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Within the chirallagrangian formalism it is possible to describe the general strongly 
coupled Symmetry Breaking Sector in terms of a few parameters. Based on a dispersive 
approach we have studied the resonance spectrum up to 3 Te V in the chiral parameter 
space. This procedure could also be useful to extract the higher energy resonant 
behavior from low-energy collider data. It is _also shown how the method reproduces 
the correct pole structure of resonances as well as other analytic features. The results 
also hint at a possible excluded region of parameter space. 
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1 Introduction 

The main purpose of the next generation of colliders is to unveil the nature of the electroweak 
Symmetry Breaking Sector (EWSBS). Despite the remarkable success of the Standard Model 
(SM) with the present precision electroweak data, the mechanism responsible of this breaking 
remains unknown. There are, however, many theoretical models which, very roughly, can be 
divided in two categories: weakly or strongly coupled. 

In the weak case light particles are expected belo~ the TeV scale. Typical examples are 
the Minimal SM (MSM) with a light Higgs or most supersymmetric models. These models 
have become very popular and have been studied in great detail. That is not possible in the 
strong case, where the strength of the interactions makes the usual perturbative approach 
unreliable. In particular, there are no light particles to control the generic enhancement of 
gauge boson production. As a consequence, the perturbative calculations suffer from severe 
unitarity violations. Nevertheless, such an enhancement would be the experimental signature 
of an strong EWSBS. The most promising process is longitudinal gauge boson scattering, 
where the most striking feature would be the appearance of heavy resonances. 

There are also several models of strongly coupled EWSBS, like the MSM with a heavy 
Higgs boson, Technicolor, composite models, etc ... From very general symmetry considera
tions all them share the same dynamics at low energies [1]. However, the predictions of these 
models can vary greatly from one another. 

Several years ago it was introduced a theoretical framework that is able to describe 
generically the strong interactions of electroweak gauge bosons [2]. It is based on Chiral 
Perturbation Theory ( ChPT) [3], which works remarkably well for pion physics. The idea 
is to write an effective chirallagrangian including operators up to dimension four [4]. The 
form of the terms is only constrained by symmetry considerations which are common to any 
strong EWSBS. Thus, using this lagrangian it is possible to mimic the low energy behavior of 
any strong EWSBS. The difference between underlying theories appears through the values 
of the parameters in the chiral lagrangian. There are already published chiral parameter 
estimates for several models like the MSM with a heavy Higgs [5, 6] or Technicolor [7]. 
There are also studies which indicate that at least part of the interesting parameter space 
will be accessible at LH C [8]. 

However, the usual chirallagrangian approach does not respect unitarity. At low energies 
the violations are very small, but they increase with the energy. As a consequence it is not 
able to reproduce resonances unless it is modified. There are several ways to unitarize chiral 
amplitudes. Many of them are simple mathematical tricks whose results very frequently 
differ, which is an obvious criticism to such procedures. Nevertheless, over the last few 
years, it has been developed a technique, known as the Inverse Amplitude Method (lAM) 
[9, 10, 11, 12], whose results have been successfully tested in ChPT. It is based on dispersion 
theory and it can accommodate all the analyticstructure required to reproduce resonances. 
Namely, the elastic cut and poles in the second Riemann sheet. When applied to low energy 
hadron physics, it is indeed able to reproduce the lightest resonances. The lAM seems very 
reliable at least at the qualitative level. 
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Concerning the EWSBS, the method was first applied to mimic a heavy Higgs and a 
QCD-like scenario at supercolliders [13]. The results of the lAM are once again consistent 
with the expected resonances. 

The aim of this work is to explore the interesting part of the chiral parameter space 
using the lAM method. 1n so doing, we expect to obtain a description of the low resonance 
spectrum of the general strong EWSBS. 

The paper is organized as follows: In section 2 we discuss the theoretical framework used 
in this work. First we introduce to the chiral formalism; next, we address some technical 
issues related to the Equivalence Theorem. We then define partial waves and state the 
unitarity problem. As a solution, it is briefly reviewed the lAM, whose derivation is given 
in the Appendix. Section 3 is devoted to the lAM results. First for reference models, that 
we use to illustrate different analytical and physical features, like saturation. We then show 
where these phenomena appear in parameter space. The problem of unitarity in the I = 2 
channel and whether it can be used to exclude part of the parameter space is also addressed 
in Section 3. In section 4 we discuss these results and we gather them in the conclusion. 

2 Resonances in. the chiral formalism 

2.1 The chirallagrangian 

Let us remember that we have to break the SU(2)L xU(1)y gauge symmetry down to U(1)EM· 
Therefore we need a global breaking from a group G down to another H. It should provide 
three Goldstone Bosons (GB) that will become the logitudinal components of the gauge 
bosons through the Higgs mechanism. We also want to include the custodial SU(2)L+R, 
which naturally yields a p ~ 1 parameter [14]. It can be shown that these constraints lead 
to G = SU(2)L x SU(2)R and H = SU(2)L+R [1, 15]. Thus, the GB fields 1ri can be seen as 
coordinates in the G / H ""' SU(2)L-R coset. Hence, we will parametrize them in an SU(2) 
matrix as U = exp(i1riuijv). The parameter v ~ 256GeV plays here the same role as J1r in 
ChPT and sets the scale of the EWSBS. 

Within the chiral approach we build the low-energy lagrangian as an expansion in deriva
tives (momenta) of the GB fields. Since we will work up to O(p4 ), we should look for a 
complete set of SU(2)L x U(1)y, Lorentz, C and P invariant operators containing up to four. 
derivatives. These have been obtained in [4], but they are too general for our purposes. In
deed, we want an exact SU(2)L+R symmetry on the hidden sector once the gauge couplings, 
g and g', are set to zero. In addition, we are only interested in gauge boson elastic scattering 
and we can neglect C P violating effects. 

With those assumptions, the only operator that we can build with two derivatives is 

(1) 

where DJLU = f)JLU - WJLU + U BJL is a covariant derivative with WJL = -iguaw: /2 and 
BJL = -iga-3 BJL/2. It is important to observe that this lagrangian only depends on the 
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symmetry breaking pattern and the scale. In this sense, the amplitudes obtained from £(2
) 

are universal. That is why they are called Low Energy Theorems (LET) [1). 
Notice also that the lagrangian in Eq.1 is that of the non-linear 0' model and thus it is 

not renormalizable. In fact it is not possible to absorb the loop divergencies by introducing 
a finite set of new counterterms and constants. Nevertheless, we are only interested in the 
low-energy behavior and therefore it is enough to work up to a given order in the external 
momenta. For instance, if we want to obtain gauge boson scattering amplitudes at O(p2

), 

the only contributions come from £(2 ) at tree level. If we calculate at O(p4
), we will have to 

consider the £(4 ) lagrangian at tree level as well as £(2
) to one loop. These last contributions 

are divergent, but their divergencies can be absorbed in the £(4
) parameters. In this sense, 

the calculations are renormalizable and finite. This procedure can be generalized to O(pN), 
but we will work only up to O(p4

). . 

There are many possible terms in the £(4 ) lagrangian [4). However, according to the 
above restrictions, we are only interested in 

£(4
) - L1 (trDJJ.U D11-utr + L2 (trDJJ.U Dvutr 

+ tr [ (L9L w11-v + L9RBJJ.V)DJ1-U Dvut] + L10trUt BJJ.vuwJJ.V (2) 

where w11-v and B11-v are the strength tensors of the gauge fields. 
Finally, let us remark that using these lagrangians we will obtain the chiral amplitudes 

as truncated series in s, the usual Mandelstam variable. That is 

(3) 

Where t(0 l(s) is O(s) and reproduces the LET. It is obtained from £(2) at tree level. The 
t(ll( s) contribution is 0( s2 ) and comes from the £(4 ) at tree level and £(2

) at one loop. The 
loops yield logarithmic contributions which are very relevant at low energies. However, at 
higher energies our amplitudes behave essentially as polynomials in s. 

2.2 Chiral parameters 

In contrast with the £(2
) lagrangian, the one in Eq.2 is not completely fixed by symmetry 

and the scale. Indeed each operator has a parameter which depends on the specific breaking 
mechanism. Thus, for every strong EWSBS without relevant light modes and our assumed 
symmetry breaking pattern, there should be a different set of chiral parameters. Notice, 
however, that· nothing ensures the reciprocal. It is not clear that for every set of chira~ 
parameters there should be an underlying consistent and renormalizable Quantum Field 
Theory (QFT). 

Unfortunately, the very nature of strongly coupled theories does not allow a calculation 
of these parameters. There are, however, estimates for the heavy Higgs MSM, which are 
obtained from a matching of one loop Green functions [5). For the QCD-like model, they 
are obtained by rescaling the QCD parameters [12). We will use these models as a reference 
and thus we have listed their parameters in Table 1. 
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L1 Lz 
MSM (MH "' 1 TeV) 0.007 -0.002 
QCD-like -0.001 0.001 

Table 1: Chiral Parameters for different reference models. 

Very recently several studies have appeared concerning the LHC capabilities to determine 
these parameters in case there is a strong EWSBS [8]. Notice that their expected values are 
in the 10-2 to 10-3 range. Note also that the sign of the parameters may play an essential 
role. From these preliminary studies it seems that LHC could be able to reach the 5 x 10-3

, 

even in the hardest non-resonant case. However that will require two detectors taking data 
for several years at full, design luminosity and the highest center of mass energy. 

2.3 The Equivalence Theorem 

As we have already seen, the most relevant modes of the EWSBS at low energy are the GB. 
However once we include the electroweak interactions, the GB disappear from the physical 
spectrum and become the longitudinal components of the gauge bosons (VL). Somehow 
we can identify the GB and their behavior with that of the gauge bosons. The precise 
formulation of the previous statement is known as the Equivalence Theorem (ET) [16, 17]: 

(4) 

where m is the mass of the gauge boson. The /{ factors, which include renormalization and 
higher order g effects, are basically 1 + O(g2

) [18]. In short, the ET allows us to identify, 
at energies E ~ m, the longitudinal gauge boson amplitudes with those of their associated 
GB. It is very useful in two senses: First it allows to link the physical measurements with 
the hidden sector. Second, it helps in the calculation of the VL amplitudes, which are much 
easier to obtain using scalar particles like GB. 

It is important to notice that the ET is a high energy limit. In contrast, the chiral 
formalism is a low energy approach. Nevertheless, it has been recently shown that there is 
a window of applicability for the ET together with the chiral approach [15, 19]. The above 
equation remains valid, but only at lowest order in g and g'. 

In the following sections we will be using thoroughly the ET. Therefore we will work at 
lowest order in the electroweak couplings. As a consequence, only L1 and L2 will be relevant 
for our calculations. 

2.4 Partial waves, unitarity and Resonances 

As far as we have an SU(2)L+R symmetry in the EWSBS, we can also define a weak isospin 
I. In analogy to 1r1r scattering, we have three possible weak isospin channels I = 0, 1, 2. It 
is then usual to project the amplitudes in partial waves with definite angular momentum 
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J and isospin I. At low energies we are only interested in the lowest J, and thus we will 
study the tu = t00 , t 11 and t 20 partial waves. Their expressions for the EWSBS where given 
in [13]. Customarily the results of elastic scattering are presented in terms of their complex 
phases, which are known as phase shifts. 

As we have already remarked, one of the most striking features of an strongly interacting 
EWSBS could be the appearance of resonances. For instance, for the MSM with MH ~ 1 Te V, 
we expect a very broad scalar resonance around 1 TeV. In QCD-like models one expects a 
vector resonance (similar to the p in pion physics) around 2 Te V. 

However, the chiral formalism by itself is not able to reproduce resonances. Their very 
existence is closely related to the saturation of unitarity. But the chiral amplitudes do not 
even satisfy the elastic unitarity condition 

Imtu(s) = a(s)ltu(s)l 2 (5) 

where a( s) is the two body phase-space. Nevertheless, they satisfy it perturbatively 

Imt}~(s) = a(s)it}~(sW + O(s3
) (6) 

Notice that the violation of unitarity is very small only at low energies. 
Therefore, in order to accommodate resonances we have to unitarize the chiral amplitudes. 

There are many mathematical tricks to impose unitarity, which very often lead to different 
results. Obviously, that is the main criticism to unitarization. There is, however, a method 
that has been tested in ChPT and is able to reproduce the p and]{* resonances [10, 11, 12]. It 
is based on dispersion theory and apart from satisfying Eq.5, it provides the correct unitarity 
cut on the complex s plane, as well as poles in the second Riemann sheet. 

2.5 The Inverse Amplitude Method 

Elastic amplitudes in the complex s plane have a left and a right (or unitarity) cut. A 
dispersion relation is nothing but Cauchy's Theorem applied to these amplitudes. They are 
very useful since we can obtain the values of the amplitude in any point in terms of integrals 
of their imaginary parts over the cuts. 

We have just seen that chiral amplitudes are not a good approximation at high energies 
on the elastic cut. Thus, they are not very well suited for a dispersive approach. The key 
point is to notice that we can calculate the imaginary part of the inverse amplitude exactly 
on the elastic cut. Indeed, using Eqs.5 and 6 

Im-1 = _ Imtu = -a (7) 
tu I tu 1

2 

We can thus write a dispersion relation for 1/tu whose integral over the elastic cut is exact. 
Nevertheless, the other analytical features are still approximate. In the Appendix, we give a 
detailed derivation and we comment on these approximations. Finally, it is possible to solve 
for t1J and we get 

t(0)2 
t rv [J 
IJ- (0) (1) 

t!J - t!J 
(8) 
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That is the lAM. Apart from its simplicity, it has several advantages: 

• At low energies it reduces again to the very same chiral amplitudes in Eq.3. 

• It satisfies elastic unitarity, Eq.5, exactly. 

• The right cut is correctly reproduced and we get the appropriate analytic structure. 
In particular we get those poles in the 2nd Riemann sheet which are near the unitarity 
cut [12]. 

• It can be easily extended to higher o~ders [11, 12]. 

Of course it also has limitations. We comment them thoroughly in the Appendix. However, 
they are mostly related to analytical structures (like some poles or the left cut), which are 
far away from the energy range where we expect the resonances or unitarity effects. In the', 
elastic region we expect the lAM to be a good approximation. 

Indeed, t})e lAM has been applied both to pion elastic scattering and 1r ]{ scattering. The 
first example is very similar to the EWSBS, although there the GB are massive. In both 
cases it is possible to reproduce the lowest lying resonances: The p(770) and the J<*(892) 
respectively [10, 11, 12]. When only low energy data is used, their masses lie about 15% off 
from the actual values. It is however possible to fit the masses and widths using high energy 
data. Notice that this can pe achieved without introducing any other field or parameter. 

It is.also important to remark that the lAM also improves considerably the nonresonant 
channels [11, 12]. In fact, the I = 2 channel in 1r1r and I = 3/2 in 1ri< scattering do not 
present any low resonance. In spite of that, the results of the chiral amplitudes only match 
the data at low energies. The lAM results fit the data remarkably well up to much higher 
energies. 

In addition the appearance of resonances is completely consistent with the QFT descrip
tion. They are associated to poles in the second Riemann sheet, whose position is correctly 
related to the physical mass and width 8. The analytical structure of the lAM amplitudes 
is the correct one in the elastic region. 

We therefore consider that the chiral formalism, together with the lAM, is a reliable 
method to obtain, at least, a qualitative description of the resonance spectrum in strongly 
coupled systems. 

3 Results 

3.1· Reference models. Resonances and saturation. 

The lAM in the chirallagrangian context was first applied to a MSM and a QCD-like model 
in [13]. There it was shown that it is able to reproduce the expected resonances: a broad 
scalar resonance in the heavy Higgs MSM, and a Technirho at about 2TeV in the QCD-like 
model. As an illustration, we show in Figure 1 the phase shifts obtained when the lAM is 
applied to the chiral amplitudes. 
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Figure 1.- Phase shifts in strong VL VL scattering. The dashed lines are the plain chiral amplitudes and 

the continuous lines those using the lAM. They have been obtained both for a heavy-Higgs MSM and a 

QCD-like model using the parameters in Table 1. 

' 

They have been obtained using the parameters given in Table 1, which have been actual-
ized. Naively, the resonant masses can be obtained from the point where the corresponding 
phase shift crosses goo. The width can be obtained assuming the typical Breit-Wigner 
for the Higgs-like resonance and MP ~ 2240Ge V, r P ~ 620Ge V shape. Their values are: 
Ms ~ 800GeV, fs ~ 185GeV for the p-like resonance. Notice that in this work we are 
also giving the results for the I = 2 channel. It is related to like-sign pai~ production of 
gauge bosons, where the signal to background ratio seems very favorable, has it has been 
pointed out in [17, 20]. In Figure 1 it can be seen that the results using the lAM may vary 
significantly from those without unitarization. For instance, in the QCD-like case even the 
qualitative behavior is completely different. Comparing with QCD data, the correct behavior 
is the one given by the lAM [11, 12]. 

Finally, in Figure 2, we show the position of the poles in the 2nd Riemann sheet. Figure 
2.a is the pole that appears in the (1, J) = (0, 0) channel when using the MSM parameters of 
Table 1. Figure 2.b is the one that appears in the vector channel when using the QCD-like 
parameters. Notice that the positions of the poles satisfy vs;;;z;,...... Mres +if res/2. 

3.2 The scalar and vector channels 

3.2.1 Saturation 

We have been paying an special attention to resonances, but there are other interesting 
features. In particular, it could happen that the amplitude saturates unitarity although 
there is no clear resonant shape. At this point is important to notice that the criterion of 8u 
crossing goo is only applicable to the cleanest cases. A resonance should be associated with 
a pole near the real axis which causes a steep raise in the phase shift. This pole reflects the 
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existence of an almost bound state. When there is no other phase background this leads to 
our naive goo criterion. In such cases we can apply the usual Breit-Wigner description and 
relate, as above, the resonance physical constants with the pole position. 

0 

-100 -100 

-200 -200 

-300 -300 

-400 -400 

-soo -500 

Figure 2.- Contour plots of the Imaginary part of the VL VL -+ VL VL chiral amplitudes. It has been 

extended continuously through the cut. Thus, above the real axis (straight line) is the first Riemann sheet, 

and below the second. a) Pole of the scalar resonance in the MH = lTeV MSM. b) Pole of the p-like 

resonance in the QCD-like channel. 

But it could well happen that there is a big phase shift background without a nearby 
pole. Then the phase -shift can cross goo and saturate unitarity but we will not see the 
sudden increase in the phase shift. That we will call "saturation". As a matter of fact such 
big background phases are also produced by poles, but they are very far away from the real 
axis. Then it is either possible to say that there is no resonance or a very broad one. That 
is for instance the case of the (I, J) = (0, 0) channel in 1r1r-scattering. That channel has a 
huge enhancement in the phase shift that grows very rapidly at small energies (see Figure 
1, which is a rescaled version). Such an enhancement has sometimes been interpreted as a 
resonance: the a particle. We will not address the a problem here. The only thing that is 
more or less clear is that such rapid enhancement should be produced by a pole [21] which 
is not very close to the real axis. Such a pole has been found using the lAM and ChPT in 
approximately the correct position [12]. 

The position of the poles in our amplitudes does obviously depend on the chiral parame
ters. Thus by varying L 1 and L 2 we can move the pole far away from the real axis and create 
such saturation effects. In Figure 3 in can be seen an example of that situation. Following 
the discussion above, the pole is much farther away from the real axis than those in Fig
ure 2. As a consequence, the Breit-Wigner relations between its position and the physical 
parameters of an hypothetical resonance, do not longer hold. Notice also that the pole has 
changed its orientation. 
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Figure 3.- On the left we show the phase shift of a channel displaying a "saturation" effect. For the same 

model we show on the right the contour plots of the Imaginary part of the amplitudes: Notice the change 

of the scale with respect to Figure 2. Observe that the pole is far away from the axis and has changed the 

orientation too. 

3.2.2 resonances in parameter space 

We have seen that the lAM and the chiral formalism yields reasonable results in both ref
erence models. Not only in terms of resonances but also in non resonant channels.· We 
have also shown how the different features are described accordingly to the requirements of 
analyticity and dispersion theory. Let us then explore the chiral parameter space in order 
to get a qualitative description of the possible EWSBS. 

In Figure 4 we show different contour plots in the L 1 , L 2 plane. We display the 10-2 to 
10-3 range, since generically we expect the parameters to be of that order. 

The contour plots have been obtained from the calculation ofthe phase shifts in a 60 x 60 
grid. Using these phase shifts, we have extracted two parameters: M, which is the energy 
at which b IJ = 90° and 

roe ( Md~~s)r (9) 

The interpretation of these parameters has to be made carefully. When f ~ M they 
correspond to the mass and the width of a resonance in the Breit-Wigner approximation. 
Otherwise, the situation is similar to our previous "saturation" example and M is just the 
point where the amplitudes saturate unitarity. In such case, f should not be interpreted as 
the width of a particle, although the saturation shape is broader for bigger f. In addition, 
M and f are not related to the pole position as in the Breit-Wigner formula. Remember 
from Fig.3 that the pole not only moves away from the real axis, but it also changes its 
orientation. 
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Figure 4.- Plots in the L1 , L 2 plane for the (1, J) = (0, 0) ·and (1, 1) channels. The plots on the left give 

contour levels of M. Those on the center giver. The dark grey areas stand for narrow (f < 4M) resonances. 

The light grey areas for broad·( M I 4 < r < 3M I 4) resonances and the black areas for saturation. White is 

no resonance or saturation below 3 TeV. The black circles stand at the values of L; that mimic a MSM with 

MH = 800, 1000 and 1200GeV. The black triangles represent QCD-like models with 3 or 5 colors. 

We are showing three plots for the (I, J) = (0, 0) and (1, 1) channels separately. The 
contour plot on the left shows the values of M. That on the center is a 'contour plot of f. 
In order to clarify the meaning of these parameters, but also to get a qualitative picture 
of the many possible strong scenarios, we have added a third plot on the right. The dark 
gray area corresponds to "narrow" resonances. For illustrative purposes, we define narrow 
as f < Ml4. Roughly, this is what it is usually understood ·by a resonance. Indeed, in QCD 
both the p(770) and K*(892) satisfy this criterion. The light gray area stands at those L1, L2 

values where we get a broad resonance. In this case, broad means f > M I 4 but even though 
the width is not very small, it is still possible to describe it with a pole and a Breit-Wigner. 
Obviously, if we make even bigger the f I M ratio the Breit-Wigner description is no longer 
valid. That happens more or less at about f > 3MI4 and at those points the black area 
starts, pointing the existence of a saturation effect. 
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3.3 The 1=2 channel 

We have already reviewed how the IAM in the chiral approach is able to reproduce the I = 0 
or I = 1 resonances of our reference models. In the literature, there have also been proposed 
models with I= 2 resonances (see [22] or [23] and references therein). However, they do not 
correspond to the kind of models that we are dealing with, since they always present light 
resonances or states. Indeed, in [22] two models were built with I = 2 resonances, one of 
them with elementary and the other with composite doubly charged states. In both cases 
their masses are M++ ~ 160GeV and there are also single charge states with M+ ~ 100GeV. 

Even more, the authors in [23] slightly modified the MSM including an I = 2 resonance. 
Using tree level unitarity, they found that the model does not make sense if its mass is bigger 
than "' 375GeV. That bound becomes even smaller as the scalar Riggs-like resonance gets 
heavier. In the literature there are no models with an I = 2 resonance and without light 
modes at the same time, that respect the custodial symmetry. 

Within our approach, we find a similar result but for the general case. As soon as an 
I = 2 resonant shape appears in the spectrum, the models do not make sense. Indeed, they 
present poles in the first Riemann sheet, within the lAM applicability region. 

3.3.1 Poles in the first sheet 

The (1, J) = (2, 0) phase shift is negative and that can give rise to several problems related 
to causality. In fact, saturation can also occur at 820 = -90°. However, if we apply blindly 
Eq.9, we get a negative value. Thus, even when lfl ~ M we cannot say that there is 
a resonance, since its width would be negative. From the analytical point of view, that 
situation corresponds to a pole in the 1st Riemann sheet, which is forbidden. 

As a matter of fact, the lAM yields poles in the first Riemann sheet of the (1, J) = (2, 0) 
amplitude. For instance, it is possible to find poles in t 20 in the 1st Riemann sheet at about 
~"' 3300 + i1750 and ~"' 4700 + i7000 for the QCD-like and MSM parameters of 
Table 1. However, in the chiral approach we are only allowed to use the lAM for energies 
Vs ~ 4rrv "' 3TeV. We should not worry about the lAM results outside that region, since 
it is not a good approximation there. These poles are well outside a circle of that radius in 
the complex plane and are not real predictions of the approach. In addition, when looking 
at pion physics, the description of 820 is correct with the lAM and qualitatively wrong (at 
high energies) with plain ChPT [11, 12]. 

The problem is that the position of those poles depends on L1 and L2. In fact, it is 
possible to bring them close to the real axis and then the amplitudes do not have a physical 
meanmg. 

Let us now recall that the chiral lagrangian does not meet all the requirements of a rela
tivistic QFT. It respects hermiticity, its amplitudes present a cut and an analytic structure, 
etc... but it is not renormalizable. It could well happen that, given a set of chiral param
eters, there is no underlying theory consistent with all the QFT requirements. That could 
be enough to yield poles in the 1st Riemann sheet. If we were able to develop a method 
to detect those poles, we could rule out that parameter set as unphysical. In the appendix 
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we have shown that the lAM is able to reproduce these poles when they are present in the 
underlying theory. 

The next step is to define how far these conflictive poles should be to accept the lAM 
results. Looking at the MSM and QCD-like examples, we notice that they are not a problem 
if they lie outside a 47rv = 3TeV circle in the complex plane. However, the lAM is a good 
approximation only near the real axis and thus the above criterion could be too strict. There 
is a much more intuitive criterion in order to exclude some values of L1 and L 2 • 

3.3.2 Wigner bound 

Indeed, there is a lower bound on the phase shift derivative due to Wigner [24]. Roughly it 
can be understood as follows: Phase shifts can be interpreted as the delay of the outcoming 
wave with respect to the incoming one. When it is negative, the outcoming signal is advanced. 
But that advance cannot be arbitrarily big. In the classical case, d8 I dk > - D, where D is 
the radius of the scatterer and k the momentum of the incoming particle. The wave nature 
of particles does allow for a small violation of the previous equation. Near a resonance, it 
can be shown that d8 I dk > - ( D + 1 l2k) [24]. For a general potential the definition of D is 
not so evident, but intuitively it has to be related to its effective size or range. Notice that 
this bound is valid for the elastic case. 

Let us then translate the above arguments to our problem. First, in VL VL scattering we 
are interested in the CM frame, where the momentum is q2 = sl4- mfv. Second, we have 
been using the f parameter instead of the slope. Using Eq.9 our previous bound, in the CM, 
reads 

2m 1 2 
lfl > MD+ m ~ Ml(87rv2) + 1 

M2J1-4m2JM2 · MJ1-4m2jM2 

(10) 

where in the last step we have used as D the scattering length of the t 20 wave, which is the 
one we are interested in. It seems to be a reasonable estimate of the effective size of the 
potential. We will have to check that our results respect this condition. To start with, both 
reference models satisfy it. Let us now see what happens for other L 1 , L 2 values. 

3.3.3 The lAM results 

In Figure 5 it is shown the result of applying the bound in Eq.10 to the lAM t 20 amplitude. 
The area in black represents the area excluded, whereas the white area is no saturation of 
unitarity. Notice that there is only a very narrow strip where the criterion is respected and 
saturation occurs. In this band, colored in grey, the saturation point M, is always reached 
above M > 2150GeV, with lfl > 1050. Surprisingly, the allowed M and f values are outside 
a 3TeV region. But that is again the first naive criterion of ispozel > 47rv. Thus, our allowed 
paremeters yield amplitudes that satisfy both criteria at the same time. In the cross section 
these M and f parameters would give a very broad shape of a resonance (although it cannot 
be interpreted as a particle) or a saturation effect. 
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Figure 5.- Contour plot in the L1 , L 2 plane. The black area is excluded using the slope criterion and the 

lAM. The shaded area indicates a broad saturation shape in the cross-section. In the white area there is no 

saturation below 3 Te V. 

4 Discussion 

In the previous sections we have obtained the resonance spectrum for the general strong 
EWSBS. Let us now review what is the physical meaning of the results in the different (1, J) 
channels: 

(0,0) Channel. Concer~ing the MSM, we have already remarked that the lAM yields a 
Higgs-like resonance. As it can be seen in Figure 4, its mass is always smaller than MH. As 
far as MH is the only relevant parameter, for a given resonance mass there is a fixed value 
of the width. With respect to QCD-like models, we do not get any resonance, but we get a 
considerable enhancement in this channel. This is the analogous of the cr particle problem 
in QCD. There is also a pole very far from the real axis and it does not saturate unitarity. 

In the general case, once we fix M we get a unique r too, since this channel only depends 
on the 8L1 + 5L2 combination. That is not in conflict with existing models where the mass 
and the width of a scalar resonance can be adjusted [23] independently. In those models, 
there are resonances whose masses are 0(100)GeV. In this work we are only studying 
those models without low lying resonances. In addition, we have simplified the calculation 
to lowest order in g. When further corrections are included, other Li come into play and 
different values would change r. Nevertheless these effects are weaker and the variations 
should be relatively small. 

Let us also notice that we can get narrow resonances, broad resonances and that satura
tion occurs when M ;c. 1500 (and then we cannot strictly speak of a mass). 

(1,1) Channel. Again there is only one r for every M, since this channel only depends on 
L2- 2L1 . In contrast with the previous channel, we can see in Figure 4 that there are narrow 
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resonances up to M ;S 2500. The values where we obtain a broad resonance are limited to 
a thin band, and we do not find what we have called "saturation" below 3 TeV. 

The lAM yields a clear resonance in the QCD-like models. It is very narrow although 
not as much as the real p. That is due to the fact that in QCD the GB (the pions) are 
proportionally more massive than their analogous here (the VL). It is also interesting to 
notice that vector like resonances become lighter when we assume more technicolors. As a 
consistency check, we do not get any resonance for the MSM. 

(2,0) ChanneL The interpretation of the results in this channel is more delicate. The 
lAM is only expected to work near the elastic cut. It has been tested in pion physics [12) 
and it yields the correct behavior in this channel. Nevertheless in ChPT it presents poles in 
the 1st Riemann sheet, although very far from the lAM applicability region. They cannot 
be considered predictions of the approach. However the position of these poles depends on 
the chiral parameters, and it is indeed possible to get them very near the axis. 

At this point we should remember that the chiral formalism is not renormalizable. It is not 
guaranteed that for every value of L1 and L2 there should be an underlying consistent theory. 
We have shown in the appendix that in case these inconsistencies caused the appearance of 
a pole in the 1st sheet, and close to the unitarity cut, the lAM should be able to reproduce 
it properly. Consistently, when these poles are present we violate Wigner's bound on the 
phase shift slope. This bound is respected when we take the poles very far away. 

We therefore consider the existence of those poles and the violation of the Wigner bound 
as a strong hint that the corresponding L 1 and L 2 are not allowed. In Figure 5 we have shown 
the corresponding excluded region and those values where we get a saturation of unitarity, 
which always occurs at M ~ 2000. In any case these parameters should never be understood 
as those of a resonance. Notice, once more, that the r parameter is fixed for a given M. 
That is due to the fact that this channel only depends on L 1 + 2L2 • 

The most striking consequence of this result is that there cannot be heavy I = 2 reso
nances unless some of our initial assumptions are violated. Similar conclusions where found 
when trying to build models with such I= 2 resonances [22, 23): it was not possible to make 
the I = 2 resonances heavy unless the other particles in the spectrum become very light. 
Even in that case, the I= 2 resonances were never bigger than ""375TeV. 

5 Conclusions 

In this work we have used the chiral lagrangian approach to describe, with basically two 
parameters, the symmetry breaking sector of the SM. Indeed, to any strong model respecting 
the custodial symmetry and without light resonances, should correspond a value of this two 
parameters. However, it is not ensured that for any two parameters there should be an 
underlying consistent theory. By means of the Inverse Amplitude Method, we have scanned 
this two dimensional parameter space in search for resonances or unitarity saturation effects. 

We have reviewed how this approach is able to reproduce the expected behavior of popular 
models like the Minimal SM or a QCD-like model. Within the expected parameter range, it 
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is possible to find narrow resonances, broad resonances or simply saturation of unitarity in 
both the I = 0 or I = 1 weak isospin channels. We have shown that the description of these 
resonances is consistent with the requirements of relativistic Quantum Field Theory. Indeed, 
they are accompanied by poles in the second Riemann sheet whose position is correctly 
related to the resonance mass and width. 

Concerning the I = 2 channel, we have found that imposing elastic unitarity through the 
dispersive approach leads, for some values of the parameters, to poles in the first Riemann 
sheet. We consider that as an strong hint excluding those values as unphysical. As a 
consequence, it does not seem possible to find heavy I = 2 resonances in models respecting 
the above assumptions. That is in agreement with previous observations concerning specific 
models with I = 2 resonances. Our result refers to the general strong scenario. Nevertheless, 
it seems still possible to have very broad shapes of unitarity saturation. 

We have summarized the above results in Figure 6. We have colored the excluded area 
in black. The white areas are labelled according to their unitarity features. There are two 
possible kinds of narrow resonances: a Higgs-like (H) or a technirho (p). By narrow we mean 
that the width is less than one fourth of the mass. We have denoted a broader saturation 
shape in the I channel, by SJ. Notice that, in contrast to the most popular models, it is 
possible to have two narrow resonances, a resonance in one channel and saturation in another, 
or saturation in two channels. Finally, the grey area correspond to those parameters that 
do not saturate unitarity below 3 TeV. For those models it is quite likely that the future 
colliders will not give even a hint on the nature of the electroweak symmetry breaking sector. 

Figure 6.- Resonance spectrum of the strong EWSBS in the £ 1 , L 2 plane. The black area .is excluded. On 

the white areas, we have represented broad resonances or saturation effects in the I channel by S1 ; Riggs

like narrow resonances by H and p-like narrow resonances by p. In the grey area there is no saturation of 

unitarity, nor resonances, below 3 TeV. The black dots represent the MSM with MH = 800,1000, 12000GeV 

and the triangles a QCD-like model with 3 or 5 technicolors. 
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A The derivation of the lAM 

In this appendix we will derive the lAM method using_ dispersion relations. Let us first 
remember that an elastic amplitude has a left and right (or elastic) cut and thus two Riemann 
sheets. A dispersion relation is nothing but Cauchy's Theorem applied to one of these sheets. 
As a technical remark, let us notice that our amplitudes are O(p4

) "' 0( s2 ). Hence, we will 
have to divide by s3 to ensure the vanishing of the closing integral contour at oo. That is, 
elastic chiral amplitudes satisfy 

(11) 

The Ci subtraction constants can be determined from the chiral approach. 
Of course we only know how to calculate t}~ and t}~ which is just a crude approximation 

to the _above relations 

a0 + a1s 

3 00 I t(l)( ')d I 

bo + b1s + bzs2 + ~){ m IJ 
8 ~ + LC(t}Y) 

7!" J(Ma+M13 )2 s'3(s'- s- u:) 
(12) 

Our aim is to obtain a much better description of the right cut. That is because resonances 
are understood as poles in the second Riemann sheet, which is obtained continuously from 
the cut. 

The relevant point is to realize that the inverse amplitude can be calculated exactly on 
the elastic cut. Indeed, using Eqs.5 and 6 we find on the right cut 

(0)2 

I t IJ _ _ t(o)z Imtu _ t(o)2 _ I t(I) 
m-- - - IJ - - IJ 0'- - m IJ 

iu I iu 1
2 

(13) 

Notice that we have normalized the inverse amplitude with the real factor t}~2 . Apart from 
the poles, this function has the same analytic structure of iu. Observe that the poles of iu 
are zeros of G and viceversa. Thus we can write 
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3 00 I t(l)( ')d I . - ::_ j m 11 8 ~ - LC(t(1)) +PC( G)~ t(o)- t(I) (14) 
7r (Mo+M.a)2 s'3(s'- s- zt) IJ IJ IJ 

where we have approximated LC(G) ~ LC(t}Y) and we have neglected PC( G). That is 

t(0)2 
t ,....., IJ 
IJ - (0) (1) 

t!J - t!J 
(15) 

Which is the lAM method. In the text we have already commented its advantages, but there 
are also some limitations: 

• We have only used elastic unitarity, and that limits the validity at high energies where 
the first twobody inelastic threshold appears [12]. 

• We have also neglected the pole contributions of G and thus we are not able to describe 
Adler zeros below threshold. 

• Finally, we have approximated the left cut of the inverse function by that of t(I). Hence 
we violate crossing symmetry. In addition we only reproduce the leading but not the 
subleading logarithms. 

Notice, however) that the expansion of the lAM at low energies is again the chiral expan
sion tu ,....., t}~ + t}~ so that the error in this approximations is O(s3

). At higher energies, 
the contribution from the left cut and poles below threshold become less relevant, dur to the 
( s' - s) factor in the deenominator. Their effect will be to change slightly the position of 
the resonance. In previous applications to ChPT it has been found that this shift is usually 
smaller than 15% [12]. As far as we are only interested in a qualitative description of res
onances, they will be neglected. Very recently, however, it has been proposed an improved 
version of the lAM [25], although it does not yield such a simple formula. That is why we 
will not use it here. 

Finally, let us remark that we have only needed the dispersion relation for the inverse 
amplitude as well as those for the approximated amplitudes, which do not have poles. Even 
if the theory is pathological and presents poles in the first sheet, the lAM derivation is still 
valid. These poles in the amplitude become zeros of the inverse amplitude and they do not 
change the analytic structure. We can thus use the very same expression of the lAM in 
Eq.8 to detect poles in the pt Riemman sheet. However, we st~ll have to remember that the 
approximations we have done limit the validity of the method to a region close to the elastic 
cut. Any feature, including poles, outside that region does not deserve any consideration. 
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