
LBNL-39251 
UC-414 

ERNEST ORLANDO LAWRENCE 
NATIONAL LABORATORY BERKELEY 

Strong WW Scattering Chiral 
Lagrangians, Unitarity and 
Resonances 

J.R. Pehiez 
Physics Division 

::0 
ITI 

(") '"T1 
-'· 0 1T1 
-sO::O 
0 (I) ITI 
CIIIZ 
..... (") 
Ill ZITI 
r+O 
ror+o 

(") 
0 
"0 
'<:: 

,... 
tD z ,... 
I 

w 
ID 
1\) 
t1l ..... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Strong WW Scattering 
Chiral Lagrangians, Unitarity and Resonances 

J.R. Pelaez 

Physics Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

University of California 
Berkeley, California 94720 

August 1996 

LBL-39251 
UC-414 

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098. 



Strorig WW Scattering 
. Chiral Lagrangians, Unitarity and Resonances 1 

J. R. Pelaez2 

Theoretical Physics Group 
· Ernest Orlando Lawrence Berkeley National Laboratory 

University of California, Berke?ey; California 94 720 

ABSTRACT 

LBNL-39251 

Chiral lagrangians provide a model independent description of the strongly interacting 
symmetry breaking sector. In this work it is first reviewed the LHC sensitivity to the chiral 
parameters (in the hardest case of non-resonant low-energy WW scattering). Later it is 
shown how to reproduce or predict the resonance spectrum by means of dispersion theory 
and the inverse amplitude method. We present a parameter space scan that covers many 
different strong WW scattering scenarios. 

Talk presented at the: 
1996 DP-F /DPB Summer Study on New Directions for High-Energy Physics. 

(Snowmass 96). 

1 This work was supported by the Director, Office of Energy Research, Office of High Energy and>Nuclear Physics, Division of High Energy 
Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 

2 Complutense del Amo fellow. On leave of absence from Departamento de Fisica Te6rica. Univ. Complutense. 28040 Madrid, Spain. 



Strong WW Scattering 
Chiral Lagrangians, U nitarity and Resonances * 

J. R. Pelaez* 
Theoretical Physics Group 

Ernest Orlando Lawrence Berkeley National Laboratory 
University of California, Berkeley, California 94720 

ABSTRACT 
Chirallagrangians provide a model independent descrip­

tion of the strongly interacting symmetry breaking sec­
tor. In this work it is first reviewed the LHC sensitivity to 
the chiral parameters (in the hardest case of non-resonant 
low-energy WW scattering). Later it is shown how tore­
produce or predict the resonance spectrum by means of 
dispersion theory and the inverse amplitude method. We 
present a parameter space scan that covers many different 
strong WW scattering scenarios. 

I CHIRAL LAGRANGIANS 

A Introduction 

In the Standard Model (SM) there .is an spontaneous 
symmetry breaking of the gauge SU(2)L x U(1)y group 
down to U(1)EM· The underlying theory that produces 
this mechanism is unknown to a large extent. Basically, 
what we know is the following: 

• There is a system with a global symmetry breaking 
from a group G down to another one H producing 
three Goldstone bosons (GB). 

• The scale of this new interactions is v ::::: 250GeV. 
• The electroweak p parameter is very close to one. 

This last requirement is most naturally satisfied if the elec­
troweak Symmetry Breaking Sector (EWSBS) respects the 
so called custodial symmetry SU(2)L+R [1]. Demanding 
just three GB, we are lead toG= SU(2)L x SU(2)R and 
H = SU(2)L+R [2, 3]. 

That is the very same breaking pattern of chiral symme­
try in QCD with two massless quarks. It is well known that 
a rescaled version of QCD is not valid as an EWSBS. How­
ever, we still can borrow the formalism of chirallagrangians 
[4], known as Chiral Perturbation Theory (ChPT), which 
works remarkably well for pion physics [5]. 

Our case is different to QCD since, among other things, 
the GB disappear in the Higgs mechanism. They become 
the longitudinal components of the gauge bosons. Hence, 
if we want to probe an strong EWSBS, we actually have 
to look at interactions of longitudinal gauge· bosons. (We 

•This work was supported by the Director, Office of Energy Re­
search, Office of High Energy and Nuclear Physics, Division of High 
Energy Physics of the U.S. Department of Energy under Contract 
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will denote both W and Z by V). Indeed if the EWSBS is 
strongly interacting, we expect an enhancement in VL pro­
duction. That is why we are interested in VL VL scattering. 

B The Low energy Theorems 

The chiral lagrangian is built as a (covariant) derivative 
expansion out of G B fields. Only those operators respect­
ing the above symmetry pattern and Lorentz invariance 
are allowed (we are also neglecting CP violation). Thus, 
there is only one possible term with two derivatives: 

v2 
.c<2) = -trDp.U D~-'Ut (1) 
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where the GB fields 1r; are collected in the SU(2) matrix 
U = exp(i1riui jv) and Dp. is the usual covariant derivative. 

The above lagrangian is able to describe the very low 
energy behavior of the EWSBS. However it will be useful 
when only the G B and the gauge fields are relevant at low 
energies. That is the case of the strong EWSBS since the 
other particles affecting VV scattering (like resonances) 
are expected at the TeV scale. 

It is important to remark that the lagrangian in Eq.1 
only depends on the symmetry structure and the scale. 
Its predictions for VL VL scattering are therefore universal. 
The two derivatives become external momenta and thus 
this term yields O(p2 ) contributions, which are called the 
Low Energy Theorems (LET) [2]. 

C The O(p4
) lagrangian. 

The lagrangian in Eq.1 is that of a non-linear u model. 
Thus, in a strict sense it is non-renormalizable. However, 
all the divergencies appearing at one loop are O(p4 ) and 
can be absorbed in the parameters of the £(4 ) lagrangian. 
If we were to consider two loops with £(2) we would need 
the £(6) lagrangian and so on. The relevant point is that up 
to a given order in the external momenta the calculations 
can be renormalized and are finite. 

There are many terms in the .c< 4 ) lagrangian [6], although 
for VV scattering at O(p4 ) it is enough to consider: 

£(4 ) L1 (trDJ.IU D~-'Ut) 2 + L 2 (trDp.U Dvut)
2 

+ itr [(L9LWJ.1v + L9RB~-'v)Dp.UDvUt] 
(2) 

where WJJv and B~-'v are the strength tensors of the gauge 
fields. Only the values of the L; parameters depend on the 
underlying theory. 



For our purposes, we are only interested in L2 and L1, 
which are the ones that enter the VV fusion calculations. 
The others are related to anomalous couplings. Their val­
ues can be estimated for the minimal SM {MSM) with a 
heavy Higgs [7] as well as for QCD-like models (using the 
ChPT parameters [8]). In Table I we give some reference 
values. Notice that in the literature it is also frequent to 

Table I: Chiral Parameters for different reference models. 

L1 L2 
MSM (MH ""1 TeV) 0.007 -0.002 
QCD-like -0.001 0.001 

extract a l61r2 factor so that the L; are of order unity. 
Using the lagrangians in Eqs.l and 2 we can calculate 

the VV elastic scattering amplitudes. Indeed they are ob­
tained as a truncated series in pj47rv, as follows: 

{3) 

Where tC 0)(s) is O(p2 ) and reproduces the LET. It is ob­
tained from £(2) at tree level. The tC1)( s) contribution is 
O(p4 ) and comes from the £(4 ) at tree level and £(2) at one 
loop. If we made one more loop we would get O(p6

) con­
tributions, and we would need the £(6 ) lagrangian, etc ... 

Note that a naive estimate of the applicability range is 
47rv ;:; 3TeV. However, the existence of resonances will 
limit the effectiveness of the approach up to ;:; 1.5TeV. 

D Chiral parameters at LHC 

The goal offuture accelerators is to determine the nature 
of the EWSBS. As we have seen, chirallagrangians provide 
a model independent formalism. We always deal with the 
same set of operators and only the actual values of the 
parameters depend on the fundamental theory. 

As we have already stressed the most natural channel 
to look for strong EWSBS interactions is VL VL scatter­
ing. The most striking experimental feature would be the 
appearance of resonant states. However, it is not assured 
that they could be directly seen in the next generation 
of colliders. Even though they are expected at the Te V 
scale, they can be higher that the planned energy reach. 
In that case one is left with a non-resonant behavior, where 
different models will be hard to distinguish. Then the ef­
fective lagrangians become a natural and systematic tool 
to parametrize and maybe disentangle the experimental 
results. 

Indeed there are already some studies of the capability 
of LHC to measure the chiral parameters [9]. In Table II 
are listed the number of events produced with various non 
vanishing values of L 2 or L1 . Following reference [9] we 
have recalculated the results for lOOfb- 1 of integrated lu­
minosity at v'l4TeV. That corresponds to one experiment 
collecting data at full design luminosity during one year. 
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The numbers in Table II are those of the cleanest leptonic 
decays of subprocesses whose final state is either w± z or 
ZZ: 

qif.'--+ w± z 
w±z--+ w±z 
w±7 --+ w±z 

qij--+ zz 
zz--+ zz 
w+w---+ zz 

gg--+ zz 

They have been calculated from the lagrangian in Eqs.l 
and 2 at tree level (except gluon fusion, that only oc­
curs at one loop). All possible initial and final helicity 
combinations have been considered. We use the effective 
W approximation, but not the Equivalence Theorem. By 

Table II: Number of events and statistical significances for 
different values of L2 and L1 at LHC. 

rslzozo 
rslzozo ta in 

r4lzozo 
r4lzozo ta in 

to-

22 
104 
0.7 
1.0 
21 
6 

46 
3.8 
6.6 

36 
118 
0.7 
1.0 
12 
6 

37 
1.9 
3.5 

58 
139 
2.6 
4.2 
7 
6 

32 
0.9 
1.8 

80 
162 
4.8 
7.5 
7 
6 

32 
0.9 
1.8 

L1 
23 41 

105 122 
0.6 1.0 
0.9 1.7 
13 6 
1 1 

33 26 
1.2 0.1 
2.3 0.2 

L2 
27 47 

109 129 
0.2 1.7 
0.3 2.7 
9 7 
1 1 

30 27 
0.5 :=0 
0.9 0.1 

the cleanest leptonic modes we mean the W's and the Z's 
decaying to vee, Vp.Jl. and e- e+, Jl.- Jl.+, respectively. The 
corresponding branching ratios are BR{WZ)=0.013 and 
BR(ZZ)=0.0044. We have also imposed a set of minimal 
cuts: M~VX = 1.5TeV, Pf min = 300GeV, Y~ax = 2. Fur­
ther details of the calculation can be found in [9]. 

The statistical significances are defined with respect to 
the "zero" model (when all the L; are set to zero). In [9] 
they are also given with respect to the SM with MH := 
1TeV. Note that the zero model is nothing but the LET 
predictions or the MH--+ oo limit of the MSM. The statis­
tical significances are defined as: 

IN(L;)- N(O)I 

.jN(O) 
(4) 



In Table II we have listed two sensitivities for each pro­
cess depending on whether there is forward jet tagging 
available or not. This detector feature is very important to 
separate those events coming from VV fusion from those 
coming from quarks. We have given numbers for no jet 
tagging at all and 100% efficiency tagging, so that the real 
number will lie somewhere in between. 

The analysis is simplified in the sense that only one Li 
is different from zero at a time. However, there are is­
sues that could improve the sensitivity that we have not 
addressed. We have only restricted ourselves to leptonic 
modes, and we have not studied the w+w- or the w±w± 
final states. The sensitivities only refer to separate chan­
nels and a simultaneous fit to all them would be a consid­
erable improve. There is still open the possibility of final 
state polarization ,analysis that would enhance the longi­
tudinal modes. Finally :we are also confident that more 
elaborated cuts will also enhance the signal. Therefore, we 
think that the numbers in Table II can be considered as a 
conservative estimate of the LHC capabilities. 

From Table II we can thus see that the 10-2 values are 
at hand at the 3u level, both for L2 and L1. Combining 
the two experiments and one or two years of running even 
the 5u level seems attainable. 

It is convenient at this point to look back at Table I and 
notice that the expected values lie on the range 10-2 to 
10-3 . Therefore, we can easily reach the beginning of the 
interesting region, Notice also that the two reference mod­
els have different signs in their parameters. Fortunately the 
experimental signature is radically different when changing 
the sign of the parameters. It seems feasible to differentiate 
positive from negative signs. 

To go down to the level of Li = 5 x 10-3 its harder, but 
not impossible. The 3u level seems reachable in three or 
four years in many channels, by combining the two exper­
iments. We have not listed the results for 10-:3 since that 
level of precision seems extremely hard to access [9]. 

It is important to remark again that this is a preliminary 
and conservative result. We can conclude that even in the 
non-resonant scenario, LHC will be able to test at least part 
of the chiral parameter space in the interesting region. It is 
also clear that the study of this kind of physics will require 
the ultimate machine performance. 

As we will see in the next section the determination of 
L1 and L2 will be very helpful to disentangle the nature 
of an strong EWSBS, Even if the LHC energy reach is not 
enough to observe resonances directly, their existence can 
be established by means of dispersion theory. 

II UNITARITY AND RESONANCES 

A Elastic unitarity 

Up to now we have not considered possible resonant 
states. Resonances are one of the most characteristic fea­
tures of strong interactions. In our case, we expect them 
to appear at the 1 Te V scale. For instance, the MSM be­
comes strong when MH ::::: 1TeV. In such case we expect 

3 

a very broad scalar resonance around 1 TeV. In QCD-like 
models one expects a vector resonance around 2 TeV. 

From now on it will be very convenient to use amplitudes 
of definite angular momentum J. As far as we also have 
a conserved SU(2)L+R symmetry in the EWSBS, we can 
also define a weak isospin I. In analogy to 1r1r scattering, 
we will then have three possible isospin channels I= 0, 1, 2. 
At low energies we are only interested in the lowest J, and 
thus we will concentrate on the tu =too, tu and t2o partial 
waves. Indeed we will present our results in terms of their 
complex phases, which are know as phase shifts. 

Chiral lagrangians by themselves are not able to repro­
duce resonances. Their amplitudes are obtained as poly­
nomials in the momenta and masses, and therefore they do 
not even satisfy the elastic unitarity condition: 

ImtJJ(s) = u(s)ltu(sW (5) 

where u(s) is the two body phase-space. Neverthele~s, they 
satisfy it perturbatively 

(6) 

Resonances are closely related to the saturation of uni­
tarity. That is why we have to unitarize the <(hiral am­
plitudes. There are many procedures in the literature to 
impose Eq.5 which very often lead to different results. Ob­
viously, that is one of the main criticisms to unitarization. 

There is, however, a method that has been tested in 
ChPT and is able to reproduce the p and ]{* resonances. 
It is based on dispersion theory and apart from satisfy­
ing Eq.5, it also provides the correct unitarity cut on the 
complex s plane, as well as poles in the second Riemann 
sheet. 

B The inverse amplitude method 

If we consider an amplitude in the complex s plane, the 
existence of a threshold is reflected as a cut in the real 
positive axis. The amplitude has two Riemann sheets that 
are connected through the cut. By crossing symmetry, 
there is also another cut on the left real axis. 

A dispersion relation is nothing but the Cauchy theorem 
applied in one of the sheets. Thus, the values of that func­
tion in any point will be given by the integrals of Imt( s) 
over the cuts. Of course, these values are not known ex­
actly, and with our chiral expansion we only get a crude 
approximation replacing Imt(s)::::: Imt<1>(s) 

The relevant point is to realize that the inverse amplitude 
can be calculated exactly on the elastic cut. Indeed, using 
Eqs.5 and 6 we find 

(1) 
lm-1- = _ Imtu = -u = _ Imtu 

tu I tu 1
2 

1 t~~ 12 
(7) 

Apart from poles, the cut structure of the amplitude t( s) 
and that of the function I t~~ 1

2 ftu(s) are the same. 



Their right cut contributions only differ on a sign, and 
therefore, solving for t(s) one obtains [10, 8]: 

t<D) 
t "' IJ 
IJ - (1) (0) 

1-tuftu 
(8) 

Notice that if we expand again at small momenta, we re­
cover the chiral expansion in Eq.3. Therefore, the Inverse 
Amplitude Method (lAM) displays the correct low energy 
behavior. We can perform again the very same analysis of 
the preceeding section. The difference from ChPT appears 
at higher energies, but now we have several advantages: 

• It satisfies the elastic unitarity constraint. 
• The elastic right cut has been calculated exactly. 
• It can reproduce poles. 

Remember that the amplitude is extended continuously to 
the second Riemann sheet through the cut. Hence, from 
the second point above, we expect to obtain a very good 
approximation near the cut in the second Riemann sheet. 
But resonances are characterized as poles close to the real 
axis and in the second sheet. That is why this method is 
able to reproduce resonances. 

Of course, the method has several limitations too [8]. 
First, the left cut is still an approximation. Next, we have 
neglected possible poles in G, which are indeed present 
[11]. Fortunately these effects are not dominant at high 
energies, where the right cut and resonance contributions 
dominate. They will however introduce some uncertainty 
in the position and width of the resonances. There are also 
other rather technical issues that we will not address here 
[8]. 

Let us now review how the lAM works. We want to 
know how well it reproduces the high energy behavior using 
only low energy data, since that could be the situation at 
LHC. In particular, we are interested on whether we can 
establish the existence of resonances even though they are 
not directly seen. 

C The lAM in Chiral Perturbation Theory 

When it is applied to pion physics [12, 8], the lAM is 
able to reproduce a p resonance just using low energy data. 
In Figure l.a, the results of plain ChPT are plotted as a 
dotted line. It has been calculated with the parameters 
proposed in [17], which have been obtained only from low 
energy data (;:;400 GeV). The other two lines are the lAM 
prediction. The dashed one has been obtained with the 
same parameters and the continuous one with an slightly 
different set [18]. As far as the only input in the calcula­
tions is low energy data, the existence of the p can be seen 
as a prediction of the lAM. The qualitative behavior of the 
phase shift is obviously correct. Notice that the value of 
its mass does not lie very far from the actual value. The 
theoretical error is hard to estimate, but we have found, 
varying the parameters inside their error bars, that it is 
never bigger than 20% [8]. 
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Figure 1.-a) <511 phase~shift in 1r1r scattering. The data 
comes from: [13] (.6.), [14] (o); b)61; 2 ,1 in 1rK scattering. 
[15] (•),[16] (.6.). The dotted curves are plain ChPT: The 
others are the lAM with two sets of chiral parameters. 

Of course, it is possible to get a better fit (see [8]) but 
then high energy data should also be used as an input. 

The case of 7r7r scattering is specially relevant since it can 
be described with the very same SU(2) scheme of symme­
try breaking of the EWSBS. However, the lAM also works 
in other models. In Figure l.b it is shown how it is also 
possible to reproduce the K* (892) resonance in 1r K elastic 
scattering using SU(3) ChPT [12, 8]. The uncertainties 
are again of the same order. 

It can also be checked [8] that the amplitudes present the 
appropriate analytical structure including the correspond­
ing poles in the second Riemann sheet. 

We have therefore shown that the lAM is not just a sim­
ple numerical trick to unitarize amplitudes. It contains all 
the analytic structure needed to extract the correct high 
energy behavior from low energy data. 

D Resonances in the strong EWSBS. 

Throughout this section we will be using the Equivalence 
Theorem [19]. It states that the VL VL amplitudes are those 
of GB up to O(Mv /Js). At high energies those terms 
can be neglected and the VL VL amplitudes look exactly as 
those of 7r7r scattering in the massless limit. 

At first sight it is not evident that such a high energy 
limit can be used with a low energy approach like chiral 
lagrangians. However, it has been shown [3, 20] that there 
is a common applicability window, and that the theorem 
remains the same when working at lowest order in the elec­
troweak couplings, which is our case. 

Let us then apply the lAM to the reference models of 
Table I. In Figure 2 we can see (solid lines) how the lAM 
yields an scalar resonance in the Higgs model, and a tech­
nirho in the QCD model [21]. There are no other reso­
nances present. We have found again that the lAM yields 
the correct result. Let us then scan the parameter space 
to get a qualitative description of the general resonance 
spectrum of an strong EWSBS. 

We will only concentrate on the (I, J) = (0, 0) and (1, 1) 
channels. The I = 2 channel is more subtle and will be 
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has a resonance, etc ... 

In conclusion, the effective lagrangian approach supple­
mented with the lAM, emerges as a very powerful and sim­
ple tool to explore a great variety of strongly interacting 
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Figure 2.- VL VL ___,. VL VL phase shifts in the heavy Higgs 
SM (left) and a QCD-like model(right). Notice their re­
spective scalar and the vector resonances. The dashed lines 
are the chiral amplitudes and the solid lines are the lAM 
results. 
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Figure 3.- Resonant states in the £ 1 , L 2 plane, both for 
the (I, J) = (0, 0) and (1, 1) channels. The dark color areas 
correspond to narrow resonances. Lighter areas are broad 
resonances and black areas stand for saturation. White is 
no resonance or saturation below 3TeV 

given elsewhere. 
In Figure III we have plotted in the £ 1 , L 2 plane the 

expected unitarity behavior up to 3 TeV of the VV am­
plitudes. There are several possibilities: No resonance 
(white), a saturation of unitarity (black), a broad reso­
nance (light) or a narrow resonance (dark). By narrow or 
broad, we mean that the width is smaller or bigger than 
25% of the mass, respectively. We understand by satura­
tion that the unitarity bound is reached, but a resonance 
there would have a width of 75% its mass or more. We 
have also shown the position of the SM with MH = 800 to 
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