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A Numerical Method for Simulating Non-Newtonian Fluid Flow and Displacement in Porous Media 

ABSTRACT 

Flow and displacement of non-Newtonian fluids in porous media occur in many subsurface 
systems, related to underground natural resource recovery and storage projects, as well as 
environmental remediation schemes. A thorough understanding of non-Newtonian fluid flow 
through porous media · is of fundamental importance in these engineering applications. 
Considerable progress has been made in our understanding of single-phase porous flow behavior 
of non-Newtonian fluids through many quantitative and experimental studies in the past few 
decades. However, very little research can be found in the literature regarding multi-phase non­
Newtonian fluid flow or numerical modeling approaches for such analyses. 

For non-Newtonian fluid flow through porous media, the governing equations become non­
linear, even under single-phase flow conditions, because effective viscosity for the non-Newtonian 
fluid is a highly non-linear function of the shear rate, or the. pore velocity. The solution for such 
problems can in general only be obtained by numerical methods. 

We have developed a three-dimensional, fully implicit, integral finite difference simulator 
for single- and multi-phase flow of non-Newtonian fluids in porous/fractured media. The 
methodology, architecture and numerical scheme of the model are based on a general multi-phase, 
multi-component fluid and heat flow simulator, TOUGH2 (Pruess, 1991). Several rheological 
models for Power-law and Bingham non-Newtonian fluids have been incorporated into the model. 
In addition, the model predictions on single- and multi-phase flow of Power-law and Bingham 
fluids have been verified against the analytical solutions available for these problems, and in all the 
cases, the numerical simulations are in good agreement with the analytical solutions. In this 
presentation, we will discuss the numerical scheme used in the treatment of non-Newtonian 
properties, and several benchmark problems for model verification. 

In an effort to qemonstrate the three-dimensional (3-D) modeling capability of the model, a 3-D, 
two-phase flow example is also presented to examine the model results using laboratory and 
simulation results existing for the 3-D problem with Newtonian fluid flow. 
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1. INTRODUCTION 

Flow and displacement of non-Newtonian fluids through porous media occurs in many 
subsurface systems and has found applications in underground natural resource recovery and 
storage projects, as well as environmental remediation schemes. Previous studies on the flow of 
fluids through porous media were limited for the most part to Newtonian fluids (Muskat, 1946; 
Bear, 1972; and Scheidegger, 1974). Since the 1950's, studies of non-Newtonian fluid flow 
through porous media have received a great deal of attention because of its important industrial 
applications, in petroleum industry, groundwater and environmental problems (Savins, 1969; Wu, 
1990). Considerabk! progress has been made in our understanding of single-phase porous flow 
behavior of non-Newtonian fluids through many quantitative and experimental studies in the past few 
decmes. However, litde research can be found in the literature rega-ding multi-phase non-Newtonian 
fluid flow or numerical modeling approaches for such analyses. 

Many studies on the flow of non-Newtonian fluids in porous media have been conducted in 
chemical engineering, rheology, and petroleum engineering since the early 1960's. Because of the 
complexity of pore geometries in a porous medium, a macro-scope continuum flux law has to be 
used to obtain meaningful insight into the physics of non-Newtonian flow in porous media. Some 
equivalent or apparent viscosities for non-Newtonian fluids are needed in the Darcy equation. 
Therefore, a lot of experimental and theoretical investigations have been conducted to fmd 
rheological models, or correlations of apparent viscosities with flow properties for a given non­
Newtonian fluid as well as a given porous material. The viscosity of a non-Newtonian fluid 
depends upon the shear rate, or the velocity gradient However, it is practically impossible to 
determine the distribution of the shear rate in a microscopic sense within a porous medium, and 
the rheological models developed in fluid mechanics for non-Newtonian fluids cannot be applied 
directly to porous media. As a result, many laboratory studies were undertaken in an attempt to 
relate the rheological properties of a non-Newtonian fluid to the pore flow velocity of the fluid or 
the imposed pressure drop in a real core or in a packed porous medium (Savins, 1969; Gogarty, 
1967). 

The subject of transient flow and displacement of non-Newtonian fluids in porous media is 
relatively new to many applications, starting from the late 1960's (van Poollen and Jargon, 1969). 
Pressure transient theory of flow of non-Newtonian power-law fluids in porous media was 
developed by Odeh and Yang (1979) and Ikoku and Ramey (1979). Since then the new well test 
analysis techniques of non-Newtonian flow have been improved· for interpreting pressure data 
observed during injectivity and falloff tests in reservoirs. The numerical modeling methods were 
also used for simulating power-law fluid flow by McDonald (1979), Gencer and Ikoku (1984), 
and Vongvuthipomchai and Raghavan (1987a,b). 

Despite considerable advances over the past three decades in our understanding of single­
phase porous medium flow behavior of non-Newtonian fluids through many quantitative and 
experimental studies, very little research can be found in the literature regarding multi-phase non­
Newtonian fluid flow or numerical modeling approaches developed for such analyses. In some of 
our previous studies of non-Newtonian fluid flow, we developed a Buckley-Leverett (1942) type 
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analytical solution for two-phase immiscible flow of non-Newtonian fluids in porous media (Wu, 
1990; Wu et al., 1991, 1992), and applications of this solution have revealed many features of 
displacement of power-law and Bingham fluids. We also performed several numerical studies for 
simulating flow of single- and multi-phase non-Newtonian fluids in porous media (Pruess and 
Wu, 1988; Witherspoon et al., 1989; and Wu, 1990). 

This paper presents a three-dimensional, fully implicit, integral finite difference simulator 
developed for simulating single- and multi-phase flow of non-Newtonian fluids in 
porous/fractured media. The methodology, architecture and numerical scheme of the model are 
based on a general multi-phase, multi-component fluid and heat flow simulator, TOUGH2 
(Pruess, 1991). Several commonly-used rheological models for power-law and Bingham non­
Newtonian fluids have been incorporated into the model. In addition, the model predictions on 
single- and multi-phase flow of Power-law and Bingham fluids have been verified against the 
analytical solutions available for these problems. In all the cases, the numerical simulations are in 
good agreement with the analytical solutions. A 3-D, five-spot, two-phase flow simulation 
example is also presented to examine the model results using 'laboratory and simulation results 
existing in the literature for Newtonian fluid displacement (Gaucher et al., 1960; Coats et al., 1967; 
Wu et al., 1994). 

In this paper, we will present the numerical scheme used, the treatment of non-Newtonian 
properties and several benchmark problems for model verification. 

2. MATHEMATICAL FORMULATION 

2.1 Govtrning Equations 

The multiphase system is assumed to be isothermal and composed of three mass 
components, or three phases, air, water and a non-aqueous phase liquid (NAPL). The three 
components are assumed to be present only in their associated phases, i.e., mass transfer between 
phases for the components by equilibrium phase partitioning is ignored. Therefore, the present 
formulation is similar to "dead oil" immiscible flow model. Two of the liquids, water and NAPL, 
can be considered as non-Newtonian fluids, while the gas phase is treated as a Newtonian fluid. 
In an isothenn:al system containing three mass components, three mass balance equations are 
needed to fully describe the system. The following summary of the governing flow equations 
follows Pruess (1983, 1987, 1988, and 1991) and (Wu, 1990). The balance equations for 
component or phase ~ (~ = w-water, a-air, and n-NAPL) are written in integral form for an 
arbitrary flow region V .e with surface area r .e as follows, 

:t JM~dVn= JF~•ndrn+ Jq~dVn 
~ ~ ~ 

(2.1) 

Page 3 



A Numerical Method for Simulating Non-Newtonian Fluid Flow and Displacement in Porous Media 

HereM~ is the mass of component~(~ = w, a, n) per unit porous medium volume; F~ is the 
mass flux of component~ into V g; n is the inward unit normal vector; and ·q~ is the rate of mass 
generation of component ~ per unit volume. 

The mass accumulation terms for water, air and NAPL (~= w, a, n) in (2.1) are defmed as: 

(2.2) 

Here <1> is the porosity; S11 is the saturation (pore volume fraction) occupied by phase~; and p13 is 

the ~ phase density. 

The mass flux terms are given by a multiphase extension of Darcy's law, 

(2.3) 

Here k is the absolute permeability; ~is the relative permeability to phase ~; J.lp is the ~ phase 
dynamic viscosity, which for non-Newtonian fluids will be a generally non-linear function of flow 
rate; P 11 is the fluid pressure in phase ~; and g is the gravitational acceleration vector. 

2.2 Supplementary Relations 

The mass transport governing Equations (2.1) need to be supplemented with constitutive 
equations, which express all the parameters as functions of a set of primary thermodynamic 
variables of interest (P/, S11). The following relationships will be used to complete the statement of 
multiple phase flow o non-Newtonian and Newtonian fluids through porous media. 

In addition to the three governing equations of (2.1 ), there are supplementary equations 
given by 

(2.4) 

The aqueous and gas phase pressures are related by 

(2.5) 

where P cgw is the gas-water capillary pressure in a three-phase system, which is assumed to be a 

function of water saturation only. The NAPL phase pressure is related to the gas phase pressure 
by . 

(2.6) 
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where Pcgn is the gas-NAPL capillary pressure in a three-phase system, which is a function of 

two phase saturations. For most geologic materials, the wettability order is (1) aqueous phase, (2) 
NAPL phase, and (3) gas phase. The gas-water capillary pressure is usually stronger (more 
negative) than the gas-NAPL capillary pressure. The NAPL-water capillary pressure, P cnw• in a 
three phase system, is, 

P cnw = P cgw .- P cgn = P w - P n (2.7) 

The relative permeabilities are assumed to be functions of fluid saturations only and not to 
be affected by non-Newtonian behavior, described by 

(2.8) 

(2.9) 

(2.10) 

Here, the second liquid phase, NAPL, is assumed to be the intermediate wetting phase, its relative 
permeability depends on both wetting and non-wetting phase saturations. · 

Equations of state of the densities for Newtonian and non-Newtonian fluids are 

Pp Pp ( Pp) (2.11) 

as functions of the individual phase pressures. For the gas phase, the ideal gas law is used. 

Viscosities for Newtonian fluids are treated as constants, and for a non-Newtonian fluid, 
phase (~=n or w), the apparent viscosity may be expressed as a function of saturation and 
potential gradient (Wu, 1990}, 

(2.12) 

2.3 Numerical Dis<retization 

The numerical technique presented in this work is the "integral finite difference" method 
(Narasimhan and Witherspoon, 1976). The numerical scheme implementation is based on the 
"MULKOM!fOUGH2" family of multi-phase, multi-component codes (Pruess, 1983, 1988, and 
1991 ). The mass balance equations for each phase are expressed in terms of the integral finite 
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difference equations, which are fully implicit to provide stability and time step tolerance in highly 
non-linear problems. Thermodynamic properties are represented by averages over explicitly 
defined finite subdomains, while fluxes of mass across surface segments are evaluated by finite 
difference approximations. All mass balance difference equations are solved simultaneously, 
using the Newton!Raphson iteration procedure. 

The capillary pressures and relative permeabilities are treated as functions of saturation, and 
can be specified differently for different flow regions. The rheological properties for non­
Newtonian viscosity need special treatments and depend on the rheological models used. Several 
common viscosity functions have been implemented in the code, such as the power-law and 
Bingham models. 

The continuum Equation (2.1) is discretized in space using the "integral finite difference" 
scheme, resulting in a set of first-order ordinary differential equations in time for element (grid 
block)£, 

dM~.e 
= 

dt 
1 ~ 

L- Aem F~. R.m + q~. R. 
Vt m 

(2.13) 

Here F~. R.m is the average value of the (inward) normal component of mass flux over the surface 
segment Atm between volume elements V R. and V m. It is expressed in terms of averages over 
parameters for elements V e and V m, 

F~,R.m = - ktm [k: p~ ] [P~,R.; P~,m - P~,R.m gR.m] (2.14) 
. ~ R.m R.m 

where the subscripts ( R.m) denote a suitable averaging between neighboring grid blocks 
(interpolation, harmonic weighting, upstream weighting); Dtm is the distance between the nodal 
points f. and m; and g R.m is the component of gravitational acceleration in the direction from m to f.. 

· Time is discretized as a frrst order difference, and the flux and sink and source terms on the right 
hand side of Equation (2.13) are evaluated at the new time level, f'+1 = f' + dt, to obtain the 
numerical stability needed for an efficient calculation of multi-phase flow. This treatment of flux 
terms is known as "fully implicit," because the fluxes are expressed in terms of the unknown 
thermodynamic parameters at time level tk+t, so that these unknowns are only implicitly defmed in 
the resulting equations. The time discretization results in the following set of coupled non-linear, 
algebraic equations: 

M~.l -
Vt (qp,tf+l} = 0 (2.15) 

where we have introduced residual R to denote the difference between accumulation and flow 
terms. 
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For each volume· element (grid block) V l there are three equations for the primacy 
thermodynamic variables, Pg , Sn and Sg. For a flow system which is discretized into N grid 
blocks, Equation (2.15) represents a set of 3N coupled non-linear, discretized algebraic equations. 
The unknowns are the 3N independent primary variables !I (i=1, 2, 3, ... , 3N) which completely 
defme the state of the flow system at time level f'+ . These equations are solved by 
Newton/Raphson iteration, which is implemented as follows. An iteration index p is introduced 
and the residuals at iteration level p+ 1 are expanded in terms of the primacy variables x,,p at 
iteration level p. Retaining only terms up to the first order, a set of 3N ·linear equations for the 
increments (xi,p+t- xi,p) is obtained: 

( Xi,p+l - Xi,p) = R~.i+l ( Xi,p) 

p 

(2.16) 

All terms in the Jacobian matrix are evaluated by numerical differentiation and Equation (2.16) is 
solved with direct methods (Duff, 1977) or iteratively by means of preconditioned conjugate 
gradient solvers·(Moridis and Pruess, 1995). Iteration is continued until the residuals R/+1 are 
reduced below a preset convergence tolerance, usually taken as w-5 x M~. 

3. TREATMENT OF NON-NEWTONIAN BEHAVIOR 

The apparent viscosity functions for non-Newtonian fluids in porous media depend on the 
pore velocity, or the potential gradient, in a complex way (Savins, 1969). The rheological 
correlations for different non-Newtonian fluids are quite different. The~fore, it is impossible to 
develop a general numerical scheme that can be universally applied to all non-Newtonian fluids. 
Instead, special treatment for a particular fluid of interest has to be worked out. Typical 
relationships of shear stress and shear rate for commonly-encountered non-Newtonian fluids in 
porous media are shown in Figure 3.1. For some most often used. non-Newtonian fluids, such as 
power-law and Bingham plastic fluids, the numerical treatment will be discussed here. 

3.1 Powtr-Law Fluil 

The power-law model (Christopher and Middleman, 1965) is the most widely used in 
describing the rheological property of shear-thinning fluids, such as polymer and foam solutions, 
in porous flow. Its multiphase extension (Wu et al., 1991) is, 

n-1 

llnn = lleff [kkmn (I V<l> I)]-;; 
lleff 

(3.1) 

where subscript nn denotes a non-Newtonian fluid; n is the power-law index; V<l>is flow potential 
gradient; and )1 eff is defined as 

Page 7 



A Numerical Method for Simulating Non-Newtonian Fluid Flow and Displacement in Porous Media 

(3.2) 

where H is a consistence parameter; Sm is the non-Newtonian, power-law fluid saturation, and 
Snnir is irreducible saturation of the non-Newtonian phase. The two power-law parameters, n and 
H, are normally obtained from laboratory measurement and fitting data. 

The power index, n, ranges between 0 and 1 for a shear thinning fluid, and the viscosity 
from Equation (3.1) becomes infinite as the flow potential gradient tends to zero. Therefore, direct 
use of (3 .1) in the calculation will· cause numerical difficulties. fustead, a linear interpolation 
scheme is used when the potential gradient is very small. As shown in Figure 3.2, the viscosity 
for a small value of potential gradient is calculated by 

(3.3) 

for IVct>l::::; 01> where the two interpolation parameters are 01 (- 10 Palm) and o2 (o1 - 02 =10-7 

Palm); and the values for J.11 and~ may be taken as (see Figure 3.2), 

n-1 

J.lj = J.leff (: Oj)-;- (j = 1, 2) 
. eff 

(3.4) . 

3.2 Bingham Flun 

fustead of introducing an apparent viscosity for Bingham fluids, the following effective 
potential gradient approach has been proven to be more efficient numerically. Using the effective 
potential gradient as illustrated by Figure 3.3, the Darcy's law of Bingham flow (Wu et al., 1992) 
is described by 

(3.5) 

where J.lb is the Bingham plastic viscosity coefficient; and V cl>e is the effective potential gradient 

whose scalar component in the x direction, flow direction, is defined as, 

(V<I>e)x= (Vel>) x-G, if(Vel>) x>G 

(V <l>e)x = (V 4>) x +G, if (V 4>) x "< -G 

(Vel>e)x=O, ifG~ (V<I>) x~-G 

where G is the minimum potential gradient of Bingham fluids. 

(3.6) 
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4. VERIFICATION AND SIMULATION SAMPLES 

Four examples are given in this section to provide verification of the model numerical 
schemes. The samples problems includes: (1) one-dimensional displacement of a Newtonian fluid 
by a power-law, non-Newtonian fluid; (2) Single-phase Bingham transient flow; (3) one­
dimensional displacement of a Bingham fluid by a Newtonian fluid; and ( 4) a 3-D, five-spot, two­
phase flow simulation example for which laboratory and simulation results are known in the 
literature for Newtonian fluid displacement (Gaucher et al., 1960; Coats et al., 1967; Wu et al., 
1994). For the first three problems, analytical solutions are available for model benchmarking. 
For the fourth, 3-D flow problem, the existing laboratory and numerical simulation results are 
used to check the simulations of the proposed model, applied to a special case of Newtonian flow. 
Also a 3-D Bingham oil displacement is demonstrated by the problem, 

4.1 Displacement of a Newtonian Flun by a Power-Law Fluil 

This example of interest is a one-dimensional immiscible flow problem of two 
incompressible fluids, one Newtonian and one non-Newtonian fluid, in a semi-infinite, horizontal, 
homogeneous, and isotropic porous medium with a unit cross-sectional area. Capillary effects are 
assumed to. be negligible. Under such conditions, an analytical solution is available through 
extension of the Buckley-Leverett method (Wu et al., 1991). The problem concerns that a power­
law fluid is injected as a displacing agent to drive an initially saturated Newtonian liquid in a 
porous medium. 

In order to reduce the effects of discretization in a finite system, very fme mesh spacing 
(Ax= .0125 m) was chosen for the first 240 elements, and then the spacing was increased by a 
factor of 1.5 for the 290th element. The properties of rock and fluids are given in Table 4.1, and a 
comparison of the saturation profiles from the numerical and analytical solution after 10 hours of 
non-Newtonian fluid injection is shown in Figure 4.1. The figure shows that the numerical results 
are in excellent agreement with the analytical solution although some smearing occurs at the sharp 
front as normally seen for a Buckley-Leverett problem. 

Table4.1 Parameters for power-law fluid displacement 
Porosity <I> =0.20 
Permeability k= 1 Darcy 
Injection rate q = 0.8233 x 10-5 m3/s 
Injection time t = 10 hours 
Displaced phase viscosity J..ln .. = 5 cp 
Irreducible Newtonian saturation snl.;r = 0.2 
Irreducible non-Newtonian saturation snn = 0.0 
Power-law index n=0.5 
Power-law coefficient H = 0.01 Pa•S" 
Relative permeability to Non-Newtonian phase k....:= 1.17 (SnnY 
Relative permeability to Newtonian phase k,.., .. = 0.75(1 - 1.25 sn.f 
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4.2 Transient Radial Flow of Single-phase Bingham Flun 

This is a one-dimensional transient radial flow problem of Bingham fluid, and an analytical 
solution is available (Wu et al., 1992) for this comparison study. The problem concerns a 
pumping test of a fully penetrating well at an infinite, homogeneous and horizontal reservoir with 
constant thickness. The reservoir is fully saturated with single-phase Bingham liquid, such as 
heavy oil. The pumping starts at time=O with constant mass pumping rate. The fluid and 
formation parameters used in this test are listed in Table 4.2. 

Table4.2 Parameters for single-phase Bingham fluid flow 
Initialporosity_ q,; = 0.20 
Initial fluid density P; = 975.9 kg/m"' 
Initial pressure P. = 107 Pa 
Mass pumping rate ... Clm = 1 kg/s 
Bingham coefficient J.1, = 5x10·j Pa•s 
Minimum pressure gradient G = 1,000 Palm 
Fluid compressibility Cr= 4.557xl0·10 Pa-l 
Formation thickness h=lm 
Rock compressibility C. = 2.644x10·)/ Pa-l 
Permeability k= 1 Darcy 
Wellbore radius rw= 0.1 m 

Figure 4.2 indicates that there exists excellent agreement between the two solution for the 
entire transient period. The pressure proftles along radial distance at t = 1,000 seconds, predicted 
by the two methods, are compared in Figure 4.3. The match of the numerical results with the 
analytical solution has been found to be excellent from early to later times at any radial distance. 

4.3 Displacement of a Bingham Flun by a Newtonian Flun 

This is another one-dimensional immiscible displacement problem, in which a Bingham 
liquid is displaced by a Newtonian fluid, similar to the case of heavy oil production by water 
flooding in petroleum industry. The problem description is similar to the power-law fluid 
displacement problem, and we also use the same analytical solution to examine the numerical 
simulation results. The one-dimensional rock column is initially saturated by a Bingham fluid 
only, and then a Newtonian liquid, water, is injected at the inlet as a displacing agent to drive the 
Bingham liquid. 

The properties of rock and fluids are given in Table 4.3, and a comparison of the saturation 
proftles from the numerical and analytical solutions after one day of water injection is shown in 
Figure 4.4. Figure 4.4 indicates that the numerical results are in good agreement with the analytical 
solution, although some small smearing at the sharp saturation front exists. 
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Table4.3 Parameters for Bingham fluid displacement 
Porosity q, = 0.20 
Water density Pw = 1,000 kg/m" 
Bingham fluid density Pnn = 900 kg/m3 

W aterphase viscosity Jlw = 1x10·j Pa•s 
Bingham coefficient J.4. = 2x10·" Pa•s 
Minimum pressure gradient - G = 10,000 Palm 
Permeability k= 1 Darcy 
Injection rate q = 2.0 X 10-o mj/s 

Injection time t= 1 day 
Irreducible water saturation swir = 0.0 
Irreducible non-Newtonian saturation snnir = 0.2 
Relative permeability to Bingham fluid k....n = {1-1.25Sw ):l 
Relative permeability to water phase k.w = l.56(S,,Y 

4.4 3-D, Five-Spot, Two-Phase Problem 

This example is a well-known 3-D flow problem, because scaled model laboratory results 
are available (Gaucher and Lindley, 1960), and it has been used in the literature for benchmarking 
of reservoir simulators (Coats et al., 1967; Wu et at., 1994). The problem concerns oil recovery 
from a five-spot well pattern with the formation saturated with oil (70%) and water (30%) initially. 
The computational domain consists of a one-quarter five spot, and the dimensions are shown in 
Figure 4.5, with a constant-rate injection well and a constant-rate pumping well at the .diagonal 
comers, respectively. 

The fluid and formation properties are summarized in Table 4.4, and the relative 
permeability and capillary pressure data are given in Table 4.5. A three-dimensional 10x10x5 brick 
grid is used for this problem, with ~x = ~y = 1422 m and ~z = 1.22 m. the fonnation is treated $ 

homogeneous and the wells are fully penetrating. Both pumping and injection wells are treated fully implicit]y 
in the code using the no back fhw, potential allocation method (Wu et al., 1996). 
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Table 4.4 Parameters for 3-D, rwe-&pot, two-phase tbw from the experimmt reported by Gaumer 
and Lindley (1960). 

Porosity <P = 0.20 
Water density Pw =1,000 kg/m~ 
Oil density Po =800 kg/m~ 
Water injection rate Qw = 1.93 X 10-~ m~/s 

To1alli:_tuid pumping rate QL = 1.93 x 10·) m~/s 
Water viscosity J..lw = 0.5x10-~ Pa•s 
Bingham ooefficient or oil viscosity J..lb= 2.17xlo-~ Pa•s 
Minimum pressure graiient G = 10,000 Palm 
Residual oil satmation Sor=0.067 

·Residual water saturntion S..,.= 0.3 
Initial oil saturntion So= 0.7 

Table 4.5 Relative penneability and c:apilary pre;sure data used for 3-D, f"we.,spot, two-phase tbw, 
e;timated by Wu et al. (1994). 

sw k.w ~0 Pc (Pa) 

0.30000 0.00000 0.81250 0.4434E+05 
0.33164 0.00000 0.75002 0.3810E+05 
0.36328 0.00000 0.68935 0.3295E+05 
0.39492 0.00000 0.63055 0.2863E+05 
0.42656 0.00000 0.57365 0.2495E+05 
0.45820 0.00001 0.51870 0.2177E+05 
0.48984 0.00005 0.46578 0.1901E+05 
0.52148 0.00016 0.41492 0.1658E+05 
0.55312 0.00046 0.36622 0.1443E+05 
0.58476 0.00115 0.31973 0.1251E+05 
0.61640 0.00261 0.27556 0.1079E+05 
0.64804 0.00547 0.23379 0.9237E+04 . 
0.67968 0.01073 0.19455 0.7828E+04 
0.71132 0.01996 0.15797 0.6545E+04 
0.74296 0.03545 0.12420 0.5371E+04 
0.77460 0.06051 0.09346 0.4293E+04 
0.80624 0.09979 0.06598 0.3300E+04 
0.83788 0.15963 0.04212 0.2381E+04 
0.86952 0.24860 0.02238 0.1530E+04 
0.90116 0.37799 0.00759 0.7380E+03 
0.93280 0.56250 0.00000 O.OOOOE+OO 
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Even though the flow domain for this problem is regular and horizontal, the flow is 
actually three-dimensional because of the gravity effects between oil and water phases. Water 
tends to flow downwards when flowing towards the pumping well, while oil tends to float to the 
top by the gravity forces during moving. The 3-D flow is also affected by the non-uniform 
distributions of the injected and pumped fluxes along the well bores. 

There are two simulations conducted for this problem. The first simulation treats oil as a 
Newtonian fluid, a special case of Non-Newtonian fluids, and water is always a Newtonian fluid. 
The second simulation considers the oil as a heavy oil, or a Bingham fluid with the Bingham 
coefficient equal to the oil viscosity and the minimum pressure gradient G=IO,OOO Palm. 
Otherwise, the operation conditions and the simulation parameters are the same for the two runs. 
The experimental data and the simulated results obtained from the present and previous models are 
compared in Figure 4.6. Figure 4.6 shows that the cumulative oil recovery curves are similar. The 
present model for both Newtonian oil and non-Newtonian oil cases predicts slightly higher oil 
recovery over the range 0.3 to 0.8 pore volumes (PV) of water injection. The discrepancy may be 
due to the different rock characteristic curves used in the present and previous models (Wu et al., 
1994). Figure 4.6 indicates that tbe "heavy oil" recovery rate is 2 to 3 % lower than that for 
Newtonian oil after the early injection of 0.5 pore volumes because of the higher flow resistance of 
Bingham fluid. 

Figures 4.7 and 4.8 show the 3-D plots of oil saturations at 20 years (0.5 PV) for 
Newtonian oil and Bingham oil, respectively. A comparison of the two oil saturation distributions 
indicates a clear difference between the two scenarios. Lower (green) oil are seen near the the 
pumping well, and water breakthrough is approaching on Figure 4.8 for the Bingham oil case. For 
the Newtonian oil, however, Figure 4.7 shows the water front still has a certain distance to the 
pumping well. Especially along the left front boundary surface of the five-spot domain, the oil 
bank is still intact on Figure 4. 7, but water has already reached the surface near the pumping well 
for the case of Bingham oil, as shown in Figure 4.8. Second, the curvatures of saturation contours 
on the top surface of the domain, along the diagonal direction from injection to pumping wells, 
indicate that there is more dominant diagonal water flow for the Bingham oil than for Newtonian 
oil. Also, more oil or relatively higher oil saturation is left behind in the region with lower 
pressure gradients, away from the main diagonal, for the Bingham oil case (Figure 4.8), as 
compared with the Newtonian oil case (Figure 4.7). All of these differences explain that the 
waterflooding efficiency is poorer when dealing with a Bingham oil. 

4.5 Summary of Computational Perfonnance 

Table 4.6 summarizes the numerical performance of the present model for the four sample 
problems. All the simulations were performed on a 100 MHz Pentium PC, and both direct and 
iterative solvers were used in these calculations. The. convergence for nonlinear iterations was 
based on residual reduction to l.Oxl0-5 or less relative to the accumulation terms for all the mass 
components at each grid block (Pruess, 1987). The automatic time stepping scheme was used with a 
maximum time step size specified for different problems. It is noted in the table that very small maximum 
time step size was used for problems 4.1 and 4.3, which is necessary to obtain sufficient accuracy in 
dealing with the Buckley-Leverett type displacement solving hyperbolic type equations. 
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Table4.6 Summary of Computational performance for the sample problems. 

Problem Number Time Max. Time Simulation CPU Solver 
of Steps Step Size Time Time 

Elements (s) (s) (s) 
4.1 240 586 64 3.6 xl04 567 Direct 
4.2 401 300 Unlimited 1.5 xl011 432 Direct 
4.3 326 469 227 8.64xl04 444 Direct 
4.4a 

Newtonian Oil 500 76 8.64xl08 3.16xl09 479 Iterative 
4.4b 

Bingham Oil j)Q 74 8.64xl08 3.16xl09 490 Iterative 

5. CONCLUDING REMARKS 

The primary objective of the present work was to present a numerical method to investigate 
transport phenomena of non-Newtonian fluids through porous media. Whenever non-Newtonian 
fluids are involved in porous media, the flow problem will become highly non-linear because of 
the dependence of the apparent viscosity used in the Darcy equation on shear rate. In general a 
numerical method has to be resorted to analyze non-Newtonian fluid flow in porous media. In 
addition, the non-Newtonian flow behavior is quite different for different fluids and/or for different 

porous materials. Therefore, it is impossible to develop a universal numerical approach for 
handling all flow problems involving various non-Newtonian fluids in porous media. In this 
work, major attention has been paid to developing a methodology for power-law and Bingham 
plastic fluids, -since they are the most likely to be encountered in reservoirs. However, the 
proposed method should also be useful in analyzing flow problems of other types of non­
Newtonian fluids. 

A fully implicit three-dimensional integral finite difference model has been developed by 
modifying the general numerical codes, "MULKOM!TOUGH2", to include the effects of non­
Newtonian viscosity. This new simulator is capable of modeling both single and multiple phase 
non-Newtonian fluid flow through porous or fractured media. The numerical model can take 
account of all the important factors which affect the flow behavior of non-Newtonian and 
Newtonian fluids, such as capillary pressure, complicated flow domains, in homogeneous porous 
and fractured media, and various well operation conditions. Several commonly used non­
Newtonian rheological models have been incorporated in the code. The validity of the numerical 
method has been confirmed by comparing the model numerical results with analytical solutions 
for both single-phase and two-phase flow problems. A 3-D, two-phase flow example is also 
presented to examine the model results using laboratory and simulation results existing for the 3-
D problem with Newtonian fluid flow. A comparison between Newtonian and non-Newtonian 
Bingham fluid displacement for the 3-D problem is discussed. 
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Figure 3.1 
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0 

Figure 3.3 Effective potential gradient for Bingham fluids, dashed linear extension for numerical 
calculation of derivatives. 
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Figure 4.2 

Figure 4.3 
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Figure 4.4 

Figure 4.5. 
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Figure 4.6 
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Figure 4.7 
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3-D distributions of Newtonian oil at 20 years of waterflooding. 
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Figure4.8 
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3-D distributions of Bingham oil at 20 years of waterflooding. 

Page 25 



@1!;J~I#f:.-nl' l'ii'm'!.llmiJi QaV4ftJ3;!1 .. #! fDl!l;):ii!I#U13\1 ~ ~·MiJOO' 

~ ~ ~ 9 l5t!l#13l!IY!i1o ~~ 

.. 


