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Determining permeability of tight rock samples 
using inverse modeling 

Stefan Finsterle and Peter Persoff 
Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley 

Abstract. Data from gas-pressure-pulse-decay experiments have been analyzed by 
means of numerical simulation in combination with automatic model calibration techniques to 
determine hydrologic properties of low permeability, low porosity rock samples. Porosity, 
permeability, and Klinkenberg slip factor have been estimated for a core plug from The 
Geysers geothermal field, California. The experiments were conducted using a specially 
designed permeameter with small gas reservoirs. Pressure changes were measured as gas 
flows from the pressurized upstream reservoir through the sample to the downstream 
reservoir. A simultaneous inversion ofdata from three experiments performed on different 
pressure levels allows for independent estimation of absolute permeability and gas 
permeability which is pressure-dependent due to enhanced slip flow. With this measurement 
and analysis technique, we can determine matrix properties with permeabilities as low as 
10-21 m2. In this paper we discuss the procedure of parameter estimation by inverse 
modeling. We will focus on the error analysis which reveals estimation uncertainty and 
parameter correlations. The impact of systematic errors due to potential leaking and 
uncertainty in the initial conditions will also be addressed. The case studies clearly illustrate 
the need for a thorough error analysis of inverse modeling results. 

Introduction 

The use of standard steady-state methods for the determination of hydrogeologic 
properties of low permeability rock samples is limited. The main difficulty arises from the 
need to measure extremely small flow rates with sufficient accuracy. Moreover, the time 
required to perform the experiment may be prohibitively long. Using fluids of lower 
viscosity, i.e. gas instead of water, increases flow rates and observable pressure changes 
within a given time frame. Moreover, gas permeability is in itself of considerable interest in 
areas such as vapor flow in geothermal reservoirs, pneumatic testing, vadose zone 
hydrogeology, and contaminant removal by soil vapor extraction. 

Methods for determining gas permeability of tight porous media have been proposed by a 
number of authors (for a review see Neuzil [1986]). Transient methods such as the gas
pressure-pulse-decay experiment have been developed [Brace et al., 1968; Jones, 1972; Ruth 
and Kenny, 1989] and successfully applied to measure properties of core plugs with a 
permeability as low as lQ-21 m2 [Ning, 1993; Persoff and Hulen, 1996]. In the gas
pressure-pulse-decay (GPPD) method, gas flows from a quickly pressurized upstream reser
voir through the sample to a downstream reservoir. The transient pressure response in both 
reservoirs is analyzed either analytically or numerically to obtain estimates of permeability and 
porosity. Analytical solutions have been reviewed and proposed by Ning [1993] and Wu et 
al. [1996]. In this study, we use the numerical model TOUGH2 [Pruess, 1987, 1991] to 
simulate the GPPD experiments. The ITOUGH2 code [Finsterle, 1993] provides parameter 
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estimates by automatically matching the calculated to the observed pressure response. As a 
byproduct of the optimization process, ITOUGH2 performs an extensive sensitivity and error 
analysis which helps to identify key parameters governing the system behavior, as well as the 
contribution of individual data points to the solution of the inverse problem. Furthermore, 
estimation uncertainties and parameter.correlations can be examined. 

The gas-pressure-pulse-decay measurements available for inverse .modeling are 
summarized in the next section, followed by a discussion of the physical processes, the 
modeling approach, and inversion techniques used for the numerical analysis of the data. We 
then discuss the advantage of performing a joint inversion of multiple experiments, and 
interpret the results based on the error analysis. 

Gas pressure pulse measurements 

Permeability and porosity was determined on a fine-grained graywacke core plug from 
the Geysers Coring Project [Hulen et al., 1995]. A schematic of the apparatus used in the 
experiments, constructed following the design of Ning [1993], is shown in Figure 1. 
Sample plugs, 25 mm in diameter and 50 mm long, were dried at 60 °C, and placed in a 
sample holder under an oil-controlled confining pressure. The volumes of the upstream and 
downstream reservoirs were designed to be as small as possible. The total volume of each 
reservoir, including valves, transducers, and fittings, was determined from gas expansion 
tests to be 2.08 cm3. The stainless steel tubing ensures the system compliance to be small. 
Absolute pressures in the upstream and downstream reservoirs as well as the differential 
pressure were measured. Temperature was controlled between 26.6 and 26.7 OC. 

To conduct a test, the upstream reservoir is rapidly pressurized to a value about 300 kPa 
above the initial pressure of the system using nitrogen gas. Gas starts to flow through the 
sample, and the change of pressure with time is observed in both reservoirs. The experiment 
is repeated on three differentpressure levels to isolate the Klinkenberg effect ([Klinkenberg, 
1941], see discussion below). 

relief 
valve 

calib. 
gauge 

X Whitey ball valve 
0 pressure transducer 

Figure 1. Gas-pressure-pulse-decay apparatus 



- 3-

Physical processes and modeling approach 

Modeling of gas flow with Klinkenberg effect 

Simulation of the GPPD experiment is performed using the TOUGH2 code [Pruess, 
1987, 1991]. While TOUGH2 is able to handle non-isothermal flow of multiple components 
in up to three phases, we discuss here only the terms involved in single-phase gas flow. The 
integral finite difference method is used to solve the following mass balance equation for an 
arbitrary subdomain Vn bounded by the surface Tn and an inward normal vector n, where q 
is a local sink and source term: 

3t jMdV= JF·ndr+ fqdV (1) 
vn . rn vn 

The accumulation term M represents mass per unit volume, 

M=¢p (2) 

where ¢ is porosity, and p is gas density which is a function of pressure and temperature 
according to the ideal gas law. The mass flux term is given by Darcy's law 

F = -k(1 + _Q_) p V p 
Pav J.l 

(3) 

where k is absolute permeability, J.l is dynamic viscosity, and p is gas pressure. The term in 
brackets accounts for enhanced gas slip flow which occurs when the mean free path of the 
molecules is similar to or larger than the characteristic dimension of the pores. Slip flow is 
important at low pressures and in small pores, when a significant fraction of molecular 
collision is with the pore wall rather than with other gas molecules. In (3), b is the 
Klinkenberg slip factor, and Pav is the average pressure. Note that the Klinkenberg slip 
factor is a characteristic of both the geometry of the pore space and the thermophysical 
properties of the gas. It is directly proportional to the mean free path A, of the molecules 
[Klinkenberg, 1941]. If performing model predictions with a gas X that is different from the 
one used in the experiment, for example nitrogen, the Klinkenberg factor has to be rescaled 
according to the ratios of the respective mean free paths, bx:bN

1 
= Ax:.ILN

2
• The mean free 

path can be estimated relying on gas kinetic theory [Atkins, 1978]: 

(4) 

where ks is the Boltzmann constant, Tis temperature, anda is the collision cross-section of 
the gas molecule. Typical collision cross-sections are given by Atkins [1978] and reproduced 
in Table 1, along with the corresponding mean free path at standard conditions and the 
resulting correction factor for the Klinkenberg parameter, with nitrogen as the reference gas. 
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Table 1. Collision Cross-sections and Mean Free Path 
Gas cr [l0-18 m2] A [lQ-6 m] byjb"' 

I~ 

hydrogen H2 0.15 0.19 2.06 
nitrogen N2 0.31 0.09 1.00 
carbon dioxide C02 0.66 0.04 0.47 
air 0.30 0.09 1.03 
water vapor HzO 0.23 0.12 1.34 

Parameter estimation by inverse modeling 

The inverse problem, i.e. the determination of parameters from measured data, is solved 
by minimizing the differences between the observed and simulated system responses, which 
are assembled in the residual vector r with elements 

(5) 

Here Yi* is an observation at a given point in space and time, and Yi is the corresponding 
prediction, which depends on vector p of all unknown model parameters, including initial 
and boundary conditions. If the error structure of the residuals is assumed Gaussian and 
described by a covariance matrix C, the objective function to be minimized is the sum of the 
squared residuals weighted by the inverse of the prior covariance matrix: 

Z(p) = rT C-1 r (6) 

An iterative procedure is required to minimize the non-quadratic objective function. The 
Levenberg-Marquardt modification of the Gauss-Newton algorithm [Levenberg, 1944; 
Marquardt, 1963] has been found to be the most robust for our purposes. The basic idea of 
this method is to move in the parameter space along the steepest descent direction far from the 
minimum, switching continuously to the Gauss-Newton algorithm as the minimum is 
approached. This is achieved by decreasing a scalar v, known as the Levenberg parameter, 
after a successful iteration, but increasing it if an uphill step is taken. The following system 
of equations is solved for ~p at an iteration labeled k: 

(7) 

Here, J is the Jacobian (or sensitivity) matrix with elements lij = -dr/dpj = dy/dPj· D 
denotes a matrix of order n (n being the number of parameters to be estimated) with elements 
equivalent to the diagonal elements of matrix (JkT C-1 Jk). The improved parameter set is 
finally calculated: 

Pk+l = Pk + ~Pk (8) 
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Under the assumption of normality and linearity, a detailed error analysis of the final 
residuals and the estimated parameters can be conducted (for details see Finsterle and Pruess 
[1995]). For example, the covariance matrix of the estimated parameter set is given by: 

Cpp = s~ (JT c-I J)-1 

where s~ is the estimated error variance 

2 rT C-1 r 
s = o m - n 

with m being the total number of observations. 

(9) 

(10) 

As a byproduct of calculating the Jacobian matrix J, one can qualitatively examine the 
contribution of each data point to the solution of the inverse problem as well as the total 
parameter sensitivity. 

The inverse modeling formulation outlined above is implemented in a computer program 
named ITOUGH2 [Finsterle, 1993]. 

Systematic and random errors 

It is very important to appreciate the difference between systematic and random 
components of the residuals. Provided that the true system behavior were identified, the 
residuals become equal to the random part of the measurement error. While the individual 
measurement errors are not known a priori, they can be described in statistical terms. This is 
a key assumption made when deriving the objective function (6) from maximum likelihood 
considerations. This requires, however, that systematic errors are not existent or have been 
eliminated. It will be demonstrated in this paper that the impact of systematic errors on the 
parameter estimates is usually much larger than the one from the noise in the data, even under 
well-controlled laboratory conditions. 

In the following paragraphs we discuss a few potential sources for systematic errors in 
the analysis of a GPPD experiment. Systematic errors occur in both the data and the 
numerical simulation. In many cases it is difficult and also irrelevant to distinguish between a 
systematic modeling error and a systematic error in the data. Systematic errors are simply the 
result of a conceptual difference between the observation and the corresponding model 
output. It is more a question of convenience which side of the problem can be better 
controlled. 

The advantage of analyzing laboratory data over field observations is the fact that the 
geometry as well as initial and boundary conditions are well defined. Nevertheless, a careful 
design of the testing apparatus is important. For example, the volumes of the upstream and 
downstream reservoir have to be accurately determined; system compliance effects should be 
minimized by choosing appropriate equipment materials; leaking has to be avoided by 
applying sufficient confining pressures; temperature should be kept constant. Deviations 
from these conditions have to be corrected in the data, if possible, or accurately reproduced in 
the model. For example, if temperature varies during the course of the experiment, the 



-6-

pressure data can by adjusted according to the ideal gas law. Alternatively, one could use a 
non-isothermal model that directly accounts for the temperature dependency of density, 
viscosity, and Klinkenberg factor. Note that while the latter approach is more difficult to 
implement, it is also more accurate. 

In our study, we use an equation-of-state module that describes the thermophysical 
properties of air rather than nitrogen. Differences in density and viscosity affect the pressure 
transient and thus the estimates. Density-viscosity ratios between air and nitrogen differ by a 
factor of 1.05. This leads to an underestimation of permeability by 5 % if pressure data from 
an experiment with nitrogen are inversely analyzed using air properties. In this case, the 
discrepancy between the data and the model output can be compensated after the inversion. 
In most instances, however, when the model output is affected in a non-linear fashion, such 
corrections are not possible. The estimation procedure must then be repeated with different 
assumptions regarding those aspects of the model that are considered uncertain. This may 
provide some insight into the sensitivity of the results with respect to individual errors. 
However, the impact of a combination of errors is difficult to assess. In some cases, 
potential errors can be parameterized and subjected to the estimation process. An example of 
this approach is discussed later in this paper, where uncertainties regarding initial conditions 
and potential leaking are addressed. 

Analysis of experimental data 

We perform a stepwise analysis of the GPPD data to illustrate the process of parameter 
estimation by inverse modeling. Table 2 summarizes the cases considered in this paper, each 
of which addresses a specific issue of inverse modeling analysis. 

Table 2. Overview of Inverse Modeling Runs 
Case Data Parameters 

1 pressure level 1 log(k), log(b), <1> 

2 

3 

pressure level 1, 2, 3 log(k), log(b), <1> 

pressure level 1, 2, 3 log(k), log(b), <j>, 
initial pressures, 
leaka e 

Issue 
sensitivity analysis, non-uniqueness, 
parameter correlation 
joint inversion, 
biased estimates due to systematic error 
joint inversion, 
over -parametrization 

In the first case we try to estimate the key parameters of interest, i.e. permeability, 
Klinkenberg slip factor, and porosity, based on the pressure data from the first experiment 
which was performed on the lowest pressure level where Klinkenberg effects are expected to 
be most pronounced. The data ~d the calculated pressures in the upper and lower reservoir 
are shown in Figure 2. The dash-dotted line corresponds to the calculated system response 
with the initial guess for the parameters; the solid line is the match after model calibration. 
The overall system behavior can be described as follows. The gas pressure in the pore space 
and the two reservoirs is allowed to reach equilibrium prior'to testing. After quick injection 
of a certain amount of gas into the upstream reservoir, gas starts to flow through the sample 
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to the downstream volume. Note that the high gas compressibility yields a relatively large 
storage capacity in the sample itself, leading to a faster pressure decrease in the upstream 
reservoir and a delayed response in the downstream reservoir. If the experiment were run to 
steady state, the pressure in the system would be somewhat below the average value of the 
initial pressure and the applied pressure pulse, the difference being a measure of the amount 
of gas stored in the core sample. 

'2 g 300 

~ ::s 
Cl.l 

Cl.l 200 

£ 
100 

Best fit • 

Time [sec] 

Figure 2. Comparison between measured and calculated pressure transient curves, case 1 

It is obvious from Equ. (9) that the sensitivity of the calculated pressure with respect to 
the parameters of interest is essential for accurate estimation. The elements of the Jacobian 
matrix J provide a means to examine the contribution of each data point to the solution of the 
inverse problem. In Figure 3, we have plotted the scaled sensitivity coefficients which are 
defined as the partial derivative of the model output with respect to the input parameters, 
multiplied by the inverses of the respective prior standard deviations: 

(11) 

Since only pressure data of equal accuracy are used in this study, an arbitrary value for 
ayi = ay of 1000 Pa can be chosen. If data of different types or accuracy are used for the 
inversion, the prior standard deviations should reflect the expected variance of the final 
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residuals which is identical to the measurement error if the underlying conceptual model is 
correct. The choice of apj can be based on the variance of an independent parameter 
measurement, for example if porosity was determined by mercury intrusion porosimetry. In 
this case, the initial guess is treated as an additional data point, and appropriately weighted in 
the sense of prior information [Carrera and Neuman, 1986]. For this sensitivity analysis, 
however, it simply scales the sensitivity coefficients, reflecting the expected variation of a 
parameter. 

150 
: : .. 

,........, 
I ........... 100 .... 
= Q) ..... 
u ..... 
~ 50 ....... ·······-··· 
Q) 
0 
u 
0 0 ..... 
> ..... .... ..... 
C'J'.l 

= -so Q) 
('/) 

"'0 , :ap ta<P 
Q) . . up 

"a -100 u .. 
('/) 

Figure 3. Sensitivity of pressure in upstream and downstream reservoir with respect to 
permeability, Klinkenberg factor, and porosity as a function of time 

The curves in Figure 3 show, for example, that an increase of porosity leads to lower 
pressures in both reservoirs, whereas an increase in permeability or Klinkenberg factor 
reduces the upstream pressure, but increases the downstream pressure. This behavior is 
physically evident. More interesting is the temporal behavior of the sensitivity coefficients. 
It is obvious that the pressures in the upstream reservoir are immediately affected by changes 
of the parameters, whereas ~orne time has to pass before the downstream pressure data 
become sensitive. The absolute sensitivities of log(k) and log(b) increase with time and reach 
a maximum at the inflection point of the pressure transient where gas flow through the sample 
is sizable and average storativity effects have ceased. The longer the experiment lasts, the 
less additional information about conductivity can be drawn from the data, since pressure 
differences and thus flow rates become very small. Eventually the sensitivity coefficients 
tend to zero. On the other hand, porosity remains sensitive, approaching a constant non-zero 
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value at late time. As indicated earlier, porosity could be uniquely identified from the steady
state pressure Poo and the initial pressure in the upstream and downstream reservoirs of 
volumes Vup and Vd0 , respectively, to be 

(Po up+ Po do)/2- Poo (Vup + Vdo) ¢ = , , . (12) 
Poo Vcore 

Analysis of the transient data by inverse modeling techniques allows for a reasonably accurate 
estimation in a much shorter time, taking advantage of the increased sensitivity of the 
upstream pressure data at early times. 

Note that the information provided by the sensitivity plot can be obtained prior to testing, 
i.e. in the design stage of an experiment. Test duration and most sensitive periods can be 
identified, or requirements for sensor accuracy can be derived by comparing the results 
obtained with different standard deviations ayi· In our case, the experiment was stopped 
after about 67,500 seconds. This seems to be a good compromise since the incremental 
information content of the data with respect to permeability and Klinkenberg factor starts to 
decrease, and sufficient data has been collected to identify porosity. 

The inverse modeling results, along with those of the subsequent cases, are summarized 
in Table 3. From the perfect match and favorable sensitivities one might expect that an 
accurate estimation of the three parameters is possible. However, an inspection of the 
covariance matrix of the estimated parameters reveals a relatively large estimation uncertainty. 
The standard deviation of both permeability and Klinkenberg factor is greater than an order of 
magnitude. This is a result of a high correlation between the two parameters which yields a 
non-unique solution. The covariance matrix with the correlation coefficients in the upper 
triangle is shown in Table 4. The correlation ~oefficient between log(k) and log(b) is very 
close to -1, i.e. an increase of one parameter can be almost completely compensated by a 
decrease of the other parameter. This is also reflected in the close similarity of the sensitivity 
curves shown in Figure 3. The physical explanation is evident from Equ. (3) where k and b 
become linearly dependent for constant Pav· In our simulation, Pav varies slightly which 
makes possible the solution of the inverse problem at hand. A more general measure of 
parameter dependency is the ratio between the joint and the marginal standard deviation, 
reported in the last column of Table 3. The standard deviation ap is the square root of the 
diagonal element of matrix Cpp which refers to the joint probability density function, i.e. it 
takes into account the influence from all correlated parameters. The marginal standard 
deviation ap*, on the other hand, reflects the uncertainty of an estimate provided that all the 
other parameters are exactly known. Therefore, the ratio ap*lap is a measure of how 
independently a parameter can be estimated. A value close to one signifies an independent 
estimate, whereas small values indicate a loss of parameter identifiability due to its correlation 
to other uncertain parameters. 

The objective of case 2 is to reduce the statistical correlation between k and b . By 
statistical correlation we refer to the correlation coefficient reported in Table 4 which is a 
result of the inverse modeling error analysis. This has to be distinguished from the functional 
correlation between k and b, such as the one proposed by Jones [1972], where a functional 
form and its coefficients are determined by fitting a curve through presumably independent 
measurements of k and b. Even though such a correlation may exist mathematically and even 
physically, the extent to which both parameters can be estimated based on indirect 
observations depends largely on the type of data and their sensitivity. The correlation 
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coefficient from the covariance matrix reflects the degree to which the experimental design is 
able to produce independent estimates. 

The pressure dependency of gas slip flow suggests to perform experiments on different 
pressure levels. A simultaneous inversion of all available data should yield a unique solution. 
We have analyzed data from three GPPD experiments which were performed using the same 
core on pressure levels of about 0.3, 1.55, and 2.75 MPa, respectively. The result from the 
joint inversion is shown in Table 3. First we note the high values for ap *lap which imply 
that independent estimates have now been achieved. As shown in Table 5, the correlation 
between log(k) and log(b) is weakened from -0.99 in the previous case to -0.52. As 
expected, this leads to a significant decrease in the estimation error. The estimated values 
have changed by an order of magnitude compared to the previous analysis, in accordance 
with the correlation structure discussed above. Comparison of case 1 and case 2 clearly 
demonstrates that a good match and high parameter sensitivity are not sufficient to guarantee a 
meaningful solution of the inverse problem. Omitting a detailed analysis of the estimation 
uncertainty and correlation structure may lead to erroneous interpretation. 

Figure 4 shows the agreement between the calculated and observed pressures. While 
most of the data are reasonably well matched, pressures near the end of the experiments are 
systematically overpredicted. This is better illustrated in Figure 5 where the residuals are 
plotted as a function of time. Unlike an ideal residual plot which shows random noise around 
zero with standard deviation ay, Figure 5 reveals a systematic trend in the residuals. The 
increasing overprediction of pressures with time for the two experiments on the higher 
pressure level may indicate a leak in the apparatus. Since such a leak is not taken into account 
in the model, a systematic error is introduced leading to an overestimation of porosity which 
is increased during the optimization process to compensate for the gas volume leaked to the 
outside environment. 

Table 3. Summary of Inverse Modeling Results: Initial Guess, Best Estimate, Standard 
Deviation2 and Ratio of Marginal and Joint Standard Deviation. 
Case Parameter Initial guess Best estimate au au *!au 

l 1 1 

1 log(k [m2]) -19.00 -19.73 1.29. < 0.01 
log(b [Pa]) 7.00 6.32 1.47 < 0.01 
~orosity P. [%] · 1.50 0.96 0.05 0.48 

2 log(k [m2]) -19.00 -20.67 0.01 0.85 
log(b [Pa]) 7.00 7.30 0.02 0.85 
~orosity P. [%] 1.50 2.18 0.10 0.99 

3 log(k [m2]) -19.00 -20.67 0.01 0.78 
log(b [Pa]) 7.00 7.31 0.01 0.80 
porosity¢[%] 1.50 1.04 0.04 0.50 
PO,Expl [bar] 5.00 4.01 0.05 0.69 
PO,Exp2 [bar] 17.00 16.88 0.04 0.72 
Po,Exp3 [bar] 30.00 29.07 0.04 0.71 
log(qExp2 [kg/s]) -12.00 -10.79 0.01 0.85 
log{~.EI/.!~ [kg/s]2 -12.00 -10.71 0.01 0.86 
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Figure 4. Comparison between measured and calculated pressure transient curves from 
three simultaneously inverted gas-pressure-pulse-decay experiments, case 2 
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Figure 5. Residuals as a function of time, showing systematic overprediction of pressures 
at late times, case 2 
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Estimation Covariance Matrix, Case 1 
log(k) log(b) porosity 

1.67 -0.99 -0.87 
-1.90 2.16 0.87 
-5.79E-4 6.59E-4 2.64E-7 

Diagonal contains variances, lower triangle is covariance matrix, 

and upper triangle is correlation matrix 

Table 5. 

log(k) 
log( b) 
porosity 

Estimation Covariance Matrix, Case 2 
log(k) log(b) porosity 

1.05E-4 -0.52 -0.12 
-1.07E-4 4.10E-4 -0.02 
-1.30E-6 -3.62E-7 1.06E-6 

Diagonal contains variances, lower triangle is covariance matrix, 

and upper triangle is correlation matrix 

In the final case we try to reduce the impact of systematic errors and discuss the issue of 
overparameterization. Recall that the estimated parameters strictly refer to the structure of the 
model used to invert the data. The fact that a systematic error in the conceptual model leads to 
biased estimates was already seen in the previous case where the porosity estimate seems to 
be overpredicted due to leakage. In order to account for potential leaking, we introduce a 
sink term into the model and estimate its flow rate which is assumed to be constant. Using a 
constant mass flux sink term to model the leak seems appropriate since the transient changes 
in reservoir pressures are relatively small compared to the pressure drop between the to 
atmospheric conditions. Furthermore, a test was performed with an impermeable steel plug 
in the sample holder. Pressure in both the upstream and downstream reservoirs declined 
exponentially, indicating a constant rate leak to the outside environment. 

Besides potential leaks, there is also uncertainty regarding the initial pressure in the upper 
reservoir. In the previous cases we simply picked the first data point as the initial condition. 
However, the upstream reservoir undergoes rapid pressurization, causing fluctuations in the 
data that immediately follow the shut-in of the valves. In order to overcome this problem, we 
consider the initial pressures in the upstream reservoirs as additional unknown parameters. 
Accounting for leakage and uncertainty in the initial pressures increases the dimension of 

· parameter vector p from 3 to 8. With relatively inaccurate initial guesses for all unknown 
parameters, ITOUGH2 was able to match the data of all three GPPD experiments very 
accurately within 6 iterations (Figure 6). 

Table 6 summarizes the estimated error variances (Equ. 10) which is a measure of 
goodness-of-fit. It confirms that the match has been improved by adding the sink term and 
the initial pressures to the vector of unknown parameters. The standard deviation of the 
residuals is about 1500 Pa, which is consistent with the fluctuation of the measurement error 
seen in the residual plot (Figure 7). The best estimates and their uncertainties are again listed 
in Table 3. While permeability and Klinkenberg factor are not changed between case 2 and 
case 3, a lower porosity value is realized due to the fact that leakage is explicitly modeled. 
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The estimated value is consistent with the result from case 1 where less leaking is expected 
due to the low pressure level of that experiment. The total amount of gas leaked out during 
experiments 2 and 3 is estimated to be about 0.06 ml and 0.05 ml, respectively. 

Parametrization of those aspects of the conceptual model that are most likely to be 
erroneous is a means to overcome the problem of biased estimation. However, there is a 
tradeoff between goodness-of-fit and minimum bias on one hand, and estimation uncertainty 
on the other hand. Increasing the number of parameters always leads to an improvement of 
the fit, but at the same time increases parameter correlations which results in higher estimation 
uncertainty. This is seen in case 3 where the standard deviation of porosity is only reduced 
by a factor of two despite a fourfold improvement of the fit. All ratios ap *I ap indicate higher 
overall parameter correlation. This is most pronounced for porosity, reflecting its correlation 
to the initial pressure estimates and leakage parameters. Overparameterization of the inverse 
problem yields higher parameter uncertainties and thus reduces the capabilities of the 
predictive model. 

Carrera and Neuman [ 1986] introduced a number of model identification criteria which 
address the issue of overparameterization. We have evaluated Kashyap's criterion to test 
whether the introduction of five additional parameters into the inverse problem can be 
justified (for details about the Kashyap criterion the reader is referred to Kashyap [1982] and 
Carrera [1984]). The smaller value realized in case 3 (see Table 6) suggests that the 
improvement of the fit outweighs the increase of estimation uncertainty, thus making case 3 
the preferred result of this series of inversions. 

2500 
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~2000 
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'--' 
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Figure 6. Comparison between measured and calculated pressure transient curves from 
three simultaneously inverted gas-pressure-pulse-decay experiments, ca.Se 3 
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Figure 7. Residuals as a function of time, case 3 (note the different scale from Figure 5) 

Table 6. Goodness-of-Fit and Model Identification Criterion 
Case estimated std. dev. of Kashyap 

2 
3 

error 
variances~ 

48.31 
2.44 

residuals 
[Pal 

6913.6 
1533.6 

criterion 

12057.1 
3484.8 

Finally we note that the estimates obtained in this study are consistent with the values 
obtained using an analytical solution [Persoff and Hulen, 1995]. Furthermore, the porosity . 
estimate compares reasonably well with values derived for similar cores from Boyles-law gas 
expansion measurements [Persoff and Hulen, 1995]. Permeability and Klinkenberg factor is 
in good agreement with the correlation model proposed by Jones [1972] which was derived 
for rocks of considerably higher permeability. 

Conclusions 

Inverse modeling techniques have been used to analyze data from three gas-pressure
pulse decay experiments. Data inversion was performed in three steps with increasing 
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number of observations and parameters. The main objective of this study was to demonstrate 
the suitability of GPPD experiments for the determination of hydrogeologic properties, and to 
discuss the issues of parameter correlation and overparameterization of the inverse problem. 
The following conclusions can be drawn: 

(1) Gas-pressure-pulse-decay experiments are well-suited for determining permeability, 
Klinkenberg slip factor, and porosity of core samples from very tight formations. The 
technique is accurate and efficient for core plugs with a permeability as low as I0-21 m2. 

(2) The combination of numerical simulation and optimization techniques provides a tool for 
the estimation of a variety of hydrogeologic properties. The ITOUGH2 code used in .this 
study is capable of handling more complex multiphase flow experiments under both 
laboratory and field conditions. 

(3) Data from different experiments can be analyzed simultaneously using inverse modeling 
techniques. This improves the basis for the estimation and ensures that consistent 
parameter values are obtained. In the example discussed in this paper, combining data 
from different experiments is the key to reducing the correlation between permeability 
and Klinkenberg slip factor. 

(4) A detailed sensitivity analysis provides insight into the information content of individual 
data points. This information can be used to design and optimize the layout of an 
experiment (for an example see Finsterle and Pruess [1996]). 

(5) Achieving a good match between the observed and calculated system response is a 
necessary, but not sufficient condition for meaningful parameter estimation. Strong 
correlations among the parameters may lead to high estimation uncertainties or non
unique solutions. Any report of estimated parameter values has to be accompanied by 
the results of the error analysis. 

( 6) The ambition to obtain a perfect match often leads to overparameterization of the inverse 
problem. Error analysis and evaluation ·of model identification criteria provide some 
measures to assess whether the chosen parametrization is appropriate. 

(7) Systematic errors in either the data or the model lead to a bias in the estimated values 
" which is usually much larger than the statistical estimation uncertainty. Systematic errors 

should be avoided -by careful test design, or by incorporating the related process in a 
parameterized form into the model. 
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