
LBNL-39387
UC-000

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

FMGN, RENUMN, POLY, TRIPOLY:
Suite of Programs for Calculating
and Analyzing Flow and Transport
in Fracture Networks Embedded
in Porous Matrix Blocks

J. Birkholzer and K. Karasaki
Earth Sciences Division

September 1996

•. -····

r
[JJ
z
r

0 I
0 w
"0 10
'< w

CD

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBNL-39387
uc- 000

FMGN, RENUMN, POLY, TRIPOLY:

Suite of Programs for calculating and analyzing flow and transport
in fracture networks embedded in porous matrix blocks

Theory, Design, User's Manual
and Sample Applications

Jens Birkholzer and Kenzi Karasaki

Earth Sciences Division
Ernest Orlando Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

September 1996

This work was supported by a NATO-Postdoctoral Scholarship, provided by the German Academic
Exchange Organization (DAAD}, Bonn, Germany, and by the Power Reactor and Nuclear Fuel Development
Corporation (PNC), Tokyo, Japan, through the U.S. Department of Energy Contract No. DE-AC03-
76SF00098.

-I-

FMGN, RENUMN, POLY, TRIPOLY:

Suite of Programs for calculating and analyzing flow and transport in
fracture networks embedded in porous matrix blocks

SUMMARY

This report describes a suite of programs developed at the Ernest Orlando Lawrence Berkeley
National Laboratory (Berkeley Lab) for simulating flow and solute transport in fracture networks
embedded in porous matrix blocks. The codes FMGN, RENUMN and TRIPOLY are extensions
of the older codes FMG, RENUM and TRINET developed at the Berkeley Lab, and references are
made to previous Berkeley Lab reports which describe those codes.

FMGN generates two-dimensional fracture networks, with any desired distribution of aperture,
length, and orientation. RENUMN renumbers the mesh of the fracture network to optimize the
bandwidth of the linear equation system to be solved in TRIPOL Y and creates the POLY and
TRIPOL Y input files of the fracture network. The finite element code TRIPOL Y solves for flow
and transport in two-dimensional fracture networks while fluid or solute exchange processes bet
ween the fractures and the porous matrix may be taken into account. The pressure or concentra
tion profile in porous blocks is assumed to be approximately perpendicular to the fracture matrix
interface; thus a one-dimensional mass balance equation can be applied for each block. The geo
metry of the porous blocks is described by a so-called proximity function. POLY calculates the
porous block geometry information for given fracture networks and generates the TRIPOL Y input
files of the porous matrix blocks.

The first section of this report describes the general background of TRIPOL Y and the theory of
treating the fluid and solute exchange between fractures and rock. The second section is a user's
manual for the programs FMGN, RENUMN, POLY and TRIPOLY. Note that the description of
FMGN and RENUMN is very short in this section. FMGN and RENUMN are relatively unchan
ged from the old codes FMG and RENUM, and only the differences between the old and new
versions are listed in this report. For work with FMGN and RENUMN we refer to the detailed
description of theory and design in BILLAUX et al. (1988) and the user's manual in BILLAUX et
al. (1989), respectively. For the other codes POLY (newly developed) and TRIPOLY (features
major changes compared to the old program version TRINET) a detailed user's manual is
enclosed in this report. It provides the user with sufficient information to run the programs. The
third section of this report comprises some sample problems as a tutorial.

Figure 1 gives a flowchart for the use of the programs in a typical application, and lists the data
sets needed for such an application. Listed are only data sets which are mandatory for running the
different codes. As indicated, some of these data sets have to be provided by the user. The other
data sets are automatically generated by the programs. It is felt that users who have some fami
liarity with the old codes FMG, RENUM and TRINET can successfully run the newly developed
suite of programs with the help of this report only. However, the report is not meant to be com
prehensive with regard to FMGN and RENUMN, and first-time users of these codes certainly

-II-

need the description of theory and design as well as the user's manual provided in BII...LAUX et
al. (1988, 1989). Also it might be useful to study the TRINET user's manual (SEGAN &
KARASAK.I, 1993) for some additional information with regard to TRIPOLY.

"CC
Cll ..
Gl

"CC
iii
c:
0
u
c:
0
iii

:E
"CC

FMGN
generates 20-fracture

networks

RENUMN
generates and optimizes
finite-element mesh for

fracture network

matrix diffusion

.POLY

calculates the matrix
block geometry

TRIPOLY

simulates flow and solute
transport processes in
fracture/matrix systems

data set provided
by user

LEGEND

data set provided
by another code

Fig. 1: Flow chart for use of programs

E
Cll -Ill >-
Ill

I!!
:I -u
I!!

"CC
Cll -as
u
c:
:I .. -..
0
Cll" -Cll
Q.
E
0
u ..
Cll = "ii
Cll
Ill
:I

-III-

Table of Contents

Summary

1

2

3

TRIPOL Y: Theory and Design

1.1 Introduction
1.2 A Short Note on the Lagrangian-Eulerian Solution Scheme
1.3 Fracture-Matrix Interaction

1.3.1 Conceptual Model for Matrix Blocks
1.3.2 Coupling the Fracture Network with the Matrix Blocks
1.3.3 The Solution Scheme
1.3.4 Proximity Functions

1.4 A Short Note on the Performance and Accuracy of TRIPOL Y

User's Manuals

2.1 Compiling and Running the Codes
2.2 FMGN
2.3 RENUMN
2.4 POLY

2.4.1 Code Structure
2.4.2 Input/Output Files

2.5 TRIPOLY
2.5.1 Changes Regarding Fracture Network Modeling
2.5.2 Changes regarding Fracture-Matrix Interaction
2.5.3 Input Files
2.5.4 Output Files

Sample Problems

3.1 Introduction
3.2 Example 1: Longitudinal Transport in a Single Fracture with

Transverse Matrix Diffusion
3.3 Example 2: Transport in a Complex Fracture-Matrix System

Acknowledgment

References

page

I

1

1
2
3
3
5
6
8

10

12
12
13
15
18
18
20
22
22
24
28
36

38
38

38
42

50

50

-IV-

List of Figures

page

1 Flow chart for use of programs I

2 One-dimensional concentration profile in matrix blocks 4

3 Defining matrix blocks in TRIPOL Y 6

4 Normalized interface function A(s)/ A0 for regular block shape 9

5 Proximity function Prox(s) and normalized interface function A(s)/A0 for
irregular blocks 10

6 Fracture system with all fracture segments and co~ducting segments only 13

7 Calculation of polygons defining the block geometry 19

8 Schematic of example 1 39

9 Fracture concentration for the TRIPOL Y results and the analytical
solution (TANG et al., 1981) 41

10 Fracture network of example 2 43

11 Concentration in the fracture network after 0.5 107s (57.9 days) 45

12 Average concentration in the matrix blocks after 0.5 107s (57.9 days) 46

13 Concentration in the fracture network after 3.0 107s (347.2 days) 47

14 Average concentration in the matrix blocks after 3.0 107s (347.2 days) 48

15 Tracer breakthrough curves 49

-v-

List of Tables

page

2.1 FMGN - lnpuUOutput Files 14

2.2 RENUMN - InpuUOutput Files 16

2.3 RENUMN- Input Variables in TRINET.INP 16

2.4 RENUMN- Description of Input Variables in TRINET.INP 17

2.5 POLY - lnpuUOutput Files 20

2.6 POLY- Input Variables in PROX.INP 21

2.7 POLY- Description of Input Variables in PROX.INP 21

2.8 TRIPOL Y - Input Files 29

2.9 TRIPOL Y - Input Variables in CTRL.INP 29

2.10 TRIPOL Y - Description of Input Variables in CTRL.INP 30

2.11 TRIPOLY- Input Variables in NODE.INP, ELMT.INP and NPN.INP 32

2.12 TRIPOLY- Description of Input Variables in NODE.INP, ELMT.INP
andNPN.INP 32

2.13 TRIPOLY- INPUT Variables in POLY.INP 34

2.14 TRIPOL Y - Description of INPUT Variables in POLY .INP 34

2.15. TRIPOLY- INPUT Variables in POLYMAT.INP 35

2.16 TRIPOLY- Description of INPUT Variables in POLYMAT.INP 35

2.17 TRIPOL Y - Output Files 37

-VI-

- 1 -

1 TRIPOLY: Theory and Design

1.1 Introduction

Fracture network models are useful tools for understanding the hydrology of fractured rock. Such
studies of fracture hydrology can be carried out by adopting a model for the network geometry,
estimating the statistical distribution of the appropriate geometric parameters through field mea
surements, and generating realizations of statistically identical networks. Once the geometry of a
particular realization is specified, flow and transport processes through the network can be
studied using adequate numerical procedures. A sophisticated tool for studying such processes is
the finite element code TRINET (KARASAKI, 1986; SEGAN & KARASAKI, 1993), developed
at the Berkeley Lab. Because it solves the advection-dispersion equation with a mixed Lagran
gian-Eulerian scheme combined with adaptive gridding techniques, it can handle very heteroge
neous fracture networks with minimal numerical problems such as artificial dispersion or oscilla
tions.

In most cases, fracture network models such as TRINET do not account for solute exchange bet
ween the fractures and the porous matrix. However, most of the capacity for storing a pollutant
in a fractured formation is provided by the pore system of the rock matrix. Due to the much
slower transport in the matrix, strong concentration gradients may occur from the fractures into
the porous blocks. This can lead to significant diffusive solute transfer between fractures and
matrix and may strongly influence the concentration field in a fractured porous formation. Many
workers have shown the importance of these matrix diffusion processes, and some attempts have
been made in the past to include fracture-matrix interaction in discrete fracture models . .
A straightforward method for handling fracture-matrix interaction is to discretize both the frac
tures and the matrix blocks, and simultaneously solve for flow and transport in the domain. The
fracture-matrix mesh generator FMMG, developed here at the Berkeley Lab, takes a two-dimen
sional fracture network and discretizes both the fractures (as line elements) and the matrix (as
triangles or rectangles) in the system being studied (OKUSU et al., 1989). An adequate numeri
cal tool, capable of handling both line and area elements (hybrid model), would then allow for
sophisticated flow and transport simulations. However, due to the strong heterogeneity of the
fractured porous medium, a very fine discretization is needed in the matrix blocks, especially at
the fracture-matrix interface. Thus,> simulation runs may become extremely costly in terms of
computer time and space; even for small-scale problems practical limits may be exceeded.

Other workers consider global flow and transport processes only for the fracture network, while
using simplified approaches for the fracture-matrix interaction. A very simple model is to work
with a retardation factor associated with the fractures. This approach, however, is not very exact,
since it is not able to describe the time-dependence of the fracture-matrix interaction. A better
representation has been achieved by simulating the local transport in the matrix with a simple
analytical solution for one-dimensional diffusion into a semi-infinite half-space (e.g. BIBBY,
1981). This approach is good at approximating the short-term response to perturbations when
steep gradients occur at the fracture-matrix boundary, but does not accurately describe the long
term behavior, since the accumulation of solute in matrix blocks of limited size cannot be
modeled.

-2-

In this report a new code TRIPOL Y is introduced which combines the powerful fracture network
simulator TRINET with a sophisticated numerical method to account for fracture-matrix inter
action. Following the above mentioned approaches, fractures and matrix blocks are treated as
two different systems, and the interaction is modeled by introducing sink/source terms in both
systems. It is assumed that flow and transport in the matrix can be approximated as a one-dimen
sional process, perpendicular to the adjacent fracture surfaces. Under that assumption, the geo
metrical shape of the individual matrix blocks can be described by so-called proximity functions,
which determine the fraction of matrix volume within a certain distance from the adjacent frac
tures. A direct solution scheme is employed to solve the coupled fracture and matrix equations.

The fracture-matrix interaction technique incorporated in TRIPOL Y has been successfully used in
the past for dual-continuum models (HUYAKORN et al., 1983; BIRKHOLZER & ROUVE,
1994). It has been shown that it is capable of accurately describing flow and solute transport in
arbitrarily shaped matrix blocks. The newly developed combination of the fracture network
simulator TRINET and the fracture-matrix interaction module allows for detailed studies of
plume spreading processes in fractured porous rock. Since no two- or three-dimensional discreti
zation of the matrix is needed, a remarkable saving of computer time and storage is achieved
compared to hybrid models for fractures and rock.

1.2 A Short Note on the Lagrangian-Eulerian Scheme in TRIPOL Y

Mixed Lagrangian-Eulerian schemes have been introduced in recent years to avoid numerical
problems in the solution of the advection-dispersion equation, especially in advection-dominated
problems (e.g. NEUMAN, 1984). The idea is to decompose the advection-dispersion equation in
two parts, one controlled purely by advection and the other by dispersion. The advected concen
tration profiles are calculated by Lagrangian approaches such as particle tracking methods,
whereas the dispersed concentration profiles are solved by conventional numerical techniques
(FDM, FEM) on Eulerian grids. Often, adaptive gridding schemes are combined with the advec
tion part, introducing forward moving particles around sharp fronts. However, numerical disper
sion may occur when the advected front is projected back to the fixed Eulerian grid. Further
more, the accuracy of results is dependent on the number of particles in the model.

TRIPOLY, based on the Lagrangian-Eulerian finite element code TRINET, features two major
improvements compared to the above mentioned methods. First, the advective tracking in the
fracture network is performed for nodal concentrations and not for particles. Therefore the num
ber of particles introduced in the model is not an issue. Second, numerical dispersion is mini
mized by creating new Eulerian grid points instead of interpolating the advected profile back to
the fixed Eulerian grid.

In TRIPOL Y the flow field in the fracture network is solved by a simple Galerkin finite element
method with linear shape functions. The flow can be either steady-state or transient. The advec
tion-dispersion equation for mass conservation is then decoupled into two parts, the advective and
the dispersive part. Note that the diffusive solute exchange between fractures and matrix blocks
is included in the dispersive part. Thus, the advective problem is first solved without taking the
retarding effects of matrix diffusion into account. Then, a correction is made in the second stage

- 3 -

while solving the dispersion equation. This procedure gives rise to some numerical dispersion for
large time steps.

The advection equation is solved using the method of characteristics. The concentration profile at
the end of the previous time step is the initial-value distribution for the new advection problem. ·
The profile is advected explicitly in the Lagrangian manner according to the velocity in each ele
ment. In a first step, single step backward tracki~g is applied to obtain an advected concentration
profile for all nodes. Then, forward tracking is performed in the vicinity of sharp fronts, and new
nodes are created when the tracked point does not correspond to a fixed node. This avoids the
use of some interpolation scheme when mapping back from the Lagrangian grid to the Eulerian
grid, and numerical dispersion is minimized. For both backward and forward tracking, a com
plete mixing procedure is applied at fracture intersections. If the sharp front has passed though
the area, the created nodes are not needed any more and can be eliminated. Of course, the
geometry of the fracture network itself has to preserved, and original nodes, which are located at
fracture intersections, cannot be eliminated. Thus, at every time step the element catalog has to
be revised and nodal points have to be renumbered to keep the bandwidth minimized.

The new concentration profile at the end of the advection stage becomes the initial value for the
dispersion-diffusion calculation in the second stage. The equation is solved with a standard
Galerkin finite element scheme and linear shape functions. Note that the simulation is performed
with the new Eulerian grid, which contains both the fixed nodes and the newly generated nodes.
The solute exchange between the fractures and the porous matrix is introduced in the dispersion
equation as a sink/source term, which can be calculated in advance in each time step. Thus, the
structure of the fracture network equation system is not changed, and a direct solution scheme can
easily be employed.

1.3 Fracture-Matrix Interaction

1.3.1 Conceptual Model for Matrix Blocks

In the following section, the theory of treating the fracture-matrix interaction shall be presented
only for the transport part, i.e. diffusion into the matrix. The flow problem is similar, but less
complicated and at this point we assume that it has been solved. The model at the present time is
limited to two-dimensional fracture-matrix systems; however, the approach can be extended
easily to three-dimensional problems.

As already stated, TRIPOL Y assumes that the global transport processes take place only in the
fracture network; the rock medium does not contribute to those processes. However, concentra
tion differences between the fractures and the matrix lead to a diffusive solute exchange at the
fracture-matrix interface and portions of the solute may be stored in the matrix pores. As the dif
fusive transport in the matrix is much slower than the advective-dispersive spreading in the frac
tures, it can be approximated as a one-dimensional process, perpendicular to the adjacent frac
tures. Under these assumptions, a one-dimensional mass balance equation describes the diffusive
transport in single matrix blocks (see Figure 2)

-4-

nMR M A(s) acM - nMDM i.(A(s) acM J= 0
A 0 at m as A 0 as

(1)

where eM is concentration in the matrix, nM is porosity, RM is the retardation coefficient, D~ is
the effective molecular diffusion coefficient and s is a local coordinate perpendicular to the adja
cent fractures. The local coordinate s is zero at the fracture-matrix interface, and has its upper
limit at s=S, which is the maximum orthogonal.distance of any location inside the block to the
nearest fracture. A(s) is the interface area for transport in the matrix blocks at a distances from
the surface. Hence, for s=O this area is equal to the contact area with the fracture (i.e. equal to the
surface area Ao of the matrix blocks), and for blocks of limited extent, it steadily decreases when
approaching the block center (s=S).

Fracture Porous Rock

s=O

Concentration
/ Profile

s=S

Fracture Block Center

Fig. 2: One-dimensional concentration profile in matrix blocks
'

Two boundary conditions are needed to solve the local fracture-matrix diffusion problem. First,
the concentrations in the fracture and in the matrix block are equal at the fracture-matrix inter
face:

Second, there is a zero-flux boundary condition at s=S, i.e. in the middle of the matrix blocks:

acM
--as-(s = S) = 0

(2)

(3)

These boundary conditions imply that the diffusion equations for individual blocks are indepen
dent from each other; the local concentration profile in the matrix is only affected by the concen
tration in the adjacent fractures. ,

After solving equation (1), the diffusive solute exchange per unit fracture wall area is obtained by
applying Fick's law at the interface between fractures and porous blocks

acM
WD =nMDM __

m as (4)
s=O

In fact, W 0 in equation (4) is the coupling term between the dispersion-diffusion equation of the
fracture network and the diffusion equation of the individual matrix blocks, respectively.

- 5-

1.3.2 Coupling the Fracture Network with the Matrix Blocks

The fracture network and the matrix blocks are coupled by the solute exchange term (4) which is
introduced as a sink/source term in the global dispersion equation system of the fracture network.
The dispersion equation for a single fracture can be written as follows

acF F a2cF (wm + wo2)
Tt-D ox' 2 + (2b) =O I

(5)

where cF is the concentration in the fracture, DF is the dispersion coefficient, (2b) is the fracture
aperture and x' is a coordinate defined parallel to the fracture axis. W 01 and W 02 are the diffu
sive losses into the matrix on fracture wall one and two, respectively. Since equation (1) does not ..
comprise global space derivatives, the solute exchange term (4) can be treated in a lumped man
ner in equation (5).

As stated in the previous paragraph, we describe the solute transport in each individual matrix
block by a one-dimensional diffusion equation. However, the assumption of only one concentra
tion profile being associated with each matrix block requires that all the fractures adjacent to that
specific block have a constant concentration value (according to boundary condition (2)). Of
course, this cannot be guaranteed in the numerical scheme. Furthermore, it would not be physi
cally plausible to assume that the concentration values in each fracture surrounding a matrix
block were identical. TRIPOL Y solves this problem by assigning a number of one-dimensional
concentration profiles to each block, depending on the number of finite element fracture nodes
located at the fracture-matrix interface of the block. Physically, all these profiles should have the
same concentration value in the center of the block. However, this requirement cannot always be
met since the different diffusion equations associated with a matrix block are solved indepen
dently, and the resulting profile is mainly influenced by the concentration at the fracture-matrix
interface. Our simulation results show, though, that the concentration differences at the block
centers are very small, and that the effect of such differences is negligible with respect to the
solute transfer between fractures and matrix blocks.

Figure 3 illustrates the concept of coupling the fracture network and the matrix blocks. Each
matrix block in the model area is defined by its material properties (such as porosity and molecu
lar diffusion), by geometrical parameters (interface function and block size S) and by its surface
polygon which is described by the node numbers of the surrounding fractures. At the same time,
each node of the fracture network is connected to a certain number of blocks (polygons), i.e. one
polygon for dead-end nodes, two polygons for moving nodes in between fracture intersections,
and more than two polygons for fixed nodes located on fracture intersections. Each of those
node-polygon connections is related to a one-dimensional concentration distribution in the
matrix. For each connection the solute exchange is calculated according to equation (4), and the
resulting exchange rate is introduced into equation (5).

The adaptive gridding scheme implemented in TRIPOL Y gives rise to some problems regarding
the fracture-matrix interaction. New nodes, which are created during the tracking procedure,
have to be connected to the adjacent polygons, and matrix concentration profiles have to be
assigned to those nodes. TRIPOL Y assumes that the matrix concentration profile of a new node
matrix connection can be obtained by linear interpolation from the matrix concentration profiles

-6-

associated with the next upstream node and the next downstream node. At the end of the advec
tion stage, each node of the fracture network is connected to matrix concentration profiles, which
become the initial values for the dispersion-diffusion calculation iri the second stage. Extensive
bookkeeping is needed to keep track of introducing and eliminating new nodes and related matrix
concentration profiles.

Fracture Porous Rock

Fracture Network
Node 109

Matrix
Concentration

/ Profile

Node-Polygon-Connection

Matrix Input Parameters in TRIPOL Y:

material properties:

geometry:

e.g. porosity, molecular diffusion coefficient

surface polygon (here: 67; 33; 34; 1 09; 78; 48)
interface function, maximum orthogonal distance S

Fig. 3: Defining matrix blocks in TRIPOLY

1.3~3 The Solution Scheme

Each individual matrix block in the domain is associated with a certain number of one-dimen
sional diffusion equations, describing the local transport in the matrix. As the concentration pro
files in matrix blocks do not directly affect each other, the different diffusion equations are inde
pendent. However, each of these equations is coupled to the advection-dispersion equation of the
fracture network via the solute exchange terms W0

. Two different numerical solution procedures
can be chosen for the coupled equation system of fractures and matrix:

1. The two media are discretized and solved separately. The coupling may require iterative
procedures, unless efficient direct solution schemes are available .

. 2. The two media are discretized simultaneously and directly solved in one equation system.
However, this equation system would be much bigger than in 1 and might easily exceed the
available computer memory. ·-

TRIPOL Y uses the first solution procedure and features a direct solution technique which was
originally proposed for dual-porosity models (HUYAKORN et al., 1983; BIRKHOLZER &
ROUVE, 1991). '

At each time step, the independent matrix diffusion equations associated with each fracture node
are solved prior to the solution of the dispersion-diffusion equation of the fracture network. Thus,

-7-

the fracture concentrations of the current time step are still unknown at this stage, which means
that boundary condition (2) is unknown and must be treated as variable. However, as shown
later, it is possible to evaluate the mass transfer term (4) with a linear dependence on the
unknown fracture concentrations. Then, the mass transfer terms of all nodes are inserted into
equation (5) and a linear solver can be applied to obtain the nodal concentrations of the fracture
network. Finally, the concentration profiles of the porous matrix blocks are evaluated by a back
ward substitution.

In the following paragraph, the solution procedure will be described briefly. The individual
matrix diffusion equations are solved by a one-dimensional standard Galerkin finite element pro
cedure. Since this method is widely used in groundwater hydraulics, it will not be explained in
this report. Application of the Galerkin technique to equation (1) finally yields a tridiagonal set
of equations for each matrix block which can be represented in the following manner

b1 c1 0 0 0 eM
I d1-wF

a2 b2 c2 0 0 eM 2. d2
0 a3 0

0 0 • eM n = dn (6)
0 CN-2 0

0 0 bN-1 CN-1
M

eN-1 dN-1
0 0 0 aN bN eM N dN

e~ is the current value of concentration .at node n of the one-dimensional solution domain, N is
the number of nodes in the domain and an, bn, Cn and dn are known coefficients. Node number 1
is associated with the block surface (i.e. s=O) and boundary condition (2), node N is associated
with the center of the block (i.e. s=S) and boundary condition (3). Linear basis functions are used
with an implicit finite difference approximation for the time integration. An exact spatial inte
gration is performed for the element matrices, which means that A(s) is treated as a function
rather than a constant value in each element. Since both the basis function and the interface
function are polynomials of s, an analytical integration can easily be performed. The coefficients
an, bn and Cn on the left-hand side of the equation system comprise components of the first and the
second term in equation (1), respectively. The coefficients dn on the right-hand side comprise
components of the first term_in equation (1), multiplied with the concentrations of the old time
step.

W1° denotes the solute exchange between the fractures and the matrix per unit interface area,
associated with node J in the fracture domain. According to boundary conditions (2) and (3), an
inflow/outflow of solute is only possible at node 1 of the matrix domain, i.e. at the fracture
matrix interface. Both the value of the solute exchange and the nodal concentrations are un
knowns at this point.

Using the general Thomas algorithm (THOMAS, 1949), one can factor the tridiagonal matrix into
a product of lower and upper bidiagonal matrices and perform a forward elimination. After set-
ting WN=bN, the following steps are performed '

- 8-

un =an /wn, for n=N, 2

wn =bn -C
0
U

0
_ 1, for n=N-1, 1

for n = N -1, 2

For n=1 and knowing that g 1=e~, one finally obtains the following expression for W1°
wF = d1 -w 1e~ -c1g2

(7a)

(7b)

(7c)

(7d) '

(8)

Using boundary condition (2), the unknown concentration of the first matrix node C~ in equation
(8) can be replaced by the unknown concentration e1 of fracture node J. Apart from this concen
tration value, all remaining coefficients in equation (8) are known quantities. Inserting (8) into
equation (5) and performing this procedure for all node-polygon connections eventually gives an
equation system for the fracture domain which can be directly solved for the current values of the
fracture concentrations. Once the fracture concentrations C1 are obtained, the one-dimensional
concentration distributions in the matrix blocks can be readily determined by performing a back
ward substitution as follows

e~ =ef (9a)

e M -g b eM for n=2,N n - n- n n-1' (9b)

This completes the solution cycle for the present time step.

1.3.4 Proximity Functions

According to the one-dimensional diffusion equation (1), interface functions A(s) have to be pro
vided, which define the interface area for diffusive transport at a distance s from the block sur
face. For blocks of limited extent, such an interface function would be equal to the block surface
at s=O, and would steadily decrease when approaching the block center (s=S).

In TRIPOLY, interface functions for each block are defined following the concept of proximity
functions, which was originally proposed by PRUESS & KARASAKI (1982). The proximity
function Prox(s) expresses the total fraction of matrix volume V(s) within a distance s from the
adjacent fractures, divided by the total block volume V

Prox(s) = V(s)N (10)

For regularly shaped blocks, proximity-functions can easily be derived from analytical expres
sions. For example, a square matrix block of side length ~ has a proximity function

Prox(s)=4s/a-4s2/a2
.

-9-

A rectangular matrix block with side lengths a and b (while b = 2a) has a proximity function

Prox(s)=3s/a-2s2/a2
•

In both cases the coordinate s is defined from s=O to s=a/2.

The interface area for diffusive flux in the matrix is simply the derivative of the proximity-func
tions, multiplied with the total block volume

dV(s) dProx(s)
A(s) =--= V----'--'-

ds ds
(11)

In TRIPOLY, the interface function is divided by the actual surface area Ao of each matrix block
to normalize the values. Then, according to equation (11), the normalized interface function for
the square matrix block and the rectangular matrix block would be

A(s)/A0 = (4a-8s)/(4a) and A(s)/A0 = (6a-8s)/6a,

respectively. Note, that in the first case the value of the normalized interface function at the
block center (s=a/2) is equal to zero, in the second case, however, it is equal to 1.0/3.0 (see Figure
4). Consequently, then, the diffusive transport behavior in the block is different for the two cases.

a 2a

A(s=a/2) /A(s=a/2)
\

a 0 a
ts s

A(s)/A0 = (4a-8s)/4a A(s)/Ao = (6a-8s)/6a

O<s<a/2 O<s<a/2

Fig. 4: Normalized interface function A(s)/A0 for regular block shape

For irregular blocks, a random procedure is needed to derive proximity functions. A number of
points are randomly distributed in each block, and the orthogonal distance to the nearest fracture
is measured. The value of the proximity-function at the coordinate s is then given by the fraction
of points within a distance s from the fracture surfaces, divided by the total number of points.
Finally, the results of the random procedure are approximated by a best-fit-polynomial (see
Figure 5). Such a polynomial has to be determined for each matrix block.

All the geometrical information needed for describing the porous matrix blocks is determined
within the preprocessing code POLY. TRIPOL Y reads the results of the preprocessing procedure
(such as proximity functions, block sizes etc.) and automatically calculates the ihterface func
tions.

Note that the concept of proximity function was originally introduced to describe the characteris
tic geometry of a large number of matrix blocks. This is needed, for example, in the case of dual
porosity models for fractured porous formations when averaged (equivalent continuum) parame
ters have to be supplied for a given subdomain. In this case, the above described random proce
dure would simply be performed for all the blocks at the same time (rather than performing it for

- 10-

each block separately), and one proximity function would be calculated describing the averaged
geometry of all blocks in a given subdomain.

Number
of Points Prox(s)

Random
Points

A(s)/Aa

1.0 ---------------------------························:

s=O s=S

-Derivative

Fig. 5: Proximity function Prox(s) and normalized interface function A(s)/~ for irregular blocks

1.4 A Short Note on the Performance and Accuracy of TRIPOL Y

The numerical solution of advection-dispersion processes in fracture-networks is a complex task,
since natural fracture networks are very heterogeneous with regard to flow velocities. In some
fractures transport may be advection-dominated (hyperbolic type), with an almost sharp front
moving through the system, while transport in other fractures may be diffusion dominated
{parabolic type). Most conventional numerical solution techniques are well-suited to handle
either hyperbolic equations or parabolic equations, but not both simultaneously. Thus, many
existing numerical models may, if not carefully used, give rise to inaccuracies in form of unwar
ranted oscillations or the smearing of steep concentration gradients. For example, if conventional
Eulerian schemes are chosen to solve the advection-dispersion equation, the discretization in
space and time must be designed using constraints defined by the dimensionless Peclet number,
Pe = Ua~, and the dimensionless Courant number, Cou = (v dt)IL, where Lis the length of a
fracture element, a, is the longitudinal dispersivity, vis the advective velocity, and dt is the time
step. Often, a Peclet number smaller than 2, and a Courant number smaller than 1 are recom
mended to avoid numerical inaccuracies. Thus, in case that the velocity is large and the disper
sivity is small, these constraints gives rise to very small element lengths and time step sizes,
making the computation, very inefficient. Conventional Lagrangian schemes are more efficient in
that they do not require these constraints; however, they can not handle diffusion type equations.

- 11 -

In contrast to the above solution schemes, Lagrangian-Eulerian methods such as the one incorpo
rated in TRIPOL Y are capable of handling Peclet numbers from 0 to oo with negligible oscilla
tions and numerical dispersion, while using large time steps with Courant numbers well in excess
of 1. However, due to the nature of Lagrangian-Eulerian schemes, the performance and accuracy
of TRIPOL Y somewhat depends on the temporal and spatial discretization of the problem, and on
the appropriate c~oice of different control variables (see Section 2.5.3). For example, the user
provided variable DCON defines a threshold concentration difference to decide whether in case
of sharp gradients a new moving node has to be originated between two existing nodes. If DCON
is too large, the computation may become inaccurate, because new nodes, which would actually
be needed, are not introduced. If DCON is too small, the computation may become inefficient,
because new nodes are introduced, which are not needed for obtaining an accurate solution. It is
strongly recommended that the sensitivity of user-provided control variables is studied in each
particular application, to (1) get a better feeling for the impact of these variables and (2) to opti
mize the performance and accuracy of the model.

Our experience shows that TRIPOL Y allows for an efficient and accurate simulation of solute
transport in discrete fractured-matrix systems, for a wide range of applications and a wide range
of Peclet and Courant numbers. Only if the diffusive exchange between fractures and matrix is
very strong compared to the advective-dispersive transport in the fractures, the user must pay
some attention to the time step sizes used. This is because the interaction between fractures and
matrix blocks is included in the dispersive part, i.e. the advective problem is solved without
taking the retarding effects of matrix diffusion into account. Thus, if time steps are very large, a
solute plume might travel a long distance in the fracture network within the advective step, and
then it is be pulled back in the dispersive step by the effect of matrix diffusion. This can give rise
to numerical dispersion. Therefore, the user should routinely check whether the concentration
values obtained in the advective step are very different from the final concentration values after
the dispersive step .. If that is the case, the sensitivity of the results should be checked for different
time step sizes.

- 12-

2 User's Manuals

2.1 Compiling and Running the Codes

FMGN, RENUMN, POLY and TRIPOLY are written in FORTRAN 77. The codes have been
compiled on a variety of machines. In the light of modern compilers and the fairly standardized
input/output of FORTRAN 77 only minor changes are necessary in porting from one machine to
the next. In general these changes will not be noted in this document. The release version of the
code was compiled and executed on a SUN Spare Workstation.

FMGN and RENUMN are compiled with the use of a Makefile. This is a case specific file used
by the UNIX make program, which facilitates compiling, linking, and loading of an executable
for which numerous smaller modules are involved. As is the case with FORTRAN 77, the make
utility will be the same in scope from one UNIX operating system to the next, but details may
change.

As all the subroutines in POLY and TRIPOL Y are comprised in one file rather than in numerous
modules, compiling and linking need not to be done with a make procedure. The user may run
the standard compiling and linking procedures provided by the particular machine.

The dimension of arrays in the codes is determined in an external common block (COM
MON.BLK) which is loaded into the different subroutines by the include statement. The dimen
sion should be adjusted from case to case according to the size of the problem which is to be sol
ved. Generally, this can be done by changing maximum variables which are given in the para
meter statement in COMMON.BLK. The names of these variables indicate their function, e.g.
MAXNO is the maximum number of nodes of the fracture mesh, MAXEL is the maximum num
ber of elements, MXPLY is the maximum number of blocks (polygons) etc. Note that the frac
ture-matrix interaction modules in TRIPOL Y .require large arrays to store the matrix properties
and variables. Thus, the maximum polygon number MXPL Y should be chosen carefully to avoid
an unnecessarily large assignment of computer storage.

If problems are encountered when attempting to build an executable code, either with FORTRAN
77 or the Makefile characteristics, feel free to contact the authors of this report. However, in
many cases local machine documentation will very likely indicate the minor changes necessary to
insure proper building of the executable. In the case that serious errors are detected, please notify
the Technical Contact at once.

- 13-

2.2 FMGN

The new version FMGN is similar to the fracture mesh generator FMG, which is widely used
within the Earth Sciences Division of the Berkeley Lab. FMG generates fractures as line discon
tinuities in a two-dimensional space, with any desired distribution of aperture, length, and orienta
tion. The locations of these fractures can be either specified or generated randomly. The inter
sections of these fractures with each other, and with the boundaries of a specified flow region, are
determined, and a finite element network is output. The theory and design of FMG is described
in Bll...LAUX et al. (1988). Another Berkeley Lab report (BILLAUX et al., 1989) serves as a
user's manual and lists input data sets, input variables and their formats.

Only minor adjustment have been made in FMGN compared to the old code FMG. Generally,
natural fracture systems comprise a network of conducting fracture segments, which at both end
points connect to either the conducting network or to the domain boundary, and a number of non
conducting fracture segments, which connect only at one end-point (see Figure 6). We refer to
these non-conducting segments as "dead-ends". Since the fluid velocity in dead-ends is zero, they
can only be contaminated by diffusive processes. Often· their impact on solute transport in natural
fracture networks is negligible, so that in most simulation runs only the conducting network will
be considered. Therefore the old code FMG offers the choice of generating fracture systems with
or without dead-ends, depending on the user-defined input variable IKEEP. However, the algo
rithm for calculating the matrix block geometry used in POLY requires a complete fracture sys
tem with all fracture segments including dead-ends, even when the solute transport simulation in
TRIPOLY is done for the conducting network only. Therefore the new version FMGN always
generates a fracture system with dead-ends, regardless of the input variable IKEEP. If for the
simulation with TRIPOL Y desired the elimination of dead-ends can be performed at a later stage
using the code RENUMN. Note that both codes FMG and FMGN automatically eliminate isola
ted fracture segments or fracture clusters which are not connected to the conducting network at
all.

all fracture segments

!dead-end I

Fig. 6: Fracture system with all fracture segments and conducting segments only

- 14-

While the input data sets for FMGN are exactly the same as for FMG, minor changes are made in
the output data sets. Since certain simulation or visualization software is not in use anymore,
some output data sets of the original FMG version are not generated by FMGN (e.g.
LINESGR.DAT, LINESOO.DAT and LINESnn.DAT). FMGN assumes that the input variable
IPLOT is set to 0~ even if the user sets it to a different value. All input data sets, variables and
formats are described in BILLAUX et al. (1989). A list of the input/output data sets is given in
Table 2.1. Input files in bold letters are mandatory, the other input data sets are only needed for
certain options.

Table 2.1 FMGN- Files

FMG.INP Input All input data for fracture mesh generation

SUBREG.DAT Input 7 May contain part ofFMG.INP information

FRAC.DAT Input 8 All primary fracture system data (no random
generation)

STUDY.DAT Jnput 20 May contain part of FMG.INP information

RENUMGR.DAT Output 4 Header for generation region

RENUMOO.DAT Output 4 Header for first flow region

RENUMnn.DAT Output 4 Input data for RENUMN for flow region on

FRAC.TXT Output 5 Lists certain information about fractures

FMG.OUT Output 6 Statistics on fracture sets

FRAC.DAT Output 8 All primary fracture system data, may be
used as input

CONNECTIONS Input/Output 50 Number of runs for which a connected

- 15-

2.3 RENUMN

The new version RENUMN is similar to the line network optimizer RENUM, which is widely
used within the Earth Sciences Division of the Berkeley Lab. RENUM reads the input generated
by FMG, merges nodes very close to each other, removes dead-ends (if desired) and renumbers
the nodes in order to minimize the bandwidth of the equation system. Two Berkeley Lab reports
(BILLAUX et al., 1988, 1989) describe the theory and design of RENUM and serve as a user's
manual.

The original version of RENUM has been changed with regard to the treatment of dead-end frac
tures. While RENUM either discards dead-ends or keeps them depending on the value of the
user-specified input variable IKEEP, RENUMN generates both types of fracture networks,
regardless of IKEEP. The node and element information is written to NODE.TRUNC,
ELMT.TRUNC for the truncated network and to NODE.ALL, ELMT.ALL for the complete net
work. This change has been made since POLY needs a complete fracture network for calculating
the porous block information. After running RENUMN the data sets NODE.TRUNC and
NODE.ALL have different node numbering due to the effort of minimizing the bandwidth. In
order to relate the nodal information of both networks, the data sets contain the old node number
of the FMG input data set RENUMnn.DAT. Negative old node numbers in NODE.ALL indicate
that this node is a dead-end node and is discarded in NODE.TRUNC.

Most input data for RENUMN are provided by FMGN, contained in the file RENUMnn.DAT.
The numbering nn stands for different flow regions which can be defined inside of the model area
within FMGN. While running RENUMN, the user is interactively asked which of the different
flow regions should be chosen for the network optimizer. No. 1 would relate to RENUMOl.DAT
(i.e. the first flow region), No.2 to RENUM02.DAT, etc. However, in most cases only one flow
region is assigned in FMGN.

Another input data set that gives some general information on the material parameters of the
fracture network (e.g. specific storage and dispersionldispersivity; values for density, dynamic
viscosity and gravity, the latter needed to calculate fracture transmissivities) must be provided by
the user. This data set is called TRINET.INP and replaces the data set INTER.INP of the pre
vious version RENUM. If TRINET.INP does not exist on the current work directory, RENUMN
uses default values for the material properties.

As mentioned above, RENUMN generates four output data sets, NODE.TRUNC, ELMT.TRUNC
for the truncated network and NODE.ALL and ELMT.ALL for the complete network. The values
for specific storage and dispersionldispersivity (provided in TRINET.INP) are written as spatially
constant 'default' element properties into ELMT.TRUNC and ELMT.ALL. However, the user
may change these data sets and provide different values for each element. The transmissivity of
each element is computed according to the cubic law which considers the actual width of the
fracture. Again, the user may eventually change these values before running simulations with
TRIPOLY. Some data sets like LINESxx.DAT, LINEL.INP or CTRL.INP, which were written
by the old program version RENUM, are no longer generated.

- 16-

The initial conditions and the boundary conditions for the flow and transport problem are deter
mined in file NODE.ALL and NODE.TRUNC (see Section 2.5.3). The user can provide informa
tion about the flow boundary condition in file FMG.INP, which is the input data set for the frac
ture mesh generator FMGN (see BILLAUX et al., 1989). For example, each side of a rectangular
model area can be associated with either constant fluxes, constant heads or a constant linear dis
tribution of head. The flow boundary information created by FMGN is used as input for
RENUMN and written into NODE.ALL and NODE.TRUNC. The transport boundary conditions,
however, usually vary from problem to problem (e.g. line source, point source, source on boun
dary or inside of model area); the same is true for the initial conditions. Therefore, this informa
tion cannot be specified in FMG.INP. Instead, the user must either adjust subroutine triout in
RENUMN which writes the output data sets, or directly set the boundary conditions in
NODE.ALL and NODE.TRUNC by editing them.

Table 2.2 provides a list of all input and output files for RENUMN. Bold input file names indi
cate that the data set is mandatory. Table 2.3 lists the input variables of TRINET.INP and their
formats. These variables are described in Table 2.4. All other input data sets, variables and for
mats are described in BILLAUX et al. (1989).

Table 2.2 RENUMN - Input/Output Files

RENUMnn.DAT Input 1 Input data for RENUMN written by FMGN

TRINET.INP Input 3 General information specifying material
parameters

NODE.TRUNC Output 9 Node information for truncated network

ELMT.TRUNC Output 10 Element information for truncated network

NODE.ALL Output 9 Node information for network with dead-ends

ELMT.ALL Output 10 Element information for network with
dead-ends

RENUM.ERR 11 Run-time error

Table 2.3 RENUMN- Input Variables in TRINET.INP

TITLE2
RHOR, RMUR, GRA VR

DIS PC

3
3
3

- 17-

Table 2.4 RENUMN- Description of Input Variables in TRINET.INP

DISPC Dispersion coefficient or longitudinal dispersivity in fracture elements. Default value
is 0.0 m2/sec or 0.0 m, respectively.

GRA VR Gravitational constant. Default value is 9.8067 rn/sec2
.

RHOR Density of fluid. Default value is 1000.0 kg/m3
•

RMUR Dynamic viscosity of fluid. Default value is 0.001 kg/(m sec).

SSUBS in fracture elements. Default value is 0.0 m·1
•

Sample data set:

TEXT
RHOR =l.OOOOE+03 RMUR =l.OOOOE-03 GRAVR =9.8067E+00
SSUBS =O.lOOOE-04 DISPC =S.OOOOE-02

- 18-

2.4 POLY

2.4.1 Code Structure

The preprocessing code POLY calculates the geometrical properties of the matrix blocks in a
given fracture network. POLY is only needed for TRIPOL Y simulation runs when the fluid or
solute exchange between the fracture mesh and the porous matrix shall be taken into account.
The porous matrix blocks are described by polygons, defined by the node numbers of the sur
rounding fractures. Usually the nodes and elements of the fracture mesh are related to more than
one polygon. TRIPOL Y assumes that flow and transport in the matrix can be approximated as
one-dimensional processes, perpendicular to the fracture surfaces. Thus the shape of the matrix
blocks is given by the maximum orthogonal distance of the block center to the fractures plus the
so-called proximity function which is provided as a polynomial of user-specified grade.

The algorithm in POLY starts by extending dead-end fractures until they intersect either another
fracture or the flow region boundary. This process ensures that the polygons formed by fractures
and fracture extensions have a simple convex shape and can easily be determined. The subrou
tines for extending the fracture ends and defining convex polygons are taken from the code
FMMG (OKUSU et al., 1989) which is used for discretizing two-dimensional fracture-matrix
systems. However, these simple polygons define only parts of the original matrix blocks; i.e.
parts which are separated from each other by the extended fracture ends. Thus, in the next step,
polygons sharing the same extended fracture section are connected, the extended sections are
truncated and new, complicated polygons are created. Finally, all matrix blocks in the flow
region are defined by the node numbers of the surrounding fractures and their coordinates (see
Figure 7).

The second major part of POLY determines the geometrical shape of the matrix blocks, given by
the proximity function and the maximum orthogonal distance between any location inside of a
block and the nearest fracture. For regularly shaped blocks, such as triangles or rectangles, the
proximity function and the maximum distance are derived from analytical expressions. For com
plicated blocks, however, a random procedure is needed. A given number of points is randomly
distributed inside of each block, and the orthogonal distance to the nearest fracture surface is
determined. The value of the proximity function at coordinate s is then _given by the fraction of
points within the distance s from the fracture surfaces. An approximation procedure after PRESS
et al. (1986) is finally applied to determine a best-fit-polynomial of given grade; the derivative of
that polynomial defines the interface function.

For matrix blocks of very complicated shape, the best-fit polynomial may not increase steadily
from s=O to s=S. In such cases, the interface function, as a derivative of the proximity function,
would have negative values, and components of the element matrices in the one-dimensional
Galerkin finite element approximation of equation (1) would become less than zero. To avoid
such numerical problems, POLY features an automatic check for the calculated best-fit polyno
mials. If a problem arises for a certain polygon, a warning is written on the screen, and POLY
assumes the shape of the block to a square. Then the proximity function is calculated by analyti
cal means. The size of the square is equal to the size of the original block to guarantee mass con
tinuity. The user should make sure that this substitution does not happen too often~ since the

-19-

actual block shapes are not exactly represented. Sometimes, increasing the number of random
points or changing the grade of polynomials improves the best-fit analysis.

Step 1:

-extend dead-end fractures
-define convex polygons

Step 2:

1

polygon 1:
polygon II:
polygon Ill:
polygon IV:

- connect convex polygons
- create complicated polygon

1 6

1' 2, 10, 8, 9
2,~11, 13,12,8, 1G
3,4,5, 13,11
5,6, 7,8,12,13

polygon with dead-ends: 1, 2,'3, 11, 3, 4, 5, 6, 7, 8, 12, 8, 10, 8, 9
polygon without dead-ends: 1, 2, 3, 4, 5, 6, 7, 8, 9

Fig. 7: Calculation of the polygons defining the block geometry

-20-

2.4.2 Input/Output Files

• Input

POLY needs the input files NODE.ALL and ELMT.ALL, since the algorithm foF calcu
lating the polygons is based on the existence of dead-ends. Nevertheless, the user may
choose whether the output polygons and proximity functions should include dead-end
fractures, depending on what is to be simulated in TRIPOL Y. In many cases, the impact
of dead-end fractures on solute transport in fractured porous formations can be neglec
ted. The structure of NODE.ALL and ELMT.ALL is the same as for the TRINET -input
data sets NODE.INP and ELMT.INP which are described in Section 2.5.3.

Besides NODE.ALL and ELMT.ALL, POLY needs the input file PROX.INP. This
data set contains a number of control variables for the generation of polygons and
proximity functions. Moreover, initial values for the porous block material parameters
are provided. They are written as spatially constant 'default'- values into the output data
set. The user may eventually change the output data set and provide different values for
each matrix block when a heterogeneous system is to be modeled.

• Output

POLY writes two AS CIT- output files which can be used directly as input for TRIPOL Y.
POLY.INP contains the nodal information for each polygon, POL YMAT.INP contains
material parameters and the coefficients of the proximity polynomials. Both data sets,
variables and formats are described in Chapter 2.5.3.

Two more data sets, GRAFICS.SCI and GRAFICS.SCR (unformatted), are generated
which can be used for the graphical output of matrix simulation results in TRIPOL Y.
They are not needed for the simulation process itself.

Table 2.5 provides a list of all input and output files for POLY. Bold input file names indicate
that the data set is mandatory. Table 2.6 lists the variables of PROX.INP, which are described in
Table 2.7.

Table 2.5 POLY B Input/Output Files

PROX.INP Input General information, control variables
'-

NODE.ALL Input 1 Node information for network with dead-ends

ELMT.ALL Input 2 Element information for network with
dead-ends

POLY.INP Output 3 Nodal information for polygons

POL YMAT.INP Output 10 Material parameters for polygons

GRAFICS.SCI Output 1 . Geometry of matrix blocks needed for
GRAFICS.SCR visualization

TEXT
TEXT
TEXT

Table 2.6

-21-

POLY- Input Variables in PROX.INP

a80
a80
a80

INET, IRANF, NMAX, DSEED
NDISC, NGRAD
(LDISC(M),M= I ,NDISC)
SSP,XKM

5x,3(i5, I Ox),fl 0.0
5x,2(i5, lOx)
lOiS
2(1 Ox,fl 0.0)
3(10x,f10.0) XPOR, XDIF, XRET

Table 2.7 POLY- Description of Input Variables in PROX.INP

INET

IRANF

NMAX

DSEED

NDISC

used to control the type of network considered
0 polygons for network without dead-end fractures
1 polygons for network including dead-ends

used to control the random number generation
0 random choice of start-up value for generation

(actual time used as start-up value)
1 read start-up value DSEED to duplicate previous run

number of random points for calculating proximity function

start-up value for random number generation

number of elements for 1D-FE discretization of porous matrix blocks
(must be smaller than 15)

I
I
I
I

NGRAD

LDISC(M)

SSP

grade of polynomial for approximation of proximity function (must be smaller than 10)

relative values for discretization of matrix blocks

XKM

XPOR

XDIF

XRET

specific storage of matrix blocks

hydraulic conductivity of matrix blocks

porosity of matrix blocks

molecular diffusion coefficient in matrix blocks

retardation factor in matrix blocks

Sample data set:

TEST DATA SET
TEXT LINE 2
TEXT LINE 3
!NET 0 IRANF 1
NDISC 8 NGRAD 5

1 2 5 10 20
SSP O.OOOOE-00 XKM
XPOR O.SOOOE-01 XDIF

NMAX 2000 DSEED

50 70 100
O.OOOOE-00
0.4000E-09 XRET

l.OOOOD+03

1.0000E-00

-22-

2.5 TRIPOLY

TRIPOL Y is based on the finite element code TRINET which features a mixed Lagrangian
Eulerian solution scheme with adaptive gridding. This procedure is particularly strong in very
heterogeneous media such as fracture networks since it automatically takes care of mesh refine
ments at sharp fronts. TRINET has been changed in two major issues: First, modifications have
been made to improve some of the old features of the code (e.g. to improve the code's speed and
ability to solve large problems, to generate plot files for commercial visualization packages such
as AVS and TECPLOT, to calculate tracer breakthrough curves, to allow for velocity-dependent
dispersion etc.). Second, new subroutines and algorithms have been added to simulate fluid and
solute exchange between the fractures and the porous matrix. A detailed Berkeley Lab report
serves as user's manual and tutorial for the previous code TRINET (SEGAN & KARASAKI,
1993).

2.5.1 Changes Regarding Fracture Network Modeling

• Different criteria have been introduced to decide whether a new grid point has to be
introduced while forward tracking. These criteria may be either the absolute difference
between the two adjacent nodes, the relative difference or the concentration gradient.
They are applied in subroutine ftrack. The input variable LOGDCO determines the
criterion to be used in TRIPOL Y.

• In the original TRINET version, a dispersion coefficient is given for each element which
accounts for molecular diffusion and mechanical dispersion within the fractures. How
ever, as this parameter has to be set prior to the simulation, it cannot account for chan
ging dispersivities due to velocity changes in transient flow fields. In TRIPOLY, mole
cular diffusion and mechanical dispersion may be treated as separate processes, and the
dispersion coefficient is calculated by

(12)

where a 1 is the longitudinal dispersivity, D~ is the effective molecular diffusion coeffi
cient in the fracture and v is the velocity along the fracture axis. The input parameter
LOG DIS specifies if TRIPOL Y uses a constant lumped dispersion coefficient or applies
the above mentioned equation.

• TRIPOL Y generates new output files for the graphical interpretation of the results.
Nodal values of hydraulic head or concentration may be written into plotfiles with a file
format used by the commercial visualization packages TECPLOT and A VS. ~urther

more, tracer breakthrough curves for specified modelboundary sides are calculated and
written into data set BREAK.TEC. The user can define in subroutine break which
boundary side should be considered for calculating the tracer breakthrough.

-23-

In the original TRINET code, new grid nodes are only introduced due to the numerical
requirements. of the advective transport. The concentration profile is tracked forward,
and additional nodes are introduced when needed. However, in some fractures the flow
velocity may be very small, or even zero, as for example in dead-end fractures or dead
end clusters. In such cases, no additional nodes would be introduced and dispersion
(molecular diffusion and mechanical dispersion) basically determines the spreading of a
solute. However, if the dispersive transport length in a given time step is much smaller
than the distance between two adjacent nodes, strong oscillations may occur while solv
ing the dispersion equation. To avoid these difficulties, an additional adaptive gridding
procedure is applied in TRIPOL Y due to the requirements of diffusive transport. Two
alternative methods may be chosen:

1) The first method checks for elements with low velocities and divides those elements
into smaller subelements, introducing additional nodes. The length of the subele
ments is chosen according to the requirements of the dispersive transport. The proce
dure is performed only once in the first time step, after solving the flow field, before
solving the transport field. Additional nodes are treated as fixed nodes, they are not
removed from the mesh. The algorithm is very stable, and minimizes numerical dis
persion. Note that the effects of transient flow fields are neglected in this procedure
since TRIPOL Y generally uses the flow field of the first time step to design the new
gridding. In some specific cases, parameters controlling the procedure of adding
subelements may have to be changed by the user, e.g. when too many new nodes and
elements are generated, and the computation becomes very inefficient. These para
meters can be set in subroutine addifl.

2) The second method introduces new nodes or elements· only in the vicinity of steep
concentration gradients. In each time step, the diffusive transport length is calculated
and compared to the element length. If it is much smaller, different criteria are
applied to decide whether a new grid point has to be introduced (subroutine addif2).
These criteria may be either absolute or relative concentration difference or the con
centration gradient. When the sharp front has passed through the area, the additional
nodes are removed. Usually, the number of nodes required is much smaller than with
the first procedure. However, test simulations have shown that the second method is
very sensitive to the control parameters assigned in CTRL.INP. If they are not chosen
very carefully, strong artificial dispersion may occur. Generally, it is recommended
to use the first method. Only if the computing effort exceeds practical limits, the
second method should be tried. However, results have to be carefully checked.

The dispersive transport length (dl), which is needed for both methods, is estimated by
the following equation

dl = ~2 DF dt ' (13)

w,here DF is the dispersion coefficient in the fractures and dt is the time step size. In
method 1), the element is divided into a number of subelements which all have a length
close to the dispersive transport length. In method 2), only one grid node is introduced
at the distance dl, measured from the upstream node. A user-defined variable (LOGDIF)
determines if adaptive gridding for dispersion should be applied and, if so, which
method is to be used.

-24-

• The performance of TRINET is sensitive to the time step size. If time steps are very
small, an unnecessarily high number is needed to move a concentration front throughout
the area. However, in the opposite case, another problem arises: During large time steps,
particles are advected along various fracture intersections. Since nodal concentrations
are advected rather than single particles, extensive branching takes place. With regard to
forward tracking, a large number of new nodes are generated and the computation
becomes very inefficient. With regard to backward tracking, the algorithm of tracing
back the path becomes very complicated and time consuming.

To avoid this, TRIPOLY allows for an automatic time step control. Usually a compu
tation starts with a reasonably small time step which may be increased during the simu
lation by the factor PRR. However, if the number of branches compared to the number
of (advected) nodes exceeds a certain value, the new time step is either kept constant or,
if it happens more than five consecutive time steps, decreased by the factor PRR. As to
forward tracking, the user may specify the maximum relative value of branches allowed
with the variable DBRAN in file TRINET.INP. For the backward tracking procedure, a
fixed value is set in subroutine advec; default value is 5.

2.5.2 Changes Regarding Fracture-Matrix Interaction

Several subroutines have been added to the original code TRINET to implement the fracture
matrix interaction modules. Also, a number of existing subroutines had to be significantly
changed to account for the new procedures. However, the general structure of the code has not
changed. The code consists of three major sections which are called by the main program
tripoly.f These sections are the input section, the flow section and the transport section.

• Input Section

The input section has been extended to read the matrix block input files. Subroutine
iidopo reads the nodal information for each polygon (POL Y.INP), irdopo does the same
for the unformatted data set of a previous simulation (POL Y.RES). Then subroutine
rdopo reads the POLYMAT.INP file (or HDOPO.RES, CDOPO.RES for previous
simulation runs) and calculates the element matrices for each polygon as far as possible
at this stage. All these subroutines are called from subroutine rdata. The structure of
the input part of the code is (new subroutines in bold):

openfile
rdata

link em
renum

rcntrl
mode
relem
mpn
iidopo/irdopo
rdopo

renumf

vprdma
koefdp

-25-

• Flow Section

TRIPOL Y features a direct solution scheme for the coupled fracture-matrix problem.
The first step is to assemble the global equation system for the fracture domain in the
same way as done in the previous code TRINET. The left- and the right-hand sides of
the equation system are determined according to the GALERKIN finite element scheme
(subroutine assem and subroutine be). Note, that the equation system is now ready to be
solved, assuming the fracture-matrix interaction would be neglected.

Subroutine vpaut accounts for the fluid exchange between fractures and matrix. It
solves the one-dimensional flow equation for all node-polygon connections according to
equation (7). The result is a linear expression for the fluid exchange at each node-poly
gon interface (equation (8)). These linear expressions, related to the nodes of the frac
ture finite element mesh, are added to the global equation system of the fracture dorriain.
Terms with the unknown fracture head h1 are added to the diagonal :of the left-hand
matrix, known quantities are added to the right-hand vector. Then, the resulting equa-.
tion system can directly be solved for the current hydraulic head in the fracture domain.
Finally, the matrix head distributions are determined by performing a backward substi
tution according to equation (9). This is done in subroutine vpaum.

The structure of the flow part of the code is (new subroutines in bold):

flow store
assem

vpaut

be
solve
store
vpaum

• Transport Section

clear I
koeff
rhand
jpglOl
jpgl02

jpglOl
jpgl03

In the same manner as for the flow problem, TRIPOL Y features a direct solution scheme
for the . coupled fracture-matrix equation system. However, due to the Lagrangian
Eulerian scheme, the procedure becomes more complicated. Extensive bookkeeping is
needed to take care of adding and eliminating new nodes and node-polygon connections,
respectively.

The transport part has two major sections. One is the advection calculation and the
other is the numerical solution of the dispersion part. As the.fracture-matrix interaction
term is introduced in the dispersion equation, the advection part is similar to the previ
ous code TRINET, except for several bookkeeping procedures. Whenever a new frac
ture node is generated in subroutine track, a new node-polygon connection has to be
established. First, the polygons associated with the new node have to be determined,

-26-

then matrix concentration profiles have to be assigned by interpolation from the adjacent
polygon nodes. This is done within the subroutines add and addopo.

When only flow and transport in the fractures is considered and matrix diffusion is
neglected subroutine pluck is called immediately after finishing the advection part,
before starting with the dispersion/diffusion calculation. Subroutine pluck removes
nodes which are no longer near the concentration front and which were not part of the
original fixed mesh. Thus, the dispersion/diffusion part is performed with fewer nodes
and becomes more efficient. However, our test results indicate that this procedure is not
recommended when matrix diffusion is taken into accdunt. In such case it is better to
solve the dispersion/diffusion part first and then eliminate unnecessary nodes within sub
routine pluck. This is less efficient, but helps to minimize numerical dispersion. To
gether with subroutine pluck (which eliminates fracture nodes) goes subroutine dedopo
which eliminates the associated node-polygon connections and the associated matrix
concentration profiles.

The solution of the dispersion part is very similar to the flow logic. The first step is
to assemble the global equation system for the fracture domain in the same way as done
in the previous code TRINET, according to the GALERKIN finite element scheme
(subroutine assem and subroutine be). However, as already mentioned in chapter 2.5.1,
an adaptive gridding technique was introduced for the dispersive part. It is performed in
subroutine addifl (LOGDIF = -1) or addif2 (LOGDIF > 0), and the procedure of intro
ducing or eliminating dispersive nodes requires essentially the same b~okkeeping as the
advective part.

Subroutine vpaut accounts for the solute exchange between fractures and matrix.
After solving the one-dimensional diffusion equation for all node-polygons connections,
a linear expression for the solute exchange at each node-polygon interface is obtained
(equation (8)). These expressions are added to the right and left hand side of the global
equation system of the fracture domain. Again, the resulting equation system for the
current concentrations of the fracture domain can directly be solved. Finally, the matrix
concentration distributions are determined by performing a backward substitution in sub
routine vpaum.

-27-

The structure ofthe transport part of the code is (new subroutines in bold):

trans ad vee btrack blocate
Qig~bk addnod

ftrack flocate addnod
btrack

Qlant seed

pluck (only if matrix diffusion is neglected)

renum

add addopo

diffu addifl add addopo

addif2 add addopo

assem clear!
koeff
rhand

vpaut jpglOl
jpgl02

be

solve

store

pluck

renum dedopo

vpaum jpgiOl
jpgl03

-28-

2.5.3 Input Files

TRIPOLY reads a number of input data sets. The first three data sets CTRL.INP, NODE.INP and
ELMT.INP are mandatory and have to be supplied for any simulation of TRIPOLY, other data
sets like POLY.INP, POLYMAT.INP or NPN.INP are only needed for special problem types or
output procedures (see Table 2.8).

CTRL.INP is used to control the type of simulation. It provides a number of logical parameters
and constants, listed and described in Table 2.9 and 2.10. Since many changes have been intro
duced in TRIPOLY compared to the previous code TRINET, the new input data set CTRL.INP
for TRIPOLY is significantly different from the previous one for TRINET.

The data sets NODE.INP and ELMT.INP determine the structure of the finite element mesh for
the fracture network. Both data sets are provided by the line network optimizer RENUMN.
However, depending on the type of fracture mesh to be modeled (dead-ends included or dead
ends discarded), the user has to rename the extensions of the RENUMN output data sets, either
xxxx.ALL or xxxx.TRUNC, into xxxx.INP. See Table 2.11 and 2.12 for details concerning vari
ables and formats.

The data sets POLY.INP and POLYMAT.INP are only needed when flow or solute exchange
between fractures and the porous matrix is taken into account (IDOPO = 1). POL Y.INP contains
the nodal information for each polygon, POL YMAT .INP contains material parameters and the
coefficients of the proximity polynomials. GRAFICS.SCI and GRAFICS.SCR serve as input for
the graphical interpretation of matrix simulation results, they are not needed for the simulation
process itself. All these data sets are generated by the preprocessing code POLY; the user does
not need to write them (see Table 2.13, 2.14, 2.15 and 2.16).

POL Y.INP consists of two parts. The first part lists the node numbers of the different polygons.
In that list adjacent nodes follow one another. The node numbers are the old numbers of FMGN
before renumbering. In TRIPOL Y the numbering is changed. Usually the polygons are closed,
unless node numbers are negative. This might be the case when a matrix block is located at the
boundary of the model area, and only a part of it" is described by the polygon. The negative node
number denotes the first node of the connected part of the polygon. The second part of
POL Y.INP contains an element list determining which polygons are related to each element.
Usually two polygons are associated with each fracture segment (for each fracture wall).

The second data set POLYMAT.INP starts with the relative discretization of the porous matrix.
The relative discretization is the same for all polygons. Within TRIPOLY, the NDISC relative
values are multiplied with the maximum orthogonal distance S of each matrix block. The second
part of POLYMAT.INP contains the material parameters for each block, such as the maximum
orthogonal distance S, the storage coefficient, permeability, porosity, molecular diffusion coeffi
cient, retardation factor and the NGRAD coefficients of the proximity function.

Another data set NPN.INP allows the user to provide a list of nodes. If NPN.INP exists,
TRIPOL Y generates output files containing head or concentration values versus time for the
nodes listed. NPN.OUT comprises the head or concentration values of each time step for the

-29-

specified nodes itself, i.e. it represents the fracture properties. Another data set DOPO.OUT con
tains the head or concentration profile in all matrix blocks adjacent to the specified nodes (only if
IDOPO = 1). However, only certain time steps are written into DOPO.OUT to avoid excessively
large data sets (output time steps'are given in CTRL.INP).

A group of input files with the extension xxx.RES is very useful for very time-consuming simu-.
lations (e.g. CTRL.RES, NODE.RES, ELMT.RES, CONC.RES, POL Y.RES, CDOPO.RES etc.).
These data sets contain information regarding the last time step of a previous simulation run. If
they exist in the directory from which the code is run, TRIPOL Y assumes that this previous
simulation shall be continued, and reads these files as initial condition for subsequent simula
tions. Most of them are unformatted. Only CTRL.RES is formatted, so that changes can be
made. Note that the xxx.RES files are only generated by simulations for which the maximum
simulation time allowed (TMAX) is not reached.

Table 2.8 TRIPOL Y - Input Files

CTRL.INP formatted General information, control variables

NODE.INP formatted 2 Node information for fracture mesh

ELMT.INP formatted 3 Element information for fracture mesh

POLY.INP formatted 50 Nod~l information for polygons

POLYMAT.INP formatted 50 Material parameters for polygons

GRAFICS.SCI unformatted 8I Geometry of matrix blocks needed for
GRAFICS.SCR visualization

NPN.INP formatted 55 Node list for time series output

CTRL.RES formatted I Information needed to continue a
previous simulation run

xxx.RES unformatted

Table 2.9 TRIPOL Y - Input Variables in CTRL.INP

TITLE
IMODE, IBMODE, MXSTEP, IPFREQ,
IDOPO, LOGDCO, LOGDIF, LOGDIS, NSTEPO
TIMEO, TMAX, DTINI, PRR
THETA,TOLE,DCINT,DCON
DCOFF, RHOR, RMUR, GRA VR
DEPS, DCDIF, DBRAN, DIFMOL

only for IPFREQ < 0
DUMMY TEXT

N=I,AB

3(a80/)
5(I0x,i5)
4(I0x,i5)
4(I Ox,fl 0.0)
4(1 Ox,fl 0.0)
4(10x,fl0.0)
4(I0x,fl0.0)

a80
8fl0.0

I
I
I
I
I

I
I

-30-

Table 2.10 TRIPOLY- Description of Input Variables in CTRL.INP

DBRAN maximum number of branches compared to the number of advected nodes: if DBRAN is
exceeded, the time step size is adjusted (used for the forward tracking procedure) ~

DCINT

DC OFF

DCDIF

DCON

DEPS

DIFMOL

DTINI

GRAVR

IDOPO

IBM ODE

!MODE

IPFREQ

LOGDCO

used for choice of interpolation scheme: if the concentration difference between two adja
cent nodes is less than DCINT, an upwind-scheme is performed

used for removing nodes: if the concentration difference between two adjacent nodes is
less than DCOFF, and one of the nodes is a moving node, it is removed by subroutine
pluck (only applied for advective moving nodes)

used for inserting nodes: if diffusive transport length is smaller than the element length and
the concentration difference between the two element nodes is larger than DCDIF, a
moving node is originated in subroutine addif2 (only applied for diffusive moving nodes)

used for inserting nodes: if the concentration difference between two adjacent nodes is
larger than DCON, a moving node is originated in subroutine ftrack (only applied for
advective moving nodes)

used for inserting nodes: if concentration is smaller than DEPS, no test criteria are applied

molecular diffusion coefficient in fractures (only used for LOGDIS = 1)

initial time step increment

gravitational constant

used to control type of simulation:
0 porous matrix is neglected
1 porous matrix is considered in simulation

(fluid exchange for !MODE< 0, solute exchange for !MODE> 0)

used to control the renumbering procedure in subroutine renum:
0 renumbering starts from radial boundary
1 renumbering starts from side 2 of square boundary
2 renumbering starts from all sides of square boundary

used to control type of simulation:
-2 steady-state flow only (theta=l.O)
-1 transient flow only
0 test data check
I advection-dispersion in transient flow field
2 advection-dispersion in steady-state flow field (theta=l.O)
3 advection only in steady-state flow field (theta=l.O)

used to determine output data sets for contouring:
>0 each IPFREQ time step is written on tecplot-file
<0 a number of abs(IPFREQ) given time steps is written on tecplot-file

(time steps are assigned at the end of CTRL.INP)

used to determine the criterion for inserting and removing advective nodes:
(only applied for advective moving nodes)
1 absolute concentration difference (C1-C2)
2 relative concentration difference (C1-C2)/ C1
3 concentration (C1-C2)/ DL

..,. continued on next page

LOGDIF

LOG DIS

MXSTEP

NSTEPO

PRR

RHOR

RMUR

THETA

TIMEO

TIMPR(I)

TITLE

TMAX

TOLE

Sample data set:

TEST DATA SET
TEXT LINE 2
TEXT LINE 3

- 31 -

used to determine the criterion for inserting and removing dispersive nodes:
(only applied for dispersive moving nodes)
-1 mesh refinement in zero-flow elements

(numerically stable procedure)
0 no diffusive moving nodes added
> 0 mesh refinement only adjacent to steep concentration gradients

(be aware of possible numerical dispersion !!)
I absolute concentration difference (C1-C2)

2 relative concentration difference (C1-C2)/ C1

3 concentration gradient (C1-C2)/ DL

used to determine the type of dispersion model used in TRIPOL Y:
I constant lumped dispersion coefficient for each element

(coefficient is provided as element parameter in ELMT.INP)
2 dispersion coefficient is the sum of mechanical dispersion and molecular diffusion

(the longitudinal dispersivity is provided as element parameter in ELMT.INP; the
molecular diffusion coefficient is provided in CTRL.INP)

maximum time step desired in the simulation

time step number of start of simulation

factor for increasing the time step. Should be greater than or equal to I.

density of fluid

dynamic viscosity of fluid

time weighting constant

time of start of simulation

output time steps given in real time (only needed for IPFREQ < 0)

title of simulation run

maximum simulation time allowed (in real time given in seconds)

tolerance to allow for numerical round-off: e.g. if distance between two nodes is less than
TOLE, to one node

!MODE 2 IBMODE = 2 MXSTEP =
2 LOGDIF =
=4.0001E+06
=1.0000E-02
=1.0000E+03
=i.OOOOE-02

450 IPFREQ = -7 NSTEPO 1
IDOPO 1 LOGDCO =
TIMEO =O.OOOOE+OO TMAX
THETA =1.0000E-00 TOLE
DCOFF =1.0000E-03 RHOR
DEPS =1.0000E-03 DCDIF
OUTPUT TIME STEPS

2.0e+05 5.0e+05 1.0e+06 LSe+06

3 LOGDIS = 2
DTINI =5.0000E+02 PRR
DCINT =2.0000E-01 DCON
RMUR =1.0000E-03 GRAVR
DBRAN =3.0000E+00 DIFMOL

=1.1000E+00
=1.0000E-02
=9.8067E+00
=2.0000E-07

2.0e+06 3.0e+06 4.0e+06

-32-

Table 2.11 TRIPO~Y- Input Variables in NODE.INP, ELMT.INP and NPN.INP

NODE.INP:

NN 10x,i5 2
forl=l,NN

(IOLD, ISC(I), IB(I), IBC(I), (XYZ(J,I),J=l,3), i5,i3,2i2,7f12.0 2
H(l), COLD(!), BV ALUE(I), CBV ALUE(I))

ELMT.INP:

NE 10x,i5 3
for l=l,NE

(IOLD, ICAT(J,I),J=J,2), TRANSM(I), W(l), RL(I)
SS(I), DC(I))

3i5,5f12.0 3

NPN.INP (not mandatory):

Table 2.12

BVALU

CBVALU

COLD

DC

H

IB

IBC

i5 5

TRIPOLY- Description of Input Variables in NODE.INP, ELMT.INP and
NPN.INP

value of flow boundary condition assigned at the node; for IB = 1 it is the head value and
for IB = -1 it is the flux value

value of solute transport boundary condition assigned at the node; for IBC = 1 it is the
concentration value and for IBC = -1 it is the flux value

initial condition of concentration assigned at the node

dispersion parameter of element. If LOG DIS = 1, DC is assumed to be the lumped disper
sion coefficient of the element. For LOGDIS = 2, DC is the longitudinal dispersivity.

initial condition of hydraulic head assigned at the node

specifies type of boundary condition for flow at the node
1 DIRICHLET condition, i.e. fixed head
0 internal node, no condition specified
-1 NEUMANN condition, i.e. fixed flux

specifies type of boundary condition for solute transport at the node
1 DIRICHLET condition, i.e. fixed concentration
0 internal node, no condition specified
-1 NEUMANN condition, i.e. fixed flux

ICA T(1 ,1) and ICA T(2,1) are the two end the i-th line element

... continued on next page

_)

ISC

IOLD

LISTP

NE

NN

RL

ss
TRANSM

w

XYZ(J,I)

-33-

specifies which boundary side the node is on. Negative ISC indicates that node is on side
abs(ISC) and requests printout at everx time step for the nodes in output data set
FLOW.NOD. Flux is summed up among all the nodes that belong to the same boundary
and printed out in file FLOW.OUT.

old node or element number before renumbering in RENUMN. Needed to relate numbers
of files xxxx.TRUNC and xxxx.ALL, respectively.

list of nodes for output in NPN.OUT and DOPO.OUT, respectively

total number of elements

total number of nodes

length of element. To prevent round-off errors, it is not used by code directly. It is present
here only for interpretative purposes.

specific storage of element

transmissivity of element. This value is only used when one or ali of the parameters grav,
rhor, rmur in CTRL.INP has a non-physical value (i.e. lower than or equal to zero). Other
wise the cubic law is applied to calculate transmissivities from the hydraulic aperture.

hydraulic aperture of element. If reasonable values for grav, rhor and rmur are given in
CTRL.INP, the aperture values are used for calculating transmissivities.

XYZ(l ,1), XYZ(2,1), z coordinates of node i.

Sample data sets:

;;111:~ !ir ;/;• 'i . . ·: .,,_,_, -:::<>>"<'"
NN = 3504
-....

274 1 0 0 -4.6878 -5.0000 0.0000 0.0000 0.0000
293 1 0 0 -4.4829 -5.0000 0.0000 0.0000 0.0000
203 1 0 0 -4.1275 -5.0000 0.0000 0.0000 0.0000
337 1 0 0 -3.8805 -5.0000 0.0000 0.0000 0.0000

.....
(boundary-values are not listed, since IB(l) and IBC(l) equal zero)

·.··.i•"i' ::':iii\ , i''\,:Ti.,. ''·'''""'·''''" ,,,;,_; ,, :.:_,-_., .. · .. · ,,.,,,,,,,.,_,,,,,,., ,_,,,_,,,,,,,_,,,,,,_,,_"._." , . ,,,:., · ·'·· i'i''.ii'''ii ' ·'·''''''·'·

NE = 5685
.....

235 1 32 4.1840E-07 7.9999E-05 5.1580E-02 O.OOOOE+OO 5.0000E-02
251 2 33 4.1840E-07 7.9999E-05 5.1580E-02 O.OOOOE+OO 5.0000E-02
173 3 34 4.1840E-07 7.9999E-05 5.1580E-02 O.OOOOE+OO 5.0000E-02
290 4 35 4.1840E-07 7.9999E-05 2.2980E-01 O.OOOOE+OO 5.0000E-02

.....

-34-
'v

Table 2.13 TRIPOLY- INPUT Variables in POLY.INP

TEXT a80
NMATK i5

jorM=l,NMATK
IDUM,NM 2i5
(IN(IKNA+N-1), N=l,NM) 10i5

TEXT a80
NE i5

forM=l,NE
IALT, 3i5

Table 2.14 TRIPOL Y - Description of INPUT Variables in POLY .INP

IALT

IEPOL(l,M)

IEPOL(2,M)

IDUM

IKNA

IN(IKNA+)

NE

NM

NMATK

Sample data set:

POLYGON NODES
2313

1 5
3099 3112 3113 3100

2 14
1022 1023 1024 1025

702 1048 1030 1031
3 5

62 1048 702 703

. .

old element ~umbers for relating data sets with and without dead-ends

first matrix block (=polygon) related to element M

second matrix block (=polygon) related to element M

number of polygon (dummy variable)
)

index for position in field IN(....)

list of nodes for polygons

total number of elements

number of nodes defining polygon

total number of matrix blocks (polygons) in model area

2535

1565 579 580 581 582 -703

-63

LIST OF POLYGONS AT ELEMENT (OLD NUMBERING SCHEME)
5685

235 1 1564
251 1 2

50
50

50
50
50
50

50

-35-

Table 2.15 TRIPOLY ·INPUT Variables in POLYMAT.INP

TEXT a80 50
TEXT a80 50
NDISC i5 50
(RDISC(N),N= I ,NDISC) 6el3.6 50
TEXT a80 50
NMATK i5 50

forM=l,NMATK
IDUM, NPROX(M), SMAX(M) 2i5,el3.6 50
(R(IRFI+N-1), N=I,5) 5el3.6 50

N=I 6el3.6 50

Table 2.16 TRIPOLY ·Description of INPUT Variables in POLYMAT.INP

IDUM

IRFI, IRF2

NDISC

NPROX(M)

RDISC(M)

R(IRFI+)

R(IRF2+)

SMAX(M)

Sample data set:

number of polygon (dummy variable)

index for position in field R(....)

number of elements for ID-FE discretization of porous matrix blocks
(must be smaller than 15)

stores the number of coefficients of proximity function for each element

stores relative values for discretization of matrix blocks

stores the material parameters for each element (specific storage, hydraulic conductivity,
porosity, molecular diffusion coefficient, retardation coefficient)

stores the coefficients of proximity function for each element

(function is defined as follows: Prox(s) = a1s+ a2s 2 + +anproxsnprox).

stores the maximum orthogonal distance of points in the matrix blocks to the adjacent
fractures

MATERIAL PARAMETERS FOR DISCRETE MATRIX BLOCKS
RELATIVE DISCRETIZATION

8
0.387597E-02 0.116279E-01 0.310078E-01 0.697674E-01 0.147287E+OO 0.341085E+00
0.612403E+OO O.lOOOOOE+Ol

POLYGON PARAMETERS
2313

1 5 0.257955E-01
O.OOOOOOE+OO O.OOOOOOE+OO 0.500000E-01 0.400000E-09 0.100000E+01
0.134899E+Ol-0.111168E+Ol 0.230691E+Ol-0.253969E+Ol 0.996822E+OO

2 5 0.257917E-01
O.OOOOOOE+OO O.OOOOOOE+OO 0.500000E-01 0.400000E-09 0.100000E+01
0.987857E+00 0.914764E+00-0.210270E+Ol 0.150887E+Ol-0.304360E+OO

-36-

2.5.4 Output Files

Primary output from TRIPOL Y are the values of head and/or concentrations over the finite ele
ment nodes of the entire fracture network. For transient simulation runs, only specified time steps
are written. The user can detennine in CTRL.INP, if either each IPFREQ time step is written or
if output is prepared for certain predefined simulation times. As default, the output files are
written in a format used by the commercial visualization package TECPLOT; they are named
DATnn. TEC, with nn being the number of the time step. Instead of the TECPLOT output format,
the user can choose to write files~ in a format for the visualization software AVS; then the files are

.named RAVSnn.INP. Minor changes have to be made in subroutine prout to write AVS-files
instead of TECPLOT files. Note that the node numbering is different from time step to time step,
due to the adaptive gridding and the renumbering associated with bandwidth optimization.

If flow or solute exchange between fractures and matrix is considered in a simulation run (i.e.
IDOPO=l) and the graphic input files GRAFICS.SCR and GRAFICS.SCI exist, additional infor
mation is written into DATnn.TEC. Average head or concentration values are calculated for each
matrix block, and two zones are generated for TECPLOT: one for the matrix blocks, one for the
fracture network.

Regarding the flow field, two data sets are written giving flow rates in volume/time. FLOW.OUT
gives the total amount of fluid entering or leaving each side of the flow region. The other file
FLOW.NOD does essentially the same thing, however, flow rates are printed for each node on the
model sides separately rather than calculating a sum over each side.

Tracer breakthrough curves are calculated within TRIPOLY and written to the file BREAK.TEC,
assuming that a transport simulation is performed. As default, the breakthrough is calculated for
tracer exiting at side 4 of the model region. If other sides should be considered or only parts of
sides, the user must make minor changes in subroutine break.

If input file NPN.INP exists, two more output files are generated: NPN.OUT and DOPO.OUT
(the latter only if IDOPO=l). The NPN.OUT file contains a list of nodal head or concentration
values versus time for the fracture network nodes assigned in NPN .INP. This is done for each
times step calculated. DOPO.OUT comprises the head or concentration profiles in all matrix
blocks connected to the specified nodes. This is only done for the time steps assigned in
CTRL.INP; otherwise DOPO.OUT becomes to large for long-term simulations.

As already mentioned, a number of (mostly unformatted) files are written for the last time step
calculated, when the maximum simulation time given in CTRL.INP has not been reached yet.
This allows for a subsequent continuation (restarting) of simulation runs; the xxx.RES files serve
as initial condition for the new simulation run.

Finally, file SOL VERST AT records information regarding the performance of the conjugate gra
dient solver. For each time step, the number of iterations and the mean residual error is output.

With respect to output in general, it is felt that consistent use of the code will allow the user to
become comfortable enough to manipulate the code and output subroutines to suit his own needs.

-37-

Table 2.17 provides a list of all output files generated by TRIPOL Y.

Table 2.17 TRIPOL Y - Output Files

DATnn.TEC fracture/matrix 69 List of nodal heads and concentrations
for time step nn
TECPLOT-format (as default)

RAVSnn.INP fracture 69 List of nodal heads and concentrations
for time step nn
AVS-format (default: no avs-output)

BREAK.TEC fracture 50 Tracer breakthrough for given side of
model area

NPN.OUT fracture 7 Time series of head and concentration
for given nodes

DOPO.OUT matrix 89 Head or concentration profiles for given time
steps and given nodes

FLOW.OUT fracture 9 Total flowrate over each model side

FLOW.NOD fracture 19 Flowrate for nodes located on model sides

SOLVER.STAT 10 Convergence and accuracy of conjugate
gradient solver

xxx.RES fracture/matrix Information regarding last time step of
simulation run

-38-

3 Sample Problems

3.1 Introduction

In this section we present two sample problems. The first problem is very simple, it essentially
serves as a tutorial to illustrate the use and performance of TRIPOLY, the preparation of input
decks and the interpretation of computed output. Since the problem comprises only one fracture
and the adjacent porous matrix blocks, the TRIPOL Y input files can be generated by hand; no
FMGN, RENUMN or POLY runs are needed. All input files are presented in detail, and the code
TRIPOL Y is verified in comparison to an analytical solution.

The second problem demonstrates TRIPOLY's ability to solve more complex flow and transport
problems. It also shows the use of the codes FMGN, RENUMN and POLY, which provide the
input decks for TRIPOLY when complicated problems are considered. A random fracture net
work is generated with FMGN and renumbered with RENUMN. The porous matrix information
is computed by the code POLY. Then, a number of simulation runs are performed with
TRIPOLY, illustrating the strong impact of matrix diffusion on tracer transport in fractured
porous formations. Someinput files are presented in detail in this section; However, long input
and output files are not listed, rather they are presented in the form of figures and graphs.

3.2 Example 1: Longitudinal Transport in a Single Fracture with Trans
verse Matrix Diffusion

This problem concerns longitudinal transport along a single fracture and transverse diffusion into
the adjacent matrix blocks. An analytical solution was developed by TANG et al. in 1981.
Figure 8 schematically illustrates the problem. A contaminant source with C = 1.0 is located in
the fracture on the left boundary of the model area at x=O. The fracture aperture is 104 m. The
solute is transported in the fracture by advection and dispersion, with a flow velocity in the frac
ture of 0.01 rnld and a longitudinal dispersivity along the fracture axis of 0.5 m. Molecular diffu
sion in the fracture is chosen to 1.382 104 m2/d. During the relatively fast transport in the frac
ture, part of the solute diffuses in a slow process into the adjacent porous matrix. Matrix para
meters are 0.01 for the porosity and 1.382 w-s m2/d for the effective molecular diffusion coeffi
cient. It is assumed that the system shown in Figure 8 is part of a fractured porous formation
comprising parallel fractures with a separation distance of 2.4 m. Thus, the porous matrix blocks
have an infinite length and their width is 2.4 m.

-39-

Fig. 8: Schematic of example 1

In the following section all input data sets are listed and briefly described. The first input data set
is CTRL.INP, used to control the type of simulation. A maximum number of 200 time steps is
calculated with an initial time step size of 20 days. The time step size is not changed within the
simulation run (PRR = 1.0). The maximum simulation time is 10000 days. Output shall be writ
ten at times 97 days, 995 days and 9991 days. A steady-state flow field is considered and matrix
diffusion is taken into account.

TEST CASE 1: SINGLE FRACTURE WITH MATRIX BLOCKS ON EACH SIDE
ANALYTICAL SOLUTION
COARSE MESH WITH ONLY TEN FRACTURE ELEMENTS
IMODE 2 IBMODE = 2 MXSTEP = 500 IPFREQ = -3 NSTEPO
IDOPO 1 LOGDCO. = 2 LOGDIF = -1 LOGDIS = 2
TIMEO =O.OOOOE+OO TMAX =1.0000E+04 DTINI =2.0000E+01 PRR
THETA =1.0000E-00 TOLE =1.0000E-02 DCINT =2.0000E-01 DCON
DCOFF =1.0000E-03 RHOR =0.0000E+03 RMUR =1.0000E-03 GRAVR
DEPS =1.0000E-03 DCDIF =1.0000E-01 NB/NODE =3.0000E+OO DIFMOL
OUTPUT TIME STEPS

97.0E+00 9.95E+02 9.991E+03

1

=1.0000E+OO
=1.0000E-02
=9.8067E+00
=1.3820E-04

The data files NODE.INP and ELMT.INP determine the structure of the finite element mesh of
the fracture network, prescribe boundary conditions and give material properties. The fracture is
discretized with 11 nodes and 10 elements of 1.0 m length. Due to the adaptive gridding, a
refined discretization adjacent to the contaminant source is not necessary. TRIPOL Y implicitly
takes care of refining the mesh wherever it is needed. Two DIRICHLET-type boundary condi
tions are given at node one, a prescribed hydraulic head and a prescribed concentration. Another
DIRICHLET -type boundary condition is given for the hydraulic head at outflow cross section
(node 11). Note that the fluid density RHOR in CTRL.INP is set to zero. This means that the
tr~smissivity value for the fracture elements is not calculated from the aperture given m
ELMT.INP. Instead, TRIPdLY directly uses the transmissivity values given in ELMT.INP.

-40-

~ -NN = 11
1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 1.0000
2 0 0 0 1.0000 0.0000 0.0000 0.0000 0.0000
3 0 0 0 2.0000 0.0000 0.0000 0.0000 0.0000
4 0 0 0 3.0000 0.0000 0.0000 0.0000 0.0000
5 0 0 0 4.0000 0.0000 0.0000 0.0000 0.0000
6 0 0 0 5.0000 0.0000 0.0000 0.0000 0.0000
7 0 0 0 6.0000 0.0000 0.0000 0.0000 0.0000
8 0 0 0 7.0000 0.0000 0.0000 0.0000 0.0000
9 0 0 0 8.0000 0.0000 0.0000 0.0000 0.0000

10 0 0 0 9.0000 0.0000 0.0000 0.0000 0.0000
11 4 1 0 10.0000 0.0000 0.0000 0.0000 0.0000 0.0000

~--i_;;.·· ,•·c:;; g;•·.:::.
i;i>.•;,;•t•.. , •... ·······•·I :rm:::,.v··r::i·

NE = 10
1 1 2 1.0000E-04 1. OOOOE-04 1.0000E+00 O.OOOOE+OO 5.0000E-01
2 2 3 1.0000E-04 1.0000E-04 1.0000E+OO O.OOOOE+OO 5.0000E-01
3 3 4 1.0000E-04 1.0000E-04 1. OOOOE+OO O.OOOOE+OO 5.0000E-01 --
4 4 5 1.0000E-04 1. OOOOE-04 1.0000E+00 O.OOOOE+OO 5.0000E-01
5 5 6 l.OOOOE-04 1. OOOOE-04 1.0000E+OO O.OOOOE+OO S.OOOOE-01
6 6 7 1.0000E-04 1.0000E-04 1.0000E+OO O.OOOOE+OO 5.0000E-01
7 7 8 1.0000E-04 1.0000E-04 l.OOOOE+OO O.OOOOE+OO 5.0000E-01
8 8 9 1.0000E-04 1.0000E-04 1. OOOOE+OO O.OOOOE+OO 5.0000E-01
9 9 10 1.0000E-04 1. OOOOE-04 1.0000E+OO O.OOOOE+OO 5.0000E-01

10 10 11 1.0000E-04 1.0000E-04 1.0000E+00 O.OOOOE+OO 5.0000E-01

Two more data sets are needed to describe the geometry and the properties of the matrix blocks,
POLY.INP and POLYMAT.INP. The first part of POLY.INP defines the shape of the matrix
blocks by providing the surface polygons. For the problem considered, the surface polygons for
the upper and lower block are identical; they comprise the 11 nodes of the finite element mesh.
Since the polygons are not closed, the first node of the connected part of the polygon has a nega
tive number (here: node 1). The polygon nodes have to be numbered subsequently; however, the
list of polygon nodes can start with an arbitrary node number of the polygon. The second part of
POL Y.INP denotes the two polygons associated with each fracture element. Here, all fracture
elements are connected to the same polygons.

POLYGON NODES (OLD NUMBERING SCHEME)
2
1 11

-1 '2 3 4 5 6 7 8 9 10
11

2 11
5 6 7 8 9 10 11 -1 2 3
4

ELEM
10

1 1 2
2 1 2
3 1 2
4 1 2
5 1 2
6 1 2
7 1 2
8 1 2
9 1 2

10 1 2

-41-

POL YMAT.INP gives the relative discretization of the matrix and the porous block material
parameters. The matrix blocks are discretized with 8 elements. The proximity function is simply
a linear function of s, due to the infinite length of the blocks. Thus, the interface function is a
constant which is reasonable since the interface for diffusion into the porous block does not
change with s. The upper limit of s is S = 1.2 m which is the half width of the blocks.

MATERIAL PARAMETERS FOR DISCRETE MATRIX BLOCKS
RELATIVE DISCRETIZATION

8
0.387597E-02 0.116279E-01 0.310078E-01 0.697674E-01 0.147287E+OO 0.341085E+OO
0.612403E+OO 0.100000E+01

POLYGON PARAMETERS
2 r-
1 1 1.200000E+01

O.OOOOOOE+OO O.OOOOOOE+OO 0.100000E-01 0.138200E-04 0.100000E+01
0.833333E+00

2 1 1.200000E+01
O.OOOOOOE+OO O.OOOOOOE+OO 0.100000E-01 0.138200E-04 0.100000E+01
0.833333E+00

Figure 9 shows the results of the TRIPOL Y simulation compared to the results of the analytical
solution ofT ANG et al. (1981). The three curves exhibit concentration profiles along the fracture
for three time steps 97 days, 995 days and 9991 days. The solid curve represents the analytical
solution, the ·square symbols indicate the TRIPOL Y results at the nodes of the finite element
mesh. Note that the original discretization is very coarse; original nodes are only at locations' 0.0
m, 0.1 m, 0.2 m etc. All the nodes in between the original ones have been added within the adap
tive gridding procedure. That means that the fracture network discretization is different from
time step to time step.

s::
0

0.9

0.8

0.7

:.;::: 0.6

~
s:: 0.5
(J)
(.)
c: 0.4
0
()

0.3

02

0.1

Analytical

9991 days ..

0.0 ~..-..~.__.__.__.~.-~.__._~L.... _:~I=:==-~ _.__...._..._._.___.__ _.
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Length along Fracture

Fig. 9: Fracture concentration for the TRIPOLY results and the analytical solution (TANG et al., 1981)

-42-

Due to the relatively simple geometry of this example, it is not possible to verify the code's abi:
lity to simulate diffusive transport in matrix blocks of complex shape. However, this has been
successfully demonstrated in other studies (e.g. BIRKHOLZER, 1994). Here, our major goal is
to check the performance of the Lagrangian-Eulerian scheme in combination with the fracture
matrix interaction tool. Altogether, the analytical solution and the TRIPOLY results match very
well, in particular when considering that the original spatial discretization is very coarse.

3.3 Example 2: Transport in a Complex Fracture-Matrix System

The second example concerns advective-dispersive transport in a complex fracture network
including diffusion into the porous matrix blocks. The whole chain of programs described in this
report is used in this example. FMGN generates the fracture network, RENUMN renumbers it
and eliminates dead-ends, POLY calculates all the matrix block properties and TRIPOL Y finally
does the flow and transport simulation. Only those input data sets shall be presented here which
have to be written by the user him/herself. All of them contain control parameters or general
information.

The input data set FMG.INP provides all the information needed to generate the fracture network.
Please find a detailed description ofFMGN and the input data set in Bll.LAUX et al. (1989). The
fracture network of our example comprises 2 orthogonal sets of 600 fractures each in a 10 m x 10
m square flow region. The angle between the fracture axis and the x-direction is 45° for set 1 and
135° for set 2. We assume that the fractures have uniform properties within each set, i.e. uniform
angles between .the fractures and the x-direction, a uniform fracture aperture of 0.8 104 m, a
fracture length of 1.0 m and a longitudinal dispersion of 0.5 m. Hence, the standard deviations
given in FMG.INP are set to zero. Two no-flow boundaries are given at the upper and lower
boundary of the flow direction. The left boundary is associated with a hydraulic head of 0.1 m,
the right boundary is associated with a hydraulic head of 0.0 m.

ICONT***** 2 IPLOT***** 2 IMESH***** 1
IKEEP***** 1 !UNITS**** 1 !GENE***** 0
IRANF***** 1 RSEED***** 3.4386d+03
ANGLES, APERTURES and .LENTHS ARE CONSTANT
2 FRACTURE SETS
XGENE***** 10.0 YGENE***** 10.0
NSETS***** 2 !TOLE***/ 5
ICENT***** 2 IDENS ** 1
RLAMBNFRAC 600 THETA ** 0.0
ICHAR*orie 3
IDIST***** 5 EV ******* 45.0 SD ******* 0.00
ICHAR*radi 3
IDIST***** 5 EV ******* 1.00 SD ******* 0.00
ICHAR*aper 3
IDIST***** 5 EV *******O.BOe-04 SD ******* 0.00
!CENT***** 2 !DENS ** 1
RLAMBNFRAC 600 THETA ** 00.0
ICHAR*orie 3

5 EV *******135.0 SD ******* 0.00
ICHAR*radi 3
IDIST***** 5 EV ******* 1.00 SD ******* 0.00
ICHAR*aper 3
IDIST***** 5 EV *******O.BOe-04 SD ******* 0.00
xmesh*****1.0e+01 ymesh*****1.0e+01 rotan***** 0.00

0 1 0 1
0.0000 0.1000 0.0000 0.0000

-43-

After running FMGN a number of output data sets have been generated (see Table 2.1). The
structure of the randomly generated fracture network is already given at this point; however,
dead-end nodes or dead-end clusters have not been eliminated; also the network is not optimized
with regard to a minimized bandwidth. RENUMN takes care of renumbering the mesh and
eliminating dead-ends. Most of the input for RENUMN is generated by FMGN, contained in the
file RENUMnn.DAT. The user has to provide_only one additional data set which gives some
general information specifying material parameters for the fracture network. This data set is
called TRINET.INP. It gives values for the fluid density, the dynamic viscosity, gravity constant
as well as 'default' -values for the specific storage and the dispersion/dispersivity.

INPUT VARIABLES FOR TRINET
RHOR =l.OOOOE+03 RMUR =l.OOOOE-03 GRAVR =9.8067E+00
SSUBS =O.OOOOE+Ol DISPC =S.OOOOE-02

RENUMN generates the data sets NODE.TRUNC, ELMT.TRUNC, NODE.ALL and
ELMT.ALL, comprising nodal and element information for the fracture network. Transmissivity
values for each element are calculated and written into ELMT.TRUNC and ELMT.ALL, respec
tively. The data sets with extension xxxx.TRUNC describe the truncated fracture mesh, data sets
with extension xxxx.ALL describe the fracture mesh with dead-end fractures. Dead-end clusters
have been removed in both cases. All information needed to describe the geometry and material
properties of the random fracture network is given at this point. Before running TRIPOL Y the
user has to decide whether or not to include dead-ends in a simulation run. In our case dead-ends
shall not be considered. Thus we rename the data files NODE.TRUNC and ELMT.TRUNC into
NODE.INP and ELMT.INP, respectively. Figure 10 shows the truncated fracture network gene
rated by FMGN and RENUMN. It comprises 3520 fracture nodes and 5668 fracture elements.
However, this number increases within the simulation due to adaptive gridding.

No Flow
5.0

4.0

3.0

.,.... 2.0

II
(.) 1.0 E
~ 0 E o.o

.
0 .,....
II

0 -1.0
J:

II -2.o

J:
·3.0

·4.0

·5.0
-5.0 -4.0 ·3.0 ·2.0 ·1.0 0.0 1.0 2.0 3.0 4.0 5.0

No Flow

Fig. 10: Fracture network of example 2

-44-

As already mentioned, some information regarding flow boundary conditions can be provided in
the file FMG.INP, and this information is automatically written into NODE.INP. However, this
is just possible for relatively simple boundary conditions, i.e. each side of the model area is asso
ciated with either constant fluxes, constant heads or a constant linear distribution of head. The
first and second possibility has actually been chosen in our example by prescribing no-flow
boundary conditions at the top and the bottom boundary and giving a constant head on the left
and the right boundary. The left boundary is associated with a hydraulic head of 0.1 m, the right
boundary is associated with a hydraulic head of 0.0 m. If more complex cases of flow boundary
conditions shall be given, or for complex initial conditions as well as for the transport boundary
conditions, the user has to either edit data set NODE.INP or change subroutine triout in
RENUMN. In this example the left boundary of the model area is assumed to be contaminated.
A DIRICHLET-type boundary condition C=1 is imposed. Solutes released at this boundary are
carried through the model area following the direction of flow and leave at the right (outflow)
boundary.

Now, the preprocessing code POLY calculates the geometrical properties of the matrix blocks in
the fracture network of Figure 10. This procedure is only needed if the exchange processes bet
ween fractures and matrix blocks shall be taken into account. POLY needs the input files
NODE.ALL and ELMT.ALL generated by RENUMN as well as the input file PROX.INP which
is provided by the user. PROX.INP contains a number of control variables for the generation of
polygons and proximity functions. In our example, no dead-end fractures shall be considered, the
random number generation is controlled by a certain start-up value, the discretization in the
porous matrix shall be performed with 8 elements, grade of proximity function is 5, and the rela
tive discretization is given to 1/2/5/10/20/501701100, with the first (small) element at the fracture
matrix interface and the last (100 times larger) element in the middle of the blocks. The last two
lines provide material properties for the matrix blocks. The matrix blocks in the domain have
identical hydraulic properties, with a porosity of 0.02 and a molecular diffusion coefficient of
0.2 x 10-8 m2/s. However, the size and shape of the blocks varies significantly.

TEST DATA SET
MATERIAL PROPERTIES FOR MATRIX BLOCKS
UNIFORM BLOCK PROPERTIES
!NET 0 IRANF 1 NRAND 2000 RSEED
NDISC 8 NGRAD 5

1 2 5 10 20 50 70 100
SSP O.OOOOE-00 XKM O.OOOOE-00
XPOR 0.2000E-01 XDIF 0.2000E-08 XRET

1.0000D+03

1.0000E-00

The fracture network shown in Figure 10 includes 2337 matrix blocks. POLY writes the data sets
POLY.INP, POLYMAT.INP, GRAFICS.SCI and GRAFICS.SCR. POLY.INP contains nodal
information defining the polygons, POLYMAT.INP contains the relative discretization and mate
rial properties of the matrix blocks. The data sets GRAFICS.SCI and GRAFICS.SCR are only
needed when graphical output of matrix results is desired. They are not needed for the simulation
itself.

At this point all input data sets are provided except for the simulation control data set CTRL.INP.
In our example CTRL.INP is given as follows:

TEST CASE 2 : COMPLEX FRACTURE NETWORK
2 FRACTURE SETS WITH UNIFORM PROPERTIES
2337 MATRIX BLOCKS WITH UNIFORM PROPERTIES

-45-

!MODE 2IBMODE 2MXSTEP = 5000IPFREQ -2NSTEPO
IDOPO lLOGDCON = 2LOGDIF -lLOGDISP 2
TIMEO = O.OOOOE+OS TMAX = 6.0001E+07 DTINI = 5.0000E+02 PRR
THETA = l.OOOOE+OO TOLE = l.OOOOE-02 DCINT = 2.0000E-Ol DCON =
DCOFF = l.OOOOE-02 RHOR = l.OOOOE+03 RMUR = l.OOOOE-03 GRAVR =
DEPS = l.OOOOE-03 DCDIF = l.OOOOE-01 DBRAN = 3.0000E+00 DIFMOL=
OUTPUT TIME STEPS

0.5E+07 3.0E+07

1

l.lOOOE+OO
l.OOOOE-02
9.8067E+00
2.0000E-07

We perform simulation runs with up to 5000 time steps and a maximum simulation time of 6.0
107 s (694.4 days). Figure 11 shows the concentration in the fractures after 0.5 107 s (57.9 days),
indicated by the different shading levels of the fracture mesh nodes. Without matrix diffusion
particles would cross the entire model area within less than 106 s (11.6 days). However, the diffu
sive solute exchange between the fractures and the matrix pores has a very strong impact on the
transport behavior of the fracture-matrix system; the solute transport in the fractures is strongly
retarded and solutes are just beginning to reach the outflow boundary.

4.0

3.0

2.0

1.0

-1.0

-2.0

-3.0

-4.0

-5.0 L.-IWit...~~~.J.-L,..olllll.ilw....st<~~:.lll:J..=I.AIIitiiOilil...oll;~~-=....&....l~iQI.oC'-Wu:L.~Io02olol:ml>.ll
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

Fig. 11: Concentration in the fracture network after 0.5 107 s (57.9 days)

Cone.
0.94
0.88
0.81

0.75

0.69
0.63
0.56

0.50
0.44
0.38

0.31
0.25

0.19
0.13
0.06

-46-

Figure 12 shows concentration values in the matrix blocks for the same time step 0.5 107 s (57.9
days). For the sake of visualization, average concentration values are presented for each block.
Remember that TRIPOL Y simulates the transport in the matrix ~olving one-dimensional diffusion
equations for each matrix block. Therefore, in the simulation procedure it is possible to accu
rately account for the steep gradients between the fractures and the matrix. However, TRIPOLY
internally calculates average values out of the one-dimensional concentration profiles and writes
them into the output files DATnn.TEC.

A comparison of Figure 11 and Figure 12 clearly indicates that the contaminant build-up in the
matrix blocks is much slower than in the fractures: Moreover, the average concentrations in the
blocks vary significantly due the _different block sizes. Large blocks which offer a larger pore
volume for storing contaminants are fairly clean while some smaller blocks are contaminated .

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

Fig. 12: Average concentration in the matrix blocks after 0.5 107 s (57.9 days)

. Cone.
0.94

0.88

0.81

0.75

0.69

0.63

0.56

0.50

0.44

0.38

0.31

0.25

0.19

0.13

0.06

-47-

Results of another time step are presented in Figures 13 and 14, respectively. After 3.0 107 s
(347.2 days) most fractures are contaminated with concentrations close to 1.0. Lower concentra
tions are only obtained in no-flow fractures where molecular diffusion rather than advection is the
relevant physical process. Most of these fractures are located at the upper and lower boundary.

4.0

3.0

2.0

1.0

-1.0

-2.0

-3.0

-5.0 .~~~&-~...-~;....:.....-~
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Fig. 13: Concentration in the fracture network after 3.0 107 s (347.2 days)

5.0

Cone.
0.94
0.88
0.81

0.75
0.69
0.63
0.56
0.50
0.44

0.38
0.31
0.25
0.19
0.13
0.06

The average concentration values of the matrix blocks show a different picture. Although many
of the smaller blocks are already contaminated with concentrations close to 1.0, there are a num
ber of large blocks which are still fairly clean. This means that even after 3.0 107 s (347.2 days)
significant concentration differences between the fractures and the matrix can be obtained for
large blocks, and part of the solute diffuses from the fractures into the matrix pores. This process
may continue for a much longer time because the diffusive transport in the matrix is very slow.

-48-

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0

Fig. 14: Average concentration in the matrix blocks after 3.0 107 s (347.2 days)

Cone.
0.94
0.88
0.81
0.75
0.69
0.63

0.56
0.50
0.44

0.38
0.31

0.25
0.19

0.13
0.06

Figure 15 exhibits tracer breakthrough curves measured at the right (outflow) boundary. The
solid black line represents the tracer breakthrough calculated by TRIPOL Y when taking matrix
diffusion into account. The dashed line gives the tracer breakthrough when only the fractures are
considered and matrix diffusion is neglected. The strong impact of matrix diffusion on the trans
port behavior in a fractured porous formation is immediately evident.

Our simulation results clearly show that the individual matrix blocks exhibit a very different
response to perturbations in the fracture network, simply due to their variability in size and shape.
This effect may even 'be enhanced by spatially varying material properties. As shown by
JANSEN et al. (1996), the observed phenomenon has a strong impact on the assignment of
equivalent continuum parameters for the matrix blocks, a problem which is associated with the
use of dual-porosity models. Central to those models is the assumption that the heterogeneous
rock formation can be separated into two homogeneous media, one continuum representing the
interconnected fracture system, a second continuum representing the porous matrix blocks.
Numerous studies have been performed in the past to check if a continuum representation of frac
ture networks is valid, to derive equivalent continuum parameters and to estimate the model error
associated with this averaging process. However, little work has been done to address this task
with regard to the matrix blocks of a given subdomain, which may vary considerably in size,

-49-

shape or material properties. In most cases of dual porosity modeling, the matrix continuum
parameters are only roughly estimated; an error analysis is not performed.

Based on the results of the (exact) TRIPOLY results we can now address the problem of assign
ing equivalent continuum parameters for matrix blocks with significant heterogeneity. We repeat
the TRIPOL Y run with the same fracture network and the same boundary and initial conditions,
but now assign averaged parameters using different averaging techniques. Breakthrough curves
of both runs can be compared and analyzed to check the accuracy of the averaged representatipn
of the matrix blocks and to estimate the error between the two solutions, respectively. The dotted

·line in Figure 15 is an example of such a simulation run. Here, all the differently shaped matrix
blocks are described by the same proximity function, which was calculated by a random proce
dure (as described in Section 1.3.4) performed for the entire domain.

1.0 ~,:-r--r-T"-r-"T"'"'"'I---r-r-,.....,......,....-r-.....,..-r-..,......,,..........-.--"r"'T.....,....-.--T""'"T--r""-r-r-T"-,

0.9

0.8

c 0.7
0
'§ 0.6 -c 0.5
(J)
(.)
c 0.4
0
0 0.3

0.2

0.1

I
1 No Matrix Diffusion

1
/:veraglng over Matrix Blocks

.... ···· 0.0__.L......I.._._ __.__.__...._._._...__L-.J.._._ --J......._...._.__.__.__ __._......._,
O.OEO 1.0E7 2.0E7 3.0E7 4.0E7 5.0E7 6.0E7

Time ins

Fig. 15: Tracer breakthrough curves

The results of this run indicate that the long-term behavior of the equivalent continuum solution
is quite good. However, the contaminant build-up of the breakthrough curve is slow compared to
the (exact) TRIPOLY solution. Apparently, the results obtained with averaged matrix geometry
overestimate the diffusive losses between fractures and matrix. A possible explanation might be
the following: Densely fractured subregions wi.thin the model area are correlated to small matrix
blocks. Small matrix blocks are contaminated more quickly than larger ones, and the diffusive
losses between fractures and matrix decrease more quickly. This means that the transport in
densely fractured zones with small matrix blocks may be faster than the average transport. Appa
rently, the equivalent continuum representation cannot describe this behavior. More work shall
be done in the future to address this important issue, and the newly developed code TRIPOL Y
provides a sophisticated tool for doing so.

-50-

Acknowledgment

This work was supported by a NATO-Postdoctoral Scholarship, provided by the German Aca
demic Exchange Organization (DAAD), Bonn, Germany, and by the Power Reactor and Nuclear
Fuel Development Corporation (PNC), Tokyo, Japan. The authors are grateful to C. Oldenburg
and C. Doughty of the Berkeley Lab for critical review of the manuscript and suggestions for
improvements.

References

BffiBY, R. (1981), Mass transport in dual-porosity media, Water Resour. Res., 17(4), 1075-1081.

Bll.LAUX, D., S. BODEA, J.C.S. LONG (1988), FMG, RENUM, LINEL, ELLFMG, ELLP and
DIMES: Chain of programs for calculating and analyzing fluid through two-dimensional
fracture networks- Theory and design, Lawrence Berkeley Laboratory report LBL-24914,
Berkeley, CA.

BILLAUX, D., J. PETERSON, S. BODEA, J.C.S. LONG (1989), FMG, RENUM, LINEL,
ELLFMG, ELLP and DIMES: Chain of programs for calculating and analyzing fluid
through two-dimensional fracture networks - User's manual and listings, Lawrence
Berkeley Laboratory report LBL-24915, Berkeley, CA.

BIRKHOLZER, J. (1994), Numerische Untersuchungen zur Mehrkontinuumsmodellierung von
Stofftrans-portvorgangen in Kluftgrundwasserleitem, Mitt. Inst. f. Wasserb. u. Wasserw.
93, Aachen: Academia.

BIRKHOLZER, J., G. ROUVE (1994), Dual-continuum modeling of contaminant transport in
fractured formations, Proc. lOth Int. Conf. on Numerical Methods in Water Resources at
Heidelberg, Germany.

BIRKHOLZER, J., G. ROUVE (1991), Solute transport in fractured porous rock, Proc. 7th Int.
Congress Rock Mechanics at Aachen, Germany.

HUYAKORN, P.S., B.H. LESTER, J.W. MERCER (1983), An efficient finite-element technique
for modeling transport in fractured porous media: 1. Single species transport, Water
Resour. Res., 19(3), 841-854.

KARASAKI, K. (1986), A new advection-dispersion code for calculating transport in fracture
networks, Lawrence Berkeley National Laboratory annual report LBL-22090, Berkeley,
CA.

JANSEN, D., J. BIRKHOLZER, J. KONGETER (1996), Contaminant transport in fractured
porous formations with strongly heterogeneous matrix properties, Proc. 2nd North
American Rock Mechanics Symp., NARMS '96, Montreal.

NEUMAN, S.P. (1984), Adaptive Eulerian-Lagrangian finite element method for advection-dis
persion, Int. Journal for Num. Meth. in Eng., 20, 321-337.

OKUSU, N., K. KARASAKI, J.C.S. LONG, G.S. BODVARSSON (1989), FMMG: A program
for discretizing two-dimensional fracture/matrix systems - Theory, design and user's
manual, Lawrence Berkeley Laboratory report LBL-26782, Berkeley, CA.

-51-

PRESS, W.H., B.P. FLANNERY, S .. A. TEUKOLSKY, W.T. VETTERLING (1986), Numerical
recipes: The art of scientific computing, Cambridge University Press, Cambridge.

PRUESS, k., K. KARASAKI (1982), Proximity functions for modeling fluid and heat flow in
reservoirs with stochastic fracture distribution. Proc. 8th Workshop Geotherm. Res. Eng.,
Stanford: 219-224.

SEGAN, S., K. KARASAKI (1993), TRINET: A flow and transport code for fracture networks
User's manual and tutorial, Lawrence Berkeley Laboratory report, Berkeley, CA.

TANG, D., E. FRIND, E.A. SUDICKY (1981), Contaminant transport in fractured porous media:
Analytical solution for a single fracture, Water Resour. Res., 17(3), 555-564.

THOMAS, L.H. (1949): Elliptic problems in linear differential equations over a network, Watson
Science Computer Lab., Rep. Columbia University, New York.

@i!!oJ~I§b-Jif l'ii'IIDilmi]'i ~oJ¥4~1 .. ::1(@J§IoJ:.<t§ILljl? ~ ~

@lU::I(~ ~ 0 @l#II#J3,.Y3l?o ~ ~

