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Abstract 

Based on recent results in high energy physics, a natural flow for image scale space, 
enhancement, and segmentation is presented. We consider intensity images as surfaces 
in the (x, I) space. The image is thereby a 2D surface in 3D space for gray level images, 
and a 2D surface in 5D for color images. The new formulation unifies many classical 
schemes and algorithms via a simple scaling of the intensity contrast, and results in 
new and efficient schemes. Extensions to multi dimensional signals become natural 
and lead to powerful denoising and scale space algorithms. Here, we demonstrate the 
proposed framework by applying it to improve the Yanovitz-Bruckstein segmentation 
method and to denoise color images. 

1 Introduction: A philosophical point of view 

In the field of high energy physics, scientists try to link between many physical phenomena 
via a mathematical framework that is as simple as possible. In particular, gravity, which is 
the theory that describes the dynamics of the geometry of our world is difficult to reconcile 
with quantum mechanics and with other forces of nature. String theory, which is the theory of 
fluctuating membranes embedded in space-time, emerged in the last 15 years as a promising 
solution to this problem [22]. In a very similar manner, the importance of the dynamics of 
the image geometry in the perception and understanding of images is by now well established 
in computer vision. We will try to link between these two fields through a simple example 
where an action potential that was recently introduced in string theory is used to produce 
a natural scale space for images as surfaces in their embedding space. It will lead us to the 
construction of image enhancement procedures for gray and color images, and to cartoon like 
segmentation [31], and binarization algorithms. This model also links between many existing 
segmentation and scale space procedures by a change of a single parameter that switches 
between the definition of norms. 

We follow the presentation and philosophical approach of Alvarez and Morel [3], while 
we differ in the proposed mathematical framework. Alvarez and Morel define the computer 
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vision field as follows: "Computer vision is a branch of science that tries to answer the 
philosophical, psychological, physiological and technical question: How can the local brightness 
information arriving at the retina (or to any optical sensor) be transformed into a global 
percept of the obJ"ects, with their distance, color and shape?" Joint effort in computer vision 
and psychophysics research in the 60's and 70's [30], suggested that in the first milliseconds 
of the perception process, there exists a series of parallel, fast, and irreversible operations 
applied to the retina information and yield rich and useful information to further understand 
the "image". This is shown to be automated, reflex process, that does not depend on any 
learning, and is called low-level vision. 

Low level vision, in a deterministic way, is an input and output process. We will try, in 
what follows, to understand this process from a mathematical point of view without worrying 
about the way it is physically implemented in the retina and the brain. Input to the low 
level vision process is a map X : ~ -+ M where ~ is a one, two, or three dimensional 
manifold and X is the embedding of this manifold in a space which is a hybrid space of 
spatial coordinates and feature coordinates, the "space-feature". For example, the most 
common map is from a two dimensional surface to IR3 where we have at each point of the 
plane an intensity I(x, y ). The IR3 space-feature has Cartesian coordinates (x, y, I) where x 
and y are the spatial coordinates and I is the feature coordinate. Higher dimensions of the 
embedding space are encountered for example in color images. Three dimensional manifolds 
~ occur in movie analysis and in medical solid images. Output of the low level process in 
most models consists of 

• A smoothed image from which reliable features can be extracted by local, and therefore 
differential, operators. 

• A segmentation, that is, either a decomposition of the image domain into homogeneous 
regions with boundaries, or a set of boundary points- an "edge map". 

The algorithm supposes the existence of layers serving as operators such that the infor­
mation is processed locally in the layers and forward to the next layer with no interaction 
between distance layers. This means that the output has the form X(~, t) which is the 
solution of OtX = OX with 0 a local differential operator. This process is called scale space 
where t is the scale parameter. 

There are many definitions for scale space of images aiming to arrive at a coherent 
framework that unifies many requirements. One such requirement is that "only isophotes 
matter", or equivalently assume the importance of the morphological assumption of the scale 
space to be contrast invariant. We argue that this assumption, though leading to many 
interesting results, seem to fail in many other natural cases. Let us demonstrate it with a 
very simple example: Consider the intensity image of a dark object in a white background. 
At this point the boundary of the object is closely related to one of the isophotes of the 
gray level image. Consider the intensity image as a function, and add to this function a 
new smooth function (e.g. a tilted plane). This additional smooth function might be the 
result of non-uniform lighting conditions. It is obvious that in the new intensity image the 
isophotes play only a minor role in the understanding process. Actually, the moment we 
define edges to be related to the gradient of the intensity image in any sense, we break the 
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morphological assumption and link between the isophotes. To overcome the above problem, 
a linear assumption was added to the scale space as an optional requirement [3]. However, 
it imposes heavy constraints on the problem and interfered with the purity and integrity of 
the mathematical frameworks developed thus far. 

The importance of edges that are obtained from the intensity gradient is acknowledged, 
and gradient based edge detectors are a basic operation in many computer vision applications. 
Edge detectors appear by now in almost all image processing tools. The importance of 
edges in scale space construction is also obvious. We argue that boundaries between objects 
should survive as long as possible along the scale space, while homogeneous regions should 
be simplified and flattened in a more rapid way. On the other hand, we still want to preserve 
the geometry and mathematical integrity that result in some interesting non-linear 'scale 
spaces' as a result of the morphological assumption. Among these are the Euclidean and 
affine invariant flows [1, 2, 44]. Another important question, for which there are only partial 
answers, is how to treat multi valued images. A color image is a good example since we 
actually talk about 3 images (Red, Green, Blue) that are composed into one. Should one 
treat such images as multi valued functions as proposed in [15]? 

We attempt to answer some of the above questions by viewing images as embedding 
maps, that flow towards minimal surfaces. We go two dimensions higher than most of the 
classical schemes, and instead of dealing with isophotes as planar curves we deal with the 
whole image as a surface. For example, a gray level image is no longer considered as a 
function but as a two dimensional surface in three dimensional space. This idea is quite old 
[23] for gray level images, yet, to the best of our knowledge, it was never carried on to higher 
dimensions. As another example, we will consider a color image as a 2D surface now in 5D. 

We have chosen to present our ideas in the following order: Section 2 introduces basic 
concepts in differential Riemannian geometry, where the most important issue is the ar­
clength and the definition of a metric on a surface. Next, Section 3 presents the "action" 
that we borrowed from high energy physics and the way it produces a general framework for 
non-linear diffusion in computer vision. Then, in Section 4 we refer to other models that are 
the result of the same action through different choices of the metric, and we study the geo­
metrical properties of a generalized version of the mean curvature flow that is closely related 
to the proposed framework. In Section 5 we introduce the flow itself that we have chosen to 
name Beltrami flow, and present a geometric interpretation in the simplest 3D case. Next, 
Section 6 presents the resulting flow for color images and its relation to previous models. 
Finally we conclude with two examples: Section 7, uses the proposed framework to introduce 
a new binarization method for gray level images. Section 8 shows some experiments with 
color images with and without constraints. 

2 Differential Riemannian geometry preliminaries 

This section serves as a reminder of Riemannian differential geometry and used to fix the 
conventions and the terminology needed for our formulation. While we tried to make it 
accessible to as wide an audience as possible it will be presumptuous of us to present this 
section as a self contained tutorial. For this purpose we recommend the excellent books of 
Eisenhart [17], Guggenheimer [24], Dubrovin Fomenko and Novikov [16]. The last reference 
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as well as the book of Nakahara [33] are more oriented to physics. Nevertheless, we find the 
exposition of ideas in these books appealing, and we follow the logic and exposition of the 
chapter on Riemannian geometry in Nakahara's book in the rest of this section. 

2.1 The metric 

Figure 1: Length element of a surface curve ds, may be defined either as a function of a local 
metric defined on the surface ( 0"1, 0"2 , (9ij)), or as a function of the coordinates of the space 
in which the surface is embedded (x, y, 1). 

The basic concept of Riemannian differential geometry is distance. The natural question 
in this context is how do we measure distances? We will first take the important example 
X : :E --+ lR3

• We denote the local coordinates on the two dimensional manifold :E by ( 0"1 , 0"2
), 

these are the analog of the arc length for the one dimensional manifold, i.e. a curve, see Fig. 
1. The map X is explicitly given by (X1 (0"\0"2),X2 (0"\0"2 ),X3 (0"\0"2

)). Since the local 
coordinates O"i are curvilinear, and not orthogonal in general, the distance square between 
two close points on :E, p = ( O"\ 0"2

) and p + (dO"\ d0"2
) is not ds2 = dO"i + dO"i. In fact, the 

squared distance is given by a positive definite symmetric bilinear form 9ij ( 0"1
, 0"2

) called the 
metric 

(1) 

where we used Einstein summation convention in the second equality; identical indices that 
appear one up and one down are summed over. We will denote the inverse of the metric by 
gll- 11

, so that gll-11 911-y = 8~, where 8~ is the Kronecker delta. The metric defines naturally an 
inner product: (V, W) - 9ij ViWj where V and W are two vectors fields on :E. 
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2.2 Induced metric 

Let X : :E --+ M be an embedding of :E in M, where M is a Riemannian manifold with a 
metric (9ij )M. We can use the knowledge of the metric on M and the map X to construct 
the metric on :E. This procedure, which is denoted formally as (9J.Lvh = X*(9ii)M, is called 
the pullback for obvious reasons and is given explicitly as follow: 

(9J.Lvh:(o-\o-2) = (9ii)M(X(o-\o- 2 ))8/l.Xi8vXi, (2) 

where i,j = 1, ... , dirnM are being summed over, and in short we use 

a xi - a xi( o-\ o-2) 
J.1. = ao-11. . 

Example: The two sphere 5 2 embedded in IR?. 
The embedding is the usual one, with the local coordinates ( o-\ o-2) = ( e, 'lj;) and a map: 

X: (B,'I/;)--+ (sinBcos'lj;,sinBsin'lj;,cosB). (3) 

The metric of IR? in Cartesian coordinate system is the Kronecker delta bij· With the map 
X and the metric of IR? we can use the above formula to get the induced metric: 

ds 2 9J.Lvdo-ll.do-v 
biiall.xiavxj do-ll.do-1/ 
AdBdB + 2BdBd'lj; + Cd'lj;d'lj;, (4) 

where 

A= 1, B=O, (5) 

Let us calculate C for example: 

C (8,;;(sinBcos'l/;))2 + (8,;;(sinBsin'l/;))2 + (8,;;(cosB)) 2 

= (sin e sin '1/;) 2 + (- sin e cos '1/;) 2 + 0 
= sin2 e. (6) 

A and B are calculated in a similar manner. 
The second example which is often used in computer vision is the embedding of a surface 

described as a graph in IR?: 

X : ( o-1, o-2) --+ ( o-1, o-2 ,I( o-\ o-2) ). (7) 

Using Equation (2) we get 

( ) ( 
1 + t; Ixlv ) (8) 911.v = Ixlv 1 + 1; 

where we used the identification X = o-1 and Y = o-2 in the map X. 
Actually we can understand this result in an intuitive way: Eq. (2) means that the 

distance measured on the surface by the local coordinates is equal to the distance measured 
in the embedding coordinates, see Figure 1. Under the above identification, we can write 

ds 2 dx 2 + dy 2 + dl2 

dx 2 + dy 2 + (Ixdx + fydy )2 

(1 + I;)dx 2 + 2Ixlydxdy + (1 + 1;)dy2
• 
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2.3 Parallel transport 

In order the take derivatives of a vector field on a manifold we need to compare vectors at 
different points on the manifold. This is obvious from the heuristic formula 

avi l" vt .. , xi+ .Llxi, ... )- vt .. , xi, ... ) = liD . 
8xi ~x-+O LlxJ 

(9) 

We see that the first term in the numerator is defined at x + .Llxi while the second term is 

defined at x. In order to have a meaningful expression we have to transport Vi ( x) to x + .Llxi 

without change and compute the difference. Since there is no natural way, in general, to do 

that, we have to specify how we perform this procedure which is called parallel transport. 

Let Vlx+~x denote a vector Vlx parallel transported to x + Llx. We demand that the 

components Vi satisfy 
Vi(x+Llx )-Vi(x) ex Llx, 

(Vi+Wi) (x+Llx) = Vi(x+.Llx)+Wi(x+.Llx). 

These conditions are satisfied if we take 

(10) 

and the covariant derivative with respect to xi is defined as 

(11) 

Different choices of r~k correspond to different ways to parallel transport. 

2.4 Geodesics 

Another way to understand the connection coefficients qk is the following: Vector fields 

components are given at any point on the manifold in terms of the local frame. In general, 

frames at different point of the manifold are different. The connection describes how the 

frame is changed infinitesimally 011. the manifold. Denote the basis vectors of the local frame 

by eJJ., we can take for example the directions along the local coordinates eJJ. = a I a(jJJ.. Denote 

the covariant derivative by V, then the change of the frame when moved infinitesimally to 

one of the vector basis directions is 

Similarly, moving one vector in the direction of another vector is 

DvW VJJ.DeJW 11 ev) = VJJ.(eJJ.[W 11 ]ev + wvve~"ev) 
VJJ.(8W"~ j80"JJ. + w~~r~,Je"~. 
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Let now I: be an interval I = (a, b) and M some Riemannian manifold. The map 

C : I --+ M is a curve on M. Let W be a vector field along .the curve and V the tangent 

vector to the curve 

V = 1 = (d~:(t) )ei. (13) 

If W satisfies 

VvW = 0 for any s E (a, b), (14) 

then W is said to be parallel transported along C( s ). If the tangent vector itself is parallel 

transported along the curve C, that is, if 

VvV = 0, (15) 

then the curve C( s) is called a geodesic. In components, this equation reads 

d2 Xi . dXJ dXk 
ds2 + fjkdsds = O, (16) 

where xi are the coordinates of C(s). 

2.5 The Levi-Civita Connection 

The connection up to this point was arbitrary. We will now choose a special connection by 

adding a condition on the space of connections. Remember that the metric defines an inner 

product on the manifold. We demand that if two vectors X and Y are parallel transported 

along any curve on the manifold then the inner product between them remains constant 

under parallel transport. Let V be a tangent vector to some curve along which the vectors 

X and Y are parallel transported, then 

(17) 

where we used the fact that X and Y are parallel transported Vv X = Vv Y = 0. Since X, 

Y and V are arbitrary we must have 

(18) 

A connection that satisfies this condition is called metric compatible. At this point we will 

quote the result: 

Theorem 1 (The fundamental theorem of Riemannian geometry) On a Riemannian 

manifold ( M, g) there exist a unique symmetric connection which is compatible with the met­

ric g. This connection is called the Levi-Civita Connection and the components are given 

by the following expression 

(19) 
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3 Polyakov Action and Harmonic Maps 

In this section, we present a general framework for non-linear diffusion in computer vision. 

We will show that many of the known methods fall naturally into this framework and how 

to derive new ones. The equations will be derived by a minimization problem from an 

action functional. The functional in question depends on both the image manifold and the 

embedding space. Denote by (~,g) the image manifold and its metric and by (M, h) the 

space-feature manifold and its metric, then the map X : ~--+ M has the following weight 

(20) 

where m is the dimension of~' g is the determinant of the image metric, gi-Lv is the inverse 

of the image metric, the range of indices is J.l, v = 1, ... , dim~, and i,j = 1, ... , dimM, and 

hij is the metric of the embedding space. 

This functional, form = 2, was first proposed, to the best of our knowledge, by Polyakov 

[38] in the context of higli energy physics, and the theory is known as string theory. The 

proposal is to replace the usual picture of a point particle moving in space-time, a motion 

that describes a curve, by a fundamental string for which the motion in time describes an 

embedding of a surface in space-time. String theory is the most promising candidate to solve 

the problem of quantum gravity and the unification of all forces of nature. As we show, it 

plays a natural role in computer vision as well. 

Given the above functional, we have to choose the minimization. We may choose for 

example to minimize with respect to the embedding alone. In this case the metric 911-v is 

treated as a parameter of the theory and may be fixed by hand. Another choice is to vary 

only with respect to the feature coordinates of the embedding space, or we may choose to 

vary the image metric as well. We will see that these different choices yield different flows. 

Some :flows are recognized as existing methods like the heat flow, the Perona-Malik flow, or 

the mean-curvature flow. Other choices are new and will be described below in detail. 

To gain some intuition about this functional, let us take the example of a surface em­

bedded in IR? and treat both the metric (911-v) and the spatial coordinates of the embedding 

space as free parameters, and let us fix them to 

g = (~ ~) 2 y=rJ. (21) 

We also adopt in JR.? the Cartesian coordinates (i.e. hij = Dij ). Then, up to a non-important 

constant, we get 

(22) 
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If we now minimize with respect to I, we will get the usual heat operator acting on I. 

Using standard methods in variation calculus (see Appendix A), the Euler-Lagrange 

equations with respect to the embedding are: 

1 hiz 8S - 1 a ( rr: ,_wa xi) ri a xja xk j.LIJ -
- 2..fo 8Xz - ...;g J.L v gg v + jk J.L v g - 0. (23) 

Few remarks are in order. First notice that we used our freedom to multiply the Euler­

Lagrange equations by a strictly positive function. Since (9J.Lv) is positive definite, g = 
det(gJ.Lv) > 0 for all crJ.L. This factor is the simplest one that doesn't change the minimiza­

tion solution while giving a reparametrization invariant expression. \Ve will see below that 

the Perona-Malik flow, for example, corresponds to another choice of the pre-factor, namely 

1. The operator that is acting on Xi in the first term is the natural generalization of the 

Laplacian from flat spaces to manifolds and is called the second order differential parameter 

of Beltrami [27], or for short Beltrami operator, and we will denote it by !:l9 . When the em­

bedding is in an Euclidean space with Cartesian coordinate system the connection elements 

are zero. 

The Beltrami operator with a metric that corresponds to the plane with non Cartesian 

coordinate system was discussed in Florae et al. [21]. Our approach is a generalization in 

two ways, one is the choice of a metric with non-trivial Riemann tensor (or equivalently 

for surfaces, the Gaussian curvature is different from zero), the other is the possibility to 

deal with non-trivial embedding. We also have here a framework that can treat curves, 

surfaces, and higher dimensional image data embedded in gray, color and higher dimensional 

embedding spaces. 

The example of a curve is a good one because it will demonstrate the meaning of the 

Euler-Lagrange equations. Suppose that we have a curve C embedded in a two dimensional 

curved manifold- a surface M. The metric inC is g = 1 if we measure distances according 

to the arclength. The metric on M is hij and the Euler Lagrange equations are 

(24) 

We recognize this as the geodesic equation (16) which is the minimization solution to the 

length of a path between two points on the surface. 

For a surface :E, embedded in 3 dimensional Euclidean space, we get a minimal surface 

as the solution to the minimization problem. In order to see that and to connect to the 

usual representation of the minimal surface equation, we vary the action with respect to the 

metric 9J.Lv: 
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This is solved for the metric 

(25) 

On inspection, this equation is simply the induced metric on :E, see Eq. (4). For the case 

of a surface embedded in JR? with Cartesian coordinate system we calculated it explicitly in 

Section 2 (see Eq. (8)). Plugging this induced metric in the first Euler-Lagrange equation 

23 we get the steepest decent :flow 

(26) 

where H is the mean curvature, .iJ is the normal to the surface: 1 

(27) 

and g = 1 + t; + 1;. We see that this choice gives us the mean curvature :flow! This should 

not be a surprise, since if we check how this choice effects the action functional, we notice 

that, for this choice of metric 9J.Lzn we are left with 

which is the Euler functional that describes the area of the surface (also known in high 

energy physics as the _l'iambu action). 

In general for any manifold :E and M, the map X : :E -+ M that minimizes the action 

S with respect to the embedding is called a harmonic. map. The harmonic map is the 

natural generalization of the geodesic curve and the minimal surface to higher dimensional 

manifolds and for different embedding spaces. 

4 Choices that Lead to Known Methods 

We will survey in this section different choices for the dynamic and parametric degrees of 

freedom in the action functional. 

1In what follows, we denote by g the determinant of the metric, g = det(g), the metric itself will be 
denoted as (9ij ). Note also that some definitions of the mean/curvature include a factor of 2 that we omit 
in our definition. 
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4.1 Linear scale-space 

Recently, Florae et al. [20] invoked parameterization invariance in vision. The basic mo­

tivation in their work is to give a formulation of the linear scale-space, which is based on 

the linear heat flow, that lends itself to treatment in different coordinate systems. As an 

application, they present the explicit form of the flow for the log-polar coordinate system, 

which is of special interest due to indications that this is the coordinate system implemented 

in the brain. Florae et al. [20] also noted on the possibility to use a non flat metric, and 

raised the idea of using an image induced metric. 

In order to have parameterization invariance one has to write an invariant differential 

operator which is the Beltrami operator. The major difference then between our approach 

and the one given in [20] is the class of metrics allowed. Since a change in parameterization 

can not change the geometry of the problem, and since they are interested in a linear scale­

space, they only allow metrics for which the Riemann tensor vanishes, that is metrics of a 

flat space. 

Our point of view is that an image is a surface embedded in 1Rn (or a more general 

Riemannian manifold). From this perspective the natural metric to choose is the induced 

metric of the surface. This metric is never flat for a significant image. We discuss these flows 

below. Other choices of the metric, which are different from both the metric that correspond 

to a flat space and the induced metric are presented in the next subsection. 

4.2 Perona-Malik flow in n dimensions 

We fix, as in the linear case, the xy coordinates and vary the action with respect to I while 

the metric is arbitrary for the time being. Using the Euler-Lagrange equation without any 

pre-factor, we get the following flow 

We assume now that the image is ann dimensional manifold embedded in 1Rn+1
. The task at 

hand is to find the right choice of the metric to reproduce the Perona-Malik flow. We select 

(g11v) = ]Id, where Td is the identity matrix. The determinant is g = (])n, and consequently 

the flow is 

n 

It= 2: allj~- 1 o11 I. 
!1=1 

For any dimension different from two we can choose j~- 1 = C(I) to get 

It= div(C(J)\7I}, 
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which is the basic idea of Perona and Malik [36, 37]. If we further specify j~-l = C(I) = 

{~~?, where 10 is the original image, we arrive at 

It= div (f(lo) ~~ ~~) , 
which is the core (up to the IV' II normalization factor) of what is known in the literature as 

the geodesic active contours [6, 7, 45, 25]. Note that this works only for dimension different 

from two. Examples for higher dimensional manifolds in vision and image processing are 3D 

images and movies as 3 dimensional manifolds, 3D movie as 4D manifold etc. The Perona­

Malik flow in 2 dimension does not fit into this framework. We should note, though, that 

our flow is in some sense a natural generalization of the Perona-Malik idea since what we 

have actually, in the natural coordinate system were we identify (x, y) = ( o-\ o- 2), is 

The Perona-Malik flow corresponds to the choice f = 1, C1 = C4 = C and C2 = C3 = 0. 

Our approach gives the Ci's and the f a special form which has a well define geometrical 

meaning and it is derived from a minimization of an action functional. 

4.3 The mean curvature :How 

In this subsection we choose to minimize with respect to all the available variables in the 

action. We will also comment below on the different, and equivalent, definitions of the mean 

curvature. Some of them lend themselves towards natural generalizations. 

Going back to the action (20) and minimizing each one of the embedding coordinates Xi, 

and with respect to the metric 9J.Lv, we get the Euler Lagrange equations (see the derivation 

of these equations in Appendix A): 

~aJ.L(y/ggJ.Lv[)vXi) + r;kaJ.LXiavXkgJ.Lv 0, 

aJ.LXiavXi- ~9J.Lv(g'~'88-rXi8oXihij) = 0. (28) 

Solving th~ second equation for the metric we conclude that the minimizing metric is the 

induced metric 

(29) 

as one can check easily by substituting this solution back in the second equation of the 

Euler-Lagrange (28), and use the fact that 

g'~'8 9-r8 = 8~ = 2. 
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Substituting the induced metric in the minimizing equation for the embedding coordi­

nates and identifying (x,y) = (o-\o-2) we get the mean curvature flow 

(30) 

where H, N are given in Eq. (27). 

The geometrical meaning of this flow is evident. Each point of the surface moves in the 

direction of the normal with velocity proportional to the mean curvature. 

Before closing this subsection we briefly discuss the different formulations and equivalent 

definitions of the mean curvature. The standard definition is through the two principal 

curvatures k1 and k2 • Denote the mean curvature by H then 

(31) 

where ki are the principle curvatures. An equivalent way is to define the mean curvature as a 

trace of the second fundamental form. Although the 2 x 2 matrix of the second fundamental 

form depends on the coordinate system used, the trace is invariant under similarity transfor­

mation and describes a geometrical quantity- the mean curvature. The s~cond fundamental 

form is defined from both intrinsic information of the surface and from extrinsic information 

- the embedding. Of particular importance is the normal to the surface. Denote the second 

fundamental form by dJ.Lv, then 

3 

dJ.LI.I = (oJ.Loi.IX,N) = 'LNioJ.LonuXi. (32) 
i=l 

(33) 

The trace is given by 

(34) 

where 1-l and v are summed over. One only needs to check it in one coordinate system 

since this equation is invariant to general coordinate transformation of the surface. In our 

canonical coordinate system, for example, we obtain 

1 
-3 (gndn - 2g12d12 + gud22) 
g2 
1
1 ((1 + I~)Ixx- 2Ixlylxy + (1 + t;)Iyy) =H. 

g2 
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The generalization to higher dimensions is obvious and known for a long time for the 

special case of hypersurfaces, that is, embedding with codimension 1. Take an.n dimensional 

manifold, for example, and embed it in IRn+I. There is a unique normal to this hypersurface 

which is given by the formula 

(36) 

where Vi i = 1, 2, · · ·, n are the the basis vectors of the tangent space to the hypersurface, 

and Eii1 ···,in is the totally antisymmetric tensor. With the normal we can find explicitly the 

second fundamental form as an n x n matrix and find the trace. We are guaranteed to find 

(37) 

For images which are maps from ann dimensional manifold tom dimensional embedding 

space with m - n > 1 the above analysis fails. The normals to the image span an n - m 

normal space .and the second fundamental form is not well defined. The only way, that we 

can see, to generalize the mean curvature flow to these maps is to use the Beltrami operator. 

This operator is built from the metric only, and we don't need any extrinsic information to 

express it. It acts on the embedding coordinates and coincides with the mean curvature for 

hypersurfaces. We call this generalized flow the Beltrami flow and discuss its characteristics 

in the next section. 

5 The Beltrami flow 

We present in this section a new and natural flow. The image is regarded as an embedding 

map X : L:: -+ IR3
, where L:: is a two dimensional manifold, and the flow is natural in 

the sense that it minimizes the action functional with respect to I and (9ij ), while being 

reparametrization invariant. The coordinates X andY are parameters from this view point 

and are identified as above with a 1 and a 2 respectively. The result of the minimization is 

the Beltrami operator acting on I: 

(38) 

where the metric is the induced one given in Eq. 2, and i is the unit vector in the I direction. 

The geometrical meaning is obvious. Each point on the image surface moves with a 

velocity that depends on the mean curvature and the I component of the normal to the 

surface at that point. Since along the edges the normal to the surface lie almost entirely in 

the X- Y plane, I hardly changes along the edges while the flow drives other regions of the 

image towards a minimal surface at a more rapid rate. Let us further explore the geometry 

of the flow in 3D and relate it to other known methods. 
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5.1 Geometric Flows Towards Minimal Surfaces 

A minimal surface is the surface with the least area that satisfies given boundary conditions. 

It has nice geometrical properties, and is often used as a natural model of various physical 

phenomena, e.g. soap bubbles 'Plateau's problem", in computer aided design, in architecture 

(structural design), and recently even for medical imaging [8]. It was realized by J. L. 

Lagrange in 1762 [28], that the mean curvature equal to zero is the Euler Lagrange equation 

for area minimization. Hence, the mean curvature flow is the most efficient flow towards a 

minimal surface. Numerical schemes for the mean curvature flow, and the construction of 

minimal surfaces under constraints, where introduced since the beginning of the modern age 

of numerical analysis [14], and is still the subject of ongoing numerical research [12, 13, 10] . 

. For constructing the mean curvature flow of the image as a surface, we follow three steps: 

1. Given the surface S that evolves according to the geometric flow 

as -
-=F, at (39) 

where F is an arbitrary smooth flow field. The geometric deformation of S may be 

equivalently written as 

as - - -at= (F,N)N, (40) 

where JJ is the unit normal of the surface at each point, and (F,.iJ) is the inner 

product (the projection ofF on .iJ). The tangential component affects only the internal 

parameterization of the evolving surface and does not influence its geometric shape. 

2. The mean curvature flow is given by: 

as= H.iJ at ' ( 41) 

where H is the mean curvature of S at every point. Let us use the relation given in 

Step 1: 

3. Considering the image function I ( x, y), as -a parameterized surface S = ( x, y ,I ( x, y)). 
We may write the mean curvature flow as: 

as 
at 

H -
(.iJ, Z) z, 

15 

( 42) 



for any smooth vector field i defined on the surface. Especially, we may choose Z as 

the i direction, i.e. Z = (0,0, 1). In this case 

( 43) 

Fixing the (x, y) parameterization along the flow (i.e. using the fixed x, y plane as the 

natural parameterization), we have St = Bt(x,y,I(x,y)) = (O,O,It(x,y)). Thus, for 

tracking the evolving surface, it is enough to evolve I via 

(44} 

where the mean curvature His given as a function of the image I, see Fig. 2, and Eq. 

27. 

(45) 

See [11, 12] for the derivation of H (as D.L. Chopp summarizes the original derivation 

by J.L. Lagrange from 1762), and Eq. (35 in Section 4.3. 

Figure 2: Consider the surface mean curvature flow St = HN, mean curvature H in the 
surface normal direction JJ. A geometrically equivalent flow is the flow 8(x, y, I)j8t = 
H(1 + j\7 Ij 2 ) 112 . (0, 0, 1) which yields the mean curvature flow when projected onto the 
normal. 
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We end up with the following evolution equation 

(1 + I;)Ixx - 2Ixiyixy + (1 + I?Jiyy 
It-----~------=------------

- 1 + I2 + I2 ) 
X y 

(46) 

with the image itself as initial condition I(x,y,O) = I(x , y). Using Beltrami second order 

operator 6.9 and the metric g, Equation (46) may be read as 

( 4 7) 

While the Beltrami flow (selective mean curvature flow) It = 6.9 I is given explicitly for the 

simple 2D case as 

( 48) 

see Figure 3. 

Figure 3: Consider the mean curvature H in the surface normal direction JJ. It can also be 
expressed as HN = 6.9 S. Beltrami operator that operates on I: 6.9 I, is the third component 
of this vector: Projection onto the I ( Z) direction. 

5.2 Gray scale: Previous mean curvature flows 

In [18], the authors realized that setting the weighting function c(x, y , t) in the Perona-Malik 

[36] anisotropic diffusion model It= div(c(x,y,t)'VI), to c(x,y,t) = (1 + Ix + Iy)- 112
, the 

diffusion becomes the mean curvature flow (up to a factor): 

It= H. ( 49) 

They presented some nice properties of this flow for gray scale image processing. Their flow 

is the mean curvature multiplied by the projection of the surface normal onto the I axis. Or 

17 



geometrically, they rotate the curvature normal vector so that it coincides with the Z axis . 

We therefore refer to this flow as 'normalized mean curvature flow ' . It is located somewhere 

between the mean curvature flow for the image as a surface It = g69 I = H Jg that was 

used in [29] to denoise images, and our Beltrami flow, which in the 2D case simplifies to 

It = 6 9 I = H / Jg. All of these flows lead towards a minimal surface, yet the proposed 

framework better preserves the edges, and may be naturally extended to any number of 

dimensions. 

Fig. 4 compares between the results of the Beltrami flow and the mean curvature flow 

both applied to a digital subtraction angiogram (DSA). It demonstrates the edge preserving 

property of the Beltrami flow relative to the mean curvature flow. 

Figure 4: On the left is the original medical image. In the middle is the result of smoothing 
via the mean curvature flow , and on the right is the result of the Beltrami flow. 

We note again that some properties for the mean curvature flows are studied by the PDE 

community , e.g. [34] . One important result, at least for the level set framework [35], in 

which the mapping is from lRm to lRm+l (embedding with codimension 1) is that embedding 

of evolving surfaces is preserved [19]. Roughly speaking, it means that surfaces can not cross 

as they evolve if they do not cross to begin with. 

5.2.1 Gray scale: Relation to total variation (TV) methods 

Let us show the direct relation to TV methods and especially for the regularization intro­

duced by Vogel and Oman [49], and efficiently implemented for changing the regularization 

ratio (from large to small) in [10]. We will show that by modifying the aspect ratio between 

the intensity and the xy coordinates we are able to switch between norms. It is possible to 

obtain the TV norm, travel through minimal surfaces, and end up with potential surfaces at 

the other limit. 
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The regularized TV is defined by: minf )!P +IV' 11 2, where f3 is a real number, subject 

to constraints that are used to monitor the drifting of the evolving image from the initial one. 

Contrast scaling of I~ (31, we have V' I~ (3\7 I and the TV norm becomes J )1 +IV 11 2• 

This is exactly an area minimization towards a minimal surface that could be realized through 

mean curvature flow with the constraints imposed by the noise variance and scale. In other 

words, the regularized TV is in fact a flow towards a minimal surface with respect to the 

scaled surface (x, y, (31). The ratio between the image size (resolution) and the gray level is 

taken in an arbitrary way for creating an artificial Euclidean metric, therefore, setting this 

ratio to f3 brings us to the minimal surface computation. It is important to note that the 

f3 ratio should be determined for every image processing algorithm. The f3 ratio may be 

introduced via Polyakov action by defining the embedding space to be 

( 

1 0 0 ) 
(hij) = 0 1 0 . 

0 0 (3 2 

(50) 

j 

The only way to avoid the f3 ratio dependence is to construct planar curve evolution for the 

gray level sets, such that embedding is preserved [2, 1, 44, 26]. This was called 'contrast 

invariance' in [3]. Yet, these schemes are pure smoothing schemes that do not preserve edges. 

We note that it is possible to impose constraints on the functional that modify the flow 

like the variance constraints of the Rudin-Osher-Fatemi total variation (TV) method [40]. 

Two such constraints are introduced in Appendix B for the color case. 

We note that the Rudin-Osher-Fatemi TV model [40] minimizes J IV II, while the Blake 

and Zisserman membrane model [4] minimizes f IV'II 2 (up to the constraints). The TV, 

minimal surfaces (invariant membrane), and potential surfaces are all obtained from different 

scalings of the f3 ratio. A potential surface (fl. I = 0), is a specific case of a minimal surface 

for which the ratio parameter f3 is taken to be large, i.e. IV II is relatively small. These kind 

of surfaces are often used in the segmentation context, e.g. [39, 32]. Since the aspect ratio of 

the I axis with respect to the x and y axis is taken arbitrarily, one could select it relatively 

large, so that the result is close to a potential surface. The 2D surface area minimization 

model is closely related to the invariant membrane of Blake and Zisserman [4] (up to the 

constraints). Actually, Blake and Zisserman noticed that there is a link between the invariant 

membrane and the non invariant membrane models. Where this link is the aspect ratio of 

the gray level and the xy coordinates: "The invariant energy is well approximated by the 

non invariant one provided IV II is small enough. Thus, for small signals, the invariant 

membrane acts like the non-invariant one" [4], page 93. 

In a similar spirit, Grimson's method [23] and its computation method as described in 

[4], page 25: "an elaboration of a simple 'relaxation' algorithm that computes the shape of 



a soap film by repeated averaging", is related to the idea of decreasing the f3 ratio of the 

regularized TV method as addressed in [10]. Thereby, a natural way to further improve the 

efficiency of the TV method is to use multi-grid techniques, the same way Terzopoulos used 

such techniques to improve the efficiency of his extensions to Crimson's method in [46]. 

We have just shown that large f3 ratio leads to potential surfaces, while at small ratio we 

have the TV norm. We have thereby linked together many classical schemes via a selection 

of one parameter, that is, the image gray level scale with respect to its xy coordinates. This 

scale is determined arbitrarily anyhow in most of the current schemes. 

6 Color 

We generalize the Beltrami flow to the 5 dimensional space-feature needed in color images. 

The embedding space-feature space is taken to be Euclidean with Cartesian coordinate sys­

tem. The image, thus, is the map f : 2:: --+ IR5 where 2:: is a two dimensional manifold. 

Explicitly the map is 

f = (X(a-\a2 ),Y(al,a2 ),r(a1 ,a2),19 (a 1 ,a2 ),Ib(al,a2
)). 

We note that there are obvious better selections to color space definition rather than the RGB 

flat space. Nevertheless, we get impressive results even from this oversimplified assumption. 

We minimize our action (20) with respect to the metric and with respect to (r, J9,Jb). 

For convenience we denote below (r, g, b) by (1, 2, 3), or in general notation i. Minimizing 

the metric gives, as usual, the induced metric which is given in this case as follows: 

911 1 + u;) 2 + u;) 2 + u;?, 
912 I; I; + 1;1; + 1;1~, 
922 1 + u; )2 + u;) 2 + U~) 2 , 

g det(gij) = 9n922 - gi2 · 

Note that this metric differs from the Di Zenzo metric [15] by the addition of 1 to g11 and 

g22 . The source of the difference is the map used to describe the image. Di Zenzo used 

X : lR? --+ lR? while we use X : 2:: --+ lRs. 

The action functional under this choice of the metric is the Euler functional 

(51) 

where the generalized surface area element Jg is defined by 

g = 1 + L IV Iil2 + L(\7 Ji, \7 Ji)2' 
z ZJ 
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where (A, B) stand for the magnitude of the vector product of the vectors A and B. 

The action is simply the area of the image surface. Minimization with respect to Ii gives 

the Beltrami flow 

(52) 

Which is a flow towards a minimal surface. 

For simple implementation of the Beltrami flow let us first compute the 6 matrices: I~, I~, 

and the following 6 matrices: 

Then the evolution is given by 

(53) 

6.1 Relation to the color snakes and color TV 

The geodesic active contours model is defined by the flow: 

Ut = div (1 ~~~~) IVul. 

where f is a potential computed from the initial image, e.g. f = 1/(1 + IV Il2 ). This is the 

steepest decent flow that minimizes f JIVul, or equivalently any level set of u defines a curve, 

for which the above flow is the weighted arclength minimization flow [7, 6, 8, 25, 45]. Sapiro 

noted in [41] that a straight forward extension of this model to color space is by simply 

replacing the potential f that was extracted from a gray level image, by !color, extracted 

from the color, or any other space. He also introduced the 'self color snakes' 

I; = di V (!color ( i) 
1 

~ ~: 
1 

) · 

Where now f = 1/ ().+ + )._) is a function of the eigenvalues of the multi valued image metric 

[15]. 
Sapiro and Ringach [43, 42], and Chambolle [9), generalized the idea of smoothing a single 

valued function via a second directional derivative in the direction of minimal change, i.e. 

isophotes curvature flow, into a multi valued function. It is a flow by the second derivative 

in the L1 direction of minimal change. They named it 'color diffusion'. 
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As pointed out in [5], for image segmentation, edge preserving and selective smoothing 

purposes, the 'self color snakes' is a result of a weekly coupled definition for an arclength 

in color space. They also claimed that from the class of all possible norms of the form 

f(A +, >..-), the f( >.. + + >..-) is the most natural one. Blomgren and Chan [5] try to improve 

Sapiro's results and defined the color TV that is described bellow. 

Consider an RGB color image. Let m = 3 color 'channels', the color TV [5] minimizes 

the norm: 

with a constraint that yields the minimization of 

TVm- >.. f jui- 1~) 2 • 
i=l 

The corresponding Euler-Lagrange equation is 

where 

Observe that in this case the coupling between the channels is only by the constraint. Ac­

tually, without the constraint the minimization yields a channel by channel curvature flow. 

Moreover, in order to obtain an efficient numerical scheme, Blomgren and Chan [5] regular­

ize the TV into what we showed is a channel by channel minimal surface coupled via the 

constraint. 

We notice that our f Jg norm which yield a natural coupling between the channels via 

different geometric flow: the Beltrami flow. The Beltrami flow converges to either the TV 

in the lD case as the regularization ratio f3 goes to zero, or to a simple heat equation in 1Rm 

for large {3. Which means that we arrive at a 'color diffusion' or selective smoothing leading 

towards segmentation (under the right constraints) by just tuning the f3 ratio to the right 

value. 

In the following sections we demonstrate our framework by two examples. We introduce 

a new segmentation scheme and present color denoising results. 
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7 Segmentation of Gray Level Images: 
Improving the Yanovitz-Bruckstein Method 

In our first example, we address a simple version of the segmentation problem in which the 

goal is to separate objects from their background under nonuniform and poor illumination. 

We shall follow the steps given in [50], which yield one of the best results in recent comparison 

surveys. In [48, 47), Trier, Taxt, and Jain evaluate the performance of published binarization 

methods for document images and found that the Yanovitz-Bruckstein method performs 

better than most of the other algorithms, yet require high computational complexity for 

its main step: the generation of the threshold surface. In [50), Yanovitz and Bruckstein 

argue that a preferable threshold would be a minimal surface with constraints at the edges. 

However, they avoid computing the true minimal surface due to the numerical complexity 

of the non-linear equation, and preferred computing a potential surface (Gaussian filtering 

with constraints) and explored its direct mathematical connection to minimal surfaces. 

In order to construct an efficient, as well as geometrically correct method we introduce a 

new algorithm for replacing the core of the Yanovitz-Bruckstein method. We use a parame­

terized function formulation for the mean curvature flow [35, 12) leading towards a minimal 

surface, to replace the computationally expensive procedure for the potential surface that 

was used in [50). The new algorithm reduces the complexity of the threshold computation 

step and results in the correct minimal (threshold) surface for the image segmentation. 

The proposed segmentation method, like the YB method, handles nonuniform illumina­

tion and noisy images for general purpose object segmentation. We have used the basic-and 

simplest edge detectors for constructing the edge/boundary support. In general, incorporat­

ing a-priori knowledge on the problem in hand may help to achieve better performances. 

7.1 The Segmentation Steps 

We follow the main steps as in [50), yet now with flow towards a minimal surface based 

implementation. 

· The new segmentation process is based on 5 steps: geometric smoothing, edge extrac­

tion, minimal surface computation with constraints at the edges, subtraction of the minimal 

(threshold) surface from the original image, and filtering out the ghosting effects ( valida­

tion). We formulate the smoothing, as well as the validation (ghosts filtering) steps as flows 

leading towards a minimal surface. The segmentation process is given by the following steps 

(see Fig. 5): 

1. Smooth the original image via the Beltrami flow for a short period of time to filter out 
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Figure 5: Description of the whole segmentation process on a lD example, top to bottom: 
I( x) the original noisy image. f result of Beltrami denoising. j\7 ]j the gradient magnitude of 
the denoised image. T the threshold minimal surface, obtained with 'thin' constraints along 
the edges. J = f - T and the 'ghost' object created in the center. I final is the image after 
validation process: obtained as a minimal surface with large support for the constraints 
along the boundary (the support domain is obtained from the gradient magnitude of the 
smoothed original image j\7 il). 
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the high frequency geometric noise (high curvature of the image surface): 

f) 
fJt I(x, y, t) = !:19 I(x, y, t), (54) 

with initial conditions I(x,y,O) = I(x,y). Evolve the above fort= !:1t, and obtain 

i( x, y) = I( x, y, !:1t), a smoothed version ofthe original image, as an input for the next 

step. 

2. Compute the edges of i(x,y), then use these edges to construct a binary map B(x,y) 
for the next step where 

B ( x ) = { 0 ( x, y) E edges 
'y 1 elsewhere. (55) 

3. Use B as boundary conditions for computing the minimal threshold surface T. Use 

the smoothed image as initial conditions I(x, y, 0) = i(x, y), to 

f) 
fJt I(x, y, t) = B(x, y)g!:19 I(x, y, t). (56) 

Let the threshold minimal surface be the solution of the above flow, i.e. ( x, y, T( x, y)) = 

(x, y, I(x, y, oo )). 

4. Let l(x,y) = i(x,y)- T(x,y) be the segmented image. 

5. We still need to get rid of the ghosting effects by a validation process. Let us again use 

the Beltrami flow for this purpose: Extend the zero regions of B(x, y) so that these 

regions now support the whole edge instead of just its middle points into B(x, y). A 

morphological dilation of the zero regions by one pixel is usually enough, or alterna­

tively thresholding l\7 ]J with a low threshold. Use the result of the previous step as 

initial condition I(x,y,O) = l(x;y), to the Beltrami de-ghosti:J?-g/validation flow: 

f) -
fJt I(x, y, t) = B(x, y )!:19I(x, y, t). (57) 

The result I ( x, y, oo) is then thresholded (by zero) to yield the desired segmented 

Image. 

Choosing the right time step in the numerical approximation of the above flows leads to 

an efficient convergence in which few iterations are enough. Typically a total number of 50 

iterations yield the desired result. See [10] for efficient numerical schemes like the primal-dual 

Newton method. These methods are efficient especially in the cases of given constraints or 

fixed boundary conditions. 
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7.2 Results 

Figures 6 and 7 show the result of the different steps we have just described. The noise 

in all cases is Gaussian added to the gray level image. The variance is computed as (/2 = 

J(Ioriginal+noise_Joriginal?dxdy. We have normalized the intensity (white= 1), in which 

case (/ = 36 for the hand image, and (/ = 64 for the map image. 

Figure 6: Original images. The hand image resolution is 128 x 128. The numbers image is 
256 x 256, it is part of a scanned hydrographic map that shows depth values and contours 
of constant depth (obtained form 0. Trier homepage). The gray level resolution is 256 and 
was normalized to 1, i.e. white is 1 and black is 0. 

7.3 Gray level segmentation: Summary 

Based on the mean curvature and the Beltrami flows with gray value constraints at the edge 

points, we have been able to improve the the YB segmentation method. We have formulated 

the whole process as a flow towards a minimal surface with and without constraints. It was 

shown how to use the image as initial condition to a PDE describing the mean curvature flow 

and the Beltrami flow (selective mean curvature flow), and how to impose the gray value 

constraints at the detected edges locations. This way, a minimal surface is obtained and used 

as the threshold surface. This is a pure geometric approach, it is invariant to translations and 

rotations of coordinates (invariant to the Eulerian group of transformations). The result is a 

simple and efficient binarization approach for poor and non-uniform illumination conditions. 

The extension to color images is straight forward. 

26 



Figure 7: Rows top to bottom: 1. Original image + noise + smooth function . An intensity 
p.ane I + x is added to the right , and I + sin( x) sin(y ) to the left of each pair. 2. Smoothed 
image. 3. Threshold surface. 4. Binarization before validation. 5. Binarization after 
validation. 
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Applying the flow towards a minimal surface with and without constraints on an image, 

we were able to: 1). selectively smooth the noisy image, 2). obtain a threshold surface, 3). 

validate the segmented regions (ghosts filtering), and together obtain a new and efficient 

segmentation framework. 

8 Beltrami Flow in Color Space 

We now present some results of denoising color images using our model. Spatial derivatives 

are approximated using central differences and an explicit Euler step is employed to reach 

the solution. We represent the image in the RGB space; however, other representations and 

different numerical schemes (as in [10]) are possible. 

In the first example, we corrupt a given image with Gaussian noise and denoise it using our 

method. The left column in Fig. 8 shows two images corrupted with noise and corresponding 

images in the right column depict their reconstruction. In the second example, we consider 

noise artifacts introduced by lossy compression algorithms such as JPEG. Fig. 9(a) shows a 

JPEG compressed image and Fig. 9(b) its "corrected" version. The next set of figures depict 

two images based on wavelet compression and the corresponding reconstructed images (see 

Fig. 9(d) and (f)). 

In Appendix B we show how to derive convergence schemes based on the Beltrami flow 

by adding variance constraints. However, since we have a powerful selective smoothing 

operator, good results may be obtained even without invoking these constraints. Without 

the constraints, the time we 'play' the evolution should be proportional to the noise variance. 

9 Concluding Remarks 

Inventing a perceptually good segmentation process, and formulating a meaningful scale 

space for images is not an easy task, and is actually what low level vision research is about. 

Here we tried to address these questions and to come up with a new framework that unifies 

many previous results and introduces new procedures. There are still many open questions 

to be asked, like what is the right aspect ratio between the intensity and the image plane? 

Or in a more general sense, a common and deep question that both the fields of string theory 

and computer vision try to answer, is what is the 'right' embedding space h;j? 

The question of what is the 'right norm' when dealing with images is indeed not ~rivial, 

and the right answer probably depends on the application. For example, the answer for the 

'right' color metric h;j is the consequence of empirical results, experimental data, and the 

application. Here we covered some of the gaps between the two classical norms in a geo­

metrical way and proposed a new approach to deal with multi dimensional images. We used 
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(a) 50% Gaussian noise (b) Reconstructed 

(c) 1(10% Gaussian noise (d) Reconst ructed 

Figure 8: Reconstruction of color images corrupted with Gaussian noise; we solve our scheme 
for 150 and 300 steps for the first and second images respectively (this is a color image). 
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(a) JPEG (1 :10) (b) Reconstructed 

(c) Wavelet-based (110) (d) Reconstructed 

(e) \Vavelet-based (1:20) (f) Reconstructed 

Figure 9: Reconstruction of images that are corrupted by compression algorithms such as 
JPEG and those that are based on wavelet transform; we run our scheme for 1.50 steps in 
each case (this is a color image). 30 



recent results from high energy physics that yield promising algorithms for enhancement, 

segmentation and scale space. 
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Appendix A 

In this appendix we derive the Euler-Lagrange equations of the Polyakov action. In order 

to do that let us give first some definitions and identities. First let us recall the definition 

of the delta function. The first thing we should know about the delta funct}on 8(x- x') is 

that it is not a function. It is a distribution which can be thought of as the limit of the 

normal distribution, for example, when the variance goes to zero. In this limit the delta 

function is zero for any non zero value of the argument and infinity when the argument is 

zero. Formally the delta function is defined as the functional that map any function f( x) to 

the value of the function at zero f(O). In particular 

j dx8(x) = 1, 

and in general 

j dx6(x- x')f(x) = f(x'). 

Now that we now what a delta function is we can ask what the following distribution 
0!J~) does? The answer is simple 

j dx38(x)f(x) = 38(x)f(x)l~oo- j dx6(x)af(x) =- j dx8(x)af(x) = -af(O). 

integrating by parts we notice that the surface term vanishes because the delta function and 

its derivatives vanishes there. 
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The next piece of information needed is the variation of a function: 

Now we can vary the action with respect to the embedding. Recall the form the form of 

the Polyakov action 

The variation with respect to Xi goes as follows 

= j dmO'yfgg11-v811-bikbm(O'- 0'1)8vXjhij(X) 

+ j dmO'ylggil-v8!1-Xi8vbikbm(O'- O'')hii(X) 

+ j dmO'Jggi1-V8!1-Xi8vXi8khii(X)bm(O'- 0''). 

We use now the identity we derived above 

-811-( ylgg11-v 8vXi)hkj(X) - ( ylgg11-v 8vXi)811-hkj(X) 

-8v( yfggil-v 811-Xi)hik(X)- ( yfggil-v 811-Xi)8vhik(X) 
+yfggil-v 811-Xi8vXj 8khij(X) 

-811-( ylgg11-v 8vXi)hkj(X)- ( ylgg11-v 8vXi)811-Xi8ihkj(X) 

-8v( ylgg11-v 811-Xi)hik(X)- ( ylgg11-v 811-Xi)8vXi8jhik(X) 
+yfggil-v 811-Xi8vXj 8khij(X) 

= -2811-( ylggil-v 8vXi)hik(X) 

-Jggil-V 8!1-Xi8vXj ( 8ihkj(X) + 8jhik(X) - 8khij(X)). 

From the definitions in Section 2, we end up with the desired result 

Next we vary the Polyakov action with respect to the image metric (gij). We need the 

following identities: 

bgil-V = -gil-"bg,_>,g>.v 

bg = ggiJ-V bgiJ-V 

The first identity follows from the fact that g11-v gv,_ = b~. Varying this equation we get 
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and multiplying by g"'>. we finally obtain 

The secomd identity is proved using the relation 

log( det(gJ.tv)) = Tr(log(gJ.tv)) 

which is proved by diagonalizing (9J.tv) ---+ ( ~1 ~2 ) such that the relation above reads 

Varying the left hand side we have 

To vary the right hand side we need to calculate 8(1og(gJ.tv) ). This is done as follows 

so that 

Now we are ready to vary the action: 

8S = lr;;8ggJ.tv f)J.tXiovXj hij(X) + J98gJ.tv oJ.tXiovXj hij(X) 
2yg 

~y'gl)I(J 8ga(J9J.tv oJ.tXiovXj hij(X) - y'g8giL"'8g,..>.g>.v oJ.'XiovXj hij(X) 

and multiplying by some factors (and summing over the indices) we obtain the result 

Appendix B: Constraints on Beltrami Flow 

It is possible to impose a meaningful convergence on the Beltrami flow through the right 

constraints on the action functional. As a simple example we derive a variance constraint 

similar to the TV method [40] for image denoising with convergence. 

We introduce two alternatives for the variance constraint. The first is the variance given 

for every channel, i.e. 

(58) 
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where here O"i is the given noise variance for channel i. The Euler Lagrange is given by 

(59) 

Again, using our freedom for the selection of the parametrization (multiplying by 9-1
/

2
), 

yields the flow 

(60) 

where >.i is computed via 

. 1 j "' 1 a9 . . 
;.z = --7 L.t lnfJJi (I~- J~cJdxdy. 

20", a=x,y V 9 a 
(61) 

In the second case the variance is given for all channels, i.e. 

L j (Ii- I~) 2dxdy = 0"2
• (62) 

t 

The Euler Lagrange is given by 

(63) 

That after normalization by the metric yields the flow 

(64) 

where ). is computed via 

(65) 

In both cases we have used the notation 09/fJI~, that for the color case simplifies to 

a9 . . 
fJJi = 21~922 - 21~912, 

X 

and 
og . . 
fJJi = 21~911 - 21~912· 

y 

(66) 

Where for color i = 1, 2, 3. 
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