfaces collapsing under curvature. It then follows that a 

perturbation of some collection of level surfaces of tp will never effect any of its other level 

surfaces - put figuratively, there can be no transmission of information across the level 

surfaces of tp. 

Conversely, Evans and Spruck were able to demonstrate that "information" travels 

infinitely fast (instantaneously) along a given surface. Specifically, they showed that ifr' and 

r are the smooth boundaries of the bounded and connected open sets U' C U C IR n with 

U' =i U, then r't n rt = 0 Vt > 0. So the two surfaces "tear apart" instantly, regardless 

of the extent of their initial intersection; see Fig-1. 7. Such effects are characteristic of 

parabolic partial differential equations, and indeed the evolution equation for tp was shown 

to be uniformly parabolic along the level surfaces, even while it is degenerate across them. A 

heuristic interpretation ofEq-1.5 is therefore as a dispersion equation, where it is curvature 

that is being dispersed and dispersed only along the level surfaces. 
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Figure 1.7: "Tearing Apart" of Surfaces under Curvature Flow 

1.4 An Example 

9 

· A useful example, both as a concrete demonstration of the preceding derivation 

and as a basis for some of the numerical work to come, is that of spheres propagating under 

the speed function: 

F =a- bK-, 

where a and b are constants, with b positive. (The evolution is only stable for b > 0, for a 

negative b the equation is akin to the backwards heat equation; see [31].) 

Denoting the center of the spheres as x 0 , the evolution is spherically symmetric in 

r = lx - xo I with cp satisfying the PDE: 

whose solution is given by 

b 
cpt(r, t) +(a-- )cpr(r, t) = 0 

r 

cp (R(t), t) = cp (R(O), 0) where 
b 

Rt= R-a. 

For explicitness, the initial condition is taken to be the signed distance function to a sphere 

of some radius Ro, also centered about xo: 

cp(r,O) = r- Ro. 

For the two special cases of a= 0 and b = 0, the ODE for R is separable and can be solved 

as: 
! 

R(t) = R(O) -at 

R 2(t) = R 2(0) - 2bt 

cp(r, t) = r- (Ro +at) 

cp(r, t) = Jr2 + 2bt- Ro 

for b = 0 

for a= 0 

For the general problem with a I 0, b I 0, the ODE can be made exact through multipli-
.,2 " 

cation of the integrating factor e-Tte&R, and then solved to produce an implicit equation 
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relating R(O) and R(t): 

=::? bln(aR(t)-b)-bln(aR(O)-b)+a(aR(t)-aR(t)) = a2t. 

Using this equation, cp(r, t) can be constructed by solving for R(O) with R(t) = r, and 

then setting 

cp(r, t) = cp (R(O), t) = R(O) - Ro. 
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Chapter 2 

Numerical Methods 

For Evolving Surfaces 

Each of the three ways of describing surfaces given in §1.1 corresponds to a class 

of numerical methods for tracking the evolution of a surface. The intrinsic strengths and 

weaknesses of each description will be seen to reemerge in the numerical methods it inspires. 

This chapter briefly recounts the formulation and critiques the performance of each of these 

classes of methods. It then delves into the numerical methods for the level set equation in 

detail, as they will become the focus of the following chapters. 

2.1 A Survey of Methods 

The first methods used to track the evolution of a surface were based on parame

terizations. Such methods come in a variety of flavors, but a representative example is that 

of "marker particles" in which a collection of points (the particles) are spaced across the 

surface and then moved along trajectories according to the speed function F. 

The surface at a time t can then be reconstructed from the positions of the marker 

particles at that time. A primary deficiency of such methods is in their inability to naturally 

handle topological changes (just as is the case for the representation of surfaces as parame-

. terized objects). If the surface is intended to follow the boundary of two expanding regions 

which eventually flow together and form a single region, then a change of parameterization 

will have to be made when they join, and the particles in the region of contact between the 

two surfaces will have to be identified and removed. 
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Similar problems develop even in the motion of a single surface. Where the trajec

tories ftow together (as in Fig-1.6) and corners form, a marker particle scheme leads to two 

difficulties. First, they naturally produce the swallow-tail solution of Fig-1.6 as each parti

cle blindly follows its locally determined trajectory (independently of its crossing of other 

trajectories). Since this is usually not the desired entropy satisfying solution, the "tails" 

must be removed in a process called de-looping [22]. Secondly, the markers will accumulate 

at these corners, and if unchecked, the breakdown in their spacing will lead to instability 

in the difference operators based on their positions [31, 35]. 

These difficulties are avoided in an entirely different class of techniques know as 

"volume of ftuid" methods; these were motivated by a desire to track multiple ftuids and 

introduced by Noh and Woodward in [30]. They are based on the representation of a surface 

as the boundary of a region, and as such they can naturally address the above issues of 

topological change and entropy satisfaction. Indeed, the behavior that has been demanded 

of the marker particle scheme is that as envisioned for the surface of a material region - as 

is typically the case in a physically motivated process. Volume of ftuid methods intrinsically 

exhibit such behavior. They work by discretizing the volume of U as a percentage of each 

cell. The surface can then be reconstructed in the cells containing a partial volume of U 

(neither zero nor one) and the motion of the surface tracked through its effect on the nearby 

volumes. 

In practice, the reconstruction is not carried out explicitly, but it is used to derive 

the way in which the discretized volume is updated. When the motion depends on geomet

rical information such as the normal direction or curvature of the surface, the derivation 

becomes very complicated and the accuracy of the method difficult to insure [10, 23, 32]. 

Using the level set equation as the basis for a numerical scheme for tracking surfaces 

offers many of the same advantages as the volume of ftuid method. Furthermore, it also 

allows computation of geometrical quantities in natural forms. In fact, the formulas given 

in §1.1 and §1.2 for the normal and the curvature will be carried over directly into the 

numerical schemes. This combination of features make the level set method particularly 

appealing, and its implementation will now be considered in some detail. 
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2.2 The Level Set Method 

The level set method amounts to the numerical solution of the PDE given in Eq-

1.3 with the speed function, F, possibly depending on on the derivatives of cp because of 

the effect of local surface characteristics. For the remainder of this work, the dependence 

of the speed function on the surface will be restricted to the effects of curvature alone, 

F = F{x, t, K.), and that dependence further restricted to be a linear one. Other inclusions 

can easily be made, such as dependence on the direction of the gradient (to model a spatial 

anisotropy [40]), but the essential elements of the method are illustrated by F = F{x, t, K.) = 

a{x, t) - b{x, t)K.. 

The first term is- called the "hyperbolic term," as Eq-1.3 becomes a hyperbolic 

PDE for F = a{x, t). On the other hand, for F = b{x, t)K. Eq-1.3 becomes Eq-1.5 {plus the 

addition of the coefficient b) which as already mentioned is a parabolic equation along each 

level surface, and the second term is therefore called the parabolic term. These two terms 

require separate numerical handling and Eq-1.3 is rewritten as: 

(2.1) 

and the two contributions to C{)t are computed separately and then combined. Explicit 

methods are used for both terms, and the time stepping is carried out by a forward Euler 

method. This is the simplest possible construction. A more elaborate time stepping method 

could easily be included, but the simpler case suffices to illustrate the methods that follow. 

2.3 The Hyperbolic Term 

This section outlines the development, as given by Osher and Sethian in [31], of 

a first order "upwinding" scheme for approximating the right hand side of the hyperbolic 

equation 

CfJt = -a(x, t)JVcpJ. 

It is instructive to first consider the one dimensional variation: CfJt = -a(x,t)Jcpxl, since this 

is a special case of the Hamilton-Jacobi equation 

C{)t = -H(cpx) with H=a(x,t)~. 
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Differenting with respect to x and substituting u = cpz transforms the evolution equation 

into the hyperbolic conservation law 

Ut = -H(u)z, 

which can be approximated by the conservative numerical scheme established by 

where g is an appropriate numerical "fiux function." Then by integration, a scheme for cp 

is obtained: 

For the special case of H( cpz) = a~, the use of the following numerical fiux function 

completes the description of the upwinding scheme: 

a(x,t) ~ 0 

a(x, t) ~ 0 

In higher dimensions this trick can no longer be employed to recast the equation 

as a hyperbolic conservation law. Nonetheless, a similar scheme for cp still holds, and in 

three dimensions, where H(cpz,cpy,cpz) = aJcp~ + cp; + cpi, is provided by the following 

approximation: 

under a numerical fiux now given by 

g(Dcp) = 

min2(D-zcp, 0) + ~ax2 (D+zcp, 0) 

a(x, t) + min2(D-ycp, 0) + max2(D+ycp, 0) 

+ min2 (D-zcp, 0) + max2(D+zcp, 0) 

min2 (D+zcp, 0) + max2{D-zcp, 0) 

a{x, t) 2 2 ' +min (D+ycp,O) +max (D-ycp,O) 

+ min2(D+zcp, 0) + max2(D-zcp, 0) 

Higher order extensions to this scheme can also be found in [31]. 

(2.2) 

a(x, t) ~ 0 

a(x,t) ~ 0 
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2.4 The Parabolic Term 

Osher and Sethian also provide (in [31]) a scheme for the parabolic term which 

will also be the basis of the scheme used here. In it, given the parabolic nature of Eq-1.5, 

each of the spatial derivatives are replaced by their central finite difference equivalents (just 

as would be done for the heat equation), and the resulting finite difference approximation 

of the time derivative is 

(D;<p + D;<p)D:z::z:IP + (D;<p + D;<p)Dyy<t' + (D;<p + D;<p)DzziP 

-2Dy<pDz<pDyziP- 2D:z:<pDz<pD:z:ziP- 2D:z:<pDy<pD:z:yiP 
Dt<p= ----------------~~--~--~~~~--------------

(D;<p + D;cp + D';<p)1/ 2 

2.5 Time Step Restrictions 

(2.3) 

Given the approximations for IPt above, the forward Euler step can be applied, but 

the size of its time step, 6.t, also needs to be established. For a method on a uniform grid, 

trial and error usually suffice in this regard, but for the adaptive computations to come it 

will be important that the proper time step can be approximated for the above methods. 

As each of the methods contributes its own-restriction to the size of the time step, they are 

considered here in turn. 

For the three-dimensional problem, let the spacings of the numerical grid be given 

by ~x, ~y, and ~z. Then the approximation of the hyperbolic term as in §2.3 leads to a 

CFL restriction on ~t (again, see [31]): 

(2.4) 

with the derivatives of <p being evaluated as the finite differences appearing in Eq-2.2, and 

the timestep then taken as a minimum across the domain. 

The method for the parabolic term given in §2.4 typically places a more stringent 

requirement on ~t, which, as it has been modeled on the explicit method for the heat 

equation, can be expected to be of O(~x2 ). This is a stability condition on ~t which is 

approximated here for the first time through a stability analysis of the linearized version of 

the forward Euler method following from Eq-2.3: 
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The amplification factor, p, of this scheme is then given by: 

1'23 sin 82 sin 83 - 1'13 sin 81 sin 83 - 1'12 sin 81 sin 82 , 

where 
D..t D..t 

ai = ai -- "Yii = Cii 
Ax.2 D..x·D..x.' ~ s s J 

and the (linearized) scheme will be stable as long as IPI :::; 1. The condition that has a 

bearing on the time step is p ;;::: -1, as if p is ever larger than one, the scheme will be 

unstable regardless of the time step. In the general linear problem, this can be the case 

if ai < 0 (the backwards heat equation) or if a1 = a2 = 0 and c12 > 0, as taking 

(81,82,83) = G, ~,0) gives p = 1+')'12· For the purpose of computing an appropriate time 

step, these cases can disregarded (in fact, for the "coefficients" arising from the curvature 

term in Eq-2.3, they cannot occur) and only p;;::: -1 considered. 

A formula for the extrema of p (as a function of the 8's) would then determine 

the maximum stable time step. A closed analytic expression for its extrema could not be 

found; a bound was, however, successfully constructed by first re-arranging and grouping 

the terms: 

p = 1 + a1(coslh- 1) + a:2(cos82- 1)- 1'12 sin81 sin82 

/3( 81 ,82) 

+ 0:1 (cos 81 - 1) + 0:3 (cos 83 - 1) - 1'13 sin 81 sin 83 

/2(81/13) 

+ a:2( cos 82 - 1) + a:3(cos 83 - 1) - 1'23 sin82 sin 83 . 

ft(82,83) 

Writing then the class of equations of which the above fi's are members as 

I ( x, y) = a( cos x - 1) + b( cosy - 1) + c sin x sin y , 

the bound on At can then be established from an expression for the extrema of I in terms 

of its coefficients, since 

p;;::: -1 and p;;::: 1- 3llezti!::..t (2.5) 

At the extrema of I, x and y satisfy the following non-linear system of equations: 

asinx + csinycosx = 0 

b sin y + c sin x cos y = 0 , 
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for which one solution is sinx = siny = 0 (which is the familiar and only solution for c = 0) 

providing the following candidates for extrema: 

fezt = a(±1 - 1) + b(±1 - 1) 

1 
D.t < ---.,..--,---,.......,.... 

- 3Jal + 3Jbl 
(2.6) (Eq-2.5) 

For the other extrema, it can then be assumed that sinx, smy, and c are all non-zero, and 

the system of equations can be re-written as: 

a2 sin2 x 2 -COS X - ~2 -.--::-2 -c sm y 

b2 sin2 y , 
cos2 y = 2 . 2 

c sm x 

which leads (trough ample application of the Pythagorean Theorem) to the following ex

pression for the extrema of f: 

And setting 

the restriction from Eq-2.5 can be written as: 

(2.7) 

The time step requirement is therefore bounded by the minimal value obtained by Eq-2.6 

and Eq-2. 7 over all choices of: 

b = __!!:j_ 
!l.x ,2 

J 

<;• 
c= J 

- D.xd!1Xj 
with i i= j. 

This bound on !l.t gives results reasonably close to the genuine stability condition 

for curvature flow. For a test problem of collapsing spheres (under F = -K:), instability 

appeared at a time step between 100% and 110% of the one computed as above. With 

this method, the overall error generally decreases as the time step is increased, up until the 

point at which instabilities appear. It is therefore advantageous to take the largest time 

step that can safely be taken, and the results for the above estimation are satisfactory in 

that regard. 
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These equations for t:::.t (Eq-2.7 in particular) are expensive to compute, however, 

and would significantly increase the cost of the method if they were computed at every dis

cretization point and at every time step. Fortunately, the restriction on the time step tends 

to change very slowly, and, given some padding (such as is built into the parabolic stability 

bound above), the time step usually only requires infrequent checks, once established. 

2.6 Initial and Boundary Conditions 

Given an initial surface r 0 it is necessary to construct a consistent initial condition 

for the PDE (Eq-1.3) which is to be solved numerically. Specifically, a continuous cpo must 

be chosen to satisfy 

{x E Rn: cpo(x) = 0} = ro. 

This restriction still leaves much freedom in the choice of cp0 , but from a numerical point 

of view, there is another desirable stipulation, and that is that V'cpo not vanish near the 

zero level set. A good choice of cp0 is therefore the signed distance function to r 0 (negative 

within U and positive without), which provides jV'cpol=1 everywhere that the gradient is 

defined. 

Also, because of the extension of the analytic problem to all of IR n coupled with 

the necessary restriction of the numerical domain to a finite region, an artificial, "far field" 

boundary condition has to be supplied to the numerical method. A natural condition can be 

achieved for bounded surfaces by letting 'Po go to r- Ro for r » Ro. Here, r = jx- x0 j, 

and xo and Ro approximate the center and radius of U. By initializing cp in this fashion, 
' the far field boundary condition can then be taken as the exact solution for the collapsing 

sphere problem (with F =a- bK-), as given in §1.4. 

2.7 The Successes and Limitations of the Level Set Method 

The level set methodology is a very elegant approach to the surface evolution 

problem, and it has had many successes as a numerical method. These include problems in 

geometry [4, 9, 12, 36], grid generation [37], fluid mechanics [29, 38, 42], combustion [33], 

solidification [40], device fabrication [2], and image processing [26, 27]. 

Its fundamental limitation is an exclusively computational one. When the problem 

is recast from a surface evolution problem into an evolution in one higher dimension, the 
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computational workload suffers. If k is the dimension of the surface, and n = i with h 

describing the length scale of the computational resolution, then the cost of tracking the 

surface can reasonably be expected to be O(nk) per time step. Both the marker particle and 

the volume of fluid methods meet this expectation, but the level set method, as described 

above, requires 0( nk+1 ) to update the solution. This scaling of the workload places a severe 

restriction on the degree of complexity that can be effectively considered in a computation. 

Recently, two methods have been developed to reduce the cost of advancing the 

solution from O(nk+1) back to O(nk). One of these is the narrow band technique in which 

the computational domain is restricted to a small distance about the the zero level set [1, 8]. 

The other method is the one that is developed in this thesis, and· that is the numerical 

solution of the PDE (Eq-1.3) on an adaptive mesh. 

Through the use of the adaptive mesh described in the next chapter, it is possible 

to concentrate the work near the zero level set, and the result is an O(nk) algorithm much 

resembling the narrow-band technique. One distinction between the two lies in the fact 

that the latter requires a re-initialization of <p each time the narrow band is moved. The 

adaptive mesh version avoids this issue by supplying coarse resolution data away from the 

surface which can be used to initialize values as the mesh changes. 

The adaptive mesh also provides two other distinct advantages. First, it allows 

the computational domain to be extended well beyond the sufrace of interest, without the 

incurrence of a perfomance penalty. This alleviates the concern that the imposed boundary 

conditions may adversely affect the solution, and allows the use of the "natural" far field 

boundary condition suggested in the previous section. Secondly, the adaptive mesh also 

allows for a non-:-uniform resolution ofthe surface itself. The ability to selectively redistribute 

the density of information (and correspondingly, the workload) accross the surface gives the 

adaptive method a unique advantage in matching itself to the small scale features of the 

surface. This, together with the avoidance of re-initialization, are the primary features 

distinguishing it from the narrow-band methods. 

Acurately computing the solution on an adaptive mesh proves to be a non-trivial 

task, however - and particularly so in the case of parabolic, curvature dependent motion. 

The bulk of the work in this thesis will, in fact, be directed toward the solution of parabolic 

type equations on an adaptive mesh. 
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Chapter 3 

Adaptive Mesh Refinement 

This chapter describes the adaptive mesh that will be taking the place of the 

uniform grid that was assumed in the last chapter. It also covers a collection of generic al

gorithms associated with the mesh and its maintenance, but leaves for the following chapter 

the crucial question of how the schemes for updating the solution on a uniform grid (as in 

§2.3 and §2.4) will be extended to update a solution on the adaptive mesh. 

3.1 Definitions 

A cell, C, is simply a rectangular volume (parallel to the coordinate axes) with 

center X( C) and dimensions fixe x tl.yc x tl.zc. (Values of functions such as cp kept at 

cell centers are generally given as cp( C)). The adaptive mesh will be constructed as a time 

dependent set of such cells. The domain, D, of the mesh (the "computational domain") is a 

fixed rectangular volume with UC = D. There is a subset of M of non-overlapping cells of 

a uniform size, 6.x0 xtiy0 xtiz0 which span the domain; this is the "coarse grid" upon which 

M is built. There is also an integer, rr > 1, "the refinement ratio," that describes how the 

mesh can be refined, in a hierarchical fashion. Any cell, C E M , can be subdivided into the 

rr3 cells of size ';; x ~ x ~ which span C. These cells are known as the "children" of C, 

and are given by Child(C), and Cis called their parent, Parent(ch). Properly, operators 

such as Child and Parent are maps amongst the subsets of M -including the empty 

set (many cells have no children, and members of the coarse grid have no parents). It is, 

however, convenient to consider them as maps on M when the subsets contains one element 

and allow notations such as X(Parent(C))- X( C), which makes perfect sense so long as 
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Parent(C) =/= 0. 

The above hierarchy defines the basic structure of all meshes - the level of for

mality may seem on the exorbitant side, but it will prove to make later definitions and 

constructions clearer and simpler (even up to the level of implementation into code). Even 

at this point, the formal structure of the mesh can be examined to codify its important 

features and to provide further definitions that will be useful. 

From the recursive nature of the cells in M it follows that every cell must have a 

size given by 

for some integer i ~ 0. The cells can be grouped accordingly into Lo, L1, ... , L 1. (The 

mesh is assumed to be finite and therefore have a smallest cell whose size is given as above 

with i =f.) The Li's are called the "levels" of M, and the following relationships hold 

between them: 

O~i<f {0 . 
Parent(Li) = 

i = f Li-1 0 < i ~ f 
Child(Li) = { ;i+l i=O 

Lo is called the "coarsest level" and L 1 the "finest level." Lev( C) maps C to the level of 

which it is a member. A pictorial representation of this grouping is given in Fig-3.2, which 

should serve to clarify the structure. A level Li ~ M is also, of course, a subset of a uniform 

grid corresponding to a fully refined level of M which will be denoted as Li. 

Operators such as the shift operators on Li can then be applied on Li as Sd (C) 

ford E {x,y,z, -:X:, -y, -z}, with an additional allowance for Sd(C) = 0. Using the shift 

operators, a measure of the way in which a mesh is refined can be established which reflects 

the degree to which the levels are "nested" within their parents. The nesting of a cell can 

be measured as the minimum number of shifts that have to be applied to its parent, P, to 

produce the empty set: Sd,. o ... o Sd1 (P) = 0. The mesh, M is then said to ben-nested if 

the minimal nesting of all cells in M \ L0 is n. 

The formal structure of M will also become the basis for .the data structure in 

the implementation of the numerical methods. An overview of that data structure appears 

in Fig-3.1. The primary structure is that of a tree, which corresponds to the hierarchical 

nature of M, with pointers to parents and children, but overlying this are lists linking 

together the cells of each level and links to the neighbors given by the shift operators. The 

links to the neighbors are required for easy movement about the levels (e.g. for evaluating 

finite differences) since indexing cannot be used in the absence of a uniform grid. 
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Figure 3.1: The Data Structure for the Mesh 

One other convenient way of representing a mesh is through the set of its childless 

cells. They cover ID and are accordingly called the "finest covering of ID." From them the 

rest of M is fully determined, so they do, in fact, provide a representation of M, and one 

which is easily portrayed. An example appears in Fig-3.3, which actually shows the finest 

covering of a cross-section of the computational domain. 

3.2 Maintaining the Mesh 

The generic algorithm used to build the initial adaptive mesh and to maintain 

it throughout the computation is given below. Here, the refinement is checked at regular 

intervals of ta, but more elaborate schemes for determining when it should be checked can 

easily be incorporated. 

1. Create L 0 and initialize the computational variables on this grid. 

2. k = 0; Flag cells needing refinement. 

3. If any cells have been flagged: 

(a) Create children under each flagged cell. 

(b) Fixup the data structure. 

(c) Initialize variables in each new cell. 



(d) Return to step 2. 

4. Advance the solution on M until tM = min(kta,tJ)· 

5. k = k + 1 Flag cells that need to be coarsened or refined. 

6. If any cells have been flagged: 

(a) Remove all descendents under every C-flagged cell. 

(b) Create children under each R-flagged cell. 

(c) Fixup the data structure. 

(d) Interpolate variables into each new cell. 

7. If t M < t ,, return to step 4 
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At each check, the mesh can be adjusted by the incremental addition of children 

or through the removal of all descendents of certain cells. In the initial construction of the 

mesh, repeated checks are made in order to allow the mesh to grow to arbitrary depths 

of refinement. No coarsening is allowed in this loop to insure its termination (assuming a 

maximum depth of refinemet). A single coarsening is allowed after this loop to accommodate 

the removal of the excess. The later checks only allow a single increase in the local refinement 

per occurrence. 

In each case, the maintenance is carried. out in two steps; first cells are flagged 

for refinement and then the mesh is modified based on these flags. This encapsulation of 

the machinery needed to update the data structure allows for the easy implementation of 

arbitrary refinement techniques. The crucial steps, from an implementation perspective, are 

3b and 6c during which the pointers in cells affected by the adaptation have to be updated 

without significant computational overhead. This can be accomplished through the use 

of incremental updates in which only the relevant neighboring cells in the data structure 

have their pointers corrected. Under that paradigm, the maintenance of the mesh becomes 

transparent in terms of computational cost. 

The initialization in step 3c assumes that the initial data is available at arbitrary 

locations. Initialization of data for cells created later in the computation is carried out by 

interpolation (typically second order) in step 6d. 
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3.3 Basic Refinement Techniques 

In application to the level set equation for tracking the motion of a surface, the 

primary use of the adaptive mesh will be to concentrate the data points near the surface of 

interest - i.e. near the zero level set of cp. In Fig-3.2 there is a pictorial representation of 

the resulting style of mesh. If the width (in cells) of the refined band on each level is 0(1), 

and the work done per cell per time step is also 0(1) then the total work per time step will 

be O(n2 ) for this type of mesh. Such a scaling of the work is what is ideally desired in a front 

tracking scheme (and is also provided by the marker particle and volume of fluid methods 

of §2.1). The O(n3 ) scaling of the traditional level set method can become'too expensive 

in many problems, and the use of an adaptive mesh provides one way of combating it - in 

this way, it is much like the narrow band methods of [1]. 

Figure 3.2: The Banded Mesh Structure 

But an adaptive mesh also offers an additional advantage, and that is the allowance 

of increased resolution in particular regions of the level surface. For example, in the collaps

ing dumbbell problem illustrated in Fig-3.3, an extra level of refinement has been added 

along the neck to better resolve the rapid motion and impending topological change there. 

And this advantage is not limited to such artificially constructed problems. In many phys

ical problems (with a curvature dependent motion) regions of very high relative curvature 

appear which could be adequately resolved on an adaptive mesh. The allowance of this 

style of refinement will become a critical issue in the development of numerical techniques 
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for the level set equation on the adaptive mesh . 

• -

Figure 3.3: Classic Dumbbell Problem under Mesh Refinement 

3.4 Extending Numerical Methods 

The first step is to outline the way in which numerical methods for uniform grids 

can be extended for application on an adaptive mesh. The extensions will be applied to the 

levels of M since these locally look like uniform grids. 

Let AAt be a numerical method for updating (by ~t) a solution cp on the uniform 

. grid L corresponding a8 before to the "fully refined" version of L: 

Now cp is only defined on L, but it can be represented on Las a map to IR* with the symbol 

oo serving as a place holder for the points at which it is undefined: 

cp* = { cp(C) C E L . 
oo Cr{.L 

Then, using the convention that A(cp*) evaluates to oo wherever it has a non-zero depen

dence on cell holding an oo, the method can be partially applied to L through the operator: 
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Hit is based on a uniform grid method that only uses nearby values to update the solution 

in a given cell (as is the case for the methods discussed in §2.3 and §2.4), the application 

of the above formulation would result in the encroachment of the undefined values only 

along the "boundary" of L as a subset L. The cells of L which receive a value of oo in a 

single application of AL are called the "periphery" of L (with respect to the method); the 

remaining cells are called the "interior" of L. 

All that is needed, then, to extend the numerical method to the adaptive mesh, 

is means for constructing the new values of r.p along the periphery of L using the known 

values of r.p on M. Chapter 4 will introduce the way in which this can be accomplished 

for the schemes of §2.3 and §2.4, but the generic algorithm can be given now for advancing 

the solution on a fixed mesh M to a time t. Assuming for the moment the existence of the 

peripheral update, the following recursive procedure advances the solution on a level, Li, 

to the time t. This procedure will then advance all of M when called on its coarsest level 

(i.e. with Li = Lo). 

Advance(Li,t): 

1. Compute a timestep, tl.t, for Li. 

2. Apply <{)L; +- AL At(r.pLJ· 

3. Update the periphery of Li using <{)Li5.i. 

4. If Li+l =I 0, then Advance(Li+btLJ· 

5. If tL; < t, then return to Step 1. 

6. If i =I 0, then correct <{)L;-1 with <{)L;· 

In step 6, the values in the parents of a level are overwritten with the newly 

computed values in the fine cells underneath them, effectively coupling the solution on the 

coarser level to that on the finer levels. For odd refinement ratios, the coarse cell will share 

its center with a fine cell and the value there can simply be copied up. For even refinement 

ratios, interpolation from the fine cells surrounding its center is required (a second order 

scheme is used). 

The procedure given above also makes the computation fully adaptive in time; 

i.e. each level is allowed to choose its on time step and computed values on the mesh will 

therefore be staggered in time. Coarse levels will take a large time step, and then the finer 
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levels will take many small time steps to cross the same interval and eventually pass the 

time. reached by their parent (on their final step). Consequently, the overwrite discussed 
., 

above will typically involve an additional linear interpolation in time. As mentioned in 

§2.5 it is often beneficial to take a large time step, so this temporal adaptivity can improve 

performance as well as efficiency. The appropriate time step can be computed as it would 

for the uniform method in the interior of Li; further considerations may also have to be 

included to account for restrictions imposed by the peripheral update. 

3.5 Boundary Conditions 

The numerical schemes of §2.3 and §2.4 also require the incorporation of boundary 

conditions for the PDE as discussed in §2.6. These can be implemented in two basic ways; 

by modifying the dependence of the scheme on its stencils at the boundaries or by including 

artificial "boundary" cells which mimic the appropriate behavior. On an adaptive mesh, the 

latter will prove much simpler to implement owing to the large number of possible stencils 

resulting from the various patterns of refinement that can occur at the boundary. 

A swath of cells is maintained along the exterior of [) whose refinement pattern 

reflects the pattern across the boundary (and inside of ID). The far field boundary condition 

based on the solution of the propagating spheres problem (of §1.4) can then easily be 

imposed by supplying these boundary cells with the appropriate values computed from the 

exact solution. A Neuman condition can also be implemented by having each boundary cell 

in the swath copythe value from its "image" cell across the boundary of ID. (A similar 

construction can be used for periodic boundary conditions.) 

3.6 Interpolation and Triangulation 

Standard routines on a uniform grid usually become significantly more complicated 

in translation to an adaptive grid. A good example is that of interpolation. In the previously 

mentioned special case of interpolation from children to an overlying parent cell, it is clear 

how to proceed since the target point is effectively within a uniform mesh. A general means 

of producing an interpolated value at an arbitrary position in the domain is less straight 

forward. Given <p at the centers of the cells of the finest covering, :F C M, the following 

procedure produces a continuous first order approximation to <p across the domain. 
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The basic idea is to first interpolate values at the corners of the cells in :F and then 

interpolate across their interiors with bilinear interpolation. The trick is in interpolating the 

corner values in such a way the continuity is assured. To that end, the corners are divided 

into two sets; those which are bordered by eight cells and those which are not {the latter 

lie at the transitions between levels and are what distinguish the adaptive mesh from a 

uniform one). For the former set, values are obtained immediately by an average, weighted 

by distance, of the values at the eight bordering cells. If L • c is the coarsest level in the 

covering, L* c = Lc n :F, then corners of all of its cells must be in this set. Any corners 

from the finer levels that lie on the faces (and edges) of its cells -these are in the latter 

set - can then be forced to match the bilinear interpolation from the corners across the 

faces. After that step, all corner values for the cells in L* c+l will have been obtained, and 

the procedure can be continued recursively through the levels. 

For the level set equation, an important consequence is the ability to produce a 

first order triangulation of the level surfaces of cp. Given the above interpolation of cp, a 

marching cubes style algorithm [25] can be immediately applied on the finest covering. The 

continuity of the interpolation then guarantees that this triangulation is closed. 

3. 7 Judging Performance 

Lacking an analytic proof of performance, the best way to judge the performance 

of an algorithm on the adaptive mesh is to compare its solutions to the exact solutions on 

a set of test problems (i.e. problems for which the exact solutions can be written down). 

The choice of both the test problems and the means of comparison are critical. Choosing 

the former is, necessarily, application specific and something of an art, but the latter can 

l:>e addressed more generally and concretely here. 

Let C,Oc denote the computed solution and C,Oe the exact solution. The standard 

global performance estimates such as llc,oc- C,Oell2 easily mask important information when 

applied on an adaptive mesh. If the mesh is refined in a region of high error, for example, 

then a method on it could easily achieve an overall reduction in error even while performing 

badly along the periphery of the levels (the increase in error there being outweighed by 

the reduction in the interior). On the other hand, the mesh may be left coarse in some 

region because the error there is of no importance, and it may be beneficial to sacrifice the 

accuracy there while striving for high accuracy in another region. Such would be the case 
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with the level set equation when the only accuracy of any concern is that at the zero level 

surface. But in a norm estimate, the error in the refined zone would be swamped by the 

surrounding {unimportant) error. 

For the level set equation, the specific fix of giving the error only as it appears on 

the zero level surface could be made. It could be given as the volume between the computed 

and exact surfaces, a plot of the distance between them, or another norm based on that 

distance. Unfortunately, the computed surface must first be reconstructed from <p, and if 

the method of reconstruction is not sufficiently accurate, the error it induces will mask the 

computational error it was intended to measure. 

Having the exact solution 'Pe everywhere allows for an easy solution, which is to 

plot I'Pc- ~Pel across the finest covering of the domain. Such plots prove to be very useful in 

the analysis of the adaptive mesh schemes, especially in highlighting the onset of difficulties, 

be they in a "region of interest" or not. This will be the tact taken in the analysis of the 

computations to follow. Typically, however, these computations will have been conducted 

in three dimensions so the data will first be sliced on a plane perpendicular to one of the 

coordinate axes {see Fig-4.2). The domain of the plot is taken as a rectangular subset of 

this plane. The error, I~Pc- ~Pel, is then evaluated at the cell centers of the finest covering 

of this domain {which will be only piecewise planar, the cell centers being shifted out of the 

slicing plane) and plotted. 
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Chapter 4 

The Level Set Method 

Under Adaptive Mesh Refinement 

To formulate a method for updating the solution on a level Li of M, the numerical 

techniques given in §2.3 and §2.4, can be applied in the fashion just described to update 

the solution in the interior cells of Li. The crucial step is then to provide a means for 

updating the peripheral cells where the first update was undefined. A criterion also needs 

to be established that can be used to determine whether a given scheme for updating the 

periphery is a good one or not. This can be supplied by the fundamental requirement that 

the addition of cells in the adaptive mesh should never make the solution worse (even though 

they may make the solution no better if added arbitrarily). The immediate corollary is that 

the solution on an adaptive mesh should never be worse than the solution on the underlying 

coarse grid alone. 

As was the case in the development of the uniform grid methods, the hyperbolic 

and parabolic terms will require separate and specialized treatments. The hyperbolic term 

will turn out to be the much simpler of the two, so it is dealt with first. 

4.1 The Hyperbolic Term 

The most straight forward way of obtaining the new values on the periphery of 

Li is by interpolating them from the known values on Lj'5.i· There are a variety of ways 

in which such an interpolation can be carried out, ranging from simple injection of the 

value from the overlying coarse cell (the parent), to linear interpolation off of a cube. of 
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surrounding coarse cell centers, to a higher order method. Nearby interior cells of Li could 

also be included in the interpolative scheme since they will have been successfully updated 

before the interpolation occurs. 

For the upwinding schemes of §2.3 applying such an interpolation along the pe

riphery does not degrade the numerical solution and is therefore a fine way to patch the 

numerical scheme for a uniform grid onto the adaptive mesh. In fact, linear interpolation 

off of the surrounding coarse data points (with linear interpolation in time as well) is found 

to be sufficient. Since the hyperbolic term is not necessarily the only contributor to '{)t, it 

is actually the hyperbolic contribution to 'Pt that is interpolated from the coarse data, and 

the time integration of this value then corresponds to the linear interpolation of cp in time. 

It should not come as a surprise that interpolation on the periphery works well 

for the hyperbolic term. Indeed, such interpolative schemes have been shown to work well 

by Berger, Colella and Oliger for a variety of hyperbolic problems [6, 7]. In their work, 

certain quantities typically have to be conserved, and in order to assure their conservation, 

a correction has to be applied following the interpolation. In the case of the hyperbolic 

term of the level set equation, no such correction is required. 

As a foreshadowing of what will prove important when the parabolic term is con

sidered, two basic tests are performed. Both are for an initial function with spherical level 

surfaces centered about the origin: cp = r - 1 . In the first test a level of refinement is 

maintained about the zero level surface, and in the second the refined zone is restricted to 

a patch near the positive z-axis. The patch is given by the intersection of the band in the 

first problem with a cone of angle "i about the axis. Such a patch is pictured in Fig-4.1 

along with a cut-away level surface; the cells that are shown are actually the coarse cells 

which have children. Fig-4.2 shows the typical way in which the data is sliced to allow the 

error to be plotted. Finest coverings of such a slice for the two test problems are shown in 

Fig-4.3. 

Also in these tests, the adaptive time stepping has been suppressed, and the solu

tion on all the levels has been advanced in lockstep, the appropriate time step being enforced 

by the requirement on the finest level. In §4.8 the issue of adaptive time stepping will be 

returned to and investigated, but for now the analysis can be simplified if the schemes are 

first considered in a lockstep implementation. 

The performance of the method with a band of refinement is presented in Fig-4.4 

where the error from a central slice is plotted at t = 0.3 (the plot has also been restricted 



Figure 4.1: Patch of Refinement on Level Surface 

i! -:-!FJ :: ~ ....... A;,] \f//. 
Figure 4.2: Slicing of 3D Computation for Error Plot 
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(a) Refinement in Band 
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0.7 

(b) Refinement in Patch 

Figure 4.3: Slices from the Two Styles of Test Problems 

to the center of the slice - the domain extends farther). The data from the fine cells is 

plotted in black and that from the coarse cells in grey, and the error is shown on a log 

scale to emphasize its reduction by an order of magnitude within the refined band. The 

method in fact looses very little accuracy in comparison to a full method run at the fine grid 

resolution. The increase in error over the full method is shown in a portion of the refined 

band in Fig-4.5, here it can be seen that the solution in the center of the band (where the 

zero level set is) attains an accuracy almost equal to that of the full method. 

For the test in which the refinement is limited to a patch, the corresponding error 

and comparison plots are given at t = 0.3 in Fig-4.6 and Fig-4. 7. Again, the error within the 

patch in near that of the full method. In this case, the numerical diffusion in the underlying 

method results in the increase in error seen along either edge of the patch. 

1.5 
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4.2 The Parabolic Term 

For the parabolic term, using interpolation (of any style and order) along the 

periphery will lead to unsatisfactory results. The difficulty is illustrated in Fig-4.8 where a 

refined patch similar to that of the previous section has been applied to a sphere collapsing 

under curvature. Along the edges of the patch, the error in the fine cells exhibits oscillations 

which grow in time, with the solution eventually becoming corrupted on the coarse grid as 

well. 

0 

z X 

Figure 4.8: Failure of Interpolation for Curvature Flow 

It turns out that interpolation is, in general, a bad idea in solving parabolic type 

equations on an adaptive mesh. The next few sections examine the difficulty and means to 

its resolution in the context of two prototypical parabolic equations: the nonlinear equation 

for curvature flow and the linear heat equation. The difficulty can be seen in an attempted 

solution of the one-dimensional heat equation which is therefore the natural place to attempt 

to understand what has gone wrong and how it can be fixed. 
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4.3 The One-Dimensional Heat Equation 

This section considers as a test problem the solution of the one-dimensional heat 

equation, Ut = U::, on an adaptive mesh in the unit interval. The mesh is taken to consist 

of a uniform coarse grid of cells on [0, 1] with each of the cells in [!, 1] subdivided into two 

fine cells. Thus the only peripheral cell is the leftmost fine cell, and the value there can be 

interpolated from the coarse cell lying immediately to its left and the fine cell to its right. 

Elsewhere, the standard center-difference formulation can be used. The computation (and 

the ones to follow) will be carried out with twenty coarse cells and an initial condition of a 
·.' 

sine wave, uo = sinx, with-the exact solution therefore being ue(x, t) = e-t sinx. Under the 

interpolative scheme, the computed solution at t = 0.05 (Fig-4.9) is an order of magnitude 

worse than the solution on the course grid alone, which is shown in the right hand plot. In 

these plots the data points {the cell centers) are indicated by circles. 

x10_. 
3

x 10_. 

1.5 

2 

0.5 

(a) Adaptive Mesh {b) Uniform Coarse Mesh 

Figure 4.9: Failure of Interpolative Method for the Heat Equation 

The error plotted in Fig-4.9 gives a hint as to what has gone wrong. The jump in Uz 

at the interface between the coarse and fine grids is indicative of the presence of a numerical 

source term there. Fig-4.10 shows the growth of the error in time as the contribution from 

this source accumulates. Furthermore, if the spatial resolution is doubled (that is, if each 

cell is halved), then there is a corresponding reduction in the error, just as the extent of 

the source is cut in half. The problem here resides in the fact that conservation (of heat) is 

not being maintained at the peripheral cell. It is not that the scheme is unstable - indeed, 
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Figure 4.10: Accumulation of Source Term 

Figure 4.11: Reduction of Source Term under Refinement 
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Berger has shown such constructions to be stable in [5] - or that it does not converge to 

the correct solution, but just that it does so in a very inaccurate fashion. 

At this point, there are several ways to proceed toward a resolution of the problem. 

An artificial source could be placed at the grid interface to counter-balance the numerical 

source, or a flux balance could be enforced there, or a means of computing Uxx at the 

leftmost fine cell could be devised. Each of these paths will lead to the same answer, but 

the last will also eventually show the way to a method for the generalized motion by mean 

curvature. 

UA 

···,···-·····-····-······-····y·····-·/)' 

-tJ.XA----tJ.XB 

Figure 4.12: Construction of Spline at the Periphery 

Let. 0 denote the leftmost fine data point, A its coarse neighbor to the left, and 

B its fine neighbor to the right. Write their values as Uo, U A, and U B, and their relative 

positions as 0, .6.XA, and .6.XB; see Fig-4.12. Then a quadratic spline 

U =a+ b.6.X + c(.6.X)2 

can be fit to the data by requiring: 

which yields 

c= 

Uo - a 

UA - a- b.6.XA + c(.6.XA)2 

UB - a+ b.6.XB + c(.6.XB) 2 

t:..XA(UB- Uo)- .6.XB(Uo- UB) 
.6.XA.6.XB(t:..XA + t:..XB) 

(4.1) 

and as formal differentiation of Eq-4.1 gives Uxx ~ 2c, a method for updating the leftmost 

fine point follows: 

{4.2) 
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This method can also be written (or derived) as a balance of flux: 

!(tlX tlX )D ~ = (UB- Uo) _ (Uo- UA) 
2 A + B t o tlX tlX . B A 

Application of this method produces errors comparable with those on the coarse 

grid at the transition in refinement, although for this particular problem there is still a 

slight increase. The error is plotted in Fig-4.13 along with the error on the coarse grid 

alone at t=0.05. The behavior at the peripheral cell, while less than ideal, provides at least 

a starting point for the development of a higher dimensional method. 

Figure 4.13: Splined and Coarse Grid Solutions 

4.4 A Model Problem in Two Dimensions 

The next step is to try a similar technique on a model problem in two dimensions. 

The unit square [0, 1] x [0, 1] is covered with a uniform (coarse) grid of cells, and each cells 

whose center is in y < ~ is refined into rr x rr fine cells. The dimensions of the coarse grid 

will be taken to be 30 x 30 cells throughout this section unless stated otherwise. 

The goal is to produce a numerical solution for both the heat and curvature equa

tions which does not become corrupted along the interface (at yc = ! ) between the c~arse 

and fine cells. A single method can be used for both evolution equations if it first produces 

approximations to the derivatives which can then be incorporated into either evolution 

equation. It was with this connection in mind that the splined formulation was used in the 
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one-dimensional problem. A flux formulation, while instructive for the heat equation, would 

prove useless for the curvature equation, for although the two test problems are similar, 

Ut = V' · (Vu) <{)t = v. c~:~) IV'r;l 

they are fundamentally different in that the latter cannot be written in tlie conservative 

form, l.{)t = V' · (flux). 

The construction of the spline, however, can easily be extended to two (or more) 

dimensions by writing the general quadratic equation centered at the relevant fine grid 

point, which for convenience of notation is taken to be the origin: 

Then the coefficients bi and Cij can be determined from the evaluation of this quadratic 

at five other appropriate data points (this basic idea has been used elsewhere for adaptive 

mesh schemes [3] ), the value of a beingestablished by r;0 : 

Xt Yt Xt
2 

Yt
2 

XtY1 bt f::i<pt 

X2 Y2 X2
2 

Y2
2 

X2Y2 b2 l::i<p2 

X3 Y3 X32 Y3
2 

X3Y3 en = l::i<p3 (4.3) 

X4 Y4 X4
2 

Y4
2 

X4Y4 C22 /::i<p4 

xs Ys xs2 Ys
2 

XsYs Ct2 f::i<ps 

where the Xi's and Yi 's give the relative positions of the stencil points and the l::i<pi 's their 

relative values, l::i<pi = <pi - <po . It is then clear that an "appropriate" choice of stencil 

must be one for which the above system has full rank and which produces a spline which 

accurately approximates <p. Since it is intended as an extension to central finite differences, 

the spline should be fit to nearby points surrounding the evaluation point. When it is 

formally differentiated to establish the derivatives of <p , these derivatives are effectively 

being approximated at the "center" of the stencil, since the quadratic is being forced to 

fit the values on the stencil exactly. Therefore, discr~pancies between the center of the 

stencil and the location of the fine data point for which it was constructed will lead to 

unsatisfactory results. This issue will be examined in further detail shortly, but first the 

method can be applied to the model problem with the choice of stencil shown in Fig-4.14. 

Recall that the basic concern, for each evolution equation, is whether there exists 

an initial condition for which the solution under this method on the adaptive mesh is worse 
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• • Y= 0.5- • • • • 

Figure 4.14: Five Point Stencil for the Model Problem 

than the solution on the coarse mesh alone. To that end, a useful class of initial conditions 

for the heat equation are 

uo(x) = sin(k111'x) sin{k211'Y), 

with exact solutions: 

First, for k1 = 2 and k2 = 1, the scheme performs idealy: Fig-4.15 gives plots of the 

resultant errors, luc - Ue I, at an early time, t = 0.001, and a later time t = 0.1. The plots on 

the left are from the adaptive mesh computation; those on the right are the corresponding 

coarse mesh computations for comparison. The error initially builds up quickly in the coarse 

cells, and then diffuses into the fine cells, but even at the later time the error is everywhere 

reduced from that of the coarse computation. No higher expectation could reasonably be 

held for this computation. 

If, however, the same problem is rotated, with k1 = 1 and k2 = 2, the behavior 

becomes much worse and the expectation is no longer met. In this case, there is a line of 

inftection along y = i, the boundary between the two grids, and along this line difficulties 

arise. Fig-4.16 shows the same plots as before, taken at the same times. But here, another 

{large) error immediately appears at the juncture of the grids in a manner that is remi

niscent of the artificial source term that is seen for an interpolative scheme. At the later 

time depicted, t = 0.1, the initial sine wave has decayed by two orders of magnitude (and, 

presumably, the artificial source along with it). The effect of the source is therefore diffused 

at this point, but it is still apparent. 
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The equation for motion by curvature proves even less receptive to this scheme. 

Here the only test problem with an analytic expression for the solution is the collapse of 

circles under curvature as given in §1.4. The variable parameter is that of Xo, the point 

about which the circles are centered and to which they are collapsing. The relative position 

of this point from the center of the domain will be specified in polar form as (r, 8). This 

collection of test problems is a useful one as it broadly represents the effect of the adaptive 

mesh on all local orientations and curvatures. A scheme which performs well over the 

range of these parameters on the model problem will therefore be a promising candidate 

for development into a scheme for the general adaptive mesh problem. The current scheme, 

however, fails the test. 

The difficulty can be qualified by considering the motion of the surfaces relative 

to the interface between the two grid resolutions and breaking it into two cases: motion 

normal to the interface, (F ..L x), and motion tangential to the interface, (F II :X:). The 

__ .... ·r······ ········-... 
········ 

········· ········ 

.. :····· ···· ........ . 

y y 

(a) Inward Flow (b) Outward Flow 

Figure 4.17: Flow of Surface Normal to Refinement Transition 

latter case is represented by 8 = 0 and the former by 8 = ±~, with r large. The errors at 

t=l.O for "normal flow" both into (r= 10, 8=-~), and out of (r=10, 8=~), the fine mesh 

are shown in Fig-4.17. The scheme performs acceptably under both of these conditions. 

It is during the tangential flow of (r = 10, 8 = 0) that the difficulties become 

apparent. By watching the error on the fine mesh, it is possible to see what has gone 



X 10-9 

3 ············ ..... 

e2 ... · w 

e 
w 

y 

... ~·. 
· ..... ..... ~ ... ·· .. 

· ... 
····:·· .. 

··· .. : 
·· ... 

0.3 
X 

(a) Fine Grid at t=O.Ol 

.......... ~ 

(c) At t=0.05 

6 

2 

0.7 

-9 
X 10 

y 

. · ... 

0.3 
X 

(b) Fine Grid at t = 0.02 

y 

(d) At t=O.l 

Figure 4.18: Breakdown of Solution under Tangential Flow 
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wrong. A close-up of the error in the fine cells is shown at t = 0.01 and t = 0.02 in Fig-

4.18a-b. In these, the development and growth of oscillations can be seen (much like those 

for the interpolative scheme of Fig-4.8). Soon, the resultant error grows to the point where 

it becomes the dominant feature in Fig-4.18 at t = 0.05, and at t = 0.1 it has grown by 

five more orders of magnitude. The growth of this error term is reminiscent of the artificial 

source term seen in the heat equation, but in this case refinement only serves to expedite 

········· 
········ 

... 

. ·:..3 _, ..... . 
X }0 

X 
y 

Figure 4.19: Effect of Refinement on Tangential Flow 

the onset of difficulties. In Fig--4.19, the same problem is revisited at t = 0.05 but with the 

resolution of the grid doubled; here, the error has already reached the scale seen at t = 0.1 

before. It is tempting to attribute the oscillatory behavior to the alternating "parity" of 

the stencil shown in Fig-4.14, but that is not the whole story, as will soon be shown. 

Before moving on toward a resolution of these difficulties, it should first be es

tablished that they are truly significant. They have been found under the paradigm that 

for any test problem on any mesh, refining cells should never make the solution worse. In 

some of the examples cited as difficulties above (as in Fig--4.16), the L2 norm of the error 

decreases over the whole domain even though it increases at the transition in refinement. 

The mitigating factor could be argued that the specially constructed refinement patterns 
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and initial conditions above are artificial and serve no apparent purpose. Typically, the 

mesh will be refined where the error is relatively large and increased resolution is needed. 

H that is done, then the resulting improvement within the fine mesh is likely to supersede 

any difficulties along its periphery. Such an effect is, no doubt, often the case, and that 

probably accounts for the success ofsimilar methods [3] in reducing the L2 norm of the 

error for specific problems, but such limited successes in no way guarantee an universal 

applicability. 

For the evolution equation which originally motivated this discussion, i.e. for flow 

under curvature, the failure is quite relevant. The scheme fails when the flow is directed 

along (and not across) the boundary between mesh resolutions. Since the "flow" is normal 

to the level surfaces, difficulties can be expected whenever a transition in resolution is made 

along a level surface. Such a transition is often desired, as it is in the study of the topological 

change underway in Fig-3.3. Requiring, say, that the zero level set be contained in the finest 

level would greatly reduce the usefulness of the method (and take it to the realm where 

a narrow band scheme [2] would be equally applicable and often more appropriate). The 

difficulties are, therefore, of the upmost significance and must be resolved in order to have 

a useful method for solving the level set equation on an adaptive mesh. 
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4.5 Resolution 

At this point, there are several clear complaints about the spline based method 

proposed above. First, it certainly lacks sufficient accuracy to be of any general use, and 

although it gives an improvement over an interpolative scheme in some problems, it still 

seems to suffer from the same type of artificial source term in others. Second, it requires the 

provision of an "appropriate" stencil without providing a clear definition or a clear means 

for establishing such a stencil. Third, and as previously mentioned, the stencil may not be 

"centered" about the evaluation point. 

These issues are not unrelated; the uncentered stencil of the last, for example, could 

generate the type of artificial source cited in the first by enacting an implicit interpolation 

from the center of the stencil to the desired evaluation point. It is useful, however, to 

consider them separately in order to systematically attack the overall difficulty. 

The second issue is dodged by the model problem in which the two or three required 

stencil types can be handled explicitly. Later, for a fully adaptive mesh (especially in three 

dimensions) the number of stencils will proliferate and an algorithm for their selection will 

be essential. The construction of such an algorithm to choose five (or, in three dimensions, 

eight) points is worrisome, mainly because of situations in which there is no symmetric 

choice can be made. The choice of the final stencil point in Fig-4.20, for example, is 

unclear. 

? 

? • ? 

•!t. 
?• ? 

? 

Figure 4.20: An Unclear Choice of Stencil 

The critical realization here is that it is not difficult to generate candidates for sten

cil points - the difficulty is in choosing the requisite number from the pool of candidates, 
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especially when that cannot be accomplished in a symmetric fashion. To avoid adding an 

effectively random, asymmetric choice (or trying to determine, locally, which asymmetric 

choice would be "best"), the entire pool of ( n ~ 5) candidates could be included in the 

stencil, with Eq-4.3 becoming the overdetermined system 

Xl Yl x12 Y1 2 XlYl tl.<pl 

X22 Y2
2 bt 

tl.<p2 X2 Y2 X2Y2 

X32 Y3
2 ~ 

tl.<p3 X3 Y3 X3Y3 
(4.4) en = 

X4 Y4 X42 Y4
2 

X4Y4 tl.<p4 
C22 

Xn2 Yn
2 

C12 
Xn Yn XnYn tl.<pn ._,__.. 

A p cp 

for the spline, p, which can now be fit to the expanded stencil as the least squares solution: 

IIAp- (/)112 =min IIAq- (/)112. 
q 

• • • 

• • • • • 
• • It •• • • It • • • • • -. • • 

• • 

Figure 4.21: Stencils for the Improved Method 

In addition to allowing a more natural choice of stencil points, the overdetermi

nation of the system also offers an additional degree of freedom which can be exploited 

to great advantage with respect to centering the spline on the evaluation point. Since the 

spline is no longer being forced to fit the stencil data exactly, it can be made to fit some 

data points more closely than others by weighting the system, (wA)p = w<p, where w is a 

n x n diagonal matrix, and then finding the weighted least squares solution: 

llw(Ap- <p)ll2 =min llw(Aq- <p)ll2. 
q 



51 

In particular, the fit can be weighted according to the distance from the evaluation point, 

Wii = (xi2 +yi2)-112, so that the spline agrees closely with the nearby points, but only losely 

with the more distant points. 

Making this generalization greatly simplifies the requirements on selecting a stencil. 

There are only two obvious restrictions which must be met: that the points be generally 

nearby (if all the points are far away the weighting cannot help), and that they be reasonably 

distributed in location (if they are all to one side the evaluation will remain uncentered). It is 

natural to hope that such a construction will relieve the oscillation seen in Fig-4.18 and lead 

to a successful method. It does help, and for many problems that is probably sufficient, but 

for curvature flow it is not. For the above tangential flow problem, oscillations still develop 

in the fine grid as shown in Fig-4.22 at the times of t = 0.05 and t = 0.1. The oscillations 

do not grow as quickly as they did in the original method, but they still eventually cause 

the deterioration of the solution. 

v 0.3 

X X 

(a) Fine Grid At t=0.05 (b) Fine Grid At t=O.l 

Figure 4.22: Persistence of Oscillations under Tangential Flow 

Presuming, then, that the second and third complaints cited at the beginning of 

this section have been answered, it is only the first that remains - and that is the question 

of accuracy. The assumption is then that the spline construction is accomplishing something 

akin to the uniform grid central difference operator, but that it must not attain the same 
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accuracy. The inaccuracy is probably related to the (directionally unbalanced) distribution 

of the stencil points. It may be that there is an as yet undiscovered algorithm for generating 

stencils that overcomes this difficulty, but there is another, general remedy at hand. This is 

to include the next degree terms in the spline for the purpose of improving the least squares 

solution (even though they themselves need not be computed): 

Xt Yl Xt 
2 

Yl 
2 

Xt Y1 

X2 Y2 X2
2 

Y2
2 

X2Y2 

2 
Xn Yn Xn XnYn 

2 
Xn Yn 

2 
XnYn dt22 

'---------------------v-------------------~~ A p 

= (4.5) 

Identifying the coefficients of the spline with its derivatives, the inclusion of these third order 

terms effectively allows for the spatial interpolation of the second order terms, the -Cij 's, 

within the stencil. This "interpolation" dispels the concern over the directional imbalance 

of the stencil, and in fact produces the type of results that have been hoped for all along. 

The following results are for stencils (which now must contain at least nine points) 

that have been chosen as depicted in Fig-4.21. This figure shows a refinement ratio of three, 

but the choice is similar for all refinement ratios. The actual algorithm used to generate 

these stencils will be described in §4.6 in the context of a fully adaptive three-dimensional 

mesh. 

Revisiting the problem case for the heat equation with k1 = 1 and k2 = 2 the 

difficulties along the periphery is seen to be resolved by the improved scheme, as shown 

at t = 0.001 in Fig-4.24. Furthermore, it performs nicely under curvature flow in various 

directions, 124568 (r = 1,8 = k~) for k = -4, -3, -1, 0, 2, 3; the errors for which are 

depicted in Fig-4.23, each at t = 1.0. 

At this point, nothing has been said about how the least squares problem is to 

be solved numerically or how much it costs or how it can be done efficiently. Those issues 

have been intentionally left out in order to focus attention on the accuracy and the basic 

usefulness of the method. Chapter 5 will concern itself with the various fine points of actual 

implementation. But first it is time to leave the model problem behind and try out the 

method on the real three-dimensional adaptive mesh. 
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Figure 4.24: Resolution of Difficulty for the Heat Equation 

4.6 Return to Three Dimensions 
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The above machinery (Eq-4.5) carries over directly to three dimensions, with the 

addition of the appropriate terms for the generic third order polynomial in three dimensions: 

Xl Yl Zl X1 2 
XlYlZl bl t:J.cpl 

X2 Y2 Z2 X2 2 
X2Y2Z2 b2 l:J.cp2 

X3 Y3 Z3 X32 X3Y3Z3 b3 = t:J.cp3 (4.6) 

Xn Yn Zn Xn
2 

XnYnZn d123 l:J.cpn ..___. ..____.. 
A p cp 

Aside from its size, this is no different than its two-dimensional counterpart. The only 

issue, then, for implementing the method in three dimensions, or for that matter, on a fully 

adaptive mesh in any dimension, is the formulation of an algorithm to generate stencils. 

The algorithm will be of maximal use if it places no special requirements on the structure 

of the mesh in terms of refinement ratios or the nesting of levels. For exceedingly large 

refinement ratios (or, correspondingly, very poorly nested levels), the above spline-based 
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method will generally fail because of inhomogeneity in stencil spacing, regardless of the 

algorithm used to generate the stencil. The test of a "good" algorithm is then the degree 

of disparity in resolution which it can accommodate before breaking down. What will now 

be described is a particularly robust algorithm for selecting stencils. 

· The basic tools this algorithm uses are generalized versions of the shift operators 

defined in §3.1. These will be denoted Gd, where d is one of the coordinate directions, 

d E D = { x, y, z, -x, -y, -z} . They are generalizations of the shift operators in that 

Gd{C)=Sd(C) wherever Sd(C) ':/: 0, but they always map cells to cells, so Gd: M--+M. 

For a given cell and direction, Gd(C) is defined as being the finest cell which abuts Con its 

dth_face and satisfies Lev{G 0 {C)) ::::; Lev( C), i.e. that is no finer that C. This definition 

can be written explicitly as 

That such a cell must exist and be unique follow immediately from the definition since 

These operators can be envisioned as a means of flowing from cell to cell and from fine cells 

to coarser cells where necessary {but never from coarse to fine); a pictorial representation 

is given in Fig-4.25. Because of the bias from coarse to fine, it is possiqJe for 

Figure 4.25: The Generalized Shift Operator 

The algorithm to construct the stencil uses these generalized shift operators to 

collect the stencil cells. For each n E D, it chooses coordinate directions o1 {n), o2{n) E D 
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such that {n, 01, 02} form a basis, as also shown in Fig-4.25. The projections of the vector 

X(G0 (C))- X(C) onto 01 and 02 are denoted as x1 and x2, and the stencil is defined as 

consisting of all cells listed in the appropriate case below for each choice of n - the sketches 

at the right depict the cells that will be selected in the event that they come from a single 

level. 

• H X!= X2 = 0: 

Gn(C):: N 

Go1 (N) 

G 02 (N) 

Gn(N) 

G-o1 (N) 

G-o:.~(N) 

• H x1 > 0, x2 = 0: (Same list if x1 = 0, x2 > 0, with o 1 and o 2 interchanged.) 

Gn(C) = N 

G 02 (N) 

G 01 (N):: N2 
• 

Go:a(N2) 

• H X! > o, X2 > 0: 

Gn(C) ::N 

Go1 (N) ::N2 

G 02 (N) ::N3 

G02 (N2) ::N4 

Gn(N) 

G_02 (N) 

Gn(N2) 

G_02 (N2) 

Gn(N) 

Gn(N2) 

Gn(N3) 

Gn(N4) 

• H x1 < 0 (respectively x2 < 0) the corresponding case above for x1 > 0 applies with 

o1 replaced by -01. 
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After these cells have been collected, any cell in the stencil that also has a descen

dent in the stencil is removed. These situations can occur because of eventualities such as 

Gd2 o Gd1 {C) = Child o Gd1 o Gd2 {C). 

On a fully adaptive .mesh, this algorithm produces a wide variety of stencils, espe

cially if the mesh is less than 2-nested. The prototypical stencil for a fine cell on the face 

of an expanse of fine cells is shown in Fig-4.26. The cubes mark the cell centers, with the 

larger cubes on the bottom corresponding to the coarse cells in the stencil. Other typical 

stencils for cells near a corner of a block of fine cells are shown in Fig-4.27 and Fig-4.28. 

All of these stencils are taken from a mesh with a refinement ratio of three. 

Figure 4.26: Face Type Stencil 
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Figure 4.27: Corner Type Stencil 

Figure 4.28: Stencil for Cell Adjacent to Corner 
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4.7 Results 

Under this algorithm the method can now be tried on the two test problems 

introduced in §4.1 where the mesh is refined in either a band or a patch. For the first 

problem, the scheme performs admirably, giving a well defined reduction in error along the 

zero level surface. For the collapse of a unit sphere under curvature, with a single band 

of refinement, the (log) errors from a central slice are plotted in the sequence Fig-4.29 to 

Fig-4.31. These are taken at the early time of t = 0.1 the intermediate time of t = 0.3 

and at the time of collapse (for the zero level surface) of t=0.5. Fig-4.32 gives a cutaway 

version of the error at t = 0.3 to better depict the error within the band. Throughout the 

computation, refinement provides a clear benefit in the band, with errors well below that 

of the coarse grid. In fact, the error is virtually identical to the corresponding uniform fine 

grid computation. This is illustrated in Fig-4.33 where the increase in error over the full 

method is plotted at t = 0.3. 

'• 

'"'"f'''""''ii''!!":ii!!!'i'''"'''""""' 

:: 

0 
X 

z 

Figure 4.29: Error under Banded Refinement at t = 0.1 

The test of greater concern is the one for which the refinement is restricted to a 

patch on the zero level surface, and that test was originally introduced in anticipation of 
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z 

Figure 4.30: Error under Banded Refinement at t = 0.3 

z 

Figure 4.31: Error under Banded Refinement at t=0.5 



1 

1 

61 1 

1 

1 

······;······ .. ········· 1 
··:·"'""''""" ····· .. ~····· .......... . 

. ~...... .. " .. . .. .. .. .. .. . .. .. .. . . .. . .. .. . .. . .. .. .. .. . 

1 

10-4 

X 

z 

Figure 4.32: Cut-Away of Error under Banded Refinement 
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Figure 4.33: Comparison of Banded Refinement to Full Method 
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its usefulness in testing the parabolic scheme under refinement across the surface. For the 

adaptive method presented above, the behavior is again ideal. Figures Fig-4.34 to Fig-

4.37 are the companion plots of Fig-4.29 to Fig-4.33 for this test. Here, the method can 

have no hope of maintaining a small error within the patch, since the diffusive nature of 

the evolution equation along the level surfaces will inevitable result in the encroachment of 

the error from the coarse cells into the fine. This increase of the error within the patch is 

illustrated by Fig-4.36. The important condition being tested is that the solution is not 

made worse, through the addition of the fine patch, than the uniform coarse grid solution. 
'-

This method solidly meets that condition, as can be seen in the series of figures, with the 

error smoothly transitioning to the coarse grid level. 

g -4 
!:!;!.10 
C) 

.9 

z 
X 

-~········. 

Figure 4.34: Error under Patched Refinement at t=O.l 

A more stringent test can be provided by allowing the patch to be originally 

generated as above"but then keeping it fixed throughout a lengthy computation. As the 

level surfaces continuously propagate through the patch, the error should be carried from 

the coarse cells into the fine patch and eventually become uniform. Should any oscillations 

develop as a result of the method used on the periphery of the patch, they will be reinforced 

by the fixed nature of the mesh and quickly become obvious. 
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Figure 4.37: Comparison of Patched Refinement to Full Method 

For a refinement ratio of three, Fig-4.38 shows the error in and around the patch 

at t = 0.003, 0.01, 0.03, 0.1, 0.3, and 1.0. The desired smooth transition is again seen in 

this case. 

By conducting the same test with higher refinement ratios, it is possible to measure 

how well a given scheme can handle inhomogeneity in the mesh (including poor nesting). 

For the stencil generation algorithm of the previous section and the weighting of the least 

squares problem by inverse distance, the method is proven to be particularly robust. It 

works very well with refinement ratios as large as five, as is illustrated in the error plot, in 

Fig-4.39, from the steady-state time of t = 1.0. The transition point at which the behavior 

begins to deteriorate is around a refinement ratio of six. Two error plots for this refinement 

ratio are shown in Flg-4.40. At t = 0.03 oscillations begin to appear along the edges of the 

patch. By t = 0.1 the error has grown within the patch and begun to corrupt the surrounding 

coarse solution. 

That the method can perform well at this level of discontinuity is quite remark

able. The other stencil selection and weighting algorithms that have been tested all perform 

considerably more poorly, although the reason for the discrepancy is not currently well un-
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Figure 4.38: Accumulation of Error in a Fixed Patch 
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Figure 4.39: Long-Term Stability in a Fixed Patch with rr = 5 

derstood. An argument for the optimal weighting method could possibly be derived directly 

from the least squares problem. Providing a similar argument for the stencil generation al

gorithm is probably a much more involved task. The existing implementation can easily 

accommodate any stencil generation algorithm that is based on the generalized shift oper

ator. 

4.8 Adaptive Time Stepping 

The final concern, which has been intentionally disregarded up to this point, is the 

behavior of the method under the inclusion of adaptive time stepping on the levels., This 

inclusion does not generally cause a problem, with errors typically being decreased through 

its use. In, however, the combined presence of a parabolic (curvature) term and large jumps 

in refinement {because rr is large or because the levels are poorly nested), a difficulty is 

encountered. If the jump in refinement is given by rr, there will be a corresponding jump 

. in time step on the order of rr2• For sufficiently large jumps in time step, the spline based 

method will again begin to exhibit oscillatory behavior along the periphery, and these 



10-4 

-5 
10 

-7 
10 

·.·· .. ~: \W:\ nnnFVHH\ \~\n\\\\\\? ~P~. .. .. 

......... · ..... 

0.5 1 

···········.•· .... 

········-:·· .... 

.:\\\\\\ ~ \\E \\ \' \ \\~\\\\\X\\\ 
~ . . . . .. . . . ........ 

······.'········ 
0 

. ..... :. 
0.5 

1 
1.5 

······:-···· 

····,'······ .. :··········· 

. ..... ~·· ....... . 

1.5 

z 

67 

-1 

-0.5 

X. 

-1 

-0.5 

0 

0.5 

X. 
1 

Figure 4.40o Transition to Instability in a Fixed Patch with rr = 6 
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oscillations appear regardless of the order of temporal interpolation used. Empirically, the 

critical ratio in time steps has been found to be near twenty. 

Thus, with a refinement ratio of four, the inclusion of adaptive time stepping (with 

jumps around sixteen) does not interfere with the performance on the long-term fixed patch 

test, as shown in the error plot in Fig-4.41. But with an increased refinement ratio of five 

(and time step ratios of twenty-five), the method breaks down. 

z 

Figure 4.41: Long-Term Stability with Adaptive Time Stepping and rr = 4 

Since the time step limitation occurs (just) before the spatial one, it needs to be 

dealt with. The simplest fix is to explicitly restrict the jump in time steps across levels to 

be less than some critical ratio, ~ti-1 ~ Uc ~ti. This is the route taken in the current 

implementation. 
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Chapter 5 

Implementation 

The foregoing has presented a method for solving the level set equation on an 

adaptive mesh, but avoided the issue of implementation. There remain serious concerns over 

the efficiency of the method as a computational tool, primarily regarding the construction 

of the splines of the previous chapter. This chapter addresses the underlying least squares 

problems and provides means for combatting their costs. 

5.1 Computing the Least Squares Solution 

First, a numerical method must be selected for the solution of the weighted least 

squares problem given by Eq-4.6. A good choice for this purpose {and for the cost-saving 

devices that will follow) is the direct solution of the normal equations, which, so long as A 

has full rank, give the unique minimizer of: 

llw{Ap- r,o)l12 = ll{wA)p- {wr,o)ll2 

As 

{5.1) 

Given that wA has full rank {the case when it does not will be addressed momentarily), 

(wA)T(wA) will be symmetric and positive definite and therefore can be factored into a 

Cholesky decomposition, and the system solved for p through forward and backward sub

stitutions. The normal equations are a good means of solving the least squares problem so 

long as AT A is not ill-conditioned {see [18]). For the stencils created as in §4.6, the empir

ical evidence indicates that the system weighted by inverse distance has a well conditioned 
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(wA)T(wA), with condition numbers on the order ofunity, even though AT A is often much 

more poorly conditioned. 

The Cholesky factorization will detect degenerate systems for which A does not 

have full rank, and for which there is not a unique solution to the least squares problem. In 

practice, this happens very infrequently. Under the stencil generation algorithm of §4.6, the 

only degenerate stencil that has been observed is at the corner cell of a 1-nested level, as 

depicted in the two-dimensional illustration of Fig-5.1. No degeneracies occur in a 2-nested 

meshes. Without a general guarantee against degeneracies, however, a means of handling 

them must be incorporated. There are two convenient ways of doing so: the stencil can be 

expanded to include more cells, or the order of the spline can be reduced. The latter option 

has been taken here under the assumptions that: (i) it is the extreme sparsity of the local 

mesh that is causing the degeneracy and (ii) this sparseness also indicates a decreased need 

for accuracy in the region (see further §5.4) . 

• • 
• • • :e • • • • • • 

Figure 5.1: A Degenerate Stencil 

The essential concern is that of cost. Generating a stencil and constructing the 

spline as described above for every peripheral cell at every time step would be inordinately 

expensive. The method would remain O(n2
), but the constant "in front" would be so huge 

as to render it useless for anything but the simplest problems. The task at hand is then to 

reduce this cost, with a clear necessity becoming the retention of information across time 

steps. 
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5.2 The Pseudo-Inverse 

First of all, the stencils only change when the mesh is changed, so they can be 

retained throughout the intervals in which the mesh is fixed. In fact, the stencil for a 

given cell only needs to be replaced when the cells it references are affected by a change to 

the mesh (which will typically only effect a very small fraction of all cells). Applying this 

observation all but eliminates the costs associated with generating the stencils. 

A similar reduction can be made in the cost of constructing the splines by first 

rewriting Eq-5.1 as 

p = (wA TwA)-1wATwlp =Sip, 

and calling S = (wA TwA)-1wA Tw the pseudo-inverse for the weighted least squares 

problem. Then since S remains fixed for a given stencil, it can be pre-computed when 

the stencil is generated and used to produce splines from 1p vectors via the matrix-vector 

multiply throughout the stencil's existence. 

In fact, since only the first and second order terms of the polynomial spline are 

used (in the production of the first and second derivatives of It'), the entire matrix-vector 

need not be carried out. The nine rows of p corresponding to the third order polynomial 

terms (in three dimensions) can be disregarded and only the three first order and six second 

order rows computed. The cost of evaluating the derivative at a splined cell is thus 9k 

multiplications and 9k additions where k is the number of cells in its stencil. With a typical 

stencil size being thirty cells, this is still an expensive operation, coming in at about ten 

times the cost of the standard central difference corollary on a uniform mesh. In §5.4 the 

topic of this expense will be revisited, but there is a more pressing issue to be addressed 

first. 

Since a large number of peripheral cells can be expected, it would still be compu

tationally expensive, and probably unviable in terms of memory consumption, to compute 

and store an individual pseudo-inverse operator, S, for each such cell. Many of these cells, 

however, will have similar stencils and be able share to pseudo-inverse operators. The next 

section describes how the similarity between stencils can be recognized and exploited to 

that end. 
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5.3 Eliminating Symmetries 

Many cells will, in fact, share identical stencils, in the sense that their coordinate 

matrices, the A's of Eq-4.6, will be identical, at least up to a permutation. The possibility 

of the permutation can be eliminated if the cells of the stencils are sorted by an ordering on 

their relative positions, the (xi, Yi, Zi)'s, before the matrices are constructed. Then, instead 

of building the pseudo-inverse for each peripheral cell, one can be built for each A and kept 

in a look-up table for each identical stencil to reference. 

But it is also true that many cells on differing levels will have stencils that vary 

only by scale, and that still more cells will have stencils that differ orily in orientation; see 

Fig-5.2. The plethora of stencil types (and hence operators) can be be greatly reduced if 

these symmetries are first eliminated. 

• • 
• • • 
• • • . , . • • • • • • • 
~ • • • 

• • • • • 

Figure 5.2: Similar Stencils 

The scaling symmetry can be dispensed of handily by incorporating the dimensions 

of a cell, (Llx, Lly, Llz), as length scales for its spline. This is accomplished by creating a 

diagonal scaling matrix, H, and rewriting the polynomial evaluation, Ap, as (AH-1 ) (Hp); 
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H is chosen so that Eq-4.6 becomes: 

~ ..1lL .!!... :l:tlllZl (~x)b1 D..cpl a:c ay az a:cayaz 
.£2.. .JJ1... :rz :1:2~2%2 (D..y)b2 D..cp2 a:c ay 5:~: y5z 

= 

.&... h ~ Xn.U:n.Zn (D..x~yD..z)d123 D..cpn a:c ay az a:cayaz 
~ 

AH- 1 Hp '{) 

The rescaled coordinate matrices {the AH-11s) will then be invariant of the level for which 

they are created. Cells from differing levels can thus share pseudo-inverse operators and 

divide out the appropriate length scales when the spline is formally differentiated. {Some

thing very similar occurs with standard finite difference formulations; it is just restated here 

in the context of this more elaborate machinery). 

Eliminating the dependence of the spline construction on the orientation of the 

stencil proves to be more difficult. Orientation, here, refers to an underlying symmetry group 

of reflections and discrete rotations. The elements of this group are linear transformations, 

which will eventually be incorporated into Eq-4.6 in a style similar to that of the scaling 

transformations before them; first, an explicit description of the group is needed. Each 

element of the group corresponds to an orthonormal transformation Q, on IR 3 , which maps 

the coordinate axes onto themselves. The set of such transformations form a group of 

order forty-eight called the group of symmetries of the cube. The elements of G can be 

denoted as Q(dt,d~,da) where each diE {x,y,z,-x,-y,-z}, and {dt,d2,da} is a basis. 

Then Q(dt,d~,da) is defined as being the linear operator which maps X: t--t dt, y t--t d2, and 

z t--t da. Thus, the columns of Q(dt,d~,da) are the d's: % = {dj)i. 

The various elements of G and the subgroups which they generate can also be 

given a geometrical interpretation as rotations and reflections. For example, rotation {by 

~) about the z-axis is given by Q(:y,-i,z) and it generates a subgroup of four elements. 

The geometrical properties of the group make it the proper vehicle for the elimination of 

the orientational variations of stencils such as the one illustrated in Fig-5.2. One set of 

generators of G and which will be used in the context of identifying stencils is: 

the first four elements being reflection about the planes x = 0, y = 0, z = 0, and x = y 

(each of which generate a subgroup of two elements), and the last being a 2
; rotation about 
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the diagonal x = y = z (it generating a subgroup of three elements). In fact, any element 

of G can be written as 

Q - R{3M 04M 03M 02M Ot - xy z y x' {5.2) 

with ai E {0, 1} and (3 E {0, 1, 2}. 

The next step is to define the appropriate action of G on the set of all stencils. Up 

to this point, stencils have been described as sets of cells, S', but they can equally well be 

considered as sets of vectors: 

S = {X(C')- X{ C): C' E S'}, 

which (together with a corresponding lists of cp values) contain all of the information needed 

to construct the splines. Moreover, by taking QS to be the image of Sunder Q, the desired 

action of G is established. Two stencils S and S are then said to be similar if they lie in 

the same equivalence class among those given by the orbits of G: 

s rv s ¢:> s = QS for some Q E G . 

A family of transforms Qs will be called canonical transforms if 

That is, any two similar stencils must map into identical orientations {called the canonical 

orientation of their orbit) under the application of their respective canonical transforms. 

The goal is now to find an algorithm for the generation of canonical. transforms. 

That the vectors composing S are not arbitrary and have as their origin a stencil 

of cells provides a very nice shortcut for constructing a canonical transform. In particular, 

S' must contain a cell 6 which is froni a coarser level than C's -say level Li-k where 

C E Li and k > 0. Then the relative position of 6: 

X = X{ C)- X( C) 

can be written as 

where the mi's are integers and vis the offset of C from its ancestor on Li-k: 

{5.3) 
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The canonical transform is nearly determined by v since this vector will have to be rotated 

into a canonical orientation in order for x (and the vectors to all cells from Li-k) to be. 

(Such an argument cannot be applied directly to the elements in the vector representation 

of S as applying QS generally just permutes that set- the offset v, however, perseveres 

as Qv.) 

The following procedure constructs a canonical transformation for (a set contain

ing) a single vector v. The transformation is built up in the style of Eq-5.2. 

1. ai,/3 = 0 

2. If V} < 0: v=Mxv, a 1 = 1 

3. If V2 < 0: v=Myv, a2 = 1 

4. If V3 < 0: v = Mzv, a 3 = 1 

5. While v3 < max( v1, v2): 

v=Rv, /3=/3+1 

6. If v2 < v1: v = Mxy v, a4 = 1, 

7. Return (Qv = Mxya4 R.6Mza3 Mya2 Mxa1 ) 

Following this procedure, v ~--+ ( Qv )v = v has the effect of mapping all vectors 

into the volume: 

0 = {(x,y,z)E R3
: x~O, y~O, z~O, z~y~x}. 

Its effect on the unit cube (centered about the origin) is shown in Fig-5.3. It should be noted 

that the vectors on the faces of n map to themselves under some non-trivial subgroup of G; 

those on the interior are fixed only under I. (This subgroup, Hv = {Q E G: Qvv = v}, is 

called the subgroup fixing v, and Hv = (I) ¢? v E 0\80 . ) In other words, the canonical 

transformation is fully determined for a given vector if (and only if) it maps the vector to 

the interior of n. 
Applying this procedure to the parental offset vector v, as given by Eq-5.3 with 

k = 1 (making the almost always true assumption that S n Li-l # 0), significant progress 

toward finding a canonical transform for S can be made. In fact, it can be fully determined 
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Figure 5.3: Canonical Vector Positions 

by Qv if v is in the interior of n, since its full determination by a single vector forces 

its determination for the entire stencil. In the event that this vector is mapped onto the 

boundary of n the contribution to Qs from the subgroup Hv will have to be determined by 

further investigation of S. In either case, the contribution Qv established by the offset to 

the parent can be precomputed and kept in a brief look up table (of size rr3 ) since it only 

depends on which child of its parent the given cell is. 

For the case in which v lies on a face of n, the undetermined symmetry subgroup 

Hv can be kept in a corresponding look up table. (The generators of Hv can be established 

in terms of the faces on which v lies.) It is significantly advantageous to eliminate the 

remaining symmetry, since the number of operators that have to be computed and stored 

increases proportionally with the size of the unresolved group. For example, with rr = 2, 

the v for every child cell lies on a diagonal, v = {±1, ±1, ±1), and Qv will only eliminate 

a symmetry subgroup of order eight (given by (Mx, My, Mz)) and leave undetermined the 

contribution to Qs from the subgroup Hv (of order six) given by (Mxy, R). So, for rr = 2, 

if Qv is not augmented by a transform from Hv, the number of operators will increase by 

a factor of six. 

Local information about C (such as v, above) is necessarily invariant under the 

remaining subgroup, so the global effects on S must be looked at instead. To be useful, 

these effects must also be discerned relatively quickly. One measure on S that is both easy 

to compute and quite good at distinguishing the stencils generated by the method of §4.6 
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is the count of the number of cells from Li-k n S that lie in a given half-space, such as: 

n:z:+(S) = I{C E Li-k n S: Xt(C)- Xt(C) > O}l. 

Using these counts, it is possible to construct an algorithm similar to the one for Qv above 

which (usually) finds the contributor to the canonical transform remaining in Hv: 

Qs,H = Qsten ( S, H) : 

1. O:i,/3 = 0 

2. HMx E H: 

H n:z:+(S) < n:z:-(S): S == MxS, O:t = 1 

3. HMy EH: 

H ny+(S) < ny-(S): S=MyS, <l'2 = 1 

4. HMz EH: 

H nz+(S) < nz-(S): S = MzS, 0:3 = 1 

5. HREH: 

While nz+(S) < max(ny+(S), ny+(S)): 

S=RS, {3={3+1 

6. HMyz E H: 

H nz+S > ny+S: S = MyzS, 0:4 = 1 

7. HMxy E H: 

H ny+(S) < n:z:+(S): S = MxyS, a:5 = 1 

8. Return (Qs,H = Mxy05 Myz04 R.8Mz03 My02 Mx01
) 

The real algorithm does a little more work in the case of equality on the various 

tests, but the above gives the basic idea. The canonical transform forB is then taken to be: 

Qs = Qs,Hv Qv, 

which now needs to be applied in Eq-4.6. 

Much as for the scaling symmetry, the polynomial evaluation Ap will be re-written 

as as (A(F) (Qp), where Q is built from Qs. Now Qs applies to the coordinates of the 

stencil, the (xi, Yi, Zi)'s, and from the definition of the symmetry group it can be written 
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as Q = PD where P is a permutation and D is diagonal with dii E {1, -1}. In terms of 

its application to A and p, it follows that (AQT) and (Qp) will be corresponding column 

and row permutations (and negations) given by ( A:P-1 D - 1 ) and (PDp) for an appropriate 

choice of P and D. The "transformed spline," p' = Qp, can then be computed via the 

pseudo-inverse of (AQT), and from there it is easy to reconstruct the desired spline via 

p = j)-lp-lp'. 

The entire transformation scheme for the stencil and spline construction can now 

be summarized as: 

(PAH-1QT) (QHp) = (Ptp) . (5.4) 
'---~--~~ ~ 

A' p' 'P' 

The reordering of tp by P is accomplished by a sort on the list of cells in the stencil, and 

this is take care of once and for all when the stencil is first built. Also, when the stencil 

is built, the pseudo-inverse of A' is looked up in (and perhaps created for) a hash table of 

operators for the canonical stencils . To compute the spline p, the transform spline p' is 

first computed by the partial matrix-vector multiply described in §5.2 and then scaled and 

permuted into p. The only significant cost then becomes the matrix-vector multiply. 

5.4 Focusing Effort 

The cost has been successfully reduced to that of the matrix-vector multiply, but 

it is still high. It would also seem to be an integrable part of the method and therefore un

avoidable, but. that is not entirely true. For specific applications, it is possible to selectively 

choose where the accuracy of the spline construction of Eq-4.6 and Eq-5.4 is truly needed. 

For the level set method, the evidence from Chapter 4 would seem to indicate that 

the use of the method is only essential when a transition in refinement lies along a level 

surface. The critical region is that in which the zero level surface passes from one level of 

refinement into another. The theory of §1.3 adds weight to this claim, in that inaccuracy 

away from the level surface should not affect its motion. The goal here is to find a reduced 

set of cells that require the full splined treatment. 

It becomes a straight forward operation to determine which peripheral cells need 

the added attention if the refinement criterion for cells are broken into two categories: those 

which apply because of the proximity to the zero level surface and those which apply because 

of any other factor (e.g. because of locally high curvature). Then any cell which finds itself 
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to be on the periphery because of a change in a criterion in the latter category should be 

treated with the full machinery ofEq-4.6. For a refinement strategy in which the levels are, 

generally, bands about the zero level surface, with some transitions in the level of banding 

along the surface, the number of such cells will be 0( n ). Therefore, a great savings will be 

realized if the full spline construction only has to be applied in these cells. 

And, indeed, this turns out to be the case -for the level set equation, the evidence 

here will indicate that even interpolation can be used along the peripheral bands about the 

surface (even though all the evidence indicates that interpolation is a very bad idea for the 

heat equation). Returning to the problem of §4.7 in which the patch of refinement was 

restricted to be within a cone about the z-axis, the cells selected for the special treatment 

will be all those lying along the surface of the cone. The spline-based method is then used 

for these cells, while the peripheral cells on the two faces parallel to the level surfaces of c.p 

are updated by linear interpolation from the coarse cells. 
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Figure 5.4: Error under Patched Refinement and Mixed Methods 

The resultant scheme is successful in that it maintains an error comparable to that 

of the fully splined method along the zero level surface. The error is plotted at t = 0.3 in 

Fig-5.4, and the increase in error due to the partial reliance on interpolation is shown in 
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Fig-5.5. The error is seen to suffer away from the zero level surface, but the solution is 

not degraded on the zero level surface. In fact, for this particular problem, it is somewhat 

improved along the center of the patch, the grey portions of the plot in Fig-5.5 indicating 

a decrease in error. 

With the success of this simplification, a very efficient and accurate method is 

provided for tracking surface evolutions. The restriction of the spline-based construction 

to a limited subset of the peripheral cells eliminates the associated cost in the asymptotic 

scaling {or more explicitly, for n » 10). The method therefore scales just as does the uniform 

method in terms of the cost per number of data points, with a slight (machine dependent) 

overhead incurred because of the indirect referencing required by the data structure. 

The use of interpolation away from the zero level set also has a secondary effect 

on the cost. Because the accuracy is degraded near the edges of the band of refinement (as 
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in Fig-5.5), the minimal width of these bands is somewhat increased over the one required 

when splines are used everywhere. The cost will increase proportionally with the number 

of cells that have to be added. The net effect, however, is still a considerable savings over 

the cost of employing the spline based method everywhere on the periphery. 

The next chapter briefly discusses an entirely different approach for updating the 

peripheral cells. This approach offers a substantially reduced cost from that of the spline

based method, while still maintaining the accuracy- for the two-dimensional model prob

lem, at least. It is not yet clear whether or not this second method can be successfully 

generalized to higher dimensions. For the level set equation, the possible savings from the 

second technique are minimal, since the observations in this section have shown that the 

cost of splining can largely be avoided. For parabolic problems in general, however, the 

savings can be substantiaL 
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Chapter 6 

A Second Technique 

Altas and Stephenson mention a technique in [3] which can be adapted here. It 

is restricted in its application, however, because of the involvement of a trick that only 

applies to refinement ratios of two and only to a different style of refining the mesh than 

the one discussed in Chapter 3. Before introducing the technique, it is therefore necessary 

to outline this other style of refinement. 

6.1 Point-Centered Adaptive Meshes 

The style of mesh described in Chapter 3 is called a cell-centered mesh, since 

values are stored at the centers of cells, and these cells are subdivided in the refinement. 

The alternative described here is based on "grid points" and hence called a point-centered 

mesh. Most of the terminology of Chapter 3 can be.carried over (with somewhat distorted 

definitions). In particular, the mesh will still be described by a refinement ratio, rr, which 

in the context of this technique will be restricted to rr = 2. 

The fundamental object will become a point, P, instead of a cell; X(P) will now 

give its position, and (llxp,Dayp,D.zp) will become something called the "grid spacing"._ 

The main difference is that the points will have 3n children (for rr = 2 ), with the positions 

of the children of P given (in three dimensions) by 

( 
llxp llyp llzp ) 

X(P) + m1-
2
-, m2-

2
-, m3-

2
- miE{-1,0,1}. 

'~ 

An example of such a mesh in two dimensions appears in Fig-6.1 and should serve to 

clarify the way in which the definition of the mesh has been altered. 'rhe circles indicate 
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Figure 6.1: A Point-Centered Mesh 

the "grid points" and the lines connecting them, the "grid;" the points with children have 

been indicated by filled circles. In a point-centered mesh, every parent is coincident with 

one of its children (as is the case for cell-centered meshes with odd refinement ratios -

in fact cell-centered and point-centered meshes with odd refinement ratios are identical). 

For even refinement ratios, there can be coincident points on the same level which must be 

identified together as a single point. As a result, some points of the mesh can have multiple 

parents, or put otherwise, points can share children. 

The fact that was noted about the peripheral points in [3] is that they are all 

surrounded by four uniformly spaced points. For "edge" children, these points lie along 

the coordinate axes; for "corner" children, they are rotated by 'i. The standard central 

difference formulas can therefore be used for the first and second derivatives along the x' 

andy' axes and (if they are not combined into a rotationally invariant form as is often the 

case) these can then be formally rotated at the corner children. 

6.2 The-Two Dimensional Model Problem (Revisited) 

Applying this style of adaptive mesh to the model problem of §4.4 yields a mesh like 

the one depicted in Fig-6.3. For the heat equation, the rotated central differences discussed 

in the last section can be applied directly since the Laplacian is rotationally invariant and 

does not involve the mixed derivative Uxy • Returning the problematic test case of §4.4 
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with k 1 = 1 and k 2 = 2, the method is seen to perform well, as is illustrated by the error 

graph in Fig-6.2 (being for a coarse mesh of30x30 points and t=0.001, just as for the first 

plot of Fig-4.24). Once again, the difficulty along the periphery has been eliminated in this 

case, and in general, the method performs well under various initial conditions for the heat 

equation. 
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················ 

y 

Figure 6.2: Heat Equation with k1 = 1, k2 = 2 , Revisited 

For the curvature evolution equation (Eq-1.5) the inclusion of the cross derivative 

presents a problem, since there does not exist a rotated frame for the peripheral cells which 

provides all of the points needed for the standard central difference approximations. The 

technique of [3] did not allow cross derivatives for this reason, but it can be extended in the 

following manner. Fig-6.3 shows two stencils (for the model problem) from which the cross 

derivative can be approximated by the centered but unproportionately distributed "corner" 

points. These points have been labeled a-d in the rotated stencil of Fig-6.3. The cross 

derivative for this stencil can therefore be approximated as 

( 'Pb - 'Pa) - ( 'Pd - 'Pc) 
4h2 

where h is the uniform coarse grid spacing, and cp is evaluated at the corners as labeled in 

the figure. 
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Figure 6.3: Stencils for the Model Problem 

The curvature evolution equation is also rotationally invariant, so the difference 

approximations can be substituted directly, and the resulting method again performs nicely. 

The errors for the ftows in various directions used in Fig-4.23 are re-plotted for this method 

in Fig-6.4. The results are again nearly identical to the spline based results, with a slight 

improvements on the order of w-7 as shown in Fig-6.5 for the case of(}= f· 
The success in this collection of test cases provides strong evidence that this 

method should work for the curvature dependent level set equation on arbitrary two

dimensional, point-centered adaptive meshes (with rr = 2). For three-dimensional meshes 

an additional difficulty arises which will be discussed in §6.4. But first, §6.3 addresses the 

issue of generalizing the method .to arbitrary refinement ratios and to cell-centered meshes. 
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Figure 6.5: Comparison to the Splined Technique for 8 = i 

6.3 Attempts at a Generalization 

The choice of a point-centered mesh in two dimensions, with rr = 2 and that is 

2-nested, allows the use of the special centered stencils shown in Fig-6.3. For a higher 

refinement ratio or for a cell-centered mesh, such stencils do not exist. There are, however, 

somewhat similar stencils in skewed coordinate systems for these meshes. 

Figure Fig-6.6 shows the relevant constructions for rr = 3 and for a cell-centered 

mesh with rr = 2. 

In each case, a skewed coordinate system (x',y') is formed for which the stencil 

points lie at lattice points. Some hope can be held, then, for a method that evaluates 

the derivatives with respect to this coordinate system and then transforms them to the to 

the derivatives with respect to the original {x, y) coordinates via the appropriate Jacobian. 

There is also a second difficulty in that the selection of centered stencil points as in §6.2 is 

impossible in this setting. Various uncentered choices could be made- some candidates 

have been indicated in the figure- and uncentered finite difference equations, in the style of 

Eq-4.2, applied at these stencil points. None of the resulting schemes, however, have been 

found to be successful. Their performance is generally comparable to that of the initial 

spline based method of §4.4. 
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6.4 The Three-Dimensional Problem 

There is also a difficulty in extending the method to a three-dimensional mesh, even 

in the point-centered, rr = 2 case. The problem is that for corner children, a stencil does not 

exist in a simply rotated orientation. Instead, a non-orthogonal (skewed) coordinate system 

as depicted in Fig-6.7 has to be used. Here the non-orthogonality of the z'-axis to the x'y' 

plane and the skewing of the x' and y' axes can easily be observed; symmetric relationships 

hold between all the axes. The situation is similar to the skewed coordinates used in §6.3, 

and a similar change of variables must to be applied to the computed derivatives. Centered 

stencil points can be chosen in this coordinate system, however, and that distinction offers 

reason to believe that the scheme might succeed where those of §6.3 failed. 

On the other hand, there is a worrisome asymmetry in the choice of the coordinates 

in Fig-6. 7. One of the diagonals of the cube has been singled out and the coarse data along 

that axis is not referenced. The asymmetrical favoring of a direction and the lack of a 

means by which to choose that direction are both reminiscent of the situation in §4.4 when 

a specified number of stencil points could not be chosen symmetrically. The difficulty 

that developed there raises significant concern over the three-dimensional method being 

suggested here. An implementation of the method is currently being developed in order 

resolve this issue. 
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Chapter 7 

Concluding Remarks 

This thesis has introduced a method for solving the three-dimensional level set 

equation on a fully adaptive mesh. In doing so it has addressed the difficult subsidiary 

problem of the numerical solution of second order parabolic partial differential equations 

on such a mesh. The difficulties were analyzed in Chapter 4 and resolved there with a new 

and very robust, though expensive, method. Chapter 6 extends another, less expensive, 

method to the solution of two-dimensional parabolic equations on a limited type of adaptive 

mesh. Should the generalization of that method to three dimensions as outlined in §6.4 

prove viable, it would lead to a more efficient algorithm for parabolic equations in three 

dimensions. Work in that direction is currently underway. 

At this juncture, the spline-based method has been shown to be highly accurate 

under weak conditions on the adaptive mesh. Moreover, its relatively high cost was shown 

(in §5.4) to be largely irrelevant in the context of the level set equation. The method that 

has be~n presented in this thesis therefore provides a very efficient means for the solution 

of that equation. A forthcoming paper [28] covers its application to a variety of surface 

evolution problems, and compares its speed and accuracy to both the full (uniform) level 

set discretization and the narrow band formulation. That paper also analyzes the role of 

refinement criteria in the applications (and their effects on speed and accuracy as well), 

which is a topic that has only been briefly touched on here. 

In addition, there remain a variety of loose ends and and open problems which 

could be fruitfully pursued. The method used for the hyperbolic term should be extended 

to a higher order method and its behavior on the adaptive mesh studied. The failure 

of the various parabolic schemes leaves a range of unresolved questions, and the several 
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heuristic arguments given in Chapter 4 could perhaps be made rigorous. Furthermore, such 

investigations could possibly lead to a proof of the accuracy of the spline-based method, 

which to this point can only be claimed through empirical observation. And finally, all of 

the methods presented would benefit greatly in a parallel or vector based implementation. 

What has been accomplished is the complete development of the first adaptive 

method for the numerical solution of the level set equation. The method has been shown 

to be both efficient and accurate over a range of test problems. The scope of these test 

problems is such that they give a strong indication that the method will be successful in 

general application. The further examples given in [28] add weight to this proposition, and 

hopefully, they will soon be supplemented through application to the modeling of a "real 

world," physical process. 

This work was motivated by the wealth of physical problems in which there is an 

evolving surface that exhibits a range of relevant length scales. With its completion, there 

comes an enormous opportunity to study these problems at a more appropriate level of 

resolution than has previously been possible. 
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